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– Carver Mead, 1999

“Listen to the technology and find out what it 
is telling you.” 



It’s getting really hard to shrink transistors

The Economist 2015



The MOS Transistor

rather than concentrating it, spreading the ability to calculate and communicate across an ever greater range of everyday objects in the nascent internet of things. Moore’s
law provided an unprecedented combination of blistering progress and certainty about the near future. As that certainty wanes, the effects could be felt far beyond the
chipmakers faced with new challenges and costs. In a world where so many things—from the cruising speed of airliners to the median wage—seem to change little from
decade to decade, the exponential growth in computing power underlies the future plans of technology providers working on everything from augmented-reality headsets
to self-driving cars. More important, it has come to stand in the imagination for progress itself. If something like it cannot be salvaged, the world would look a grimmer
place. At the same time, some see benefits in a less predictable world that gives all sorts of new computing technologies an opportunity to come into their own. “The end
of Moore’s law could be an inflection point,” says Microsoft’s Dr Lee. “It’s full of challenges—but it’s also a chance to strike out in different directions, and to really
shake things up.”

More Moore: The incredible shrinking transistor

New sorts of transistors can eke out a few more iterations of Moore’s law, but they will get increasingly expensive

THANKS to the exponential power of Moore’s law, the electronic components that run modern computers vastly outnumber all the leaves on the Earth’s trees. Chris
Mack, a chipmaking expert, working from a previous estimate by VLSI Research, an analysis firm, reckons that perhaps 400 billion billion (4x1020) transistors were
churned out in 2015 alone. That works out at about 13 trillion a second. At the same time they have become unimaginably small: millions could fit on the full stop at the
end of this sentence.

A transistor is a sort of switch. To turn it on, a voltage is applied to its gate, which allows the current to flow through the channel between the transistor’s source and drain
(see first diagram). When no current flows, the transistor is off. The on-off states represent the 1s and 0s that are the fundamental language of computers.

The silicon from which these switches are made is a semiconductor, meaning that its electrical properties are halfway between those of a conductor (in which current can
flow easily) and an insulator (in which it cannot). The electrical characteristics of a semiconductor can be tweaked, either by a process called “doping”, in which the
material is spiced with atoms of other elements, such as arsenic or boron, or by the application of an electrical field.

In a silicon transistor, the channel will be doped with one material and the source and drain with another. Doping alters the amount of energy required for any charge to
flow through a semiconductor, so where two differently doped materials abut each other, current cannot flow. But when the device is switched on, the electric field from
the gate generates a thin, conductive bridge within the channel which completes the circuit, allowing current to flow through.

For a long time that basic design worked better and better as transistors became ever smaller. But at truly tiny scales it begins to break down. In modern transistors the
source and drain are very close together, of the order of 20nm. That causes the channel to leak, with a residual current flowing even when the device is meant to be off,
wasting power and generating unwanted heat.

Heat from this and other sources causes serious problems. Many modern chips must either run below their maximum speeds or even periodically switch parts of
themselves off to avoid overheating, which limits their performance.

Chipmakers are trying various methods to avoid this. One of them, called strained silicon, which was introduced by Intel in 2004, involves stretching the atoms of the
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How many lanes on the transistor’s freeway?

Watanabe et al 2014
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Fig. 4 Scattering processes described in the
EMC/MD method. The acoustic and optical
phonon scatterings are described as stochastic
changes in the momentum of the carriers by EMC
algorithm. The real-space trajectories of electrons
under the Coulomb interaction are described by
the MD algorithm. Bare point-to-point Coulomb
potential is assumed between electrons, ITCs, and
fractional charges on the gate electrode. A
softened Coulomb potential is applied between an
electron and a donor ion.

Fig. 5 Softened Coulomb potential to avoid a
singular point at zero distance. e is the
elementary charge, ε is the permittivity of the
semiconductor, and α is the softening factor. The
plot for α = 0 is the bare point to point Coulomb
potential with the singular point at r = 0.

Fig. 6 Low field (1 kV/cm) mobility vs donor
density relationship in an n-type bulk Si
simulated using the softened Coulomb potential
(Part of data are taken from Ref [8]). The unit
cell includes 100 electrons and 100 impurity ions.
Each data point is the average for 100 ps. In the
current work, α is set to α ൌ 7 ൈ 10ିଵ଴ m.
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Table 1. Device parameters of the GAA n-i-n Si NW FET determined
according to ITRS2012 [10] and ITRS2013[11]. LS and LD are the length
of source and drain regions, respectively. The number of electrons is the
total number of them in the source, channel, and drain regions.

Fig. 2 Simulation model for the GAA n-i-n Si NW FET. One-dimensional
periodic boundary condition is adopted in the longitudinal direction. The
donor density in the SD region is 10ଶ଴ cm-3.
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Fig. 1 Schematic of the current variability sources in GAA NW FET
compared in this work: (a) SD-RDF, in which the distribution of dopant
ions in SD regions changes from device to device. (b) RTN, the current
varies from time to time due to the temporally trapped charge in the gate
oxide film.

Equation (1) Quantum confinement potential in the GAA NW FET [5, 12]. A and B are functions that depend on ௘ܰ௟௘. ௘ܰ௟௘ is the mean carrier density in
the channel, which is self-consistently determined
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ݍ ቈln sin ߨ

Φ ݎ ൅ Φ
2 ൅ ln exp െ ܤ ௘ܰ௟௘
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Fig. 3 Electron potential landscape on the cross-sectional plane, including
the longitudinal axis, in the GAA NW FET at on state.
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Fig. 4 Scattering processes described in the
EMC/MD method. The acoustic and optical
phonon scatterings are described as stochastic
changes in the momentum of the carriers by EMC
algorithm. The real-space trajectories of electrons
under the Coulomb interaction are described by
the MD algorithm. Bare point-to-point Coulomb
potential is assumed between electrons, ITCs, and
fractional charges on the gate electrode. A
softened Coulomb potential is applied between an
electron and a donor ion.

Fig. 5 Softened Coulomb potential to avoid a
singular point at zero distance. e is the
elementary charge, ε is the permittivity of the
semiconductor, and α is the softening factor. The
plot for α = 0 is the bare point to point Coulomb
potential with the singular point at r = 0.

Fig. 6 Low field (1 kV/cm) mobility vs donor
density relationship in an n-type bulk Si
simulated using the softened Coulomb potential
(Part of data are taken from Ref [8]). The unit
cell includes 100 electrons and 100 impurity ions.
Each data point is the average for 100 ps. In the
current work, α is set to α ൌ 7 ൈ 10ିଵ଴ m.
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Table 1. Device parameters of the GAA n-i-n Si NW FET determined
according to ITRS2012 [10] and ITRS2013[11]. LS and LD are the length
of source and drain regions, respectively. The number of electrons is the
total number of them in the source, channel, and drain regions.

Fig. 2 Simulation model for the GAA n-i-n Si NW FET. One-dimensional
periodic boundary condition is adopted in the longitudinal direction. The
donor density in the SD region is 10ଶ଴ cm-3.
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Fig. 1 Schematic of the current variability sources in GAA NW FET
compared in this work: (a) SD-RDF, in which the distribution of dopant
ions in SD regions changes from device to device. (b) RTN, the current
varies from time to time due to the temporally trapped charge in the gate
oxide film.

Equation (1) Quantum confinement potential in the GAA NW FET [5, 12]. A and B are functions that depend on ௘ܰ௟௘. ௘ܰ௟௘ is the mean carrier density in
the channel, which is self-consistently determined
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Fig. 3 Electron potential landscape on the cross-sectional plane, including
the longitudinal axis, in the GAA NW FET at on state.
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Fig. 4 Scattering processes described in the
EMC/MD method. The acoustic and optical
phonon scatterings are described as stochastic
changes in the momentum of the carriers by EMC
algorithm. The real-space trajectories of electrons
under the Coulomb interaction are described by
the MD algorithm. Bare point-to-point Coulomb
potential is assumed between electrons, ITCs, and
fractional charges on the gate electrode. A
softened Coulomb potential is applied between an
electron and a donor ion.

Fig. 5 Softened Coulomb potential to avoid a
singular point at zero distance. e is the
elementary charge, ε is the permittivity of the
semiconductor, and α is the softening factor. The
plot for α = 0 is the bare point to point Coulomb
potential with the singular point at r = 0.

Fig. 6 Low field (1 kV/cm) mobility vs donor
density relationship in an n-type bulk Si
simulated using the softened Coulomb potential
(Part of data are taken from Ref [8]). The unit
cell includes 100 electrons and 100 impurity ions.
Each data point is the average for 100 ps. In the
current work, α is set to α ൌ 7 ൈ 10ିଵ଴ m.
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Table 1. Device parameters of the GAA n-i-n Si NW FET determined
according to ITRS2012 [10] and ITRS2013[11]. LS and LD are the length
of source and drain regions, respectively. The number of electrons is the
total number of them in the source, channel, and drain regions.

Fig. 2 Simulation model for the GAA n-i-n Si NW FET. One-dimensional
periodic boundary condition is adopted in the longitudinal direction. The
donor density in the SD region is 10ଶ଴ cm-3.
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Fig. 1 Schematic of the current variability sources in GAA NW FET
compared in this work: (a) SD-RDF, in which the distribution of dopant
ions in SD regions changes from device to device. (b) RTN, the current
varies from time to time due to the temporally trapped charge in the gate
oxide film.

Equation (1) Quantum confinement potential in the GAA NW FET [5, 12]. A and B are functions that depend on ௘ܰ௟௘. ௘ܰ௟௘ is the mean carrier density in
the channel, which is self-consistently determined
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Fig. 3 Electron potential landscape on the cross-sectional plane, including
the longitudinal axis, in the GAA NW FET at on state.
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Beware of potholes!

SOI nFETs. The distributions are not the normal distribution 
and have long tail in large ΔVth region. In other words, most 
of transistors have very small ΔVth (~ 0mV) while a few 
transistors have extremely large ΔVth (~ 100mV). The median 
ΔVth in FD SOI MOSFETs is larger than that in bulk 
MOSFETs. This would be because the metal gate stack 
process in FD SOI MOSFETs is not optimized and the FD 
SOI MOSFETs have more interface traps. However, please 
note that, in the tail region, FD SOI MOSFETs have smaller 
ΔVth than bulk MOSFETs. The main problem of RTN in 
VLSI is not the median ΔVth but large ΔVth in the tail region. 
This result means that using intrinsic FD SOI MOSFET, the 
effect of RTN can be suppressed. 
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Fig. 5.  Examples of measured drain current as a function of time in (a) a bulk 
MOSFET and (b) an FD SOI MOSFET.  
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MOSFETs due to RTN. Vds = 1.0V and Vg = Vth.  

 

IV. DISSCUSSION 
 

In order to discuss the origins of DIBL and COV 
variability, 3D device simulation was performed to derive the 
potential profile. Fig. 7 compares the channel potential profile 
in a bulk and an FD SOI MOSFET. The potential of bulk 
MOSFETs are largely fluctuated due to RDF while SOI 
MOSFETs have smooth channel potential. DIBL variability is 
caused by potential asymmetry between source and drain (in 
gate length direction) [6], and COV variability is caused by 
the potential fluctuation along channel width direction [8]. In 
intrinsic channel SOI MOSFETs, there is negligibly small 
channel potential fluctuation as shown in Fig. 7(b), and 
therefore, DIBL and COV variability is suppressed.  

ΔVth caused by RTN was also calculated by 3D device 
simulation assuming RDF. In the simulation, ΔVth is defined 
as the difference of Vth in MOSFETs with and without a fix 
charge. The position of the fix charge is randomly distributed 
in the channel. For comparison, MOSFETs without assuming 
RDF (so-called “jellium”) are simulated. Fig. 8 shows the 
cumulative probabilities of simulated ΔVth of bulk and FD 
SOI MOSFETs. The distribution of ΔVth in bulk MOSFETs 
assuming RDF has a long tail. On the other hand, bulk 
MOSFET without assuming RDF does not have a tail, 
indicating that the ΔVth distribution tail observed in the 
measurement is closely related to RDF in the channel. FD SOI 
MOSFETs which have very low channel density has only a 
small tail even when RDF is assumed. 
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Fig. 7.  Examples of simulated channel potential profile at Vgs = Vth – 0.1V. 
(a) Bulk pFET with NA = 2x1018cm-3. (b) Intrinsic channel FD SOI pFET. 
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Accidents occur!
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Fig. 2. RTN-induced drain current fluctuation in a pMOS.

switching trap in gate oxide
filled oxide trap in gate oxide

empty trap in gate oxide

EF : Fermi level
ET : trap energy level

Fig. 3. Energy band diagram of an nMOS transistor.

process) generates 1/f noise[25]. Mobile charged carriers in
a transistor channel can be trapped into or detrapped from
oxide traps randomly (Fig. 1). The capture and emission of
one carrier induces a two-state RTN. Figure 2 is the typical
example of a measured drain current fluctuation in a commer-
cial 40 nm CMOS transistor in our test chip that has a large
two-state RTN. Time constants τc and τe are defined as the
time when the drain current stays at high-current state (H-state)
and low-current state (L-state) respectively. The fluctuation
amplitude is defined as ∆Ids. RTN is an intrinsically random
phenomenon. The parameter such as τc, τe and ∆Ids differ by
transistor. Thus statistical characterization is required for the
correct RTN modeling[26], [27], [28]. When a two-state RTN
is measured for some period, distributions of τc and τe are
obtained. The average of τc and τe is denoted as ⟨τc⟩ and ⟨τe⟩
respectively. We assume that the probability of a transition
from H-state to L-state per unit time is given by 1/⟨τc⟩ and
from L-state to H-state per unit time is given by 1/⟨τe⟩. A(t)
is defined as the probability that a transition from H-state to
L-state does not happen after time t. Then,

A(t+ dt) = A(t)

(
1− dt

⟨τc⟩

)
(1)

is obtained. Integrating Eq. (1) with A(0) = 1,

A(t) = exp(−t/⟨τc⟩). (2)

As a result, the probability, PH(t), that the transition from H-
state to L-state does not happen for time t, and then happens
between time t and t+ dt is given by

PH(t) =
1

⟨τc⟩
exp(−t/⟨τc⟩). (3)

Equation (3) shows that the time constant, τc and τe, follow
exponential distributions. It is shown later experimentally that
time constants actually follow exponential distribution both
for a two-state drain current fluctuation (Section 3) and for a
two-state logic delay fluctuation (Section 5).

The capture and emission of a carrier also induces the
threshold voltage fluctuation, ∆Vth. It is approximately ex-
pressed as

∆Vth =
e

LWCox
, (4)

where L is the gate length, W is the gate width, Cox is
the gate capacitance per unit area, and e is the elementary
charge. Equation (4) shows the impact of one charged carrier
on ∆Vth becomes larger as the gate area shrinks. When the
operating voltage of a circuit decreases, the impact of ∆Vth

also becomes larger. Recent studies show that ∆Vth caused by
RTN grows more rapidly than the threshold variation caused
by random dopant fluctuation. It is reported that RTN-induced
∆Vth may exceed RDF-induced threshold variation at the 3 σ
level in 22 nm technology[23]. Figure 3 shows the energy band
diagram of an nMOS transistor. The Fermi level is denoted
by EF and the trap energy level is denoted by ET. Traps
below EF (filled circle) are filled and above EF (open circle)
is empty. Several traps close to EF can act as switching traps.
The ⟨τc⟩/⟨τe⟩ ratio follows

⟨τc⟩
⟨τe⟩

= exp

(
ET − EF

kBT

)
, (5)

where kB is the Boltzmann constant and T is temperature.
When one switching trap exists, 2-state discrete drain current
fluctuation is observed. If there are n switching traps, 2n-state
discrete fluctuation can be observed.

RTN in transistors is a critical issue not only for analog/RF
circuits but also for digital circuits. RTN already has a serious
impact on CMOS image sensors[29], flash memories[30], and
SRAMs[31], [32], [33]. These circuits use small size device
and the integration density is extremely high.

Recently we have reported that RTN also induces perfor-
mance fluctuation to logic circuits[34]. The impact of RTN
can be a serious problem even for logic circuits when they are
operated under low supply voltage[35]. Circuit designers can
change various parameters such as operating voltage, transistor
size, number of logic stages, logic gate type and substrate bias.
However, the impact of such parameters on RTN is not well
understood at the circuit level[36]. This impact is clarified
based on our measurement results in Section VI.

Fully-depleted SOI (FD-SOI) MOSFETs are one of the
attractive devices for the present and the future planar CMOS
technology[37]. As one of the FD-SOI devices, the Silicon
On Thin Buried oxide (SOTB) are being developed because
of the superior device characteristics for ultra-low voltage
operations and the suppression of device variability caused
by dopant fluctuation[38]. RTN amplitude is also considered
to be suppressed by FD-SOI MOSFETs compared to bulk
MOSFETs because large channel potential fluctuation in the
bulk device is suppressed in the FD-SOI device[39]. Multi-
gate transistors such as tri-gate device are also attractive and
have already been applied to the advanced SoC in 22 nm
technology[40]. RTN in multi-gate device and its impact on
circuit will further be investigated in the future[41], [42].

Electron trapped

Electron escapes



2014: Industry went 3D to get more lanes

rather than concentrating it, spreading the ability to calculate and communicate across an ever greater range of everyday objects in the nascent internet of things. Moore’s
law provided an unprecedented combination of blistering progress and certainty about the near future. As that certainty wanes, the effects could be felt far beyond the
chipmakers faced with new challenges and costs. In a world where so many things—from the cruising speed of airliners to the median wage—seem to change little from
decade to decade, the exponential growth in computing power underlies the future plans of technology providers working on everything from augmented-reality headsets
to self-driving cars. More important, it has come to stand in the imagination for progress itself. If something like it cannot be salvaged, the world would look a grimmer
place. At the same time, some see benefits in a less predictable world that gives all sorts of new computing technologies an opportunity to come into their own. “The end
of Moore’s law could be an inflection point,” says Microsoft’s Dr Lee. “It’s full of challenges—but it’s also a chance to strike out in different directions, and to really
shake things up.”

More Moore: The incredible shrinking transistor

New sorts of transistors can eke out a few more iterations of Moore’s law, but they will get increasingly expensive

THANKS to the exponential power of Moore’s law, the electronic components that run modern computers vastly outnumber all the leaves on the Earth’s trees. Chris
Mack, a chipmaking expert, working from a previous estimate by VLSI Research, an analysis firm, reckons that perhaps 400 billion billion (4x1020) transistors were
churned out in 2015 alone. That works out at about 13 trillion a second. At the same time they have become unimaginably small: millions could fit on the full stop at the
end of this sentence.

A transistor is a sort of switch. To turn it on, a voltage is applied to its gate, which allows the current to flow through the channel between the transistor’s source and drain
(see first diagram). When no current flows, the transistor is off. The on-off states represent the 1s and 0s that are the fundamental language of computers.

The silicon from which these switches are made is a semiconductor, meaning that its electrical properties are halfway between those of a conductor (in which current can
flow easily) and an insulator (in which it cannot). The electrical characteristics of a semiconductor can be tweaked, either by a process called “doping”, in which the
material is spiced with atoms of other elements, such as arsenic or boron, or by the application of an electrical field.

In a silicon transistor, the channel will be doped with one material and the source and drain with another. Doping alters the amount of energy required for any charge to
flow through a semiconductor, so where two differently doped materials abut each other, current cannot flow. But when the device is switched on, the electric field from
the gate generates a thin, conductive bridge within the channel which completes the circuit, allowing current to flow through.

For a long time that basic design worked better and better as transistors became ever smaller. But at truly tiny scales it begins to break down. In modern transistors the
source and drain are very close together, of the order of 20nm. That causes the channel to leak, with a residual current flowing even when the device is meant to be off,
wasting power and generating unwanted heat.

Heat from this and other sources causes serious problems. Many modern chips must either run below their maximum speeds or even periodically switch parts of
themselves off to avoid overheating, which limits their performance.

Chipmakers are trying various methods to avoid this. One of them, called strained silicon, which was introduced by Intel in 2004, involves stretching the atoms of the

The Economist 2016



Intel’s 28nm FinFET: 30 lanes (13+4+13)
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Brains operate fine with single-lane ion-channels

MacKinnon et al 1998

Fertig et al. 2002  

20 ion-channels

2000 ion-channels



– John von Neumann 1957

“The most immediate observation regarding 
the nervous system is that its functioning is 

prima facie digital.” 



– John von Neumann 1957

“Thus all the complexities referred to here 
may be irrelevant, but they may also endow 
the system with a (partial) analog character, 

or a ‘mixed’ character.” 
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Fig. 2. RTN-induced drain current fluctuation in a pMOS.

switching trap in gate oxide
filled oxide trap in gate oxide

empty trap in gate oxide

EF : Fermi level
ET : trap energy level

Fig. 3. Energy band diagram of an nMOS transistor.

process) generates 1/f noise[25]. Mobile charged carriers in
a transistor channel can be trapped into or detrapped from
oxide traps randomly (Fig. 1). The capture and emission of
one carrier induces a two-state RTN. Figure 2 is the typical
example of a measured drain current fluctuation in a commer-
cial 40 nm CMOS transistor in our test chip that has a large
two-state RTN. Time constants τc and τe are defined as the
time when the drain current stays at high-current state (H-state)
and low-current state (L-state) respectively. The fluctuation
amplitude is defined as ∆Ids. RTN is an intrinsically random
phenomenon. The parameter such as τc, τe and ∆Ids differ by
transistor. Thus statistical characterization is required for the
correct RTN modeling[26], [27], [28]. When a two-state RTN
is measured for some period, distributions of τc and τe are
obtained. The average of τc and τe is denoted as ⟨τc⟩ and ⟨τe⟩
respectively. We assume that the probability of a transition
from H-state to L-state per unit time is given by 1/⟨τc⟩ and
from L-state to H-state per unit time is given by 1/⟨τe⟩. A(t)
is defined as the probability that a transition from H-state to
L-state does not happen after time t. Then,

A(t+ dt) = A(t)

(
1− dt

⟨τc⟩

)
(1)

is obtained. Integrating Eq. (1) with A(0) = 1,

A(t) = exp(−t/⟨τc⟩). (2)

As a result, the probability, PH(t), that the transition from H-
state to L-state does not happen for time t, and then happens
between time t and t+ dt is given by

PH(t) =
1

⟨τc⟩
exp(−t/⟨τc⟩). (3)

Equation (3) shows that the time constant, τc and τe, follow
exponential distributions. It is shown later experimentally that
time constants actually follow exponential distribution both
for a two-state drain current fluctuation (Section 3) and for a
two-state logic delay fluctuation (Section 5).

The capture and emission of a carrier also induces the
threshold voltage fluctuation, ∆Vth. It is approximately ex-
pressed as

∆Vth =
e

LWCox
, (4)

where L is the gate length, W is the gate width, Cox is
the gate capacitance per unit area, and e is the elementary
charge. Equation (4) shows the impact of one charged carrier
on ∆Vth becomes larger as the gate area shrinks. When the
operating voltage of a circuit decreases, the impact of ∆Vth

also becomes larger. Recent studies show that ∆Vth caused by
RTN grows more rapidly than the threshold variation caused
by random dopant fluctuation. It is reported that RTN-induced
∆Vth may exceed RDF-induced threshold variation at the 3 σ
level in 22 nm technology[23]. Figure 3 shows the energy band
diagram of an nMOS transistor. The Fermi level is denoted
by EF and the trap energy level is denoted by ET. Traps
below EF (filled circle) are filled and above EF (open circle)
is empty. Several traps close to EF can act as switching traps.
The ⟨τc⟩/⟨τe⟩ ratio follows

⟨τc⟩
⟨τe⟩

= exp

(
ET − EF

kBT

)
, (5)

where kB is the Boltzmann constant and T is temperature.
When one switching trap exists, 2-state discrete drain current
fluctuation is observed. If there are n switching traps, 2n-state
discrete fluctuation can be observed.

RTN in transistors is a critical issue not only for analog/RF
circuits but also for digital circuits. RTN already has a serious
impact on CMOS image sensors[29], flash memories[30], and
SRAMs[31], [32], [33]. These circuits use small size device
and the integration density is extremely high.

Recently we have reported that RTN also induces perfor-
mance fluctuation to logic circuits[34]. The impact of RTN
can be a serious problem even for logic circuits when they are
operated under low supply voltage[35]. Circuit designers can
change various parameters such as operating voltage, transistor
size, number of logic stages, logic gate type and substrate bias.
However, the impact of such parameters on RTN is not well
understood at the circuit level[36]. This impact is clarified
based on our measurement results in Section VI.

Fully-depleted SOI (FD-SOI) MOSFETs are one of the
attractive devices for the present and the future planar CMOS
technology[37]. As one of the FD-SOI devices, the Silicon
On Thin Buried oxide (SOTB) are being developed because
of the superior device characteristics for ultra-low voltage
operations and the suppression of device variability caused
by dopant fluctuation[38]. RTN amplitude is also considered
to be suppressed by FD-SOI MOSFETs compared to bulk
MOSFETs because large channel potential fluctuation in the
bulk device is suppressed in the FD-SOI device[39]. Multi-
gate transistors such as tri-gate device are also attractive and
have already been applied to the advanced SoC in 22 nm
technology[40]. RTN in multi-gate device and its impact on
circuit will further be investigated in the future[41], [42].

0 11 10 0 1



Analog versus Digital Computation: Energy Cost82 CHAPTER 1.2

This absolute limit is very steep, since it requires a factor 10 of power increase for
every 10 dB of signal-to-noise ratio improvement. It applies to each pole of any linear
analog filter (continuous or sampled-data as switched capacitors [8]) and is reached in the
case of a simple passive RC filter, whereas the best existing active filters are still two
orders of magnitude above. High-Q poles in the passband reduce the maximum amplitude
at other frequencies and therefore increase the required power, according to (3).

Approximately the same result is found for relaxation oscillators, whereas the
minimum power required for a voltage amplifier of gain Av can be derived considering a
single stage common-source (or common-emitter) small-signal amplifier. The signal-to-
noise ratio is obtained by comparing the input rms voltage to the input-referred noise
voltage:

(5)

where RN is the input-referred thermal noise resistance, which is given by:

(6)

where γ is the noise factor defined by (48) as the product of the input-referred
thermal noise resistance and the effective transconductance of the device. It is equal to

 in the case of a MOS transistor biased in weak inversion where n is the slope factor
defined by (19). The power can be expressed as a function of the SNR by combining (5)
and (6):

(7)

Figure 2.2 Minimum power for analog and digital circuits
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Robust Digital Computation: N-way Redundancy

von Neumann 1956

P(flip) = εP(active) = η

P(active) = ξ P(active) = ζ

{N = 5

NAND

ζ = (1−ηξ)+ε(2ηξ−1)+δ (1−2ε)2η(1−η)ξ(1−ξ)+ε(1−ε)( )/N
with δ∼ℵ(0,1)

❖ Binary code:  
ζ > 0.97 ⇒ bit = 1  
ζ < 0.03 ⇒ bit = 0   
    othw ⇒ error

❖ For ε > 1.07×10-2, increasing 
N doesn’t help 

❖ For ε = 5×10-3:
P(error)= 6.4

N
10
−
8.6N
10,000

N P(error)



How can we unleash the computational power 
and energy efficiency of nanoscale transistors 

using analog computation and digital 
communication?
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Neurogrid

❖ Dendrites modeled with 
subthreshold analog circuits

❖ Axons modeled with 
asynchronous digital logic

❖ Connects each neuron to 
thousands of others with 
clustered synaptic connections

❖ Real-time operation
❖ 180 nm

Chip:  
64K neurons 

256M synapses 

Neuron: 
337 Transistors

Benjamin et al., 2014

Board: 16 Chips 

1M neurons 
4B synapses 

3W 



Prosthesis power challenge

Dethier  et al. 2012
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Spiking neural network decoder

Dethier  et al. 2012

2×1000 neuronsẋ = ↵Ix(t) + Bu(t)



Robot-arm controller

Sam Fok robot control demo

neurons in the additional (f
1

) layers take additional time
to respond to new inputs. Note, however, that addition and
subtraction need not incur additional delay because these
operations can be realized by convergent inputs.

Using our factorization strategy, we found the simplest set
of nonlinear sub-functions that could be summed to yield our
desired control function. These sub-functions spanned the
smallest possible domains. The resulting network contains
five pools that each represent three variables drawn from
the robot joint angles and end-effector force components.
Two sub-functions were decoded from the spike rates of
neurons in each pool (see Fig. 2). The decoded sub-functions
were summed to obtain the three commanded torques (see
Appendix for more details).

B. Regression

We sampled the neural responses of Neurogrid’s five three-
dimensional pools over their respective input state spaces at
points on a 10⇥ 10⇥ 10 mesh (Fig. 3). We restricted joint
angles to ±30

� and the commanded forces to ±5.5N, which
fully captures the robot’s operating range. The encoding
vectors were chosen using L

1

basis-pursuit. Given a pool’s
response matrix, A, which contains the firing rates for each
neuron at each mesh point, we then performed regularized
linear regression to solve for the decoding weights, d, ac-
cording to

d = argmin

d

||Ad� y||
2

+ �||d||
2

, (3)

where y is the desired function outputs (y exemplar estimated
in Fig. 3.B) and � is a regularization parameter.

C. Programming

We programmed the decoding weights on to Neurogrid’s
FPGA (Field Programmable Gate Array) daughter board.
According to the approach used in [1], [10], the FPGA
implements a probabilistic matrix-vector multiply. To decode
M sub-functions from pool of N neurons, the FPGA stores
the M⇥N decoding matrix, W . Each entry is represented as
a 8-bit fixed-point number representing a probability. When
neuron i spikes, the FPGA looks up the associated row of
the decoding matrix. For each w

ij

in the row, the FPGA
generates a random 8-bit number, r

j

. For each j, if r
j

< w

ij

,
the FPGA produces an output spike addressed to j.

We populate the decoding weight matrix by setting the
rows to be the decoders found for the associated sub-
function. Thus, the rate of the spikes being sent addressed to
j should, in expectation, be equal to

P
i

a

i

d

i

, where a

i

is the
firing rate of neuron i and d

i

is its decoding weight for the
sub-function. The FPGA thus produces one stream of output
spikes per decoded sub-function, with rates proportional to
each sub-function’s values. The FPGA sends these streams
back to the computer. The computer exponentially filters the
spike streams to obtain estimates of the rates, which are sent
to the robot as commanded torques.

In addition to the decoding FPGA, a second encoding
FPGA generates the network input according to the neurons’
encoding vectors and the current joint angles and task-space

Fig. 3. Mapping Control Functions on to a Spiking Neuron Pool. A. Sub-
function to be mapped on to the pool of neurons. B. The target function
to be decoded from the pool’s activity (top). Neurogrid’s decoded function
approximates the target function (bottom). Decodes were obtained while
varying q0 and f⇤

0 with q2 = 0 (left), or q2 = ⇡/8 (right). C. Responses of
neurons with the nine largest decode weights. Columns match B’s columns.

forces. In this case, the FPGA stores a N ⇥ M encoding
matrix for each pool, where M is now the dimensionality
of the domain of the function computed by the pool. The
encoding FPGA generates a set of spike streams, whose rates
are proportional to the robot’s state and commanded forces.
Throughout the experiment, the computer sends packets that
update these rates. We populate the encoding matrix so that
each row is a neuron’s encoding vector. Thus, if x is the

Fig. 2. Spiking Neural Control Framework. The control function was
mapped on to Neurogrid by first decomposing it into a set of three-
dimensional sub-functions computed using five spiking neuron pools. Each
pool takes as its input a unique combination of three joint angles or
desired end-effector force components. The sub-functions—J0,0 ⇥ f⇤

0 , for
instance—are computed as a linearly weighted sum of the neurons’ spike
rates in each pool. These weighted spike rates are summed for the set of
sub-functions required to compute each component of Neurobot’s controlled
joint torques.

degree-of-freedom robot. The robot successfully executes
arbitrary motions in free space and manipulates a pen in con-
tact with a surface. Neurogrid is thus the first neuromorphic
hardware platform to successfully manipulate an articulated
robot while being exposed to arbitrary environmental pertur-
bations.

II. TASK-SPACE CONTROL

We chose to implement task-space force control using
the Operational Space Framework [7]. A user (or trajectory
generator) provides desired forces (f⇤

x

) in task-space. Task
forces are projected into joint torques (�) using a task
Jacobian (J

x

) and a gravity-compensation torque is added
(�

g

),
� = J

T

x

f

⇤
x

+ �

g

. (1)

The gravitational compensation, �
g

, is given by

�

g

= �
4X

i=0

m

i

J

T

comi
g, (2)

where m

i

are the five articulated link masses, JT

comi
are the

link center-of-mass Jacobians, and g is the acceleration due
to gravity. Such force control is intrinsically compliant in
task-space, which helps it compensate for perturbations and
noise.

The operational space framework is attractive for neu-
romorphic controllers because it provides a closed-form,
time-invariant function that locally linearizes complex robot
dynamics and unifies motion and force control [7]. These
functions can be factorized into sub-functions on lower
dimensional sub-domains, simplifying the problem of finding
connection weights for the spiking neural network (Fig. 2).
In our case, the six-dimensional domain of joint angles and
commanded task-space forces was factorized into five three-
dimensional sub-domains. We used open-loop force control,
but force feedback may be easily accommodated in the future
since it involves additions and subtractions, which impose no
additional cost on computation.

III. TASK-SPACE CONTROL WITH SPIKING NEURONS

We mapped our task-space force controller on to Neu-
rogrid using the Neural Engineering Framework [9], which
computes functions with pools of spiking neurons by re-
gressing function outputs on to steady-state neural responses
over the function’s domain. Each neuron in a pool samples
the domain by taking its inner product with an assigned
encoding vector within the domain (i.e., the neuron spikes at
a higher rate when the pool’s inputs align with its encoding
vector). Finally, a regularized linear regression over each
pool’s responses yields a weighted summation of steady-state
neuron responses that fits the desired control function.

Our mapping procedure involves three stages, factoriza-
tion, regression, and programming.

A. Factorization

While a single pool of neurons can compute arbitrary
nonlinear functions, the number of samples required to fit
the function grows exponentially with the dimensionality
of the function’s domain. We limited the sample space by
factorizing our control function into nonlinear sub-functions
over three of the domain’s six dimensions, which achieved
a cubic sample size.

To understand our strategy, consider that f = (x+ y) · z,
whose domain is R3, can be factorized into f

0

= x · z and
f

1

= y · z, whose domains are R2. Doing so reduces the
samples required from cubic to quadratic in the domain’s
dynamic range. Since addition is implicit while decoding
[2], the factorized sub-functions are readily combined to
reconstruct the original function.

We avoided factorizations that involve function composi-
tion, such as f

0

= x + y and f

1

= f

0

· z, which require
multiple neuron layers. Doing so introduces a delay because

Menon et al. 2014

5×256 neurons
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neurons in the additional (f
1

) layers take additional time
to respond to new inputs. Note, however, that addition and
subtraction need not incur additional delay because these
operations can be realized by convergent inputs.

Using our factorization strategy, we found the simplest set
of nonlinear sub-functions that could be summed to yield our
desired control function. These sub-functions spanned the
smallest possible domains. The resulting network contains
five pools that each represent three variables drawn from
the robot joint angles and end-effector force components.
Two sub-functions were decoded from the spike rates of
neurons in each pool (see Fig. 2). The decoded sub-functions
were summed to obtain the three commanded torques (see
Appendix for more details).

B. Regression

We sampled the neural responses of Neurogrid’s five three-
dimensional pools over their respective input state spaces at
points on a 10⇥ 10⇥ 10 mesh (Fig. 3). We restricted joint
angles to ±30

� and the commanded forces to ±5.5N, which
fully captures the robot’s operating range. The encoding
vectors were chosen using L

1

basis-pursuit. Given a pool’s
response matrix, A, which contains the firing rates for each
neuron at each mesh point, we then performed regularized
linear regression to solve for the decoding weights, d, ac-
cording to

d = argmin

d

||Ad� y||
2

+ �||d||
2

, (3)

where y is the desired function outputs (y exemplar estimated
in Fig. 3.B) and � is a regularization parameter.

C. Programming

We programmed the decoding weights on to Neurogrid’s
FPGA (Field Programmable Gate Array) daughter board.
According to the approach used in [1], [10], the FPGA
implements a probabilistic matrix-vector multiply. To decode
M sub-functions from pool of N neurons, the FPGA stores
the M⇥N decoding matrix, W . Each entry is represented as
a 8-bit fixed-point number representing a probability. When
neuron i spikes, the FPGA looks up the associated row of
the decoding matrix. For each w

ij

in the row, the FPGA
generates a random 8-bit number, r

j

. For each j, if r
j

< w

ij

,
the FPGA produces an output spike addressed to j.

We populate the decoding weight matrix by setting the
rows to be the decoders found for the associated sub-
function. Thus, the rate of the spikes being sent addressed to
j should, in expectation, be equal to

P
i

a

i

d

i

, where a

i

is the
firing rate of neuron i and d

i

is its decoding weight for the
sub-function. The FPGA thus produces one stream of output
spikes per decoded sub-function, with rates proportional to
each sub-function’s values. The FPGA sends these streams
back to the computer. The computer exponentially filters the
spike streams to obtain estimates of the rates, which are sent
to the robot as commanded torques.

In addition to the decoding FPGA, a second encoding
FPGA generates the network input according to the neurons’
encoding vectors and the current joint angles and task-space

Fig. 3. Mapping Control Functions on to a Spiking Neuron Pool. A. Sub-
function to be mapped on to the pool of neurons. B. The target function
to be decoded from the pool’s activity (top). Neurogrid’s decoded function
approximates the target function (bottom). Decodes were obtained while
varying q0 and f⇤

0 with q2 = 0 (left), or q2 = ⇡/8 (right). C. Responses of
neurons with the nine largest decode weights. Columns match B’s columns.

forces. In this case, the FPGA stores a N ⇥ M encoding
matrix for each pool, where M is now the dimensionality
of the domain of the function computed by the pool. The
encoding FPGA generates a set of spike streams, whose rates
are proportional to the robot’s state and commanded forces.
Throughout the experiment, the computer sends packets that
update these rates. We populate the encoding matrix so that
each row is a neuron’s encoding vector. Thus, if x is the

Menon et al. 2014
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Summary
❖ Combining analog computation with digital 

communication proved energy-efficient and noise-
robust

❖ Building the first neuromorphic chip (Brainstorm) that 
implements spiking neural networks specified at a 
higher level of abstraction 

❖ Writing software tool (Neuromorph) that automatically  
synthesizes network from high-level specification

❖ ONR-funded collaboration with colleagues at Cornell 
and Waterloo
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