23 March 2016 - Berkeley CA

Neuromorphic Chips: Combining Analog Computation with Digital Communication

Kwabena Boahen

Bioengineering and Electrical Engineering (by courtesy)
Stanford University

Acknowledgments

Students
Ben Benjamin
Alex Neckar
Sam Fok
Samir Menon
Tatiana Engel
Nick Oza
John Aguayo
Eric Kauderer
Ashok Cutkosky
Alumni (Recent)
Peiran Gao
Nick Steinmetz
John Arthur
Paul Merolla
Rodrigo Alvarez

Collaborators
Stanford
Krishna Shenoy
Tirin Moore
Oussama Khatib

Waterloo

Chris Eliasmith
Terry Stewart Cornell
Rajit Manohar Ned Bingham
Funding
NIH Pioneer,TR01
ONR: C. Baatar

Analog VLSI and Neural Systems

"Listen to the technology and find out what it is telling you."

- Carver Mead, 1999

It's getting really hard to shrink transistors

A persevering prediction

Number of transistors in CPU* Log scale

Shrinking chips

Number and length of transistors bought per \$
Transistor size, nanometres (nm)
Transistors bought per \$, m

The MOS Transistor

How many lanes on the transistor's freeway?

Watanabe et al 2014

Beware of potholes!

Saraya et al 2011

Accidents occur!

2014: Industry went 3 D to get more lanes

Intel's 28nm FinFET: 30 lanes (13+4+13)

Average Fin width: 18 nm (at bottom)
Average Fin height: 35 nm
Average Fin pitch: 60 nm

28nm: Optimal Balance of Cost and Power for 2015 Devices

Brains operate fine with single-lane ion-channels

JOHN VON NEUMANN THE COMPUTER AND THE BRAIN

"The most immediate observation regarding the nervous system is that its functioning is prima facie digital."

- John von Neumann 1957

JOHN VON NEUMANN THE COMPUTER AND THE BRAIN

"Thus all the complexities referred to here may be irrelevant, but they may also endow the system with a (partial) analog character, or a 'mixed' character."

- John von Neumann 1957

Computation

Difference between Digital and Analog

Analog versus Digital Computation: Energy Cost

Enz \mathcal{E} Vittoz 1996

Sarpeshkar 1998

Robust Digital Computation: N-way Redundancy

How can we unleash the computational power and energy efficiency of nanoscale transistors using analog computation and digital communication?
while (True):

$$
r=\left(x^{* * 2}+y^{* *} 2\right)^{* *}(.5)
$$

while (True):

$$
\begin{aligned}
& a=x^{* * 2} \\
& b=y^{* * 2} \\
& c=a+b \\
& r=c^{* *}(.5)
\end{aligned}
$$

Eliasmith E Anderson 2003

$$
\dot{\mathbf{x}}=\alpha \mathbf{I} \mathbf{x}(t)+\mathbf{B u}(t)
$$

Router

Neurogrid

* Dendrites modeled with subthreshold analog circuits
* Axons modeled with asynchronous digital logic
* Connects each neuron to thousands of others with clustered synaptic connections
* Real-time operation
* 180 nm

Prosthesis power challenge

Head Mounted Electronics

IC with LNAs, ADCs, neuromorphic decoder circuit, telemetry, of prosthetic control signals, and inductive powering

Subcutaneous Mounted Electronics

As shown to the left, but with IC mounted to backside of electrode array and fully-implanted beneath

Fully-implanted Electronics (with array)

Spiking neural network decoder

Robot-arm controller

$$
\begin{gathered}
\Gamma=J_{x}^{T} f_{x}^{*}+\sum_{i=0}^{4} m_{i} J_{\text {comi }}^{T} g \\
{\left[\begin{array}{ccc}
J_{0,0} & J_{0,1} & J_{0,2} \\
J_{1,0} & J_{1,1} & J_{1,2} \\
J_{2,0} & J_{2,1} & J_{2,2}
\end{array}\right]^{T}\left[\begin{array}{l}
f_{0}^{*} \\
f_{1}^{*} \\
f_{2}^{*}
\end{array}\right] \longrightarrow J_{0,0 \times} f_{0}^{*}}
\end{gathered}
$$

$$
J_{0,0} \times\left. f_{0}^{*}\right|_{\mathrm{e}_{00}}=-0.35 \sin \left(q_{0}\right) \cos \left(q_{2}\right) f_{0}^{*}
$$

Robot-Arm controller performance

$$
J_{0,0} \times\left. f_{0}^{*}\right|_{\mathrm{e}_{00}}=-0.35 \sin \left(q_{0}\right) \cos \left(q_{2}\right) f_{0}^{*}
$$

Robot-arm controller video

Summary

* Combining analog computation with digital communication proved energy-efficient and noiserobust
* Building the first neuromorphic chip (Brainstorm) that implements spiking neural networks specified at a higher level of abstraction
* Writing software tool (Neuromorph) that automatically synthesizes network from high-level specification
* ONR-funded collaboration with colleagues at Cornell and Waterloo

