DISSERTATIONS.

ON THE HISTORY

OF

METAPHYSICAL AND ETHICAL,

AND OF

MATHEMATICAL AND PHYSICAL SCIENCE;

BY

DUGALD STEWART, F.R.S. LOND. & EDIN.

THE RIGHT HON. SIR JAMES MACKINTOSH, LL.D. F.R.S.;

JOHN PLAYFAIR, F.R.S. LOND. & EDIN.

AND

SIR JOHN LESLIE,
CORRESPONDING MEMBER OF THE ROYAL INSTITUTE OF FRANCE.

WITH A GENERAL INDEX.

ADAM AND CHARLES BLACK, EDINBURGH;
SIMPKIN, MARSHALL, & CO., WHITTAKER & CO., AND HAMILTON, ADAMS, & CO.,
LONDON; AND JOHN CUMMING, DUBLIN.

M.DCCC.XXXV.
The first of the following Dissertations, in its first Part, exhibits a view of the progress of Metaphysical and Ethical Philosophy from the revival of Letters till the close of the seventeenth century; and its second Part is devoted to the Metaphysical Philosophy of the eighteenth. The history of the Ethical Philosophy of that period is continued in the Second Dissertation. The Third, in two Parts, brings down the history of Mathematical and Physical Science till the era marked by the discoveries of Newton and Leibnitz; and the last continues the inquiry throughout the eighteenth century. The continuations just mentioned were rendered necessary by the death of the two eminent men who laid the foundations and raised the principal part of the superstructure of these celebrated Discourses.

The First and Third were written for, and prefixed to, the Supplement to the Fourth, Fifth, and Sixth Editions of the Encyclopaedia Britannica; and the Second and Fourth were written for the Seventh Edition, now in course of publication; the whole, printed in their natural order, constituting the first or introductory volume of that work. As these Dissertations exhibit a copious and accurate view of the progress of Knowledge and Discovery in those
grand divisions of Science of which they treat, and as they are the productions of writers of high and acknowledged reputation, the Publishers feel assured that they will meet the wishes of many by detaching them from the extensive work to which they are prefixed, and presenting them to the literary world in a separate form. In doing so, they have used the double column and type of that work, because, to have thrown the matter of this publication into any other form, would have so extended its bulk and price as materially to interfere with its circulation and utility.

The Publishers have only to add, that in order to facilitate reference, they have annexed a general and copious Index of the contents of the several Dissertations above specified.

Edinburgh, November 1835.
CONTENTS.

DISSERTATION FIRST.

Progress of Metaphysical and Ethical Philosophy.

Preface, containing some Critical Remarks on the Discourse prefixed to the French Encyclopédie,............ 1

PART FIRST.—INTRODUCTION,............ 13

Chapter I. From the Revival of Letters to the publication of Bacon's Philosophical Works,............ 14

Chapter II. From the publication of Bacon's Philosophical Works till that of the Essay on Human Understanding.

Section 1. Progress of philosophy in England during this period.—Bacon, Hobbes, Antagonists of Hobbes,............ 32

Section 2. Progress of Philosophy in France during the seventeenth century.

Montaigne—Charron—La Rochefoucauld,............ 49

Descartes—Gassendi—Malebranche,............ 56

Section 3. From the publication of Bacon's Philosophical Works till that of the Essay on Human Understanding,............ 84

PART SECOND.—INTRODUCTION,............ 99

Progress of Metaphysics during the eighteenth century.

Section 1. Historical and Critical Review of the Philosophical Works of Locke and Leibnitz—Locke,............ 100

Section 2. Continuation of the Review of Locke and Leibnitz—Leibnitz,............ 123

Section 3. Of the Metaphysical Speculations of Newton and Clarke.—Digression with respect to the system of Spinoza, Collins, and Jonathan Edwards.—Anxiety of both to reconcile the scheme of Necessity with Man's Moral Agency.—Departure of some later Necessitarians from their views,............ 139
CONTENTS.

Section 4. Of some Authors who have contributed, by their Critical or Historical Writings, to diffuse a taste for Metaphysical Studies.
Bayle. — Fontenelle. — Addison. — Metaphysical Works of Berkeley, 151

Section 5. Hartleian School, 169

Section 6. Condillac, and other French metaphysicians of a later date, 172

Section 7. Kant, and other metaphysicians of the New German School, 187

Section 8. Metaphysical Philosophy of Scotland, 204

NOTES AND ILLUSTRATIONS, 232

DISSERTATION SECOND.

Ethical Philosophy — Eighteenth Century.

INTRODUCTION, 293

Section 1. Preliminary Observations, 296

Section 2. Retrospect of Ancient Ethics, 299

Section 3. Retrospect of Scholastic Ethics, 307

Section 4. Modern Ethics, 315

Hobbes, 316

Section 5. Controversies concerning the Moral Faculties and the Social Affections.

Section 6. Foundations of a more just theory of Ethics.

Section 7. General Remarks, 400

NOTES AND ILLUSTRATIONS, 417

DISSERTATION THIRD.

Progress of Mathematical and Physical Science.

PART FIRST, 433

Section 1. Mathematics. 1. Geometry, 434

2. Algebra, 440

Section 2. Experimental Investigation. 1. Ancient Physics, 449

2. Novum Organum, 453
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Mechanics</th>
<th>1. Theory of Motion</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Hydrostatics</td>
<td></td>
<td>474</td>
</tr>
<tr>
<td>Section</td>
<td>Astronomy</td>
<td>1. Ancient Astronomy</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>2. Copernicus and Tycho</td>
<td></td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>3. Kepler and Galileo</td>
<td></td>
<td>488</td>
</tr>
<tr>
<td></td>
<td>4. Descartes, Huygens, &c.</td>
<td></td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>5. Establishment of Academies, &c.</td>
<td></td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>6. Figure and Magnitude of the Earth</td>
<td></td>
<td>501</td>
</tr>
<tr>
<td>Section</td>
<td>Optics</td>
<td>1. Optical Knowledge of the Ancients</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>2. From Alhazen to Kepler</td>
<td></td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>3. From Kepler to the commencement of Newton's Optical Discoveries</td>
<td></td>
<td>509</td>
</tr>
</tbody>
</table>

PART SECOND.—From the commencement of Newton's Discoveries to the year 1818

PERIOD FIRST.

<table>
<thead>
<tr>
<th>Section</th>
<th>The New Geometry</th>
<th>ibid.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Mechanics, General Physics, &c.</td>
<td>535</td>
</tr>
<tr>
<td>Section</td>
<td>Optics</td>
<td>545</td>
</tr>
<tr>
<td>Section</td>
<td>Astronomy</td>
<td>554</td>
</tr>
</tbody>
</table>

DISSERTATION FOURTH.

Mathematical and Physical Science—Eighteenth Century.

<table>
<thead>
<tr>
<th>Introduction,</th>
<th>575</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1.</td>
<td>Speculative Mathematics</td>
</tr>
<tr>
<td></td>
<td>1. Geometry</td>
</tr>
<tr>
<td></td>
<td>2. Arithmetic</td>
</tr>
<tr>
<td></td>
<td>3. Algebra</td>
</tr>
<tr>
<td></td>
<td>4. The Higher Calculus</td>
</tr>
<tr>
<td>Section 2.</td>
<td>Applicate Science</td>
</tr>
<tr>
<td></td>
<td>1. Dynamics</td>
</tr>
<tr>
<td></td>
<td>2. Hydrostatics and Pneumatics</td>
</tr>
<tr>
<td></td>
<td>3. Electricity</td>
</tr>
<tr>
<td></td>
<td>4. Magnetism</td>
</tr>
<tr>
<td></td>
<td>5. Optics</td>
</tr>
<tr>
<td></td>
<td>6. Doctrine of Heat</td>
</tr>
<tr>
<td></td>
<td>7. Astronomy</td>
</tr>
</tbody>
</table>
DISSERTATION FIRST:

EXHIBITING A GENERAL VIEW

OF THE

PROGRESS OF METAPHYSICAL AND ETHICAL PHILOSOPHY,

SINCE THE REVIVAL OF LETTERS IN EUROPE.

BY DUGALD STEWART, ESQ. F.R.SS. LOND. AND EDIN.

LATE PROFESSOR OF MORAL PHILOSOPHY IN THE UNIVERSITY
OF EDINBURGH.
Dissertation First

Exhibiting a General View

of the

Progress of Metaphysical and Ethical Philosophy

since the revival of letters in Europe

By Dugald Stewart Esq. F.R.S. Lond. and Edin.

Late Professor of Moral Philosophy in the University

of Edinburgh.
PREFACE,

CONTAINING SOME CRITICAL REMARKS ON THE DISCOURSE PREFIXED TO THE

FRENCH ENCYCLOPÉDIE.

WHEN I ventured to undertake the task of contributing a Preliminary Dissertation to the *Encyclopedia Britannica*, my original intention was, after the example of D’Alembert, to have begun with a general survey of the various departments of human knowledge. The outline of such a survey, sketched by the comprehensive genius of Bacon, together with the corrections and improvements suggested by his illustrious disciple, would, I thought, have rendered it comparatively easy to adapt their intellectual map to the present advanced state of the sciences; while the unrivalled authority which their united work has long maintained in the republic of letters, would, I flattered myself, have softened those criticisms which might be expected to be incurred by any similar attempt of a more modern hand. On a closer examination, however, of their labours, I found myself under the necessity of abandoning this design. Doubts immediately occurred to me with respect to the justness of their logical views, and soon terminated in a conviction that these views are radically and essentially erroneous. Instead, therefore, of endeavouring to give additional currency to speculations which I conceived to be fundamentally unsound, I resolved to avail myself of the present opportunity to point out their most important defects,—defects which, I am nevertheless very ready to acknowledge, it is much more easy to remark than to supply. The critical strictures which, in the course of this discussion, I shall have occasion to offer on my predecessors, will, at the same time, account for my forbearing to substitute a new map of my own, instead of that to which the names of Bacon and D’Alembert have lent so great and so well-merited a celebrity; and may perhaps suggest a doubt, whether the period be yet arrived for hazarding again, with any reasonable prospect of success, a repetition of their bold experiment. For the length to which these strictures are likely to extend, the only apology I have to offer is the peculiar importance of the questions to which they relate, and the high authority of the writers whose opinions I presume to controvert.

Before entering on his main subject, D’Alembert is at pains to explain a distinction—which he represents as of considerable importance—between the Genealogy of the sciences, and the Encyclopedical arrangement of the objects of human knowledge.1 “In examining the former,” he observes, “our aim is, by remounting

1 “Il ne faut pas confondre l'ordre Encyclopédique des Connaissances humaines avec la Généalogie des Sciences.”

DIS. I. PART I.
Preliminary Dissertations.

to the origin and genesis of our ideas, to trace the causes to which the sciences owe their birth; and to mark the characteristics by which they are distinguished from each other. In order to ascertain the latter, it is necessary to comprehend, in one general scheme, all the various departments of study; to arrange them into proper classes; and to point out their mutual relations and dependencies.” Such a scheme is sometimes likened by D’Alembert to a map or chart of the intellectual world; sometimes to a Genealogical1 or Encyclopedical Tree, indicating the manifold and complicated affinities of those studies, which, however apparently remote and unconnected, are all the common offspring of the human understanding. For executing successfully this chart or tree, a philosophical delineation of the natural progress of the mind may (according to him) furnish very useful lights; although he acknowledges that the results of the two undertakings cannot fail to differ widely in many instances,—the laws which regulate the generation of our ideas often interfering with that systematical order in the relative arrangement of scientific pursuits, which it is the purpose of the Encyclopedical Tree to exhibit.8

In treating of the first of those subjects, it cannot be denied that D’Alembert has displayed much ingenuity and invention; but the depth and solidity of his general train of thought may be questioned. On various occasions, he has evidently suffered himself to be misled by a spirit of false refinement; and on others, where probably he was fully aware of his inability to render the theoretical chain complete, he seems to have aimed at concealing from his readers the faulty links, by availing himself of those epigrammatic points, and other artifices of style, with which the genius of the French language enables a skilful writer to smooth and varnish over his most illogical transitions.

The most essential imperfections, however, of this historical sketch, may be fairly ascribed to a certain vagueness and indecision in the author’s idea, with regard to the scope of his inquiries. What he has in general pointed at is to trace, from the theory of the Mind, and from the order followed by nature in the development of its powers, the successive steps by which the curiosity may be conceived to have been gradually conducted from one intellectual pursuit to another; but, in the execution of this design (which in itself is highly philosophical and interesting), he does not appear to have paid due attention to the essential difference between the history of the human species, and that of the civilised and inquisitive individual. The former was undoubtedly that which principally figured in his conceptions, and to which, I apprehend, he ought to have confined himself exclusively; whereas, in fact, he has so completely blended the two subjects together, that it is often impossible to say which of them was uppermost in his thoughts. The consequence is, that, instead of throwing upon either those strong and steady lights, which might have been expected from his powers, he has involved both in additional obscurity. This indistinctness is more peculiarly remarkable in the beginning of his Discourse, where he represents men in the earliest infancy of science, before they had time to take any precautions for securing the means of their subsistence, or of their safety,—as philosophising on their sensations, on the existence of their own bodies, and on that of the material world. His Discourse, accordingly, sets out with a series of Meditations, precisely analogous to those which form the introduction

1 It is to be regretted, that the epithet Genealogical should have been employed on this occasion, where the author’s wish was to contradistinguish the idea denoted by it, from that historical view of the sciences to which the word Genealogy had been previously applied.

8 The true reason of this might perhaps have been assigned in simpler terms by remarking, that the order of invention is, in most cases, the reverse of that fitted for didactic communication. This observation applies not only to the analytical and synthetic processes of the individual, but to the progressive improvements of the species, when compared with the arrangements prescribed by logical method, for conveying a knowledge of them to students. In an enlightened age, the sciences are justly considered as the basis of the arts; and, in a course of liberal education, the former are always taught prior to the latter. But, in the order of invention and discovery, the arts preceded the sciences. Men measured land before they studied speculative geometry; and governments were established before politics were studied as a science. A remark somewhat similar is made by Celsius, concerning the history of medicine: “Non medicinam rationi esse posteriorem, sed post medicinam inventam, rationem esse quandam.”
to the philosophy of Descartes; meditations which, in the order of time, have been uniformly posterior to the study of external nature; and which, even in such an age as the present, are confined to a comparatively small number of recluse metaphysicians.

Of this sort of conjectural or theoretical history, the most unexceptionable specimens which have yet appeared, are indisputably the fragments in Mr. Smith's posthumous work on the History of Astronomy, and on that of the Ancient Systems of Physics and Metaphysics. That, in the latter of these, he may have occasionally accommodated his details to his own peculiar opinions concerning the object of Philosophy, may perhaps, with some truth, be alleged; but he must at least be allowed the merit of completely avoiding the error by which D'Alembert was misled; and, even in those instances where he himself seems to wander a little from the right path, of furnishing his successors with a thread, leading by easy and almost insensible steps, from the first gross perceptions of sense, to the most abstract refinements of the Grecian schools. Nor is this the only praise to which these fragments are entitled. By seizing on the different points of view from which the same object was contemplated by different sects, they often bestow a certain degree of unity and of interest on what before seemed calculated merely to bewilder and to confound; and render the apparent aberrations and caprices of the understanding, subservient to the study of its operations and laws.

To the foregoing strictures on D'Alembert's view of the origin of the sciences, it may be added, that this introductory part of his Discourse does not seem to have any immediate connection with the sequel. We are led, indeed, to expect, that it is to prepare the way for the study of the Encyclopedical Tree afterwards to be exhibited; but in this expectation we are completely disappointed,—no reference to it whatever being made by the author in the farther prosecution of his subject. It forms, accordingly, a portion of his Discourse altogether foreign to the general design; while, from the metaphysical obscurity which pervades it, the generality of readers are likely to receive an impression, either unfavourable to the perspicuity of the writer, or to their own powers of comprehension and of reasoning. It were to be wished, therefore, that, instead of occupying the first pages of the Encyclopédie, it had been reserved for a separate article in the body of that work. There it might have been read by the logical student, with no small interest and advantage; for, with all its imperfections, it bears numerous and precious marks of its author's hand.

In delineating his Encyclopedical Tree, D'Alembert has, in my opinion, been still more unsuccessful than in the speculations which have been hitherto under our review. His veneration for Bacon seems, on this occasion, to have prevented him from giving due scope to his own powerful and fertile genius, and has engaged him in the fruitless task of attempting, by means of arbitrary definitions, to draw a veil over incurable defects and blemishes. In this part of Bacon's logic, it must, at the same time, be owned, that there is something peculiarly captivating to the fancy; and, accordingly, it has united in its favour the suffrages of almost all the succeeding authors who have treated of the same subject. It will be necessary for me, therefore, to explain fully the grounds of that censure, which, in opposition to so many illustrious names, I have presumed to bestow on it.

Of the leading ideas to which I more particularly object, the following statement is given by D'Alembert. I quote it in preference to the corresponding passage in Bacon, as it contains various explanatory clauses and glosses, for which we are indebted to the ingenuity of the commentator.

"The objects about which our minds are occupied, are either spiritual or material, and the media employed for this purpose are our ideas, either directly received, or derived from reflection. The system of our direct knowledge consists entirely in the passive and mechanical accumulation of the particulars it comprehends; an accumulation which belongs exclusively to the province of Memory. Reflection is of two kinds, according as it is employed in reasoning on the objects of our direct ideas, or in studying them as models for imitation.
Thus, Memory, Reason, strictly so called, and Imagination, are the three modes in which the mind operates on the subjects of its thoughts. By Imagination, however, is here to be understood, not the faculty of conceiving or representing to ourselves what we have formerly perceived, a faculty which differs in nothing from the memory of these perceptions, and which, if it were not relieved by the invention of signs, would be in a state of continual exercise. The power which we denote by this name has a nobler province allotted to it, that of rendering imitation subservient to the creations of genius.

These three faculties suggest a corresponding division of human knowledge into three branches, 1. History, which derives its materials from Memory; 2. Philosophy, which is the product of Reason; and 3. Poetry (comprehending under this title all the Fine Arts), which is the offspring of Imagination.\(^1\) If we place Reason before Imagination, it is because this order appears to us conformable to the natural progress of our intellectual operations.\(^2\) The Imagination is a creative faculty; and the mind, before it attempts to create, begins by reasoning upon what it sees and knows. Nor is this all. In the faculty of Imagination, both Reason and Memory are, to a certain extent, combined,—the mind never imagining or creating objects but such as are analogous to those whereof it has had previous experience. Where this analogy is wanting, the combinations are extravagant and displeasing; and consequently, in that agreeable imitation of nature, at which the fine arts aim in common, invention is necessarily subjected to the control of rules which it is the business of the philosopher to investigate.

In farther justification of this arrangement, it may be remarked, that reason, in the course of its successive operations on the subjects of thought, by creating abstract and general ideas, remote from the perceptions of sense, leads to the exercise of Imagination as the last step of the process. Thus metaphysics and geometry are, of all the sciences belonging to Reason, those in which Imagination has the greatest share. I ask pardon for this observation from those men of taste, who, little aware of the near affinity of geometry to their own pursuits, and still less suspecting that the only intermediate step between them is formed by metaphysics, are disposed to employ their wit in depreciating its value. The truth is, that, to the geometer who invents, Imagination is not less essential than to the poet who creates. They operate, indeed, differently on their object, the former abstracting and analyzing, where the latter combines and adorns;—two processes of the mind, it must at the same time be confessed, which seem from experience to be so little congenial, that it may be doubted if the talents of a great geometer and of a great poet will ever be united in the same person. But whether these talents be or be not mutually exclusive, certain it is, that they who possess the one, have no right to despise those who cultivate the other. Of all the great men of antiquity, Archimedes is perhaps he who is the best entitled to be placed by the side of Homer.

D'Alembert afterwards proceeds to observe, that of these three general branches of the Encyclopedical Tree, a natural and convenient subdivision is afforded by the metaphysical distribution of things into Material and Spiritual.

"With these two classes of existences," he observes farther, "history and philosophy are equally conversant; but as for Imagination, her imitations are entirely confined to the material world;—a circumstance," he adds, "which

\(^1\) The latitude given by D'Alembert to the meaning of the word Poetry is a real and very important improvement on Bacon, who restricts it to Fictitious History or Fables. (De Aug. Scient. Lib. ii. cap. i.) D'Alembert, on the other hand, employs it in its natural signification, as synonymous with invention or creation. "La Peinture, la Sculpture, l'Architecture, la Poésie, la Musique, et leurs différentes divisions, composent la troisième distribution générale qui naît de l'Imagination, et dont les parties sont comprises sous le nom de Beaux-Arts. On peut les rapporter tous à la Poésie, en prenant ce mot dans sa signification naturelle, qui n'est autre chose qu'invention ou création."

\(^2\) In placing Reason before Imagination, D'Alembert departs from the order in which these faculties are arranged by Bacon. "Si nous n'avons pas placé, comme lui, la Raison après l'Imagination, c'est que nous avons suivi dans le système Encyclopédique, l'ordre metaphysique des opérations de l'esprit, plutôt que l'ordre historique de ses progrès depuis la renaissance des lettres." (Disc. Prél. How far the motive here assigned for the change is valid, the reader will be enabled to judge from the sequel of the above quotation.)
conspires with the other arguments above stated, in justifying Bacon for assigning to her the last place in his enumeration of our intellectual faculties.\(^1\) Upon this subdivision he enlarges at some length, and with considerable ingenuity; but on the present occasion it would be quite superfluous to follow him any farther, as more than enough has been already quoted to enable my readers to judge, whether the objections which I am now to state to the foregoing extracts be as sound and decisive as I apprehend them to be.

Of these objections a very obvious one is suggested by a consideration, of which D'Alembert himself has taken notice,—that the three faculties to which he refers the whole operations of the understanding are perpetually blended together in their actual exercise, inasmuch that there is scarcely a branch of human knowledge which does not, in a greater or less degree, furnish employment to them all. It may be said, indeed, that some pursuits exercise and invigorate particular faculties more than others; that the study of History, for example, although it may occasionally require the aid both of Reason and of Imagination, yet chiefly furnishes occupation to the Memory; and that this is sufficient to justify the logical division of our mental powers as the ground-work of a corresponding Encyclopedical classification.\(^2\) This, however, will be found more specious than solid. In what respects is the faculty of Memory more essentially necessary to the student of history than to the philosopher or to the poet; and, on the other hand, of what value, in the circle of the sciences, would be a collection of historical details, accumulated without discrimination, without a scrupulous examination of evidence, or without any attempt to compare and to generalize? For the cultivation of that species of history, in particular, which alone deserves a place in the Encyclopedical Tree, it may be justly affirmed, that the rarest and most comprehensive combination of all our mental gifts is indispensably requisite.

Another, and a still more formidable objection to Bacon's classification, may be derived from the very imperfect and partial analysis of the mind which it assumes as its basis. Why were the powers of Abstraction and Generalization passed over in silence?—powers which, according as they are cultivated or neglected, constitute the most essential of all distinctions between the intellectual characters of individuals. A corresponding distinction, too, not less important, may be remarked among the objects of human study, according as our aim is to treasure up particular facts, or to establish general conclusions. Does not this distinction mark out, with greater precision, the limits which separate philosophy from mere historical narrative, than that which turns upon the different provinces of Reason and of Memory?

I shall only add one other criticism on this celebrated enumeration, and that is, its want of distinctness, in confounding together the Sciences and the Arts under the same general titles. Hence a variety of those capricious arrangements, which must immediately strike every reader who follows Bacon through his details;—the reference, for instance, of the mechanical arts to the department of History; and consequently, according to his own analysis of the Mind, the ultimate reference of these arts to the faculty of Memory; while at the same time, in his tripartite division of the whole field of hu-

\(^1\) In this exclusive limitation of the province of Imagination to things Material and Sensible, D'Alembert has followed the definition given by Descartes in his second Meditation: "Imaginari nihil aliud est quam rei corporum imaginem seu imaginem contemplandi,"—a power of the mind, which (as I have elsewhere observed) appears to me to be most precisely expressed in our language by the word "Conception." The province assigned to Imagination by D'Alembert is more extensive than this, for he ascribes to her also a creative and combining power; but still his definition agrees with that of Descartes, inasmuch as it excludes entirely from her dominion both the intellectual and the moral worlds.

\(^2\) I allude here to the following apology for Bacon, suggested by a very learned and judicious writer:—"On a fait cependant à Bacon quelques reproches assez fondés. On a observé que sa classification des sciences repose sur une distinction qui n'est pas rigoureuse, puisque la mémoire, la raison, et l'imagination concourent nécessairement dans chaque art, comme dans chaque science. Mais on peut répondre, que l'un ou l'autre de ces trois facultés, quoique secondées par les deux autres, peut cependant jouer le rôle principal. En prenant la distinction de Bacon dans ce sens, sa classification reste exacte, et devient très utile."—(DEGERANDO, Hist. Comp. Tome I. p. 293.)
man knowledge, the art of Poetry has one entire province allotted to itself.

These objections apply in common to Bacon and to D'Alembert. That which follows has a particular reference to a passage already cited from the latter, where, by some false refinements concerning the nature and functions of Imagination, he has rendered the classification of his predecessor incomparably more indistinct and illogical than it seemed to be before.

That all the creations or new combinations of Imagination, imply the previous process of decomposition or analysis, is abundantly manifest; and, therefore, without departing from the common and popular use of language, it may undoubtedly be said, that the faculty of abstraction is not less essential to the Poet, than to the Geometer and the Metaphysician. But this is not the doctrine of D'Alembert. On the contrary, he affirms, that Metaphysics and Geometry are, of all the sciences connected with reason, those in which Imagination has the greatest share;—an assertion which, it will not be disputed, has at first sight somewhat of the air of a paradox; and which, on closer examination, will, I apprehend, be found altogether inconsistent with fact. If indeed D'Alembert had, in this instance, used, as some writers have done, the word Imagination as synonymous with Invention, I should not have thought it worth while (at least so far as the geometer is concerned) to dispute his proposition. But that this was not the meaning annexed to it by the author, appears from a subsequent clause, where he tells us, that the most refined operations of reason, consisting in the creation of generics which do not fall under the cognizance of our senses, naturally led to the exercise of Imagination. His doctrine, therefore, goes to the identification of Imagination with Abstraction; two faculties so very different in the direction which they give to our thoughts, that, according to his own acknowledgment, the man who is habitually occupied in exerting the one, seldom fails to impair both his capacity and his relish for the exercise of the other.

This identification of two faculties, so strongly contrasted in their characteristic features, was least of all to be expected from a logician, who had previously limited the province of Imagination to the imitation of material objects; a limitation, it may be remarked in passing, which is neither sanctioned by common use, nor by just views of the philosophy of the mind. Upon what ground can it be alleged, that Milton's portrait of Satan's intellectual and moral character was not the offspring of the same creative faculty which gave birth to his Garden of Eden? After such a definition, however, it is difficult to conceive, how so very acute a writer should have referred to Imagination the abstractions of the geometer and of the metaphysician; and still more, that he should have attempted to justify this reference, by observing, that these abstractions do not fall under the cognizance of the senses. My own opinion is, that, in the composition of the whole passage, he had a view to the unexpected parallel between Homer and Archimedes, with which he meant, at the close, to surprise his readers.

If the foregoing strictures be well-founded, it seems to follow, not only that the attempt of Bacon and of D'Alembert to classify the sciences and arts according to a logical division of our faculties, is altogether unsatisfactory; but that every future attempt of the same kind may be expected to be liable to similar objections. In studying, indeed, the Theory of the Mind, it is necessary to push our analysis as far as the nature of the subject admits of; and, wherever the thing is possible, to examine its constituent principles separately and apart from each other; but this consideration itself, when combined with what was before stated on the endless variety of forms in which they may be blended.

3 This assertion must, however, be understood with some qualifications; for, although the Poet, as well as the Geometer and the Metaphysician, be perpetually called upon to decompose, by means of abstraction, the complicated objects of perception, it must not be concluded that the abstractions of all the three are exactly of the same kind. Those of the Poet amount to nothing more than to a separation into parts of the realities presented to his senses; which separation is only a preliminary step to a subsequent recomposition into new and ideal forms of the things abstracted; whereas the abstractions of the Metaphysician and of the Geometer form the very objects of their respective sciences.
together in our various intellectual pursuits, is sufficient to show how ill adapted such an analysis must for ever remain to serve as the basis of an Encyclopedical distribution.

The circumstance to which this part of Bacon's philosophy is chiefly indebted for its popularity, is the specious simplicity and comprehensiveness of the distribution itself;—not the soundness of the logical views by which it was suggested. That all our intellectual pursuits may be referred to one or other of these three heads, History, Philosophy, and Poetry, may undoubtedly be said with considerable plausibility;—the word History being understood to comprehend all our knowledge of particular facts and particular events; the word Philosophy, all the general conclusions or laws inferred from these particulars by induction; and the word Poetry, all the arts addressed to the imagination. Not that the enumeration, even with the help of this comment, can be considered as complete; for, to pass over entirely the other objections already stated, under which of these three heads shall we arrange the various branches of pure mathematics?

Are we therefore to conclude, that the magnificent design, conceived by Bacon, of enumerating, defining, and classifying the multifarious objects of human knowledge;—a design, on the successful accomplishment of which he himself believed that the advancement of the sciences essentially depended;—Are we to conclude, that this design was nothing more than the abortive offspring of a warm imagination, unsusceptible of any useful application to enlighten the mind, or to accelerate its progress? My own idea is widely different. The design was, in every respect, worthy of the sublime genius by which it was formed. Nor does it follow, because the execution was imperfect, that the attempt has been attended with no advantage. At the period when Bacon wrote, it was of much more consequence to exhibit to the learned a comprehensive sketch, than an accurate survey of the intellectual world;—such a sketch as, by pointing out to those whose views had been hitherto confined within the limits of particular regions, the relative positions and bearings of their respective districts as parts of one great whole, might invite them all, for the common benefit, to a reciprocal exchange of their local riches. The societies or academies which, soon after, sprang up in different countries of Europe, for the avowed purpose of contributing to the general mass of information, by the collection of insulated facts, conjectures, and queries, afford sufficient proof, that the anticipations of Bacon were not, in this instance, altogether chimerical.

In examining the details of Bacon's survey, it is impossible not to be struck (more especially when we reflect on the state of learning two hundred years ago) with the minuteness of his information, as well as with the extent of his views; or to forbear admiring his sagacity in pointing out, to future adventurers, the unknown tracks still left to be explored by human curiosity. If his classifications be sometimes artificial and arbitrary, they have at least the merit of including, under one head or another, every particular of importance; and of exhibiting these particulars with a degree of method and of apparent connection, which, if it does not always satisfy the judgment, never fails to interest the fancy, and to lay hold of the memory. Nor must it be forgotten, to the glory of his genius, that what he failed to accomplish remains to this day a desideratum in science;—that the intellectual chart delineated by him is, with all its imperfections, the only one of which modern philosophy has yet to boast;—and that the united talents of D'Alembert and of Diderot,
aided by all the lights of the eighteenth century, have been able to add but little to what Bacon performed.

After the foregoing observations, it will not be expected that an attempt is to be made, in the following Essay, to solve a problem which has so recently baffled the powers of these eminent writers, and which will probably long continue to exercise the ingenuity of our successors. How much remains to be previously done for the improvement of that part of Logic, whose province it is to fix the limits by which contiguous departments of study are defined and separated! And how many unsuspected affinities may be reasonably presumed to exist among sciences, which, to our circumscribed views, appear at present the most alien from each other! The abstract geometry of Apollonius and Archimedes was found, after an interval of two thousand years, to furnish a torch to the physical inquiries of Newton; while, in the further progress of knowledge, the Etymology of Languages has been happily employed to fill up the chasms of Ancient History; and the conclusions of Comparative Anatomy, to illustrate the Theory of the Earth. For my part, even if the task were executed with the most complete success, I should be strongly inclined to think, that its appropriate place in an Encyclopaedia would be as a branch of the article on Logic;—certainly not as an exordium to the Preliminary Discourse; the enlarged and refined views which it necessarily presupposes being peculiarly unsuitable to that part of the work which may be expected, in the first instance, to attract the curiosity of every reader.

Before concluding this preface, I shall subjoin a few slight strictures on a very concise and comprehensive division of the objects of Human Knowledge, proposed by Mr Locke, as the basis of a new classification of the sciences. Although I do not know that any attempt has ever been made to follow out in detail the general idea, yet the repeated approbation which has been lately bestowed on a division essentially the same, by several writers of the highest rank, renders it in some measure necessary, on the present occasion, to consider how far it is founded on just principles; more especially as it is completely at variance not only with the language and arrangement adopted in these preliminary essays, but with the whole of that plan on which the original projectors, as well as the continuators, of the Encyclopaedia Britannica, appear to have proceeded. These strictures will, at the same time, afford an additional proof of the difficulty, or rather of the impossibility, in the actual state of logical science, of solving this great problem, in a manner calculated to unite the general suffrages of philosophers.

"All that can fall," says Mr Locke, "within the compass of Human Understanding being either, first, The nature of things as they are in themselves, their relations, and their manner of operation; or, secondly, That which man himself ought to do as a rational and voluntary agent, for the attainment of any end, especially happiness; or, thirdly, The ways and means whereby the knowledge of both the one and the other of these is attained and communicated; I think science may be divided properly into these three sorts:

1. Φυσικά, or Natural Philosophy. The end of this is bare speculative truth; and whatsoever can afford the mind of man any such, falls under this branch, whether it be God himself, angels, spirits, bodies, or any of their affections, as number and figure, &c.

2. Εθικά, The skill of right applying our own powers and actions for the attainment of things good and useful. The most considerable under this head is Ethics, which is the seeking out those rules and measures of human actions which lead to happiness, and the means to practise them. The end of this is not bare speculation, but right, and a conduct suitable to it.

3. Συμβολικά, or the doctrine of signs, the most usual whereof being words, it is aptly enough termed also λογικά, Logic. The business of this is to consider the nature of signs the

1 From this definition it appears, that as Locke included under the title of Physics, not only Natural Philosophy, properly so called, but Natural Theology, and the Philosophy of the Human Mind, so he meant to refer to the head of Practice, not only Ethics, but all the various Arts of life; both mechanical and liberal.
mind makes use of for the understanding of
things, or conveying its knowledge to others.

"This seems to me," continues Mr. Locke,
"the first and most general, as well as natural, di-
vision of the objects of our understanding; for a
man can employ his thoughts about nothing but
either the contemplation of things themselves,
for the discovery of truth; or about the things
in his own power, which are his own actions,
for the attainment of his own ends; or the
signs the mind makes use of, both in one and
the other, and the right ordering of them for
its clearer information. All which three, viz.
things as they are, in themselves knowable;
actions as they depend on us, in order to hap-
piness; and the right use of signs, in order to
knowledge; being toto corno different, they seem-
ed to me to be the three great provinces of the
intellectual world, wholly separate and distinct
one from another." 1

From the manner in which Mr. Locke ex-
presses himself in the above quotation, he ap-
pars evidently to have considered the division
proposed in it as an original idea of his own;
and yet the truth is, that it coincides exactly
with what was generally adopted by the phi-
sophers of ancient Greece. "The ancient
Greek Philosophy," says Mr. Smith, "was divid-
ed into three great branches, Physics, or Natural
Philosophy; Ethics, or Moral Philosophy; and
Logic. This general division," he adds, "seems
perfectly agreeable to the nature of things." Mr
Smith afterwards observes, in strict confor-
mity to Locke's definitions (of which, however, he
seems to have had no recollection when he
wrote this passage), "That, as the human
mind and the Deity, in whatever their essence
may be supposed to consist, are parts of the
great system of the universe, and parts, too,
productive of the most important effects, what-
ever was taught in the ancient schools of Greece,
concerning their nature, made a part of the sys-
tem of physics." 2

Dr. Campbell, in his Philosophy of Rhetoric,
has borrowed from the Grecian schools the
same very extensive use of the words physics
and physiology, which he employs as synonymous
terms; comprehending under this title "not
merely Natural History, Astronomy, Geography,
Mechanics, Optics, Hydrostatics, Meteorology,
Medicine, Chemistry, but also Natural Theology
and Psychology, which," he observes, "have
been, in his opinion, most unnaturally disjoined
from Physiology by philosophers." "Spirit," he
adds, "which here comprises only the Supreme
Being and the human soul, is surely as much in-
cluded under the notion of natural object as body
is; and is knowable to the philosopher purely in
the same way, by observation and experience." 3

A similar train of thinking led the late cele-
brated Mr. Turgot, to comprehend under the
name of Physics, not only Natural Philosophy
(as that phrase is understood by the Newtonians),
but Metaphysics, Logie, and even History. 4

Notwithstanding all this weight of authority,
it is difficult to reconcile one's self to an arrange-
ment which, while it classes with Astronomy,
with Mechanics, with Optics, and with Hy-
drostatics, the strikingly contrasted studies of
Natural Theology and of the Philosophy of the
Human Mind, disunites from the two last the
far more congenial sciences of Ethics and of
Logic. The human mind, it is true, as well as
the material world which surrounds it, forms
a part of the great system of the Universe; but
is it possible to conceive two parts of the same
whole more completely dissimilar, or rather
more diametrically opposite, in all their charac-
teristical attributes? Is not the one the appro-
piate field and province of observation,—a power

1 See the concluding chapter of the Essay on Human Understanding, entitled, "Of the Division of the Sciences."
2 Wealth of Nations, Book v. chap. i.
3 Philosophy of Rhetoric, Book i. chap. v. Part iii. § 1.
4 "Sous le nom de sciences physiques je comprends la logique, qui est la connaissance des opérations de notre esprit et
de la génération de nos idées; la métaphysique, qui s'occupe de la nature et de l'origine des êtres; et enfin la physique, pro-
prement dite, qui observe l'action mutuelle des corps les uns sur les autres, et les causes et l'enchaînement des phénomènes
sensibles. On pourrait y ajouter l'histoire." (Œuvres de TURGOT, Tome II. pp. 284, 285.)

In the year 1735, a quarto volume was published at Bath, entitled Intellectual Physics. It consists entirely of speculations
concerning the human mind, and is by no means destitute of merit. The publication was anonymous; but I have reason
believe that the author was the late well-known Governor Pownall.

DISS. 1. PART I.
habitually awake to all the perceptions and impressions of the bodily organs? And does not the other fall exclusively under the cognizance of reflection;—an operation which inverts all the ordinary habits of the understanding, abstracting the thoughts from every sensible object, and even striving to abstract them from every sensible image? What abuse of language can be greater, than to apply a common name to departments of knowledge which invite the curiosity in directions precisely contrary, and which tend to form intellectual talents, which, if not altogether incompatible, are certainly not often found united in the same individual? The word Physics, in particular, which, in our language, long and constant use has restricted to the phenomena of Matter, cannot fail to strike every ear as anomalously, and therefore illogically, applied, when extended to those of Thought and of Consciousness.

Nor let it be imagined that these observations assume any particular theory about the nature or essence of Mind. Whether we adopt, on this point, the language of the Materialists, or that of their opponents, it is a proposition equally certain and equally indisputable, that the phenomena of Mind and those of Matter, as far as they come under the cognizance of our faculties, appear to be more completely heterogeneous than any other classes of facts within the circle of our knowledge; and that the sources of our information concerning them are in every respect so radically different, that nothing is more carefully to be avoided, in the study of either, than an attempt to assimilate them, by means of analogical or metaphorical terms, applied to both in common. In those inquiries, above all, where we have occasion to consider Matter and Mind as conspiring to produce the same joint effects (in the constitution, for example, of our own compounded frame), it becomes more peculiarly necessary to keep constantly in view the distinct province of each, and to remember, that the business of philosophy is not to resolve the phenomena of the one into those of the other, but merely to ascertain the general laws which regulate their mutual connection. Matter and Mind, therefore, it should seem, are the two most general heads which ought to form the ground-work of an Encyclopedical classification of the sciences and arts. No branch of human knowledge, no work of human skill, can be mentioned, which does not obviously fall under the former head or the latter.

Agreeably to this twofold classification of the sciences and arts, it is proposed, in the following introductory Essays, to exhibit a rapid sketch of the progress made since the revival of letters: First, in those branches of knowledge which relate to Mind; and, secondly, in those which relate to Matter. D’Alembert, in his Preliminary Discourse, has boldly attempted to embrace both subjects in one magnificent design; and never, certainly, was there a single mind more equal to such an undertaking. The historical outline which he has there traced forms by far the most valuable portion of that performance, and will for ever remain a proud monument to the depth, to the comprehensiveness, and to the singular versatility of his genius. In the present state of science, however, it has been apprehended, that, by dividing so great a work among different hands, something might perhaps be gained, if not in point of reputation to the authors, at least in point of instruction to their readers. This division of labour was, indeed, in some measure, rendered necessary (independently of all other considerations), by the important accessions which mathematics and physics have received since D’Alembert’s time;—by the innumerable improvements which the spirit of mercantile speculation, and the rivalship of commercial nations, have introduced into the mechanical arts;—and, above all, by the rapid succession of chemical discoveries, which commences with the researches of Black and of Lavoisier. The part of this task which has fallen to my share is certainly, upon the whole, the least splendid in the results which it has to record; but I am not without hopes, that this disadvantage may be partly compensated by its closer connection with (what ought to be the ultimate end of all our pursuits) the intellectual and moral improvement of the species.

I am, at the same time, well aware that, in proportion as this last consideration increases the importance, it adds to the difficulty of my
undertaking. It is chiefly in judging of questions "coming home to their business and bosoms," that casual associations lead mankind astray; and of such associations how incalculable is the number arising from false systems of religion, oppressive forms of government, and absurd plans of education! The consequence is, that while the physical and mathematical discoveries of former ages present themselves to the hand of the historian, like masses of pure and native gold, the truths which we are here in quest of may be compared to iron, which, although at once the most necessary and the most widely diffused of all the metals, commonly requires a discriminating eye to detect its existence, and a tedious, as well as nice process, to extract it from the ore.

To the same circumstance it is owing, that improvements in Moral and in Political Science do not strike the imagination with nearly so great force as the discoveries of the Mathematician or of the Chemist. When an inveterate prejudice is destroyed by extirpating the casual associations on which it was grafted, how powerful is the new impulse given to the intellectual faculties of man! Yet how slow and silent the process by which the effect is accomplished! Were it not, indeed, for a certain class of learned authors, who, from time to time, heave the log into the deep, we should hardly believe that the reason of the species is progressive. In this respect, the religious and academical establishments in some parts of Europe are not without their use to the Historian of the Human Mind. Immoveably moored to the same station by the strength of their cables, and the weight of their anchors, they enable him to measure the rapidity of the current by which the rest of the world are borne along.

This, too, is remarkable in the history of our prejudices; that, as soon as the film falls from the intellectual eye, we are apt to lose all recollection of our former blindness. Like the fantastic and giant shapes which, in a thick fog, the imagination lends to a block of stone, or to the stump of a tree, they produce, while the illusion lasts, the same effect with truths and realities; but the moment the eye has caught the exact form and dimensions of its object, the spell is broken for ever; nor can any effort of thought again conjure up the spectres which have vanished.

As to the subdivisions of which the sciences of Matter and of Mind are susceptible, I have already said, that this is not the proper place for entering into any discussion concerning them. The passages above quoted from D'Alembert, from Locke, and from Smith, are sufficient to show how little probability there is, in the actual state of Logical Science, of uniting the opinions of the learned in favour of any one scheme of partition. To prefix, therefore, such a scheme to a work which is professedly to be carried on by a set of unconnected writers, would be equally presumptuous and useless; and, on the most favourable supposition, could tend only to fetter, by means of dubious definitions, the subsequent freedom of thought and of expression. The example of the French Encyclopédie cannot here be justly alleged as a precedent. The preliminary pages by which it is introduced were written by the two persons who projected the whole plan, and who considered themselves as responsible, not only for their own admirable articles, but for the general conduct of the execution; whereas, on the present occasion, a porch was to be adapted to an irregular edifice, reared, at different periods, by different architects. It seemed, accordingly, most advisable to avoid, as much as possible, in these Introductory Essays, all innovations in language, and, in describing the different arts and sciences, to follow scrupulously the prevailing and most intelligible phraseology. The task of defining them, with a greater degree of precision, properly devolves upon those to whose province it belongs, in the progress of the work, to unfold in detail their elementary principles.

The sciences to which I mean to confine my observations are Metaphysics, Ethics, and Political Philosophy; understanding, by Metaphysics, not the Ontology and Pneumatology of the schools, but the inductive Philosophy of the Human Mind; and limiting the phrase Political Philosophy almost exclusively to the modern science of Political Economy; or (to express myself in terms at once more comprehensive and more precise) to that branch of the theory
of legislation which, according to Bacon's definition, aims to ascertain those "Leges legum, ex quibus informatio peti potest quid in singulis legibus bene aut perperam posittum aut constitutum sit." The close affinity between these three departments of knowledge, and the easy transitions by which the curiosity is invited from the study of any one of them to that of the other two, will sufficiently appear from the following Historical Review.
In the following Historical and Critical Sketches, it has been judged proper by the different writers, to confine their views entirely to the period which has elapsed since the revival of letters. To have extended their retrospects to the ancient world would have crowded too great a multiplicity of objects into the limited canvas on which they had to work. For my own part, I might, perhaps with still greater propriety, have confined myself exclusively to the two last centuries; as the Sciences of which I am to treat, present but little matter for useful remark, prior to the time of Lord Bacon. I shall make no apology, however, for devoting, in the first place, a few pages to some observations of a more general nature, and to some scanty gleanings of literary detail, bearing more or less directly on my principal design.

On this occasion, as well as in the sequel of my Discourse, I shall avoid, as far as is consistent with distinctness and perspicuity, the minuteness of the mere bibliographer; and, instead of attempting to amuse my readers with a series of critical epigrams, or to dazzle them with a rapid succession of evanescent portraits, shall study to fix their attention on those great lights of the world by whom the torch of science has been successively seized and transmitted. It is, in fact, such leading characters alone which furnish matter for philosophical history. To enumerate the names or the labours of obscure or even secondary authors, whatever amusement it might afford to men of curious erudition, would contribute but little to illustrate the origin and filiation of consecutive systems, or the gradual development and progress of the human mind.

1 I have ventured here to combine a scriptural expression with an allusion of Plato's to a Grecian game:—an allusion which, in his writings, is finely and pathetically applied to the rapid succession of generations, through which the continuity of human life is maintained from age to age; and which are perpetually transferring from hand to hand the concerns and duties of this fleeting scene. (Plato, Leg. lib. vi.)

Et quasi cursores vitæ lampada tradunt.—Lucret.
CHAPTER I.

FROM THE REVIVAL OF LETTERS TO THE PUBLICATION OF BACON'S PHILOSOPHICAL WORKS.

The long interval, commonly known by the name of the middle ages, which immediately preceded the revival of letters in the western part of Europe, forms the most melancholy blank which occurs, from the first dawn of recorded civilisation, in the intellectual and moral history of the human race. In one point of view alone, the recollection of it is not altogether unpleasing, inasmuch as, by the proof it exhibits of the inseparable connection between ignorance and prejudice on the one hand, and vice, misery, and slavery on the other, it affords, in conjunction with other causes, which will afterwards fall under our review, some security against any future recurrence of a similar calamity.

It would furnish a very interesting and instructive subject of speculation, to record and to illustrate (with the spirit, however, rather of a philosopher than of an antiquary), the various abortive efforts, which, during this protracted and seemingly hopeless period of a thousand years, were made by enlightened individuals, to impart to their contemporaries the fruits of their own acquirements. For in no one age from its commencement to its close, does the continuity of knowledge (if I may borrow an expression of Mr Harris), seem to have been entirely interrupted: "There was always a faint twilight, like that auspicious gleam which, in a summer's night, fills up the interval between the setting and the rising sun."

On the present occasion, I shall content myself with remarking the important effects produced by the numerous monastic establishments all over the Christian world, in preserving, amidst the general wreck, the inestimable remains of Greek and Roman refinement; and in keeping alive, during so many centuries, those scattered sparks of truth and of science, which were afterwards to kindle into so bright a flame. I mention this particularly, because, in our zeal against the vices and corruptions of the Romish church, we are too apt to forget, how deeply we are indebted to its superstitious and apparently useless foundations, for the most precious advantages that we now enjoy.

The study of the Roman Law, which, from a variety of causes, natural as well as accidental, became, in the course of the twelfth century, an object of general pursuit, shot a strong and auspicious ray of intellectual light across the surrounding darkness. No study could then have been presented to the curiosity of men, more happily adapted to improve their taste, to enlarge their views, or to invigorate their reasoning powers; and although, in the first instance, prosecuted merely as the object of a weak and undistinguishing idolatry, it nevertheless conducted the student to the very confines of ethical as well as of political speculation; and served, in the meantime, as a substitute of no inconsiderable value for both these sciences. Accordingly, we find that, while in its immediate effects it powerfully contributed, wherever it struck its roots, by ameliorating and systematizing the administration of justice, to accelerate the progress of order and of civilization, it afterwards furnished, in the further career of human advancement, the parent stock on which were grafted the first rudiments of pure ethics and of liberal politics taught in modern times. I need scarcely add, that I allude to the systems of natural jurispru-

1 Philological Inquiries, Part III. chap. i.
systems which, for a hundred and fifty years, engrossed all the learned industry of the most enlightened part of Europe; and which, however unpromising in their first aspect, were destined, in the last result, to prepare the way for that never to be forgotten change in the literary taste of the eighteenth century, "which has everywhere turned the spirit of philosophical inquiry from frivolous or abstracto speculations, to the business and affairs of men." 1

The revival of letters may be considered as coeval with the fall of the Eastern empire, towards the close of the fifteenth century. In consequence of this event, a number of learned Greeks took refuge in Italy, where the taste for literature already introduced by Dante, Petrarch, and Boccacio, together with the liberal patronage of the illustrious House of Medicis, secured them a welcome reception. A knowledge of the Greek tongue soon became fashionable; and the learned, encouraged by the rapid diffusion which the art of printing now gave to their labours, vied with each other in rendering the Greek authors accessible, by means of Latin translations, to a still wider circle of readers.

For a long time, indeed, after the era just mentioned, the progress of useful knowledge was extremely slow. The passion for logical disputation was succeeded by an unbounded admiration for the wisdom of antiquity; and in proportion as the pedantry of the schools disappeared in the universities, that of erudition and philology occupied its place.

Meanwhile, an important advantage was gained in the immense stock of materials which the ancient authors supplied to the reflections of speculative men; and which, although frequently accumulated with little discrimination or profit, were much more favourable to the development of taste and of genius than the unsubstantial subtleties of ontology or of dialectics. By such studies were formed Erasmus, 2 Ludovicus Vives, 3 Sir Thomas More, 4 and many other accomplished scholars of a similar character, who, if they do not rank in the same line with the daring reformers by whom the errors of the Catholic church were openly assailed, certainly exhibit a very striking contrast to the barbarous and unenlightened writers of the preceding age.

The Protestant Reformation, which followed immediately after, was itself one of the natural consequences of the revival of letters, and of the invention of printing. But although, in one

1 Dr Robertson, from whom I quote these words, has mentioned this change as the glory of the present age, meaning, I presume, the period which has elapsed since the time of Montesquieu. By what steps the philosophy to which he alludes took its rise from the systems of jurisprudence previously in fashion, will appear in the sequel of this Discourse.

2 The writings of Erasmus probably contributed still more than those of Luther himself to the progress of the Reformation among men of education and taste; but, without the cooperation of bolder and more decided characters than his, little would to this day have been effected in Europe among the lower orders. "Erasmus imagined," as is observed by his biographer, "that at length, by training up youth in learning and useful knowledge, those religious improvements would gradually be brought about, which the Princes, the Prelates, and the Divines of his days could not be persuaded to admit or to tolerate." (Jortin, p. 270.) In yielding, however, to this pleasing expectation, Erasmus must have flattered himself with the hope, not of a perfect freedom of literary discussion, but of such reforms in the prevailing modes of instruction, as would give complete scope to the energies of the human mind;—for, where books and teachers are subjected to the censorship of those who are hostile to the dissemination of truth, they become the most powerful of all auxiliaries to the authority of established errors.

It was long a proverbial saying among the ecclesiastics of the Romish church, that "Erasmus laid the egg, and Luther hatched it;" and there is more truth in the remark, than in most of their sarcasms on the same subject.

3 Ludovicus Vives was a learned Spaniard, intimately connected both with Erasmus and More; with the former of whom he lived for some time at Louvain, "where they both promoted literature as much as they could, though not without great opposition from some of the divines." (Jortin, p. 265.)

He was invited into England by Welsy, in 1523; and coming to Oxford, he read the Cardinal's lecture of Humanity, and also lectures of Civil Law, which Henry VIII. and his Queen, Catherine, did him the honour of attending.—(Ibid. p. 297.) He died at Bruges in 1554.

In point of good sense and acuteness, wherever he treats of philosophical questions, he yields to none of his contemporaries; and in some of his anticipations of the future progress of science, he discovers a mind more comprehensive and sagacious than any of them. Erasmus appears, from a letter of his to Budeus, dated in 1521, to have foreseen the brilliant career which Vives, then a very young man, was about to run. "Vives in stadio litterario, non minus feliciter quam gnarviter decertat, et si satia ingenium hominis novi, non conquiescit, donec omnes a terego reliquerint."—For this letter (the whole of which is peculiarly interesting, as it contains a character of Sir Thomas More, and an account of the extraordinary accomplishments of his daughters), See Jortin's Life of Erasmus, Vol. II. p. 366. et seq.

4 See Note A.
point of view, only an effect, it is not, on the present occasion, less entitled to notice than the causes by which it was produced.

The renunciation, in a great part of Europe, of theological opinions so long consecrated by time, and the adoption of a creed more pure in its principles and more liberal in its spirit, could not fail to encourage, on all other subjects, a congenial freedom of inquiry. These circumstances operated still more directly and powerfully, by their influence, in undermining the authority of Aristotle;—an authority which for many years was scarcely inferior in the schools to that of the Scriptures; and which, in some Universities, was supported by statutes, requiring the teachers to promise upon oath, that in their public lectures, they would follow no other guide.

Luther, who was perfectly aware of the corruptions which the Romish church had contrived to connect with their veneration for the Stagirite, not only threw off the yoke himself, but, in various parts of his writings, speaks of Aristotle with the most unbecoming asperity and contempt. In one very remarkable passage, he asserts, that the study of Aristotle was wholly useless, not only in Theology, but in Natural Philosophy. "What does it contribute," he asks, "to the knowledge of things, to trifle and cavil in language conceived and prescribed by Aristotle, concerning matter, form, motion, and time?" The same freedom of thought on topics not strictly theological, formed a prominent feature in the character of Calvin. A curious instance of it occurs in one of his letters, where he discusses an ethical question of no small moment in the science of political economy:—

"How far it is consistent with morality to accept of interest for a pecuniary loan?" On this question, which, even in Protestant countries, continued, till a very recent period, to divide the opinions both of divines and lawyers, Calvin treats the authority of Aristotle and that of the church with equal disregard. To the former he opposes a close and logical argument, not unworthy of Mr Bentham. To the latter he replies, by showing, that the Mosaic law on this point was not a moral but a municipal prohibition; a prohibition not to be judged of from any particular text of Scripture, but upon the principles of natural equity. The example of these two Fathers of the Reformation would probably have been followed by consequences still greater and more immediate, if Melanchthon had not unfortunately given the sanction of his name to the doctrines of the Peripatetic school: but still, among the Reformers in general, the credit of these doctrines gradually declined, and a spirit of research and of improvement prevailed.

The invention of printing, which took place

1 Born 1483, died 1546.
2 In one of his letters he writes thus: "Ego simpliciter credo, quod impossibile sit ecclesiae reformari, nisi funditus canones, usus, praetera, scholasticarum theologiarum, philosophiae, logicae, ut nunc habentur, eradicentur, et alia insituantur."—BRUCKNER Hist. Crit. Phil., Tom. IV. p. 96.
3 For a specimen of Luther's sarcility against Aristotle, see BAYLE, Art. Luther, Note HH.
4 In Luther's Colloquia Mensulae we are told, that he abhorred the Schoolmen, and called them sophistical locusts, cathedral, frogs, and lice. From the same work we learn, that he hated Aristotle, but highly esteemed Cicero, as a wise and a good man."—See Jortin's Life of Erasmus, p. 121.
5 "Nihil adiunctum ex ipso haberi posse non solum ad theologiam securas literas, verum etiam ad ipsam naturalem philosophiam. Quid enim juvet ad rerum cognitionem, si de materia, forma, motu, tempore, nugari et cavillari quas verbis ab Aristotele conceptis et praescriptis?"—BRUCKNER Hist. Phil., Tom. IV. p. 101.
6 The following passage is the same purpose is quoted by Bayle: "Non mihi persuadebitis, philosophiam esse garrulitatem illam de materia, motu, infinito, loco, vaeuo, tempore, quae fere in Aristotelis sola discessis, talia que nec intellectum, nec auctoriam, nec communem hominum mores, quidquid juvent; tantum contentionibus serendis, seminiduque idoneas."—BAYLE, Art. Luther, Note HH.
7 I borrow from Bayle another short extract from Luther: "Nihil ita ardet animus, quam histrionem illum (Aristotelem), qui tam vere Graeca larva ecclesiae lusi, multit. revelare, ignominiamque ejus cunctis ostendere, si oitium esset. Habeo in manus commentarios in I. Physicorum, quibus fabulam Aristaei denuo agere statui in meum istum Proten (Aristotelem). Pars crucis mece vel maxima est, quod videre cogor fratrum optima ingenia, bonis studis nata, in istis canus vitam agere, et operam perdere."—Ibid.
8 That Luther was deeply skilled in the scholastic philosophy we learn from very high authority, that of Melanchthon: who tells us farther, that he was a strenuous partisan of the sect of Nominalists, or, as they were then generally called, Terminists.—BRUCKNER, Tom. IV. pp. 93, 94, et seq.
9 See Note II.
10 "Et Melanchthoni quidem praecipe debetur conservatio philosophiae Aristotelicae in academiis protestantum. Scripsit is compendia plerarum, unaque disciplinarum philosophiae Aristotelicae, que in Academiis diu regnavunt."—Heinecci, Elem. Hist. Phil. § 111. See also BAYLE'S DICTIONARY, Art. Melanchthon.
very nearly at the same time with the fall of the Eastern Empire, besides adding greatly to the efficacy of the causes above-mentioned, must have been attended with very important effects of its own, on the progress of the human mind. For us who have been accustomed, from our infancy, to the use of books, it is not easy to form an adequate idea of the disadvantages which those laboured under, who had to acquire the whole of their knowledge through the medium of universities and schools;—blindly devoted as the generality of students must then have been to the peculiar opinions of the teacher who first unfolded to their curiosity the treasures of literature and the wonders of science. Thus error was perpetuated; and, instead of yielding to time, acquired additional influence in each successive generation. In modern times, this influence of names is, comparatively speaking, at an end. The object of a public teacher is no longer to inculcate a particular system of dogmas, but to prepare his pupils for exercising their own judgments; to exhibit to them an outline of the different sciences, and to suggest subjects for their future examination. The few attempts to establish schools and to found sects, have all, after perhaps a temporary success, proved abortive. Their effect, too, during their short continuance, has been perfectly the reverse of that of the schools of antiquity; for whereas these were instrumental, on many occasions, in establishing and diffusing error in the world, the founders of our modern sects, by mixing up important truths with their own peculiar tenets, and by disguising them under the garb of a technical phraseology, have fostered such prejudices against themselves, as have blinded the public mind to all the lights they were able to communicate. Of this remark a melancholy illustration occurs, as M. Turgot long ago predicted, in the case of the French Economists; and many examples of a similar import might be produced from the history of science in our country; more particularly from the history of the various medical and metaphysical schools which successively rose and fell during the last century.

With the circumstances already suggested, as conspiring to accelerate the progress of knowledge, another has co-operated very extensively and powerfully; the rise of the lower orders in the different countries of Europe,—in consequence partly of the enlargement of commerce, and partly of the efforts of the Sovereigns to reduce the overgrown power of the feudal aristocracy.

Without this emancipation of the lower orders, and the gradual diffusion of wealth by which it was accompanied, the advantages derived from the invention of printing would have been extremely limited. A certain degree of case and independence is essentially requisite to inspire men with the desire of knowledge, and to afford the leisure necessary for acquiring it; and it is only by the encouragement which such a state of society presents to industry and ambition, that the selfish passions of the multitude can be interested in the intellectual improvement of their children. It is only, too, in such a state of society, that education and books are likely to increase the sum of human happiness; for while these advantages are confined to one privileged description of individuals, they but furnish them with an additional engine for debasing and misleading the minds of their inferiors. To all which it may be added, that it is chiefly by the shock and collision of different and opposite prejudices, that truths are gradually cleared from that admixture of error which they have so strong a tendency to acquire, wherever the course of public opinion is forcibly con-
strained and guided within certain artificial channels, marked out by the narrow views of human policy. The diffusion of knowledge, therefore, occasioned by the rise of the lower orders, would necessarily contribute to the improvement of useful science, not merely in proportion to the arithmetical number of cultivated minds now combined in the pursuit of truth, but in a proportion tending to accelerate that important effect with a far greater rapidity.

Nor ought we here to overlook the influence of the foregoing causes, in encouraging among authors the practice of addressing the multitude in their own vernacular tongues. The zeal of the Reformers first gave birth to this invaluable innovation, and imposed on their adversaries the necessity of employing, in their own defence, the same weapons. From that moment the prejudice began to vanish which had so long confounded knowledge with erudition; and a revolution commenced in the republic of letters, analogous to what the invention of gunpowder produced in the art of war. "All the splendid distinctions of mankind," as the Champion and Flower of Chivalry indignantly exclaimed, "were thereby thrown down; and the naked shepherd levelled with the knight clad in steel."

To all these considerations may be added the gradual effects of time and experience in correcting the errors and prejudices which had misled philosophers during so long a succession of ages. To this cause, chiefly, must be ascribed the ardour with which we find various ingenious men, soon after the period in question, employed in prosecuting experimental inquiries; a species of study to which nothing analogous occurs in the history of ancient science. The boldest and most successful of this new school was the celebrated Paracelsus, born in 1493, and consequently only ten years younger than Luther. "It is impossible to doubt," says Le Clerc, in his History of Physic, "that he possessed an extensive knowledge of what is called the Materia Medica, and that he had employed much time in working on the animal, the vegetable, and the mineral substances of which it is composed. He seems, besides, to have tried an immense number of experiments in chemistry; but he has this great defect, that he studiously conceals or disguises the results of his long experience." The same author quotes from Paracelsus a remarkable expression, in which he calls the philosophy of Aristotle a wooden foundation. "He ought to have attempted," continues Le Clerc, "to have laid a better; but if he has not done it, he has at least, by discovering its weakness, invited his successors to look out for a firmer basis."

Lord Bacon himself, while he censures the moral frailties of Paracelsus, and the blind empiricism of his followers, indirectly acknowledges the extent of his experimental information: "The ancient sophists may be said to have hid, but Paracelsus extinguished the light of nature. The sophists were only deserters of experience, but Paracelsus has betrayed it. At the same time, he is so far from understanding the right method of conducting experiments, or of recording their results, that he has added to the trouble and tediousness of experimenting. By wandering through the wilds of experience, his disciples sometimes stumble upon useful discoveries, not by reason, but by accident;—whence rashly proceeding to form theories, they carry the smoke and tarnish of their art along with them; and, like childish operators at the furnace, attempt to raise a structure of philosophy with a few experiments of distillation."

Two other circumstances, of a nature widely different from those hitherto enumerated, although, probably, in no small degree to be accounted for on the same principles, seconded, with an inestimable accession of power, the sud-

1 "The sacred books were, in almost all the kingdoms and states of Europe, translated into the language of each respective people, particularly in Germany, Italy, France, and Britain."—(Moshein's Eccles. Hist. Vol. III. p. 265.) The effect of this single circumstance in multiplying the number of readers and of thinkers, and in giving a certain stability to the mutable forms of oral speech, may be easily imagined. The common translation of the Bible into English is pronounced by Dr Lowth to be still the best standard of our language.

2 "Haec nostra (ut sepe diximus) felicitatis cujusdam sunt potius quam facultatis, et potius temporalis partus quam ingenii."—Nov. Olig. Lib. i. c. xxiii.

3 Histoire de la Medecine (à la Haye, 1729), p. 819.
den impulse which the human mind had just received. The same century which the invention of printing and the revival of letters have made for ever memorable, was also illustrated by the discovery of the New World, and of the passage to India by the Cape of Good Hope;—events which may be justly regarded as fixing a new era in the political and moral history of mankind, and which still continue to exert a growing influence over the general condition of our species. "It is an era," as Raynal observes, "which gave rise to a revolution, not only in the commerce of nations, but in the manners, industry, and government of the world. At this period new connections were formed by the inhabitants of the most distant regions, for the supply of wants which they had never before experienced. The productions of climates situated under the equator, were consumed in countries bordering on the pole; the industry of the north was transplanted to the south; and the inhabitants of the west were clothed with the manufactures of the east; a general intercourse of opinions, laws and customs, diseases and remedies, virtues and vices, was established among men."

"Every thing," continues the same writer, "has changed, and must yet change more. But it is a question, whether the revolutions that are past, or those which must hereafter take place, have been, or can be, of any utility to the human race. Will they add to the tranquillity, to the enjoyments, and to the happiness of mankind? Can they improve our present state, or do they only change it?"

I have introduced this quotation, not with the design of attempting at present any reply to the very interesting question with which it concludes, but merely to convey some slight notion of the political and moral importance of the events in question. I cannot, however, forbear to remark, in addition to Raynal's eloquent and impressive summary, the inestimable treasure of new facts which these events have furnished for illustrating the versatile nature of man, and the history of civil society. In this respect (as Bacon has well observed) they have fully verified the Scripture prophecy, multi pertransibunt et augebitur scientia; or, in the still more emphatical words of our English version, "Many shall go to and fro, and knowledge shall be increased." The same prediction may be applied to the gradual renewal, (in proportion as modern governments became effectual in securing order and tranquillity) of that intercourse between the different states of Europe, which had, in a great measure, ceased during the anarchy and turbulence of the middle ages.

In consequence of these combined causes, aided by some others of secondary importance, the Genius of the human race seems, all at once, to have awakened with renovated and giant strength, from his long sleep. In less than a

1 Neque omittenda est prophecia Daniellis de ultimis mundi temporibus; multi pertransibunt et augebitur scientia: Manifeste inuuenis et significantes, esse in factis, id est, in providentia, ut pertransitus mundi (qui per tot longinquas navigations impetum plane, aut jam in opere esse videtur) et augmenta scientiarum in eundem excerpta et mandant."—Nov. Org. Lib. xxiii.

2 Such as the accidental inventions of the telescope and of the microscope. The powerful influence of these inventions may be easily conceived, not only in advancing the sciences of Astronomy and of Natural History, but in banishing many of the scholastic prejudices then universally prevalent. The effects of the telescope, in this respect, have been often remarked; but less attention has been given to those of the microscope, which, however, it is probable, contributed not a little to prepare the way for the modern revival of the Atomic or Corpuscular Philosophy, by Bacon, Gassendi, and Newton. "That, on the mind of Bacon, the wonders disclosed by the microscope produced a strong impression in favour of the Epicurean physics, may be inferred from his own words. "Perspicillum (microscopium) si vidisset Democritus, exsiluisset forte; et modum videndi Atomum, quem ille invisibili omnino affirmavit, inventum fuisse putasset."—Nov. Org. Lib. li § 39.

We are told in the Life of Galileo, that when the telescope was invented, some individuals carried to so great a length their devotion to Aristotle, that they positively refused to look through that instrument; so averse were they to open their eyes to any truths inconsistent with their favourite creed.—(Vita di Galileo, Venezia, 1744). It is amusing to find some other followers of the Stagirite, a very few years afterwards, when they found it impossible any longer to call in question the evidence of sense, asserting that it was from a passage in Aristotle, where he attempts to explain why stars become visible in the day-time when viewed from the bottom of a deep well, that the invention of the telescope was borrowed. The two facts, when combined, exhibit a truly characteristic portrait of one of the most fatal weaknesses incident to humanity: and form a moral apologue, daily exemplified on subjects of still nearer and higher interest than the phenomena of the heavens.

In ascribing to accident the inventions of the telescope and of the microscope, I have expressed myself in conformity to common language; but it ought not to be overlooked, that an invention may be accidental with respect to the particular author, and yet be the natural result of the circumstances of society at the period when it took place. As to the instruments in question, the combination of lenses employed in their structure is so simple, that it could scarcely escape the notice of all the experimenters and mechanicians of that busy and inquisitive age. A similar remark has been made by
century from the invention of printing, and the fall of the Eastern empire, Copernicus discovered the true theory of the planetary motions, and a very few years afterwards, was succeeded by the three great precursors of Newton,—Tycho Brahe, Kepler, and Galileo.

The step made by Copernicus may be justly regarded as one of the proudest triumphs of human reason;—whether we consider the sagacity which enabled the author to obviate, to his own satisfaction, the many plausible objections which must have presented themselves against his conclusions, at a period when the theory of motion was so imperfectly understood; or the bold spirit of inquiry which encouraged him to exercise his private judgment, in opposition to the authority of Aristotle,—to the decrees of the church of Rome,—and to the universal belief of the learned, during a long succession of ages. He appears, indeed, to have well merited the encomium bestowed on him by Kepler, who calls him "a man of vast genius, and, what is of still greater moment in these researches, a man of a free mind."

The establishment of the Copernican system, beside the new field of study which it opened to Astronomers, must have had great effects on philosophy in all its branches, by inspiring those sanguine prospects of future improvement, which stimulate curiosity, and invigorate the inventive powers. It afforded to the common sense, even of the illiterate, a palpable and incontrovertible proof, that the ancients had not exhausted the stock of possible discoveries; and that, in matters of science, the creed of the Romish church was not infallible. In the conclusion of one of Kepler's works, we perceive the influence of these prospects on his mind. "Hec et cetera hujusmodi latent in pandectis evi sequentis, non antea discenda, quam librum hunc Deus arbiter saeculorum recluserit mortalibus."

I have hitherto taken no notice of the effects of the revival of letters on Metaphysical, Moral, or Political science. The truth is, that little deserving of our attention occurs in any of these departments prior to the seventeenth century; and nothing which bears the most remote analogy to the rapid strides made, during the sixteenth, in mathematics, astronomy, and physics. The influence, indeed, of the Reformation on the practical doctrines of ethics appears to have been great and immediate. We may judge of this from a passage in Melancthon, where he combats the pernicious and impious tenets of those theologians who maintained, that moral distinctions are created entirely by the arbitrary and revealed will of God. In opposition to this heresy, he expresses himself in these memorable words:—"Wherefore our decision is this; that those precepts which learned men have committed to writing, transcribing them from the common reason and common feelings of human nature, are to be accounted as not less divine, than those contained in the tables given to Moses; and that it could not be the intention of our Maker to supersede, by a law graven upon stone, that which is written with his own finger on the table of the heart."—This language was, undoubtedly, a most important step towards a just system of Moral Philosophy; but still, like the other steps of the Reformers, it was only a return to common sense, and to the genuine spirit of Christianity, from the dogmas imposed on the credulity of mankind by an ambitious priesthood. Many years were yet to elapse, before

Candorcer, concerning the invention of printing. "L'invention de l'Imprimerie a sans doute avancé le progres de l'espace humaine; mais cette invention est celle-meme une suite de l'usage de la lecture répandu dans un grand nombre de peupl."—

Vie de Turgot.

2 Frondis sic statuimus, nihilus minus divina precepta esse ea, qua sensu communi et nature judicio mutuati docti homines gentiles litteris mandarunt, quam qua extant in ipsis saxulis Mosis tabulis. Neque ille ipse cælestis Pater plures a nobis scripsisse legis voluit, quos in saxo scriptis, quam quas in ipsos animorum nostrorum sensum impresserat.
3 Not having it in my power at present to consult Melancthon's works, I have transcribed the foregoing paragraph on the authority of a learned German Professor, Christ. Meiners.—See his Historia Doctrinae de Verbo Deo. Lennovge, 1780, p. 12.
4 It is observed by Dr Crudworth, that the doctrine which refers the origin of moral distinctions to the arbitrary appointment of the Deity, was strongly reproved by the ancient fathers of the Christian church, and that "it crept up afterward in the scholastic ages; Occam being among the first that maintained that there is no act evil, but as it is prohibited by God, and which cannot be made good, if it be commanded by him. In this doctrine he was quickly followed by Petrus Alliacus, Andreas de Novo Castro, and others."—See Treatise of Immutable Morality.
5 It is pleasing to remark, how very generally the heresy here ascribed to Occam is now reprobated by good men of all
Dissertation First.

any attempts were to be made to trace, with analytical accuracy, the moral phenomena of human life to their first principles in the constitution and condition of man, or even to disentangle the plain and practical lessons of ethics from the speculative and controverted articles of theological systems. A similar observation may be applied to the powerful appeals, in the early Protestant writers, to the moral judgment and moral feelings of the human race, from those casuistical subtleties, with which the schoolmen and monks of the middle ages had studied to obscure the light of nature, and to stifle the voice of conscience. These subtleties were precisely analogous in their spirit to the pia et religiosa calliditas, afterwards adopted in the casuistry of the Jesuits, and so inimitably exposed by Pascal in the Provincials Letters. The arguments against them employed by the Reformers, cannot, in strict propriety, be considered as positive accession to the stock of human knowledge; but what scientific discoveries can be compared to them in value?

From this period may be dated the decline of that worst of all heresies of the Romish church, which, by opposing Revelation to Reason, endeavoured to extinguish the light of both; and the absurdity, so happily described by Locke, became every day more manifest, of attempting "to persuade men to put out their eyes, that they might the better receive the remote light of an invisible star by a telescope.

persuasions. The Catholics have even begun to recriminate on the Reformers as the first broachers of it; and it is to be regretted, that in some of the writings of the latter, too near approaches to it are to be found. The truth is, as Burnet long ago observed, that the effects of the Reformation have not been confined to the reformed churches; to which it may be added, that both Catholics and Protestants have, since that era, profited very largely by the general progress of the sciences and of human reason.

I quote the following sentence from a highly respectable Catholic writer on the law of nature and nations: — "Qua rationem exsule jurebant a moribus preceptis quae in sacris litteris traduntur, et in absurdum enormemque Lutheri sententiam imprudentes incidant (quam egregie et elegantissime refutavit Melchior Cano L. Theol. Lib. ix. et x.), et ea docent, quae si secatores innumerorum mora!am omnium susque deque misere, ac revelationem ipsum inutilem omnino et inificem reldre possent."—(Lampredi Florentini Juris Naturalis et Gentium Theorematum, Tom. II. p. 156. Pisis, 1782). For the confirmation of the passage, which would do credit to the most liberal Protestant, I must refer to the original work. The zeal of Luther for the doctrine of the Nominalists had probably prepossessed him, in his early years, in favour of some of the theological tenets of Occam, and afterwards prevented him from testifying his disapprobation of them so explicitly and decidedly as other Reformers and other theologians have done.

1. "The theological system (says the learned and judicious Mosheim) that now prevails in the Lutheran academies, is not of the same tenor or spirit with that which was adopted in the infancy of the Reformation. The glorious defenders of religious liberty, to whom we owe the various blessings of the Reformation, could not, at once, behold the truth in all its lustre, and in all its extent; but, as usually happens to persons that have been long accustomed to the darkness of ignorance, their approaches towards knowledge were but slow, and their views of things but imperfect."—(Maclaine’s Transl. of Mosheim. London, 2d ed. Vol. IV. p. 19.) He afterwards mentions one of Luther’s early disciples (Amstorf) "who was so far transported and infatuated by his excessive zeal for the supposed doctrine of his master, as to maintain, that good works are an impediment to salvation."—Ibid. p. 30.

Mosheim, after remarking that "there are more excellent rules of conduct in the few practical productions of Luther and Melancthon, than are to be found in the innumerable volumes of all the ancient casuists and moralisers," candidly acknowledges, "that the notions of these great men concerning the important science of morality were far from being sufficiently accurate or extensive. Melancthon himself, whose exquisite judgment rendered him peculiarly capable of reducing into a compendious system the elements of every science, never seems to have thought of treating morals in this manner; but has inserted, on the contrary, all his practical rules and instructions, under the theological articles that relate to the law, sin, free-will, faith, hope, and charity."—Mosheim’s Eccles. Hist. Vol. IV. pp. 23. 24.

The same author elsewhere observes, that "the progress of morality among the reformed was obstructed by the very same means that retarded its improvement among the Lutherans; and that it was left in a rude and imperfect state by Calvin and his associates. It was neglected amidst the tumult of controversy; and, while every pen was drawn to maintain certain systems of doctrine, few were employed in cultivating that master-science which has virtue, life, and manners, for its objects."—Ibid. pp. 120. 121.

2. "Et tamen hi doctores angelici, cherubici, seraphici, non modo universam philosophiam ac theologiam erroribus quam plurimis inquinabant; verum etiam in philosophiam moralem invexare sacerrima ista principia probabiliissimi, methodi dirigendi intentionem, reservationis mentali, pecati philosophici, quibus Jesuita etiamnulla mirificae delectantur."—Heinecc. Elem. Histor. Phil. § 6. See also the references.

We are indebted to the ethics of the Jesuits, which exhibit a very fair picture of the general state of that science, prior to the Reformation, See the Provincial Letters; Mosheim’s Ecclesiastical History, Vol. IV. p. 354; Dornford’s Translation of Butler’s Historical Development of the present Political Constitution of the German Empire, Vol. II. p. 6; and the Appendix to Penrose’s Bampton Lectures.

3. "I have said, the decline of this heresy; for it was by no means immediately extirpated even in the reformed churches. As late as the year 1599, Daniel Hofman, Professor of Divinity in the University of Helmstadt, laying hold of some particular opinions of Luther, extravagantly maintained, that philosophy was the mortal enemy of religion; that truth was divisible into two branches, the one philosophical and the other theological; and that what was true in philosophy was false in theology."—Mosheim, Vol. IV. p. 18.
In the meantime, a powerful obstacle to the progress of practical morality and of sound policy, was superadded to those previously existing in Catholic countries, by the rapid growth and extensive influence of the Machiavellian school. The founder of this new sect, or, to speak more correctly, the systematizer and apostle of its doctrines, was born as early as 1469, that is, about ten years before Luther; and, like that reformer, acquired, by the commanding superiority of his genius, an astonishing ascendant, though of a very different nature, over the minds of his followers. No writer, certainly, either in ancient or in modern times, has ever united, in a more remarkable degree, a greater variety of the most dissimilar and seemingly the most discordant gifts and attainments;—a profound acquaintance with all those arts of dissimulation and intrigue, which in the petty cabinets of Italy, were then universally confounded with political wisdom; an imagination familiarized to the cool contemplation of whatever is perfidious or atrocious in the history of conspirators and of tyrants; combined with a graphical skill in holding up to laughter the comparatively harmless follies of ordinary life. His dramatic humour has been often compared to that of Molière; but it resembles it rather in comic force, than in benevolent gaiety or in chastened morality. Such as it is, however, it forms an extraordinary contrast to that strength of intellectual character, which, in one page, reminds us of the deep sense of Tacitus, and in the next, of the dark and infernal policy of Cæsar Borgia. To all this must be superadded a purity of taste, which has enabled him, as an historian, to rival the severe simplicity of the Grecian masters; and a sagacity in combining historical facts, which was afterwards to afford lights to the school of Montesquieu.

Eminent, however, as the talents of Machiavell unquestionably were, he cannot be numbered among the benefactors of mankind. In none of his writings does he exhibit any marks of that lively sympathy with the fortunes of the human race, or of that warm zeal for the interests of truth and justice, without the guidance of which, the highest mental endowments, when applied to moral or to political researches, are in perpetual danger of mistaking their way. What is still more remarkable, he seems to have been altogether blind to the mighty changes in human affairs, which, in consequence of the recent invention of printing, were about to result from the progress of Reason and the diffusion of Knowledge. Through the whole of his Prince (the most noted as well as one of the latest of his publications) he proceeds on the supposition, that the sovereign has no other object in governing, but his own advantage; the very circumstance which, in the judgment of Aristotle, constitutes the essence of the worst species of tyranny. ¹ He assumes also the possibility of retaining mankind in perpetual bondage by the old policy of the double doctrine; or, in other words, by enlightening the few, and hoodwink- ing the many;—a policy less or more practised by statesmen in all ages and countries; but which, wherever the freedom of the press is respected, cannot fail, by the insult it offers to the discernment of the multitude, to increase the insecurity of those who have the weakness to employ it. It has been contended, indeed, by some of Machiavell’s apologists, that his real object in unfolding and systematising the mysteries of King-Craft, was to point out indirectly to the governed the means by which the encroachments of their rulers might be most effectually resisted; and, at the same time, to satirize, under the ironical mask of loyal and courtly admonition, the characteristic vices of princes. ² But, although this hypothesis has been sanctioned by several distinguished names, and derives some verisimilitude from various incidents in the author’s life, it will be found, on examination, quite untenable; and accordingly it is now, I believe, very generally rejected. One thing is certain, that if such were actually

¹ There is a third kind of tyranny, which most properly deserves that odious name, and which stands in direct opposition to royalty; it takes place when one man, the worst perhaps and basest in the country, governs a kingdom with no other view than the advantage of himself and his family.—Aristotle’s Politics, book vi, chap. x. See Dr Gillies’s Translation.

² See Note C.
Machiavel's views, they were much too refined for the capacity of his royal pupils. By many of these his book has been adopted as a manual for daily use; but I have never heard of a single instance, in which it has been regarded by this class of students as a disguised panegyric upon liberty and virtue. The question concerning the motives of the author is surely of little moment, when experience has enabled us to pronounce so decidedly on the practical effects of his precepts.

"About the period of the Reformation," says Condorcet, "the principles of religious Machiavelism had become the only creed of princes, of ministers, and of pontiffs; and the same opinions had contributed to corrupt philosophy. What code, indeed, of morals," he adds, "was to be expected from a system, of which one of the principles is,—that it is necessary to support the morality of the people by false pretences, and that men of enlightened minds have a right to retain others in the chains from which they have themselves contrived to escape!" The fact is perhaps stated in terms somewhat too unqualified; but there are the best reasons for believing that the exceptions were few, when compared with the general proposition.

The consequences of the prevalence of such a creed among the rulers of mankind were such as might be expected. "Infamous crimes, assassinations, and poisonings (says a French historian), prevailed more than ever. They were thought to be the growth of Italy, where the rage and weakness of the opposite factions conspired to multiply them. Morality gradually disappeared, and with it all security in the intercourse of life. The first principles of duty were obliterated by the joint influence of atheism and of superstition."

And here, may I be permitted to caution my readers against the common error of confounding the double doctrine of Machiavelian politicians, with the benevolent reverence for established opinions, manifested in the noted maxim of Fontenelle,—"that a wise man, even when his hand was full of truths, would often content himself with opening his little finger." Of the advocates for the former, it may be justly said, that "they love darkness rather than light, because their deeds are evil;" well knowing, if I may borrow the words of Bacon, "that the open day-light doth not show the masks and mummeries, and triumphs of the world, half so stately as candle-light." The philosopher, on the other hand, who is duly impressed with the latter, may be compared to the oculist, who, after removing the cataract of his patient, prepares the still irritable eye, by the glimmering dawn of a darkened apartment, for enjoying in safety the light of day.

Machiavel is well known to have been, at bottom, no friend to the priesthood; and his character has been stigmatized by many of the order with the most opprobrious epithets. It is nevertheless certain, that to his maxims the royal defenders of the Catholic faith have been indebted for the spirit of that policy which they have uniformly opposed to the innovations of the Reformers. The Prince was a favourite book of the Emperor Charles V.; and was called the Bible of Catharine of Medicis. At the court of the latter, while Regent of France, those who approached her are said to have professed open-

1 Millot.

2 How strange is the following misrepresentation of Fontenelle's fine and deep saying, by the comparatively coarse hand of the Baron de Grimm! "Il disoit, que s'il eut tenu la vérité dans ses mains comme un oiseau, il l'aurroit étouffée, tant il regardoit le plus beau présent du ciel inutile et dangereux pour le genre humain."—Mémoires Historiques, &c. par le Baron de Grimm. Londres, 1814. Tome I, p. 340.) Of the complete inconsistency of this statement, not only with the testimony of his most authentic biographers, but with the general tenor both of his life and writings, a judgment may be formed from an expression of D'Alembert, in his very ingenious and philosophical parallel between Fontenelle and La Motte. "Tous deux ont porté trop loin leur voluté décidée, quoique douce en apparences, contre les dieux et les lois du Parnasse; mais la liberté des opinions de la Motte semble tenir plus intimement à l'intérêt personnel qu'il avait de les soutenir; et la liberté des opinions de Fontenelle à l'intérêt général, peut-être quelquefois mal entendu, qu'il prétendit au progrès de la raison dans tous les genres. What follows may be regarded in the light of a comment on the maxim above quoted: "La finesse de la Motte est plus développée, celle de Fontenelle laisse plus à deviner à son lecteur. La Motte, sans jamais en trop dire, n'oublie de ce que son sujet lui présente, met habilement tout en œuvre, et semble craisir perdre par des réticences trop subtiles quelque un de ses avantages; Fontenelle, sans jamais être obscur, excepté pour ceux qui ne méritent pas même qu'on soit clair, se ménage à la fois et le plaisir de sous-entendre, et celui d'espérer qu'il sera pleinement entendu par ceux qui en sont dignes."—Éloge de la Motte.
ly its most atrocious maxims; particularly that which recommends to sovereigns not to commit crimes by halves. The Italian cardinals, who are supposed to have been the secret instigators of the massacre of St. Bartholomew, were bred in the same school.\footnote{Voltaire, Essay on Universal History.}

It is observed by Mr Hume, that "there is scarcely any maxim in the Prince, which subsequent experience has not entirely refuted." "Machiavel," says the same writer, "was certainly a great genius; but having confined his study to the furious and tyrannical governments of ancient times, or to the little disorderly principalities of Italy, his reasonings, especially upon monarchical governments, have been found extremely defective. The errors of this politician proceeded, in a great measure, from his having lived in too early an age of the world, to be a good judge of political truth."\footnote{Essay on Civil Liberty.}

To these very judicious remarks, it may be added, that the bent of Machiavel's mind seems to have disposed him much more strongly to combine and to generalize his historical reading, than to remount to the first principles of political science, in the constitution of human nature, and in the immutable truths of morality. His conclusions, accordingly, ingenious and refined as they commonly are, amount to little more (with a few very splendid exceptions) than empirical results from the events of past ages. To the student of ancient history they may be often both interesting and instructive; but, to the modern politician, the most important lesson they afford is, the danger, in the present circumstances of the world, of trusting to such results, as maxims of universal application, or of permanent utility.

The progress of political philosophy, and along with it of morality and good order, in every part of Europe, since the period of which I am now speaking, forms so pleasing a comment on the profligate and short-sighted policy of Machiavel, that I cannot help pausing for a moment to remark the fact. In stating it, I shall avail myself of the words of the same profound writer, whose strictures on Machiavel's Prince I had already occasion to quote. "Though all kinds of government," says Mr Hume, "be improved in modern times, yet monarchical government seems to have made the greatest advances towards perfection. It may now be affirmed of civilized monarchies, what was formerly said of republics alone, that they are a government of laws, not of men. They are found susceptible of order, method, and constancy, to a surprising degree. Property is there secure, industry encouraged, the arts flourish, and the prince lives secure among his subjects, like a father among his children. There are, perhaps, and have been for two centuries, near two hundred absolute princes, great and small, in Europe; and allowing twenty years to each reign, we may suppose that there have been in the whole two thousand monarchs, or tyrants, as the Greeks would have called them. Yet of these there has not been one, not even Philip II. of Spain, so bad as Tiberius, Caligula, Nero, or Domitian, who were four in twelve among the Roman Emperors."\footnote{Ibid.}

For this very remarkable fact, it seems difficult to assign any cause equal to the effect, but the increased diffusion of knowledge (imperfect, alas! as this diffusion still is) by means of the Press; which, while it has raised, in free states, a growing bulwark against the oppression of rulers, in the light and spirit of the people, has, even under the most absolute governments, had a powerful influence—by teaching princes to regard the wealth and prosperity and instruction of their subjects as the firmest basis of their grandeur—in directing their attention to objects of national and permanent utility. How encouraging the prospect thus opened of the future history of the world! And what a motive to animate the ambition of those, who, in the solitude of the closet, aspire to bequeath their contributions, how slender soever, to the progressive mass of human improvement and happiness!

In the bright constellation of scholars, historians, artists, and wits, who shed so strong a lustre on Italy during that splendid period of its history which commences with the revival of
letters, it is surprising how few names occur, which it is possible to connect, by any palpable link, with the philosophical or political speculations of the present times. As an original and profound thinker, the genius of Machiavel completely eclipses that of all his contemporaries. Not that Italy was then destitute of writers who pretended to the character of philosophers; but as their attempts were, in general, limited to the exclusive illustration and defence of some one or other of the ancient systems for which they had conceived a predilection, they added but little of their own to the stock of useful knowledge, and are now remembered chiefly from the occasional recurrence of their names in the catalogues of the curious, or in the works of philological erudition. The zeal of Cardinal Bessarion, and of Marsilius Ficinus, for the revival of the Platonic philosophy, was more peculiarly remarkable, and, at one time, produced so general an impression, as to alarm the followers of Aristotle for the tottering authority of their master. If we may credit Launois, this great revolution was on the point of being actually accomplished, when Cardinal Bellarmine warned Pope Clement VIII. of the peculiar danger of showing any favour to a philosopher whose opinions approached so nearly as those of Plato to the truths revealed in the Gospel. In what manner Bellarmine connected his conclusions with his premises, we are not informed. To those who are uninitiated in the mysteries of the conclave, his inference would certainly appear much less logical than that of the old Roman Pagans, who petitioned the Senate to condemn the works of Cicero to the flames, as they predisposed the minds of those who read them for embracing the Christian faith.

By a small band of bolder innovators belonging to this golden age of Italian literature, the Aristotelian doctrines were more directly and powerfully assailed. Laurentius Valla, Marius Nizolius, and Franciscus Patricius, have all of them transmitted their names to posterity as philosophical reformers, and, in particular, as revolters against the authority of the Stagirite. Of the individuals just mentioned, Nizolius is the only one who seems entitled to maintain a permanent place in the annals of modern science. His principal work, entitled Antiharbarus, is not only a bold invective against the prevailing ignorance and barbarism of the schools, but contains so able an argument against the then fashion-able doctrine of the Realists concerning general ideas, that Leibnitz thought it worth while, a century afterwards, to republish it, with the addition of a long and valuable preface written by himself.

At the same period with Franciscus Patricius, flourished another learned Italian, Albericus Gentilis, whose writings seem to have attracted more notice in England and Germany than in his own country. His attachment to the reformed faith having driven him from Italy, he sought an asylum at Oxford, where, in 1587, he was appointed professor of the Civil Law, an office which he held till the period of his death in 1611. He was the author of a treatise De Jure Belli, in three books, which appeared successively in 1588 and 1589, and were first published together at Hanau in 1598. His name, however, has already sunk into almost total oblivion; and I should certainly not have mentioned it on the present occasion, were it not for his indisputable merits as the precursor of Grotius, in a department of study which, forty years afterwards, the celebrated treatise De Jure Belli et Pacis was

1 His Discussiones Peripateticæ were printed at Venice in 1571. Another work, entitled Nova de Universis Philosophia, also printed at Venice, appeared in 1593. I have never happened to meet with either; but from the account given of the author by Thuanus, he does not seem to have attracted that notice from his contemporaries, to which his learning and talents entitled him.—(Tuyan. Hist. Lib. exix. xvii.) His Discussiones Peripateticæ are mentioned by Brucker in the following terms:—"Opus egregium, doctum, variatum, luculentum, et tamen odioque in Aristotelém plenum satûs superque."—(Hist. Phil. Tom. IV. p. 429.) The same very laborious and candid writer acknowledges the assistance he had derived from Patricius in his account of the Peripatetic philosophy.—"In qua tractatione fatumur egregium et multum Patricii doctrinam, ingenii elegantiam prorsus admirabilem, et quod primo loco ponendum est, insolitam veteris philosophiae cognitionem, cujus opes nos Peripateticæ discipline historico multolites lucem attulisse, grati sui locis professi sumus."—1696, p. 426.

2 Antiharbarus, sive de Veris Principis et Vera Ratione Philosophandi contra Pseudo-philosophos, Parmae, 1553. "Les faux philosophes," dit Fontenelle, "étoient tous les scholastiques passés et présents; et Nizolius s'élève avec la dernière hardiesse contre leurs idées monstrueuses et leur langage barbare. La longue et constante admiration qu'un avait eu pour Aristote, ne prouvoit, disoit-il, que la multitude des sots et la durée de la sottise." The merits of this writer are much too lightly estimated by Brucker.—See Hist. Phil. Tom. IV. Pars I. pp. 91, 92.

DISSE 1. PART I.
to raise to so conspicuous a rank among the branches of academical education. The avowed aim of this new science, when combined with the anxiety of Gentilis to counteract the effect of Machiavel's *Prince*, by representing it as a warning to subjects rather than as a manual of instruction for their rulers, may be regarded as satisfactory evidence of the growing influence, even at that era, of better ethical principles than those commonly imputed to the Florentine Secretary.³

The only other Italian of whom I shall take notice at present, is Campanella;⁴ a philosopher now remembered chiefly in consequence of his eccentric character and eventful life, but of whom Leibnitz has spoken in terms of such high admiration, as to place him in the same line with Bacon. After looking into several of his works with some attention, I must confess I am at a loss to conceive upon what grounds the eulogy of Leibnitz proceeds; but as it is difficult to suppose, that the praise of this great man was, in any instance, the result of mere caprice, I shall put it in the power of my readers to judge for themselves, by subjoining a faithful translation of his words. I do this the more willingly, as the passage itself (whatever may be thought of the critical judgments pronounced in it), contains some general remarks on intellectual character, which are in every respect worthy of the author.

"Some men, in conducting operations where an attention to minutiae is requisite, discover a mind vigorous, subtle, and versatile, and seem to be equal to any undertaking, how arduous soever. But when they are called upon to act on a greater scale, they hesitate and are lost in their own meditations; distrustful of their judgment, and conscious of their incompetency to the scene in which they are placed: men, in a word, possessed of a genius rather acute than comprehensive. A similar difference may be traced among authors. What can be more acute than Descartes in Physics, or than Hobbes in Morals? And yet, if the one be compared with Bacon, and the other with Campanella, the former writers seem to grovel upon the earth,—the latter to soar to the Heavens, by the vastness of their conceptions, their plans, and their enterprises, and to aim at objects beyond the reach of the human powers. The former, accordingly, are best fitted for delivering the first elements of knowledge, the latter for establishing conclusions of important and general application."⁵

¹ The claims of Albericus Gentilis to be regarded as the father of *Natural Jurisprudence*, are strongly asserted by his countryman Lampredi, in his very judicious and elegant work, entitled, *Juris Publici Theoromata*, published at Pisa in 1702. "Hei primus jus aliquod Belli et esse et tradi posse exegiavit, et Belli et Pacis regulas explanavit primus, et fortasse in causis fuit cur Grotius opus suum conscribere aggeredetur: dignus sane qui prae ceteris memoretur. Italic enim, in qua ortus erat, et unde Juris Romani disciplinam hauserat, gloriabat, exsequius utque fuerat bonorum artium omnium restitutrix et altrix, cadem esset et prima Jurisprudentiae Naturalis magistra." ² Born 1568, died 1639.
³ Leibnit. Opera, Vol. VI. p. 303, ed. Dutens.—It is probable that, in the above passage, Leibnitz alluded more to the elevated tone of Campanella's reasoning on moral and political subjects, when contrasted with that of Hobbes, than to the intellectual superiority of the former writer above the latter. No philosopher, certainly, has spoken with more reverence than Campanella has done, on various occasions, of the dignity of human nature. A remarkable instance of this occurs in his eloquent comparison of the human hand with the organs of touch in other animals. (Vide Campan. Physiolog. ca cap. xx. Art. 3.) Of his *Political Aphorisms*, which form the third part of his treatise on *Morals*, a sufficient idea for our purpose is conveyed by the concluding corollary, "Prohibas custodit regem populose; non autem indocta Machiavellicistare asustia."
⁴ On the other hand, Campanella's works abound with immoralities and extravagancies far exceeding those of Hobbes. In his idea of a perfect commonwealth (to which he gives the name of Civilta Solia), the impurity of his imagination, and the unsoundness of his judgment, are equally conspicuous. He recommends, under certain regulations, a community of women; and, in every thing connected with recreation, lays great stress on the opinions of astrologers.
⁵ Magistrat au-dessus de tout éloge; et d'après lequel on a jugé tous ceux qui ont osé s'asseoir sur ce même tribunal sans avoir son courage ni ses lumières."—Henault, Abrégé Chronologique.
fore, had disgraced the character of an illustrious Chancellor of England. The same philosophical and truly catholic spirit distinguished his friend, the President de Thon, and gives the principal charm to the justly admired preface prefixed to his history. In tracing the progress of the human mind during the sixteenth century, such insulated and anomalous examples of the triumph of reason over superstition and bigotry, deserve attention, not less than what is due, in a history of the experimental arts, to Friar Bacon's early anticipation of gunpowder, and of the telescope.

Contemporary with these great men was Bodin (or Bodinus), an eminent French lawyer, who appears to have been one of the first that united a philosophical turn of thinking with an extensive knowledge of jurisprudence and of history. His learning is often ill digested, and his conclusions still oftener rash and unsound; yet it is but justice to him to acknowledge, that, in his views of the philosophy of law, he has approached very nearly to some leading ideas of Lord Bacon; while, in his refined combinations of historical facts, he has more than once struck into a train of speculation, bearing a strong resemblance to that afterwards pursued by Montesquieu. Of this resemblance, so remarkable an instance occurs in his chapter on the moral effects of Climate, and on the attention due to this circumstance by the legislator, that it has repeatedly subjected the author of The Spirit of Laws (but in my opinion without any good reason) to the imputation of plagiarism. A resemblance to Montesquieu, still more honourable to Bodin, may be traced in their common attachment to religious as well as to civil liberty. To have caught, in the sixteenth century, somewhat of the philosophical spirit of the eighteenth, reflects less credit on the force of his mind, than to have imbibed, in the midst of the theological controversies of his age, those lessons of mutual forbearance and charity, which a long and sad experience of the fatal effects of persecution has to this day so imperfectly taught to the most enlightened nations of Europe.

As a specimen of the liberal and moderate views of this philosophical politician, I shall quote two short passages from his Treatise De la République, which seem to me objects of considerable curiosity, when contrasted with the general spirit of the age in which they were written. The first relates to liberty of conscience, for which he was a strenuous and intrepid advocate, not only in his publications, but as a member of the États Généraux, assembled at Blois in 1576. "The mightier that a man is (says Bodin), the more justly and temperately he ought to behave himself towards all men, but especially towards his subjects. Wherefore the senate and people of Basil did wisely, who, having renounced the Bishop of Rome's religion, would not, upon the sudden, thrust the monks and nuns, with the other religious persons, out of their abbeys and monasteries, but only took order, that, as they died they should die both for themselves and their successors, expressly forbidding any new to be chosen in their places, so that, by that means, their colleges might, by

1 "One cannot help admiring," says Dr Jortin, "the decent manner in which the illustrious Thuanus hath spoken of Calvin." "Acri vir ac vehementi ingenio, et admirabilis facundia prudentius: turn inter protestantes magni nominis theologos."—(Life of Erasmus, p. 555.) The same writer has remarked the great decency and moderation with which Thuanus speaks of Luther.—Ibid. p. 113.
2 Born 1530, died 1596.
3 See, in particular, the preface to his book, entitled Methodus ad faciendum Historiarum cognitionem.
4 See the work De la République, passim. In this treatise there are two chapters singularly curious, considering the time when they were written: the second and third chapters of the sixth book. The first is entitled, Des Finances; the second, Le Moyen d'empêcher que les Monnayes soient altérées de Prix ou falsifiées. The reasons of the Author on various points there treated of, will be apt to excite a smile among those who have studied the Inquiry into the Wealth of Nations; but it reflects no small credit on a lawyer of the sixteenth century to have subjected such questions to philosophical examination, and to have formed so just a conception as Bodin appears evidently to have done, not only of the object, but of the importance of the modern science of political economy.

Thuanus speaks highly of Bodin's dissertations De Re Monetaria, which I have never seen. The same historian thus expresses himself with respect to the work De Republica: "Opus in quo ut omni scientiarum generis non tincti sed imbuti ingenii fidem fecit, sic nonnullis, qui recte judicant, non omnino ab ostentationibus innato gentis vitio vacuum se probavit.—Huet. Lib. exvii. ix.

5 See Note D.
little and little, by the death of the fellows, be extinguished. Whereby it came to pass, that all the rest of the Carthusians, of their own accord, forsaking their cloisters, yet one of them all alone for a long time remained therein, quietly and without any disturbance, holding the right of his convent, being never enforced to change either his place, or habit, or old ceremonies, or religion before by him received. The like order was taken at Coire in the diet of the Grisons; wherein it was decreed, that the ministers of the reformed religion should be maintained of the profits and revenues of the church, the religious men nevertheless still remaining in their cloisters and convents, to be by their death suppressed, they being now prohibited to choose any new instead of them which died. By which means, they which professed the new religion, and they who professed the old, were both provided for."

The aim of the chapter from which I have extracted the foregoing passage, is to show, that "it is a most dangerous thing, at one and the same time, to change the form, laws, and customs of a commonwealth." The scope of the author's reasonings may be judged of from the concluding paragraph.

"We ought then in the government of a well-ordered state and commonwealth, to imitate and follow the great God of Nature, who in all things proceedeth easily, and by little and little; who of a little seed causeth to grow a tree for height and greatness, right admirable, and yet for all that insensibly; and still by means conjoining the extremities of nature, as by putting the spring between winter and summer, and autumn betwixt summer and winter, moderating the extremities of the terms and seasons, with the self-same wisdom which it useth in all other things also, and that in such sort, as that no violent force or course therein appeareth."

Notwithstanding these wise and enlightened maxims, it must be owned, on the other hand, that Bodin has indulged himself in various speculations, which would expose a writer of the present times to the imputation of insanity. One of the most extraordinary of these, is his elaborate argument to prove, that, in a well constituted state, the father should possess the right of life and death over his children;—a paradox which forms an unaccountable contrast to the general tone of humanity which characterizes his opinions. Of the extent of his credulity on the subject of witchcraft, and of the deep horror with which he regarded those who affected to be sceptical about the reality of that crime, he has left a lasting memorial in a learned and curious volume entitled "Démonomanie;" while the ec-

1 Book iv. chap. iii.—The book from which this quotation is taken was published only twenty-three years after the murder of Cesare, at Geneva; an event which leaves so deep a stain on the memory not only of Calvin, but on that of the milder and more charitable Melanchthon. The epistle of the latter to Bullinger, where he applauds the conduct of the judges who condemned to the flames this incorrigible heretic, affords the most decisive of all proofs, how remote the sentiments of the most enlightened Fathers of the Reformation were from those Christian and philosophical principles of toleration, to which their noble exertions have gradually, and now almost universally, led the way.

2 Ibid.—The substance of the above reflection has been compressed by Bacon into the following well-known aphorisms.

"Time is the greatest innovator; shall we then not imitate time?"

"What innovator imitates time, which innovates so silently as to mock the sense?"

"The resemblance between the two passages is still more striking in the Latin versions of their respective authors.

"Deumigitur praeportent naturae parentem similem, qui omnia patulit: namque semina per quam exiguas in arbores excelsas excipit, subiectamque ut nemo sentiat."—BODINUS.

"Novator maximus tempus; quidnisiigitur tempus imitatur?"

"Quis novator tempus imitatur, quod novationes ita insinuit, ut sensus fallat?"—BACON.

The Treatise of Bodin De la République (by far the most important of his works) was first printed at Paris in 1576, and was reprinted seven times in the space of three years. It was translated into Latin by the author himself, with a view chiefly (as is said) to the accommodation of the scholars of England, among whom it was so highly esteemed, that lectures upon it were given in the University of Cambridge, as early as 1590. In 1579, Bodin visited London in the suite of the Duke d'Alençon; a circumstance which probably contributed not a little to recommend all his writings, so soon after their publication, to the attention of our countrymen. In 1606, the treatise of The Republic was done into English by Richard Knolles, who appears to have collated the French and Latin copies so carefully and judiciously, that his version is, in some respects, superior to either of the originals. It is from this version, accordingly, that I have transcribed the passages above quoted; trusting, that it will not be unacceptable to my readers, while looking back to the intellectual attainments of our forefathers, to have an opportunity, at the same time, of marking the progress which has been made in England, more than two centuries ago, in the arts of writing and of translation.

For Dr Johnson's opinion of Knolles's merits as an historian, and as an English writer, see the Rambler, No. 123.

3 De la Démonomanie des Sorciers. Par J. Bodin Angevin, à Paris, 1660. This book, which exhibits so melancholy
centricity of his religious tenets was such, as to incline the candid mind of Grotius to suspect him of a secret leaning to the Jewish faith. 1

In contemplating the characters of the eminent persons who appeared about this era, nothing is more interesting and instructive, than to remark the astonishing combination, in the same minds, of the highest intellectual endowments, with the most deplorable aberrations of the understanding; and even, in numberless instances, with the most childish superstitions of the multitude. Of this apparent inconsistency, Bodin does not furnish a solitary example. The same remark may be extended, in a greater or less degree, to most of the other celebrated names hitherto mentioned. Melancthon, as appears from his letters, was an interpreter of dreams, and a caster of nativities; 2 and Luther not only sanctioned, by his authority, the popular fables about the sexual and prolific intercourse of Satan with the human race, but seems to have seriously believed that he had himself frequently seen the arch enemy face to face, and held arguments with him on points of theology. 3 Nor was the study of the severer sciences, on all occasions, an effectual remedy against such illusions of the imagination. The sagacious Kepler was an astronomer and a visionary; and his friend Tycho Brahe, the Prince of Astronomers, kept an idiot in his service, to whose prophecies he listened as revelations from above. 4 During the long night of Gothic barbarism, the intellectual world had again become, like the primitive earth, "without form and void," the light had already appeared; "and God had seen the light that it was good;" but the time was not yet come to "divitc it from the darkness." 5

In the midst of the disorders, both political and moral, of that unfortunate age, it is pleasing to observe the anticipations of brighter prospects, in the speculations of a few individuals. Bodinus himself is one of the number; 6 and to his name may be added that of his countryman and predecessor Budeus. 7 But, of all the writers of the sixteenth century, Ludovicus Vives seems to have had the liveliest and the

a contrast to the mental powers displayed in the treatise De la République, was dedicated by the author to his friend, the President de Thou; and it is somewhat amusing to find, that it exposed Bodin only to the imputation of being a magician. For this we have the testimony of the illustrious historian just mentioned.—(THUANES, Lib. cxxvi. ix.)—Nor did it recommend the author to the good opinion of the Catholic church, having been formally condemned and prohibited by the Roman Inquisition. The Reflection of the Jesuit Martin del Rio on this occasion is worth transcribing. "Adeo lubricum et periculosum de his disserere, nisi Deum zemper, et catholicam fidem, ecclesiae Romanae censuram tantum censuram sequamur."—Disquisitum Magicaum, Libri Sex. Auctore Martino del Rio, Societas Jesu Presbytero. Venit. 1640, p. 8.

1 Epit. ad Cordelium (quoted by Bayle).
2 Jov. in Life of Erasmus, p. 166.
3 See Note E.
4 See the Life of Tycho Brahe, by Gassendi.
5 I have allotted to Bodin a larger space than may seem due to his literary importance; but the truth is, I know of no political writer, of the same date, whose extensive and various and discriminating reading appears to me to have contributed more to facilitate and to guide the researches of his successors, or whose references to ancient learning have been more frequently transcribed without acknowledgment. Of late his works have fallen into general neglect; otherwise it is impossible that so many gross mistakes should be current about the scope and spirit of his principles. By many he has been a zealous for republican forms of government, probably for no better reason than that he chose to call his book a Treatise De Republica; whereas, in point of fact, he is uniformly a warm and able advocate for monarchy; and, although no friend to tyranny, has, on more than one occasion, carried his monarchial principles to a very blamable extent. (See, in particular, chapters fourth and fifth of the Sixth Book.) On the other hand, Grozville, a writer of some note, has classed Bodin with Aristotle, as an advocate for domestic slavery. "The reasonsings of both," he says, "are refuted by Montesquieu."—(De l'Autorité de Montesquieu dans la Révolution présente. Paris. 1789.) Whoever has the curiosity to compare Bodin and Montesquieu together, will be satisfied, that on this point, their sentiments were exactly the same; and that, so far from refuting Bodin, Montesquieu has borrowed from him more than one argument in support of his general conclusions. The merits of Bodin have been, on the whole, very fairly estimated by Bayle, who pronounces him "one of the ablest men that appeared in France during the sixteenth century." "Si nous voulons disputer à Jean Bodin la qualité d'écrivain exact et judicieux, laissons lui sans controverse, un grand génie, un vaste savoir, une mémoire et une lecture prodigieuses.

6 See, in particular, his Method of Studying History, chap. vii. entitled Concuttio eorum qui auctuor Monarchia Aureaque Seculorum statuuntur. In this chapter, after enumerating some of the most important discoveries and inventions of the moderns, he concludes with mentioning the art of printing, of the value of which he seems to have formed a very just estimate. "Quaepiam una omnibus veteribus inventis certare facile posse. Itaque non minus peccavit, qui a veteribus ait omnium comprehensa, quam qui illos de veteri multarum artium possessione deturrat. Habet Natura scientiarum thesauros innumerabiles, qui nullis atetibus exhauriri possunt." In the same chapter Bodinus expresses himself thus: "Etas illa quam aurum vocant, si ad nostram conferatur, ferre videre possit.

The works of Budeus were printed at Basle, in four volumes folio, 1587. My acquaintance with them is much too slight to enable me to speak of them from my own judgment. No scholar certainly stood higher in the estimation of his age. "Quo viro," says Ludovicus Vives. "Galla acutior ingenioso, auctore judicio, exactiore diligentia, majore eruditione nullum unquam produxit; hac vero aetate nec Italia quidem." The praise bestowed on him by other contemporary writers of the highest eminence is equally lavish.
most assured foresight of the new career on which the human mind was about to enter. The following passage from one of his works would have done no discredit to the Novum Organum:—"The similitude which many have fancied between the superiority of the moderns to the ancients, and the elevation of a dwarf on the back of a giant, is altogether false and puerile. Neither were they giants, nor are we dwarfs, but all of us men of the same standard,—and we the taller of the two, by adding their height to our own: Provided always that we do not yield to them in study, attention, vigilance, and love of truth; for, if these qualities be wanting, so far from mounting on the giant's shoulders, we throw away the advantages of our own just stature, by remaining prostrate on the ground." 1

1 Vives de Caus. Corrupt. Artium, Lib. 1. Similar ideas occur in the works of Roger Bacon: "Quanto juniores tanto perspicaciores, quia juniores posteriores successionem temporum ingreditur labores priorum."—Opus Majus, ed. Jebb. P. 134. Nor were they altogether overlooked by ancient writers. "Veris exemplum, quia ista quomque natura in hac dies extraehatur, et longioris aest diligentia. Veniet tempus, quo posteri nostri tam aperta nos ignorasse mirabantur." (Seneca, Quaest. Nat. Lib. vii. c. 25). This language coincides exactly with that of the Chancellor Bacon; but it was reserved for the latter to illustrate the connection between the progress of human knowledge, and of human happiness; or (to borrow his own phraseology) the connection between the progress of knowledge, and the enlargement of man's power over the destiny of his own species. Among other passages to this purpose, See Nov. Org. Lib. i. cxxix.

To the accomplishments of Ramus as a writer, a very flattering testimonium is given by an eminent English scholar, by no means disposed to overrate his merits as a logician. "Pulsa tandem barbarie, Petrus! Ramus politioribus literaturae vir, ausus est Aristotelis acris ubique et liberos incessere, universonem Peripateticam philosophiam exigit. Ejus Dialectica exiguo tempore fuit apud plurimos summo in pretio, maxime eloquentiis studiosis, idque idio scholasticorum, quorum dictio et styli ingratia fuerant auribus Cicernizium."—Logica Artis Compendium, Auctore R. Sanderson, Episc. Lincoln, pp. 209, 231. Edit. Decima. Oxon. The first edition was printed in 1616.

Dr Harrow, in one of his mathematical lectures, speaks of Ramus in terms far too contemptuous. "Homo, ne quid gravius dicam, argutulus et discouciosus."—"Sane vix indignationi meae temperae, quin illum ascepin pro meo merito, regeramque validius in ejus caput, que contra veteres jactat convicia." Had Harrow confined this censure to the weak and arrogant attacks made by Ramus upon Euclid (particularly upon Euclid's definition of Proportion), it would not have been more than Ramus deserved; but it is evident he meant to extend it also to the more powerful attacks of the same reformer upon the logic of Aristotle. Of these there are many which may be read with profit even in the present times. I select one passage as a specimen, recommending it strongly to the consideration of those logicians who have lately stood forward as advocates for Aristotle's abecedarian demonstrations of the syllogistic rules. "In Aristotelis arte, unius praecipiuntur unum exemplum est: ut simplicissime nullum: sed unico et singulari exemplo non potest artex efficac; pluribus opus est et dissimilibus. Et quidem, ut Aristotelis exempla tantummodo non falsa sint, quia tamen sunt. Omne b est a: omne c est b: ergo omne c est a. Exemplum Aristotelis est puero a grammaticis et oratoribus venienti, et istum motum Mathematicorum linguam ignoranti, novum et durum: et in totis Analyticis ista non Atticis, non Ionici, non Dorici, non Boeica, non communi, sed geometrice linguam usus est Aristotelis, edostra puerea, ignota populo, a communi sensu remota, a rhetorica usu et ab humanitatis usu alienissima."—P. Ramii pro Philosophis Parisiensi Academia Disciplina Oratio, 1650. If these strictures should be thought too loose and declamatory, the reader may consult the fourth chapter (De Conversionibus) of the seventh book of Ramus's Dialectica, where the same charge is urged, in my opinion, with irresistible force of argument.
Dissertation First.

It is observed with great truth, by Condorcet, that, in the times of which we are now speaking, "the science of political economy did not exist. Princes estimated not the number of men, but of soldiers in the state;—finance was merely the art of plundering the people, without driving them to the desperation that might end in revolt;—and governments paid no other attention to commerce but that of loading it with taxes, of restricting it by privileges, of disputing for its monopoly."

The internal disorders then agitating the whole of Christendom, were still less favourable to the growth of this science, considered as a branch of speculative study. Religious controversies everywhere divided the opinions of the multitude;—involving those collateral discussions concerning the liberty of conscience, and the relative claims of sovereigns and subjects, which, by threatening to resolve society into its first elements, present to restless and aspiring spirits the most inviting of all fields for enterprise and ambition. Amidst the shock of such discussions, the calm inquiries which meditate in silence the slow and gradual amelioration of the social order, were not likely to possess strong attractions, even to men of the most sanguine benevolence; and, accordingly, the political speculations of this period turn almost entirely on the comparative advantages and disadvantages of different forms of government, or on the still more alarming questions concerning the limits of allegiance and the right of resistance.

The dialogue of our illustrious countryman Buchanan, De Jure Regni apud Scotos, though occasionally disfigured by the keen and indignant temper of the writer, and by a predilection (pardonable in a scholar warm from the schools of ancient Greece and Rome) for forms of policy unsuitable to the circumstances of modern Europe, bears, nevertheless, in its general spirit, a closer resemblance to the political philosophy of the eighteenth century, than any composition which had previously appeared. The ethical paradoxes afterwards inculcated by Hobbes as the groundwork of his slavish theory of government, are anticipated and refuted, and a powerful argument is urged against that doctrine of Utility which has attracted so much notice in our times. The political reflections, too, incidentally introduced by the same author in his History of Scotland, bear marks of a mind worthy of a better age than fell to his lot. Of this kind are the remarks with which he closes his narrative of the wanton cruelties exercised in punishing the murderers of James the First. In reading them, one would almost imagine, that one is listening to the voice of Beccaria or of Montesquieu. "After this manner," says the historian, "was the cruel death of James still more cruelly avenged. For punishments so far exceeding the measure of humanity, have less effect in deterring the multitude from crimes, than in rousing them to greater efforts, both as actors and as sufferers. Nor do they tend so much to intimidate by their severity, as by their frequency to diminish the terrors of the spectators. The evil is more peculiarly great, when the mind of the criminal is hardened against the sense of pain; for in the judgment of the unthinking vulgar, a stubborn confidence generally obtains the praise of heroic constancy."

After the publication of this great work, the name of Scotland, so early distinguished over Europe by the learning and by the fervid genius of her sons, disappears for more than a century and a half from the History of Letters. But from this subject, so pregnant with melancholy and humiliating recollections, our attention is forcibly drawn to a mighty and auspicious light which, in a more fortunate part of the island, was already beginning to rise on the philosophical world.

1 Prefervidum Scotorum ingenium.
2 That, at the end of the sixteenth century, the Scottish nation were advancing not less rapidly than their neighbours, in every species of mental cultivation, is sufficiently attested by their literary remains, both in the Latin language and in their own vernacular tongue. A remarkable testimony to the same purpose occurs in the dialogue above quoted, the author of which had spent the best years of his life in the most polished society of the Continent. "As often," says Buchanan, "as I turn my eyes to the niceness and elegance of our own times, the ancient manners of our forefathers appear sober and venerable, but withal rough and horrid."—Quotidem octo de nostri temporis munditiis et elegantiam refero, antiquitas illa sancta est oblatis, sed horrida tamen, et mundum auta extinxit suisque violatut.—("De Jure Regii apud Scotos.") One would think, that he conceived the taste of his countrymen to have then arrived at the ne plus ultra of national refinement.

Aurea nunc, olim sylvestribus horrida dumis.
CHAPTER II.
FROM THE PUBLICATION OF BACON’S PHILOSOPHICAL WORKS, TILL THAT OF THE ESSAY ON HUMAN UNDERSTANDING.

SECTION I.

Progress of Philosophy in England during this period.

BACON. 1

The state of science towards the close of the sixteenth century, presented a field of observation singularly calculated to attract the curiosity, and to awaken the genius of Bacon; nor was it the least of his personal advantages, that, as the son of one of Queen Elizabeth’s ministers, he had a ready access, wherever he went, to the most enlightened society in Europe. While yet only in the seventeenth year of his age, he was removed by his father from Cambridge to Paris, where it is not to be doubted, that the novelty of the literary scene must have largely contributed to cherish the natural liberality and independence of his mind. Sir Joshua Reynolds has remarked, in one of his academical Discourses, that “every seminary of learning is surrounded with an atmosphere of floating knowledge, where every mind may imbibe somewhat congenial to its own original conceptions.” He might have added, with still greater truth, that it is an atmosphere, of which it is more peculiarly salutary for those who have been elsewhere reared to breathe the air. The remark is applicable to higher pursuits than were in the contemplation of this philosophical artist; and it suggests a hint of no inconsiderable value for the education of youth.

The merits of Bacon, as the father of Experimental Philosophy, are so universally acknowledged, that it would be superfluous to touch upon them here. The lights which he has struck out in various branches of the Philosophy of Mind, have been much less attended to; although the whole scope and tenor of his speculations show, that to this study his genius was far more strongly and happily turned, than to that of the Material World. It was not, as some seem to have imagined, by sagacious anticipations of particular discoveries afterwards to be made in physics, that his writings have had so powerful an influence in accelerating the advancement of that science. In the extent and accuracy of his physical knowledge, he was far inferior to many of his predecessors; but he surpassed them all in his knowledge of the laws, the resources, and the limits of the human understanding. The sanguine expectations with which he looked forwards to the future, were founded solely on his confidence in the untried capacities of the mind, and on a conviction of the possibility of invigorating and guiding, by means of logical rules, those faculties which, in all our researches after truth, are the organs or instruments to be employed. “Such rules,” as he himself has observed, “do in some sort equal men’s wits, and leave no great advantage or preeminence to the perfect and excellent motions of the spirit. To draw a straight line, or to describe a circle, by aim of hand only, there must be a great difference between an unsteady and unpractised hand, and a steady and practised; but to do it by rule or compass it is much alike.”

1 Born 1561, died 1626. 2 Discourse delivered at the opening of the Royal Academy, January 2, 1769.
Nor is it merely as a logician that Bacon is entitled to notice on the present occasion. It would be difficult to name another writer prior to Locke, whose works are enriched with so many just observations on the intellectual phenomena. Among these, the most valuable relate to the laws of Memory, and of Imagination; the latter of which subjects he seems to have studied with peculiar care. In one short but beautiful paragraph concerning Poetry (under which title may be comprehended all the various creations of this faculty), he has exhausted everything that philosophy and good sense have yet had to offer, on what has been since called the Beau Ideal; a topic, which has furnished occasion to so many over-refinements among the French critics, and to so much extravagance and mysticism in the cloud-elapt metaphysics of the new German school.1 In considering imagination as connected with the nervous system, more particularly as connected with that species of sympathy to which medical writers have given the name of imitation, he has suggested some very important hints which none of his successors have hitherto prosecuted; and has, at the same time, left an example of cautious inquiry, worthy to be studied by all who may attempt to investigate the laws regulating the union between Mind and Body.2 His illustration of the different classes of prejudices incident to human nature, is, in point of practical utility, at least equal to any thing on that head to be found in Locke, of whom it is impossible to forbear remarking, as a circumstance not easily explicable, that he should have resumed this important discussion, without once mentioning the name of his great predecessor. The chief improvement made by Locke, in the farther prosecution of the argument, is the application of Hobbes's theory of association, to explain in what manner these prejudices are originally generated.

In Bacon's scattered hints on topics connected with the Philosophy of the Mind, strictly so called, nothing is more remarkable than the precise and just ideas they display of the proper aim of this science. He had manifestly reflected much and successfully on the operations of his own understanding, and had studied with uncommon sagacity the intellectual characters of others. Of his reflections and observations on both subjects, he has recorded many important results, and has in general stated them without the slightest reference to any physiological theory concerning their causes, or to any analogical explanations founded on the caprices of metaphorical language. If, on some occasions, he assumes the existence of animal spirits, as the medium of communication between Soul and Body, it must be remembered, that this was then the universal belief of the learned; and that it was at a much later period not less confidently avowed by Locke. Nor ought it to be overlooked (I mention it to the credit of both authors),

1 "Cum mundus sensibilis sit anima rationali dignitate inferior, videtur Poësis haec humane naturae largiri que historia denegat; atque animo umbris rerum utcuque satisfacere, cum solida haberis non possitis. Si quis enim rem actu inversit potius, firmum ex Poësi sumitur argumentum, magnitudinem rerum magis illustrem, ordinem magis perfectum, et varietatem magis pulchram, anime humanae complacere, quam in natura ipsa, post lapsam, repariri ullo modo possit. Quapropter, cum res gesta et eventus, qui vero historiae subjiciuntur, non sinit ejus amplitudinis, in qua anima humana sibi satisfaciat, proest ut Poësi, que fianta magis heroic a confingat. Cum historia vera successus rerum, minime pro meritis virtutum et scelerum narret, corrigit eam Poësi, et exitus, et fortunas, secundum merita, et ex lege Nemeseos, exhibet. Cum historia vera obvia rerum satietate et similitudine, anime humanae fastidio sit reficit eam Poësi, inexpectata, et varia, et vicissitudinium plena canens. Adeo ut Poësi ista non solum ad delectionem, sed ad animi magnitudinem, et ad meres conferat."—De Aug. Scient. I. lib. ii. cap. xiii.)

2 To this branch of the philosophy of mind, Bacon gives the title of Doctrina de fiducere, sive de communis vinculo animae et corporis.—De Aug. Scient. I. lib. iv. cap. i.) Under this article, he mentions, among other desiderata, an inquiry (which he recommends to physicians) concerning the influence of imagination over the body. His own words are very remarkable; more particularly, the clause in which he remarks the effect of fixing and concentrating the attention, in giving to ideal objects the power of realities over the belief. "Ad alid quippliam, quod hic pertinet, parce admodum, nec pro rei subtilitatem, vel utilitatem, inquisitum est; quatenus select ipsa imaginatio animae vel cogitatio perpsum fies, et veluti in fidei quandum exalata, valeat ad inmutandum corpus imaginantis."—(Ibid.) He suggests also, as a curious problem, to ascertain how far it is possible to fortify and exalt the imagination; and by what means this may be most effectually be done. The class of facts here alluded to, are manifestly of the same description with those to which the attention of philosophers has been lately called by the pretensions of Mesmer and of Perkins: "Atque haec conjuncta est disquisitio, quomodo imaginarum intetinti et fortificari possit? Quippe, si imaginatio fortis tantarum sit virium, operae pretium fuerit nosse, quibus modis eum exaltari, et se ipsa magna et hec obtine? Atque hic oblique, nec minus periculosse se institus pallsatia quedam et defensione maxime partis Magiar Ceremonialis," &c. &c.—De Aug. Scient. I. lib. iv. cap. iii.)
that in such instances the fact is commonly so stated, as to render it easy for the reader to detach it from the theory. As to the scholastic questions concerning the nature and essence of mind,—whether it be extended or unextended? whether it have any relation to space or to time? or whether (as was contended by others) it exist in every ubi, but in no place?—Bacon has uniformly passed them over with silent contempt; and has probably contributed not less effectually to bring them into general discredit, by this indirect intimation of his own opinion, than if he had descended to the ungrateful task of exposing their absurdity.\(^1\)

While Bacon, however, so cautiously avoids these unprofitable discussions about the nature of Mind, he decidedly states his conviction, that the faculties of Man differ not merely in degree, but in kind, from the instincts of the brutes. "I do not, therefore," he observes on one occasion, "approve of that confused and promiscuous method in which philosophers are accustomed to treat of pneumatology; as if the human Soul ranked above those of brutes, merely like the sun above the stars, or like gold above other metals."

Among the various topics started by Bacon for the consideration of future logicians, he did not overlook (what may be justly regarded, in a practical view, as the most interesting of all logical problems) the question concerning the mutual influence of Thought and of Language on each other. "Men believe," says he, "that their reason governs their words; but it often happens, that words have power enough to react upon reason." This aphorism may be considered as the text of by far the most valuable part of Locke's Essay,—that which relates to the imperfections and abuse of words; but it was not until within the last twenty years that its depth and importance were perceived in all their extent. I need scarcely say, that I allude to the excellent Memoirs of M. Prevost and of M. Degerando, on "Signs considered in their connection with the Intellectual Operations." The anticipations formed by Bacon, of that branch of modern logic which relates to Universal Grammar; do no less honour to his sagacity. "Grammar," he observes, "is of two kinds, the one literary, the other philosophical. The former has for its object to trace the analogies running through the structure of a particular tongue, so as to facilitate its acquisition to a foreigner, or to enable him to speak it with correctness and purity. The latter directs the attention, not to the analogies which words bear to words, but the analogies which words bear to things;\(^2\) or, as he afterwards explains himself more clearly, "to language considered as the sensible portraiture or image of the mental process." In further illustration of these hints, he takes notice of the lights which the different genius of different languages reflect on the characters and habits of those by whom they were respectively spoken. "Thus," says he, "it is easy to perceive, that the Greeks were addicted to the culture of the arts, the Romans engrossed with the conduct of affairs; inasmuch as the technical distinctions introduced in the progress of refinement require the aid of compounded words; while the real business of life stands in no need of so artificial a phraseology."\(^3\) Ideas of this sort have, in the course of a very few years, already become common, and almost trite; but how different was the case two centuries ago!

With these sound and enlarged views concerning the philosophy of the Mind, it will not appear surprising to those who have attended to the slow and irregular advances of human reason, that Bacon should occasionally blend incidental

1 Notwithstanding the extravagance of Spinoza's own philosophical creed, he is one of the very few among Bacon's successors, who seem to have been fully aware of the justness, importance, and originality of the method pointed out in the Novum Organum for the study of the Mind. "Ad haec intelligenda, non est opus naturam mentis cognoscere, sed sicut, mentis sive perceptionis historiam concinnare modo illo que VERE LAUS DEOCT."—Spin. Epist. 42.

2 De Aug. Scient. Lib. viii. cap. i.

3 Ibid.
remarks, savouring of the habits of thinking prevalent in his time. A curious example of this occurs in the same chapter which contains his excellent definition or description of universal grammar. "This too," he observes, "is worthy of notice, that the ancient languages were full of declensions, of cases, of conjugations, of tenses, and of other similar inflections; while the modern, almost entirely destitute of these, indolently accomplish the same purpose by the help of prepositions, and of auxiliary verbs. Whence," he continues, "may be inferred, (however we may flatter ourselves with the idea of our own superiority), that the human intellect was much more acute and subtle in ancient, than it now is in modern times." How very unlike is this last reflection to the usual strain of Bacon's writings! It seems, indeed, much more congenial to the philosophy of Mr Harris and of Lord Monboddo; and it has accordingly been sanctioned with the approbation of both these learned authors. If my memory does not deceive me, it is the only passage in Bacon's works, which Lord Monboddo has anywhere condescended to quote.

These observations afford me a convenient opportunity for remarking the progress and diffusion of the philosophical spirit, since the beginning of the seventeenth century. In the short passage just cited from Bacon, there are involved no less than two capital errors, which are now almost universally ranked, by men of education, among the grossest prejudices of the multitude. The one, that the declensions and conjugations of the ancient languages, and the modern substitution in their place of prepositions and auxiliary verbs, are, both of them, the deliberate and systematical contrivances of speculative grammarians; the other (still less analogous to Bacon's general style of reasoning), that the faculties of man have declined, as the world has grown older. Both of these errors may be now said to have disappeared entirely. The latter, more particularly, must, to the rising generation, seem so absurd, that it almost requires an apology to have mentioned it. That the capacities of the human mind have been in all ages the same; and that the diversity of phenomena exhibited by our species, is the result merely of the different circumstances in which men are placed, has been long received as an incontrovertible logical maxim; or rather, such is the influence of early instruction, that we are apt to regard it as one of the most obvious suggestions of common sense. And yet, till about the time of Montesquieu, it was by no means so generally recognised by the learned, as to have a sensible influence on the fashionable tone of thinking over Europe. The application of this fundamental and leading idea to the natural or theoretical history of society in all its various aspects;—to the history of languages, of the arts, of the sciences, of laws, of government, of manners, and of religion,—is the peculiar glory of the latter half of the eighteenth century, and forms a characteristic feature in its philosophy, which even the imagination of Bacon was unable to foresee.

It would be endless to particularize the original suggestions thrown out by Bacon on topics connected with the science of Mind. The few passages of this sort already quoted, are produced merely as a specimen of the rest. They are by no means selected as the most important in his writings; but as they happened to be those which had left the strongest impression on my memory, I thought them as likely as any other, to invite the curiosity of my readers to a careful examination of the rich mine from which they are extracted.

The Ethical disquisitions of Bacon are almost entirely of a practical nature. Of the two theoretical questions so much agitated, in both parts of this island, during the eighteenth century, concerning the principle and the object of moral approbation, he has said nothing; but he has opened some new and interesting views with respect to the influence of custom and the formation of habits;—a most important article of moral philosophy, on which he has enlarged more ably and more usefully than any writer since Aristotle. Under the same head of Ethics may

1 De Aug. Scient. Lib. vi. cap. i.
be mentioned the small volume to which he has given the title of *Essays*; the best known and the most popular of all his works. It is also one of those where the superiority of his genius appears to the greatest advantage; the novelty and depth of his reflections often receiving a strong relief from the triteness of his subject. It may be read from beginning to end in a few hours,—and yet, after the twentieth perusal, one seldom fails to remark in it something overlooked before. This, indeed, is a characteristic of all Bacon's writings, and is only to be accounted for by the inexhaustible aliment they furnish to our own thoughts, and the sympathetic activity they impart to our torpid faculties.

The suggestions of Bacon for the improvement of Political Philosophy, exhibit as strong a contrast to the narrow systems of contemporary statesmen, as the Inductive Logic to that of the Schools. How profound and comprehensive are the views opened in the following passages, when compared with the scope of the celebrated treatise *De Jure Belli et Pacis*; a work which was first published about a year before Bacon's death, and which continued, for a hundred and fifty years afterwards, to be regarded in all the Protestant universities of Europe as an inexhaustible treasure of moral and jurisprudential wisdom!

"The ultimate object which legislators ought to have in view, and to which all their enactments and sanctions ought to be subservient, is, that the citizens may live happily. For this purpose, it is necessary that they should receive a religious and pious education; that they should be trained to good morals; that they should be secured from foreign enemies by proper military arrangements; that they should be guarded by an effectual police against seditions and private injuries; that they should be loyal to government, and obedient to magistrates; and, finally, that they should abound in wealth, and in other national resources."—"The science of such matters certainly belongs more particularly to the province of men who, by habits of public business, have been led to take a comprehensive survey of the social order; of the interests of the community at large; of the rules of natural equity; of the manners of nations; of the different forms of government; and who are thus prepared to reason concerning the wisdom of laws, both from considerations of justice and of policy. The great desideratum, accordingly, is, by investigating the principles of natural justice, and those of political expediency, to exhibit a theoretical model of legislation, which, while it serves as a standard for estimating the comparative excellence of municipal codes, may suggest hints for their correction and improvement, to such as have at heart the welfare of mankind."?

How precise the notion was that Bacon had formed of a philosophical system of jurisprudence (with which as a standard the municipal laws of different nations might be compared), appears from a remarkable expression, in which he mentions it as the proper business of those who might attempt to carry his plan into execution, to investigate those "*Leges Legum, ex quibus informatio peti possit, quid in singulis legisibis hene aut perperam positum aut consti
tutum sit.*" I do not know if, in Bacon's

1 *Exempla Tractatus de Fontibus Juris*, Aphor. 5. This enumeration of the different objects of law approaches very nearly to Mr Smith's ideas on the same subject, as expressed by himself in the concluding sentence of his *Theory of Moral Sentiments*. "In another Discourse, I shall endeavour to give an account of the general principles of law and government, and of the different revolutions they have undergone in the different ages and periods of society; not only in what concerns justice, but in what concerns police, revenue, and arms, and whatever else is the object of law."
2 *De Aug. Scient.* Lib. viii. cap. iii.
3 *De Fontibus Juris*, Aphor. 6.

From the preface to a small tract of Bacon's entitled, *The Elements of the Common Laws of England*, written while he was Solicitor-General to Queen Elizabeth, we learn, that the phrase *legum leges* had been previously used by some "great Civilian." To what Civilian Bacon here alludes, I know not; but, whoever he was, I doubt much if he annexed to it the comprehensive and philosophical meaning so precisely explained in the above definition. Bacon himself, when he wrote his *Tract on the Common Laws*, does not seem to have yet risen to this vantage-ground of Universal Jurisprudence. His great object (he tells us) was "to collect the rules and grounds dispersed throughout the body of the same laws, in order to see more profoundly into the reason of such judgments and ruled cases, and thereby to make more use of them for the decision of other cases more doubtful; so that the uncertainty of law, which is the principal and most just challenge that is made to the laws of our nation at this time, will, by this new strength laid to the foundation, be somewhat the more settled and corrected." In this passage, no reference whatever is made to the *Universal Justice* spoken of in the aphorisms *De Fontibus Juris*; but merely to the leading and governing rules which give to a municipal system whatever it possesses of
prophetic anticipations of the future progress of Physics, there be any thing more characteristic, both of the grandeur and of the justness of his conceptions, than this short definition; more particularly, when we consider how widely Grotius, in a work professedly devoted to this very inquiry, was soon after to wander from the right path, in consequence of his vague and wavering idea of the aim of his researches.

The sagacity, however, displayed in these, and various other passages of a similar import, can by no means be duly appreciated, without attending, at the same time, to the cautious and temperate maxims so frequently inculcated by the author, on the subject of political innovation. "A stubborn retention of customs is a turbulent thing, not less than the introduction of new."—"Time is the greatest innovator; shall we then not imitate time, which innovates so silently as to mock the sense?" Nearly connected with these aphorisms, are the profound reflections in the first book De Augmentis Scientiarum, on the necessity of accommodating every new institution to the character and circumstances of the people for whom it is intended; and on the peculiar danger which literary men run of overlooking this consideration, from the familiar acquaintance they acquire, in the course of their early studies, with the ideas and sentiments of the ancient classics.

The remark of Bacon on the systematical policy of Henry VII. was manifestly suggested by the same train of thinking. "His laws (who so marks them well) were deep and not vulgar; not made on the spur of a particular occasion for the present, but out of providence for the future; to make the estate of his people still more and more happy, after the manner of the legislators in ancient and heroic times." How far this noble eulogy was merited, either by the legislators of antiquity, or by the modern Prince on whom Bacon has bestowed it, is a question of little moment. I quote it merely on account of the important philosophical distinction which it indirectly marks, between "deep and vulgar laws;" the former invariably aiming to accomplish their end, not by giving any sudden shock to the feelings and interests of the existing generation, but by allowing to natural causes time and opportunity to operate; and by removing those artificial obstacles which check the progressive tendencies of society. It is probable, that, on this occasion, Bacon had an eye more particularly to the memorable statute of alienation; to the effects of which (whatever were the motives of its author) the above description certainly applies in an eminent degree.

After all, however, it must be acknowledged, that it is rather in his general views and maxims, than in the details of his political theories, that Bacon's sagacity appears to advantage. His notions with respect to commercial policy seem to have been more peculiarly erroneous; originating in an overweening opinion of the efficacy of law, in matters where natural causes ought to be allowed a free operation. It is observed by Mr Hume, that the statutes of Henry VII. relating to the police of his kingdom, are generally contrived with more judgment than his commercial regulations. The same writer adds, that "the more simple ideas of order and equity are sufficient to guide a legislator in every thing that regards the internal administration of justice; but that the principles of commerce are much more complicated, and require long experience and deep reflection to be well understood in any state. The real consequence is there often contrary to first appearances. No wonder, that, during the reign of Henry VII., these matters were frequently mistaken; and it may safely be affirmed, that, even in the age of Lord Bacon, very imperfect and erroneous ideas were formed on that subject."

The instances mentioned by Hume in confirmation of these general remarks, are peculiarly gratifying to those who have a pleasure in tracing the slow but certain progress of reason and liberality. "During the reign," says he, "of Henry VII. it was prohibited to ex-

analogy and consistency. To these rules Bacon gives the title of leges legum; but the meaning of the phrase, on this occasion, differs from that in which he afterwards employed it, not less widely than the rules of Latin or of Greek syntax differ from the principles of universal grammar.
port horses, as if that exportation did not encourage the breed, and make them more plentiful in the kingdom. Prices were also affixed to woollen cloths, to caps and hats, and the wages of labourers were regulated by law. It is evident, that these matters ought always to be left free, and be entrusted to the common course of business and commerce."—"For a like reason," the historian continues, the "law enacted against inclosures, and for the keeping up of farm-houses, scarcely deserves the praises bestowed on it by Lord Bacon. If husbandmen understand agriculture, and have a ready vent for their commodities, we need not dread a diminution of the people employed in the country. During a century and a half after this period, there was a frequent renewal of laws and edicts against depopulation; whence we may infer, that none of them were ever executed. The natural course of improvement at last provided a remedy."

These acute and decisive strictures on the impolicy of some laws highly applauded by Bacon, while they strongly illustrate the narrow and mistaken views in political economy entertained by the wisest statesmen and philosophers two centuries ago, afford, at the same time, a proof of the general diffusion which has since taken place among the people of Great Britain, of juster and more enlightened opinions on this important branch of legislation. Wherever such doctrines find their way into the page of history, it may be safely inferred, that the public mind is not indisposed to give them a welcome reception.

The ideas of Bacon concerning the education of youth, were such as might be expected from a philosophical statesman. On the conduct of education in general, with a view to the development and improvement of the intellectual character, he has suggested various useful hints in different parts of his works; but what I wish chiefly to remark at present is, the paramount importance which he has attached to the education of the people,—comparing, as he has repeatedly done, the effects of early culture on the understanding and the heart, to the abundant harvest which rewards the diligent husbandman for the toils of the spring. To this analogy he seems to have been particularly anxious to attract the attention of his readers, by bestowing on education the title of the Georgics of the Mind; identifying, by a happy and impressive metaphor, the two proudest functions entrusted to the legislator,—the encouragement of agricultural industry, and the care of national instruction. In both instances, the legislator exerts a power which is literally productive or creative; compelling, in the one case, the unprofitable desert to pour forth its latent riches; and in the other, vivifying the dormant seeds of genius and virtue, and redeeming from the neglected wastes of human intellect, a new and unexpected accession to the common inheritance of mankind.

When from such speculations as these we descend to the treatise De Jure Belli et Pacis, the contrast is mortifying indeed. And yet, so much better suited were the talents and accomplishments of Grotius to the taste, not only of his contemporaries, but of their remote descendants, that, while the merits of Bacon failed, for a century and a half, to command the general admiration of Europe, Grotius continued, even in our British universities, the acknowledged Oracle of Jurisprudence and of Ethics, till long after the death of Montesquieu. Nor was Bacon himself unapprised of the slow growth of his posthumous fame. No writer seems ever to have felt more deeply, that he properly belonged to a later and more enlightened age;—a sentiment which he has pathetically expressed in that clause of his testament where he "bequeaths his name to posterity, after some generations shall be past."*

Unbounded, however, as the reputation of Grotius was on the Continent, even before his own death, it was not till many years after the publication of the treatise De Jure Belli et Pacis, that the science of Natural Jurisprudence became, in this island, an object of much attention, even

1 "La célébrité en France des écrits du Chancellor Bacon n'a guère pour date que celle de l'Encyclopédie."—(Histoire des Mathématiques par Montucla. Preface, p. ix.) It is an extraordinary circumstance, that Bayle, who has so often wasted his erudition and acuteness on the most insignificant characters, and to whom Le Clerc has very justly ascribed the merit of une exactitude étonnante dans des choses de néant, should have devoted to Bacon only twelve lines of his Dictionary.

2 See Note F.
The rapid advancement of intellectual cultivation in England, between the years 1588 and 1640 (a period of almost uninterrupted peace), has been remarked by Mr Fox. "The general improvement," he observes, "in all arts of civil life, and, above all, the astonishing progress of literature, are the most striking among the general features of that period; and are in themselves causes sufficient to produce effects of the utmost importance. A country whose language was enriched by the works of Hooker, Raleigh, and Bacon, could not but experience a sensible change in its manners, and in its style of thinking; and even to speak the same language in which Spenser and Shakespeare had written, seemed a sufficient plea to rescue the Commons of England from the appellation of Brutes, with which Henry the Eighth had addressed them."—The remark is equally just and refined. It is by the mediation of an improving language, that the progress of the mind is chiefly continued from one generation to another; and that the acquirements of the enlightened few are insensibly imparted to the many. Whatever tends to diminish the ambiguities of speech, or to fix, with more logical precision, the import of general terms;—above all, whatever tends to embody, in popular forms of expression, the ideas and feelings of the wise and good, augments the natural powers of the human understanding, and enables the succeeding race to start from a higher ground than was occupied by their fathers. The remark applies with peculiar force to the study of the Mind itself; a study, where the chief source of error is the imperfection of words; and where every improvement on this great instrument of thought may be justly regarded in the light of a discovery.¹

In the foregoing list of illustrious names, Mr Fox has, with much propriety, connected those of Bacon and Raleigh; two men, who, notwithstanding the diversity of their professional pursuits; and the strong contrast of their characters, exhibit, nevertheless, in their capacity of authors, some striking features of resemblance. Both of them owed to the force of their own minds, their emancipation from the fetters of the schools; both were eminently distinguished above their contemporaries, by the originality and enlargement of their philosophical views; and both divide, with the venerable Hooker, the glory of exemplifying, to their yet unpolished countrymen, the richness, variety, and grace, which might be lent to the English idiom, by the hand of a master.²

It is not improbable that Mr Fox might have included the name of Hobbes in the same enumeration, had he not been prevented by an aversion to his slavish principles of government, and by his own disrelish for metaphysical theories. As a writer, Hobbes unquestionably ranks high among the older English classics, and is so peculiarly distinguished by the simplicity and ease of his manner, that one would naturally have expected from Mr Fox's characteristic taste,

¹ It is not so foreign as may at first be supposed to the object of this Discourse, to take notice here of the extraordinary demand for books on Agriculture under the government of James I. The fact is thus very strongly stated by Dr Johnson, in his introduction to the Harleian Miscellany. ² It deserves to be remarked, because it is not generally known, that the treatises on husbandry and agriculture, which were published during the reign of King James, are so numerous, that it can scarcely be imagined by whom they were written, or to whom they were sold." Nothing can illustrate more strongly the effects of a pacific system of policy, in encouraging a general taste for reading, as well as an active spirit of national improvement. At all times, and in every country, the extensive sale of books on agriculture, may be regarded as one of the most pleasing symptoms of mental cultivation in the great body of a people.

² To prevent being misunderstood, it is necessary for me to add, that I do not speak of the general style of these old authors; but only of detached passages, which may be selected from all of them, as earnest or first fruits of a new and brighter era in English literature. It may be safely affirmed, that in their works, and in the prose compositions of Milton, are to be found some of the finest sentences of which our language has yet to boast. To propose them now as models for imitation would be quite absurd. Dr Lowth certainly went much too far when he said, "That in correctness, propriety, and purity of English style, Hooker hath hardly been surpassed, or even equalled, by any of his successors."—Preface to Lowth's English Grammar.
that he would have relished his style still more than that of Bacon or of Raleigh. It is with the philosophical merits, however, of Hobbes, that we are alone concerned at present; and, in this point of view, what a space is filled in the subsequent history of our domestic literature, by his own works, and by those of his innumerable opponents! Little else, indeed, but the systems which he published, and the controversies which they provoked, occurs, during the interval between Bacon and Locke, to mark the progress of English Philosophy, either in the study of the Mind, or in the kindred researches of Ethical and Political Science.

Of the few and comparatively trifling exceptions to this remark, furnished by the metaphysical tracts of Glanville, of Henry More, and of John Smith, I must delay taking notice, till some account shall be given of the Cartesian Philosophy; to which their most interesting discussions have a constant reference, either in the way of comment or refutation.

HOBSES.

"The philosopher of Malmesbury," says Dr Warburton, "was the terror of the last age, as Tindall and Collins are of this. The press sweat with controversy; and every young churchman militant, would try his arms in thundering on Hobbes's steel cap." Nor was the opposition to Hobbes confined to the clerical order, or to the controversialists of his own times. The most eminent moralists and politicians of the eighteenth century may be ranked in the number of his antagonists; and even at the present moment, scarcely does there appear a new publication on Ethics or Jurisprudence, where a refutation of Hobbes is not to be found.

The period when Hobbes began his literary career, as well as the principal incidents of his life, were, in a singular degree, favourable to a mind like his; impatient of the yoke of authority, and ambitious to attract attention, if not by solid and useful discoveries, at least by an ingenious defence of paradoxical tenets. After a residence of five years at Oxford, and a very extensive tour through France and Italy, he had the good fortune, upon his return to England, to be admitted into the intimacy and confidence of Lord Bacon; a circumstance which, we may presume, contributed not a little to encourage that bold spirit of inquiry, and that aversion to scholastic learning, which characterise his writings. Happy, if he had, at the same time, imbibed some portion of that love of truth and zeal for the advancement of knowledge, which seem to have been Bacon's ruling passions! But such was the obstinacy of his temper, and his overweening self-conceit, that, instead of cooperating with Bacon in the execution of his magnificent design, he resolved to rear, on a foundation exclusively his own, a complete structure both of Moral and Physical Science; disdaining to avail himself even of the materials collected by his predecessors, and treating the experimental philosopher as objects only of contempt and ridicule! In the political writings of Hobbes, we may perceive the influence also of other motives. From his earliest years, he seems to have been

1 According to Dr Burnet (no contemptible judge of style), Bacon was "the first that writ our language correctly." The same learned prelate pronounces Bacon to be "still our best author." and this, at a time when the works of Sprat, and many of the prose compositions of Cowley and of Dryden, were already in the hands of the public. It is difficult to conceive on what grounds Burnet proceeded, in hazarding so extraordinary an opinion. See the preface to BURNET's Translation of More's Utopia. It is still more difficult, on the other hand, to account for the following very bold decision of Mr Hume. I transcribe it from an essay first published in 1742; but the same passage is to be found in the last edition of his works, corrected by himself. "The first prose we have, was writ by a man (Dr Swift) who is still alive. As to Sprat, Locke, and even Temple, they knew too little of the rules of art to be esteemed elegant writers. The prose of Bacon, Harrington, and Milton, is altogether stiff and pedantic, though their sense be excellent." How insignificant are the petty grammatical improvements proposed by Swift, when compared with the inexhaustible riches imparted to the English tongue by the writers of the seventeenth century; and how inferior, in all the higher qualities and graces of style, are his prose compositions, to those of his immediate predecessors, Dryden, Pope, and Addison! 2 Divine Legation, Pref. to Vol. II. p. 9. 3 Born 1586, died 1679. 4 See Note G.
decidedly hostile to all the forms of popular government; and it is said to have been with the design of impressing his countrymen with a just sense of the disorders incident to democratical establishments, that he published, in 1618, an English translation of Thucydides. In these opinions he was more and more confirmed by the events he afterwards witnessed in England; the fatal consequences of which he early foresaw with so much alarm; that, in 1640, he withdrew from the approaching storm, to enjoy the society of his philosophical friends at Paris. It was there he wrote his book De Cive, a few copies of which were printed, and privately circulated in 1642. The same work was afterwards given to the public, with material corrections and improvements, in 1647, when the author's attachment to the royal cause being strengthened by his personal connection with the exiled king, he thought it incumbent on him to stand forth avowedly as an advocate for those principles which he had long professed. The great object of this performance was to strengthen the hands of sovereigns against the rising spirit of democracy, by arming them with the weapons of a new philosophy.

The fundamental doctrines inculcated in the political works of Hobbes are contained in the following propositions. I recapitulate them here, not on their own account, but to prepare the way for some remarks which I mean afterwards to offer on the coincidence between the principles of Hobbes and those of Locke. In their practical conclusions, indeed, with respect to the rights and duties of citizens, the two writers differ widely; but it is curious to observe how very nearly they set out from the same hypothetical assumptions.

All men are by nature equal; and, prior to government, they had all an equal right to enjoy the good things of this world. Man, too, is (according to Hobbes) by nature a solitary and purely selfish animal; the social union being entirely an interested league, suggested by prudential views of personal advantage. The necessary consequence is, that a state of nature must be a state of perpetual warfare, in which no individual has any other means of safety than his own strength or ingenuity; and in which there is no room for regular industry, because no secure enjoyment of its fruits. In confirmation of this view of the origin of society, Hobbes appeals to facts falling daily within the circle of our own experience. "Does not a man (he asks), when taking a journey, arm himself, and seek to go well accompanied? When going to sleep, does he not lock his doors? Nay, even in his own house, does he not lock his chests? Does he not there as much accuse mankind by his actions, as I do by my words?" 1 An additional argument to the same purpose may, according to some later Hobbists, be derived from the instinctive aversion of infants for strangers; and from the apprehension which, it is alleged, every person feels, when he hears the tread of an unknown foot in the dark.

For the sake of peace and security, it is necessary that each individual should surrender a part of his natural right, and be contented with such a share of liberty as he is willing to allow to others; or, to use Hobbes's own language, "every man must divest himself of the right he has to all things by nature; the right of all men to all things being in effect no better than if no man had a right to anything." 2 In consequence of this transference of natural rights to an individual, or to a body of individuals, the multitude become one person, under the name of a State or Republic, by which person the common will and power are exercised for the common defence. The ruling power cannot be withdrawn from those to whom it has been committed; nor can they be punished for misgovernment. The interpretation of the laws is to be sought, not from the comments of philosophers, but from the authority of the ruler; otherwise society would every moment be in danger of resolving itself into the discordant elements of which it was at first composed. The will of the magistrate, therefore, is to be regarded as the ulti-

1 Of Men, Part I. chap. xiii.
2 De Corpore Politeo, Part I. chap. i. § 10.
mate standard of right and wrong, and his voice
to be listened to by every citizen as the voice of
conscience.
Not many years afterwards, Hobbes pushed
the argument for the absolute power of princes
still further, in a work to which he gave the
name of *Leviathan*. Under this appellation he
means the *body politic*; insinuating that man is
an untameable beast of prey, and that govern-
ment is the strong chain by which he is kept
from mischief. The fundamental principles here
maintained are the same as in the book *De Cive*;
but as it inveighs more particularly against ec-
clesiastical tyranny, with the view of subjecting
the consciences of men to the civil authority, it
lost the author the favour of some powerful pro-
tectors he had hitherto enjoyed among the Eng-
lish divines who attended Charles II. in France;
and he even found it convenient to quit that
kingdom, and to return to England, where Crom-
well (to whose government his political tenets
were now as favourable as they were meant to be
to the royal claims) suffered him to remain un-
molested. The same circumstances operated to
his disadvantage after the Restoration, and
obliged the King, who always retained for him
a very strong attachment, to confer his marks
of favour on him with the utmost reserve and
circumspection. 1
The details which I have entered into, with
respect to the history of Hobbes's political writ-
ings, will be found, by those who may peruse
them, to throw much light on the author's reason-
ings. Indeed, it is only by thus considering
them in their connection with the circumstances
of the times, and the fortunes of the writer,
that a just notion can be formed of their spirit
and tendency.

The ethical principles of Hobbes are so com-
pletely interwoven with his political system,
that all which has been said of the one may be
applied to the other. 1 It is very remarkable,
that Descartes should have thought so highly
of the former, as to pronounce Hobbes to be
"a much greater master of morality than of
metaphysics;" a judgment which is of itself
sufficient to mark the very low state of ethical
science in France about the middle of the seven-
teenth century. Mr. Addison, on the other
hand, gives a decided preference (among all the
books written by Hobbes) to his *Treatise on Hu-
man Nature*; and to his opinion on this point I
most implicitly subscribe; including, however,
in the same commendation, some of his other
philosophical essays on similar topics. They
are the only part of his works which it is pos-
sible now to read with any interest; and they
everywhere evince in their author, even when
he thinks most unsoundly himself, that power
of setting his reader a-thinking, which is one of
the most unequivocal marks of original genius.
They have plainly been studied with the utmost
care both by Locke and Hume. To the former
they have suggested some of his most important
observations on the Association of Ideas, as well
as much of the sophistry displayed in the first
book of his Essay, on the Origin of our Know-
ledge, and on the factitious nature of our moral
principles; to the latter (among a variety of
hints of less consequence), his theory concern-
ing the nature of those established connections
among physical events, which it is the business
of the natural philosopher to ascertain, 3 and the
substance of his argument against the schol-
astic doctrine of general conceptions. It is from
the works of Hobbes, too, that our later Necess-
itarions have borrowed the most formidable of
those weapons with which they have combated
the doctrine of moral liberty; and from the
same source has been derived the leading idea

1 In 1651.
2 See Note H.
3 The same doctrine, concerning the proper object of natural philosophy (commonly ascribed to Mr. Hume, both by his
followers and by his opponents), is to be found in various writers contemporary with Hobbes. It is stated, with uncom-
mon precision and clearness, in a book entitled *Sceptica Scientifica*, or Confess'd Ignorance the way to Science, by Joseph
Glauvill, (printed in 1655). The whole work is strongly marked with the features of a acute, an original, and, in matters
of science, a somewhat sceptical genius; and, when compared with the treatise on witchcraft, by the same author, adds
another proof to those already mentioned, of the possible union of the highest intellectual gifts with the most degrading
intellectual weaknesses.

With respect to the *Sceptica Scientifica*, it deserves to be noticed, that the doctrine maintained in it concerning physical
causes and effects does not occur in the form of a detached observation, of the value of which the author might not have
been fully aware, but is the very basis of the general argument running through all his discussions.
which runs through the philological materialism of Mr Horne Tooke. It is probable, indeed, that this last author borrowed it, at second-hand, from a hint in Locke's Essay; but it is repeatedly stated by Hobbes, in the most explicit and confident terms. Of this idea (than which, in point of fact, nothing can be imagined more puerile and unsound), Mr Tooke's etymologies, when he applies them to the solution of metaphysical questions, are little more than an ingenious expansion, adapted and leveled to the comprehension of the multitude.

The speculations of Hobbes, however, concerning the theory of the understanding, do not seem to have been nearly so much attended to during his own life, as some of his other doctrines, which, having a more immediate reference to human affairs, were better adapted to the unsettled and revolutionary spirit of the times. It is by these doctrines, chiefly, that his name has since become so memorable in the annals of modern literature; and although they now derive their whole interest from the extraordinary combination they exhibit of acuteness and subtlety with a dead-palsy in the powers of taste and of moral sensibility, yet they will be found, on an attentive examination, to have had a far more extensive influence on the subsequent history, both of political and of ethical science, than any other publication of the same period.

ANTAGONISTS OF HOBBES.

Cudworth\(^1\) was one of the first who successfully combated this new philosophy. As Hobbes, in the frenzy of his political zeal, had been led to sacrifice wantonly all the principles of religion and morality to the establishment of his conclusions, his works not only gave offence to the friends of liberty, but excited a general alarm among all sound moralists. His doctrine, in particular, that there is no natural distinction between Right and Wrong, and that these are dependent on the arbitrary will of the civil magistrate, was so obviously subversive of all the commonly received ideas concerning the moral constitution of human nature, that it became indispensably necessary, either to expose the sophistry of the attempt, or to admit, with Hobbes, that man is a beast of prey, incapable of being governed by any motives but fear, and the desire of self-preservation.

Between some of these tenets of the courtly Hobbists, and those inculcated by the Cromwellian Antinomians, there was a very extraordinary and unfortunate coincidence; the latter insisting, that, in expectation of Christ's second coming, "the obligations of morality and natural law were suspended; and that the elect, guided by an internal principle, more perfect and divine, were superior to the beggarly elements of justice and humanity."

It was the object of Cudworth to vindicate, against the assaults of both parties, the immutability of moral distinctions.

In the prosecution of his very able argument on this subject, Cudworth displays a rich store of enlightened and choice erudition, penetrated throughout with a peculiar vein of sobered and subdued Platonism, from whence some German systems, which have attracted no small notice in our own times, will be found, when stripped of their deep neological disguise, to have borrowed their most valuable materials.\(^2\)

1 Born 1617, died 1688.
2 Hume.—For a more particular account of the English Antinomians, See Mosheim, Vol. IV. p. 534, et seq.
3 The mind, according to Cudworth, perceives, by occasion of outward objects, as much more than is represented to it by sense, as a learned man does in the best written book, than an illiterate person or brute. "To the eyes of both, the same characters will appear; but the learned man, in those characters, will see heaven, earth, sun, and stars; read profound theorems of philosophy or geometry; learn a great deal of new knowledge from them, and admire the wisdom of the composer; while, to the other, nothing appears but black strokes drawn on white paper. The reason of which is, that the mind of the one is furnished with certain previous inward anticipations, ideas, and instruction, that the other wants."—\(^4\) In the room of this book of human composition, let us now substitute the book of Nature, written all over with the characters and impressions of divine wisdom and goodness, but legible only to an intellectual eye. To the sense both of man and brute, there appears nothing else in it, but, as in the other, so many ink scrawls; that is, nothing but figures and colours. But the mind, which hath a participation of the divine wisdom that made it, upon occasion of those sensible delineations, exercising its own inward activity, will have not only a wonderful scene, and large prospects of
Another coincidence between the Hobbists and the Antinomians, may be remarked in their common zeal for the scheme of necessity; which both of them stated in such a way as to be equally inconsistent with the moral agency of man, and with the moral attributes of God. The strongest of all presumptions against this scheme is afforded by the other tenets with which it is almost universally combined; and accordingly, it was very shrewdly observed by Cudworth, that the licentious system which flourished in his time (under which title, I presume, he comprehended the immoral tenets of the fanatics as well as of the Hobbists), "grew up from the doctrine of the fatal necessity of all actions and events, as from its proper root." The unsettled, and, at the same time, disputatious period during which Cudworth lived, afforded him peculiarly favourable opportunities of judging from experience, of the practical tendency of this metaphysical dogma; and the result of his observations deserves the serious attention of those who may be disposed to regard it in the light of a fair and harmless theme for the display of controversial subtlety. To argue, in this manner, against a speculative principle from its palpable effects, is not always so illogical as some authors have supposed. "You repeat to me incessantly," says Rousseau to one of his correspondents, "that truth can never be injurious to the world. I myself believe so as firmly as you do; and it is for this very reason I am satisfied that your proposition is false." But the principal importance of Cudworth, as an ethical writer, arises from the influence of his argument concerning the immutability of right and wrong on the various theories of morals which appeared in the course of the eighteenth century. To this argument may, more particularly, be traced the origin of the celebrated question, Whether the principle of moral approbation is to be ultimately resolved into Reason, or into Sentiment—a question which has furnished the chief ground of difference between the Systems of Cudworth and of Clarke, on the one hand; and those of Shaftesbury, Hutcheson, Hume, and Smith, on the other. The remarks which I have to offer on this controversy must evidently be delayed, till the writings of these more modern authors shall fall under review.

The Intellectual System of Cudworth embraces a field much wider than his treatise of Immutable Morality. The latter is particularly directed against the ethical doctrines of Hobbes, and of the Antinomians; but the former aspires to tear up by the roots all the principles, both physical and metaphysical, of the Epicurean philosophy. It is a work, certainly, which reflects much honour on the talents of the author, and still more on the boundless extent of his learning; but it is so ill suited to the taste of the present age, that, since the time of Mr Harris and Dr Price, I scarcely recollect the slightest reference to it in the writings of our British metaphysicians. Of its faults (beside the general disposition of the author to discuss questions placed altogether beyond the reach of our faculties), the most prominent is the wild hypothesis of a plastic nature; or, in other words, "of a vital and spiritual, but unintelligent and necessary agent, created by the Deity for the execution of other thoughts laid open before it, and variety of knowledge, logical, mathematical, and moral, displayed; but also clearly read the divine wisdom and goodness in every page of this great volume, as it were written in large and legible characters." I do not pretend to be an adept in the philosophy of Kant; but I certainly think I pay it a very high compliment, when I suppose, that, in the Critic of Pure Reason, the leading idea is somewhat analogous to what is so much better expressed in the foregoing passage. To Kant it was probably suggested by the following very acute and decisive remark of Leibnitz on Locke's Essay: "Nempe, nihil est in intellectu, quod non fuerit in sensu, nisi ipsa intellectus." In justice to Aristotle, it may be here observed, that, although the general strain of his language is strictly conformable to the scholastic maxim just quoted, he does not seem to have altogether overlooked the important exception to it pointed out by Leibnitz. Indeed, this exception or limitation is very nearly a translation of Aristotle's words. Καὶ ἠθικὴ πρὸς τὸν πολιτικὸν εὐθύς, ἀλλὰ καὶ πρὸς τὸν ἐξοικονομούμενον, καὶ αὐτὸν συνεκτικὸν. "And the mind itself is an object of knowledge, as well as other things which are intelligible. For, in inmaterial beings, that which understands is the same with that which is understood."—(De Anima, Lib. iii. cap. iv.) I quote this very curious, and, I suspect, very little known sentence, in order to vindicate Aristotle against the misrepresentations of some of his present idolators, who, in their anxiety to secure to him all the credit of Locke's doctrine concerning the origin of our Ideas, have overlooked the occasional traces which occur in his works, of that higher and sounder philosophy in which he had been educated.

1 "The doctrines of fate or destiny were deemed by the Independents essential to all religion. In these rigid opinions, the whole sectaries, amidst all their other differences, unanimously concurred."—Hume's History, chap. iv.

2 "Vous répétez sans cesse que la vérité ne peut jamais faire de mal aux hommes; je le crois, et c'est pour moi la preuve que ce que vous dites n'est pas la vérité."
tion of his purposes.” Notwithstanding, however, these, and many other abatements of its merits, the Intellectual System will for ever remain a precious mine of information to those whose curiosity may lead them to study the spirit of the ancient theories; and to it we may justly apply what Leibnitz has somewhere said, with far less reason, of the works of the schoolmen, “Scholasticos agnosco abundare ineptiis; sed auron est in illo caeno.”

Before dismissing the doctrines of Hobbes, it may be worth while to remark, that all his leading principles are traced by Cudworth to the remains of the ancient sceptics, by some of whom, as well as by Hobbes, they seem to have been adopted from a wish to flatter the uncontrolled passions of sovereigns. Not that I am disposed to call in question the originality of Hobbes; for it appears, from the testimony of all his friends, that he had much less pleasure in reading than in thinking. “If I had read,” he was accustomed to say, “as much as some others, I should have been as ignorant as they are.” But similar political circumstances invariably reproduce similar philosophical theories; and it is one of the numerous disadvantages attending an inventive mind, not properly furnished with acquired information, to be continually liable to a waste of its powers on subjects previously exhausted.

The sudden tide of licentiousness, both in principles and in practice, which burst into this island at the moment of the Restoration, conspired with the paradoxes of Hobbes, and with the no less dangerous errors recently propagated among the people by their religious instructors, to turn the thoughts of sober and speculative men towards ethical disquisitions. The established clergy assumed a higher tone than before in their sermons; sometimes employing them in combating that Epicurean and Machiavelian philosophy which was then fashionable at court, and which may be always suspected to form the secret creed of the enemies of civil and religious liberty;—on other occasions, to overwhelm, with the united force of argument and learning, the extravagances by which the ignorant enthusiasts of the preceding period had exposed Christianity itself to the scoffs of their libertine opponents. Among the divines who appeared at this era, it is impossible to pass over in silence the name of Barrow, whose theological works (adorned throughout by classical erudition, and by a vigorous, though unpolished eloquence), exhibit, in every page, marks of the same inventive genius which, in mathematics, has secured to him a rank second alone to that of Newton. As a writer, he is equally distinguished by the redundancy of his matter, and by the pregnant brevity of his expression; but what more peculiarly characterises his manner, is a certain air of powerful and of conscious facility in the execution of whatever he undertakes. Whether the subject be mathematical, metaphysical, or theological, he seems always to bring to it a mind which feels itself superior to the occasion; and which, in contending with the greatest difficulties, “puts forth but half its strength.” He has somewhere spoken of his Lectiones Mathematicae (which it may, in passing, be remarked, display metaphysical talents of the highest order), as extemporaneous effusions of his pen; and I have no doubt that the same epithet is still more literally applicable to his pulpit discourses. It is, indeed, only thus we can account for the variety and extent of his voluminous remains, when we recollect that the author died at the age of forty-six.

To the extreme rapidity with which Barrow committed his thoughts to writing, I am inclined to ascribe the hasty and not altogether consist-

1 The Intellectual System was published in 1678. The Treatise concerning Eternal and Immutable Morality did not appear till a considerable number of years after the author’s death.

2 In a note annexed to an English translation of the Cardinal Maury’s Principles of Eloquence, it is stated, upon the authority of a manuscript of Dr. Doddridge, that most of Barrow’s sermons were transcribed three times, and some much oftener. They seem to me to contain very strong intrinsic evidence of the incorrectness of this anecdote. Mr. Abraham Hill, in his Account of the Life of Barrow, addressed to Dr. Tillotson, contents himself with saying, that “Some of his sermons were written four or five times over;”—mentioning, at the same time, a circumstance which may account for this fact, in perfect consistency with what I have stated above,—that Barrow was very ready to lend his sermons as often as desired.
ent opinions which he has hazarded on some important topics. I shall confine myself to a single example, which I select in preference to others, as it bears directly on the most interesting of all questions connected with the theory of morals. "If we scan," says he, "the particular nature, and search into the original causes of the several kinds of naughty dispositions in our souls, and of miscarriages in our lives, we shall find inordinate self-love to be a main ingredient, and a common source of them all; so that a divine of great name had some reason to affirm,—that original sin (or that innate distemper from which men generally become so very prone to evil, and averse to good), doth consist in self-love, disposing us to all kinds of irregularity and excess."

In another passage, the same author expresses himself thus:—"Reason dictateth and prescribeth to us, that we should have a sober regard to our true good and welfare; to our best interests and solid content; to that which (all things being rightly stated, considered, and computed) will, in the final event, prove most beneficial and satisfactory to us: a self-love working in prosecution of such things, common sense cannot but allow and approve."

Of these two opposite and irreconcilable opinions, the latter is incomparably the least wide of the truth; and accordingly Mr Locke, and his innumerable followers, both in England and on the Continent, have maintained, that virtue and an enlightened self-love are one and the same. I shall afterwards find a more convenient opportunity for stating some objections to the latter doctrine, as well as to the former. I have quoted the two passages here, merely to show the very little attention that had been paid, at the era in question, to ethical science, by one of the most learned and profound divines of his age. This is the more remarkable, as his works everywhere inculcate the purest lessons of practical morality, and evince a singular acuteness and justness of eye in the observation of human character. Whoever compares the views of Barrow, when he touches on the theory of morals, with those opened about fifty years afterwards by Dr Butler, in his Discourses on Human Nature, will be abundantly satisfied, that, in this science, as well as in others, the progress of the philosophical spirit during the intervening period was not inconsiderable.

The name of Wilkins (although he too wrote with some reputation against the Epicureans of his day), is now remembered chiefly in consequence of his treatises concerning a universal language and a real character. Of these treatises, I shall hereafter have occasion to take some notice, under a different article. With all the ingenuity displayed in them, they cannot be considered as accessions of much value to science; and the long period since elapsed, during which no attempt has been made to turn them to any practical use, affords of itself no slight presumption against the solidity of the project.

A few years before the death of Hobbes, Dr Cumberland (afterwards Bishop of Peterborough) published a book, entitled, De Legibus Natura, Disquisitio Philosophica; the principal aim of which was to confirm and illustrate, in opposition to Hobbes, the conclusions of Grotius, concerning Natural Law. The work is executed with ability, and discovers juster views of the object of moral science, than any modern system that had yet appeared; the author resting the strength of his argument, not, as Grotius had done, on an accumulation of authorities, but on the principles of the human frame, and the mutual relations of the human race. The circumstance, however, which chiefly entitles this publication to our notice, is, that it seems to have been the earliest on the subject which attracted; in any considerable degree, the attention of English scholars. From this time, the writings of Grotius and of Puffendorff began to be generally studied, and soon after made their way into the Universities. In Scotland, the impression produced by them was more peculiarly remarkable. They were everywhere adopted as the best manuals of ethical and of political instruction that could be put into the hands of students, and gradually contributed to form that memorable school, from whence so many philosophers and philosophical historians were afterwards to proceed.

From the writings of Hobbes to those of Locke, the transition is easy and obvious; but before prosecuting farther the history of philosophy in England, it will be proper to turn our
attention to its progress abroad, since the period at which this section commences. In the first place, however, I shall add a few miscellaneous remarks on some important events which occurred in this country during the lifetime of Hobbes, and of which his extraordinary longevity prevented me sooner from taking notice.

Among these events, that which is most immediately connected with our present subject, is the establishment of the Royal Society of London in 1662, which was followed a few years afterwards by that of the Royal Academy of Sciences at Paris. The professed object of both institutions was the improvement of Experimental Knowledge, and of the auxiliary science of Mathematics; but their influence on the general progress of human reason has been far greater than could possibly have been foreseen at the moment of their foundation. On the happy effects resulting from them in this respect, La Place has introduced some just reflections in his System of the World, which, as they discover more originality of thought than he commonly displays, when he ventures to step beyond the circumference of his own magic circle, I shall quote, in a literal translation of his words.

"The chief advantage of learned societies, is the philosophical spirit to which they may be expected to give birth, and which they cannot fail to diffuse over all the various pursuits of the nations among whom they are established. The insulated scholar may without dread abandon himself to the spirit of system; he hears the voice of contradiction only from afar. But in a learned society, the collision of systematic opinions soon terminates in their common destruction; while the desire of mutual conviction creates among the members a tacit compact, to admit nothing but the results of observation, or the conclusions of mathematical reasoning. Accordingly, experience has shown, how much these establishments have contributed, since their origin, to the spread of true philosophy. By setting the example of submitting every thing to the examination of a severe logic, they have dissipated the prejudices which had too long reigned in the sciences, and which the strongest minds of the preceding centuries had not been able to resist. They have constantly opposed to empiricism a mass of knowledge, against which the errors adopted by the vulgar, with an enthusiasm which, in former times, would have perpetuated their empire, have spent their force in vain. In a word, it has been in their bosoms that those grand theories have been conceived, which, although far exalted by their generality above the reach of the multitude, are for this very reason entitled to special encouragement, from their innumerable applications to the phenomena of nature, and to the practice of the arts."6

In confirmation of these judicious remarks, it

1 Throughout the whole of this Discourse, I have avoided touching on the discussions which, on various occasions, have arisen with regard to the theory of government, and the comparative advantages or disadvantages of different political forms. Of the scope and spirit of these discussions it would be seldom possible to convey a just idea, without entering into details of a local or temporary nature, inconsistent with my general design. In the present circumstances of the world, besides, the theory of government (although, in one point of view, the most important of all studies) seems to possess a very subordinate interest to inquiries connected with political economy, and with the fundamental principles of legislation. What is it, indeed, that renders one form of government more favourable than another to human happiness, but the superior security it provides for the enactment of wise laws, and for their impartial and vigorous execution? These considerations will sufficiently account for my passing over in silence, not only the names of Needham, of Sidney, and of Milton, but that of Harrington, whose Oceana is justly regarded as one of the boasts of English literature, and is pronounced by Hume to be "the only valuable model of a commonwealth that has yet been offered to the public."—Eays and Treas., Vol I, Essay xvi.

A remark which Hume has elsewhere made on the Oceana, appears to me so striking and so instructive, that I shall give it a place in this note. "Harrington," he observes, "thought himself so sure of his general principle, that the balance of power depended on that of property, that he ventured to pronounce it impossible ever to re-establish monarchy in England: But his book was scarcely published when the King was restored; and we see that monarchy has ever since subsisted on the same footing as before. So dangerous is it for a politician to venture to foretell the situation of public affairs a few years hence."—Ibid. Essay VII.

How much nearer the truth, even in the science of politics, is Bacon's cardinal principle, that knowledge is power—a principle, which applies to Man not less in his corporate than in his individual capacity; and which may be safely trusted to as the most solid of all foundations for our reasonings concerning the future history of the world.

2 The Royal Society of London, though not incorporated by charter till 1662, may be considered as virtually existing, at least as far back as 1633, when some of the most eminent of the original members began first to hold regular meetings at Gresham College, for the purpose of philosophical discussion. Even these meetings were but a continuation of those previously held by the same individuals, at the apartments of Dr Wilkins in Oxford.—See Sprat's History of the Royal Society.
may be farther observed, that nothing could have been more happily imagined than the establishment of learned corporations for correcting those prejudices which (under the significant title of *Idola Specus*), Bacon has described as incident to the retired student. While these *idols of the den* maintain their authority, the cultivation of the philosophical spirit is impossible; or rather, it is in a renunciation of this idolatry that the philosophical spirit essentially consists. It was accordingly in this great school of the learned world, that the characters of Bacon, Descartes, Leibnitz, and Locke were formed; the four individuals who have contributed the most to diffuse the philosophical spirit over Europe. The remark applies more peculiarly to Bacon, who first pointed out the inconveniences to be apprehended from a minute and mechanical subdivision of literary labour; and anticipated the advantages to be expected from the institution of learned academies, in enlarging the field of scientific curiosity, and the correspondent grasp of the emancipated mind. For accomplishing this object, what means so effectual as habits of daily intercourse with men whose pursuits are different from our own; and that expanded knowledge, both of man and of nature, of which such an intercourse must necessarily be productive!

Another event which operated still more forcibly and universally on the intellectual character of our countrymen, was the civil war which began in 1640, and which ultimately terminated in the usurpation of Cromwell. It is observed by Mr Hume, that "the prevalence of democratic principles, under the Commonwealth, engaged the country gentlemen to bind their sons apprentices to merchants; and that commerce has ever since been more honourable in England, than in any other European kingdom."1 "The higher and the lower ranks (as a later writer has remarked) were thus brought closer together, and all of them inspired with an activity and vigour that, in former ages, had no example."2

To this combination of the pursuits of trade, with the advantages of a liberal education, may be ascribed the great multitude of ingenious and enlightened speculations on commerce, and on the other branches of national industry, which issued from the press, in the short interval between the Restoration and the Revolution; an interval during which the sudden and immense extension of the trade of England, and the corresponding rise of the commercial interest, must have presented a spectacle peculiarly calculated to awaken the curiosity of inquisitive observers. It is a very remarkable circumstance with respect to these economical researches, which now engage so much of the attention both of statesmen and of philosophers, that they are altogether of modern origin. "There is scarcely," says Mr Hume, "any ancient writer on politics who has made mention of trade; nor was it ever considered as an affair of state till the seventeenth century."3—The work of the celebrated John de Witt, entitled, "The true interest and political maxims of the republic of Holland and West Friesland," is the earliest publication of any note, in which commerce is treated of as an object of national and political concern, in opposition to the partial interests of corporations and of monopolists.

Of the English publications to which I have just alluded, the greater part consists of anonymous pamphlets, now only to be met with in the collections of the curious. A few bear the names of eminent English merchants. I shall have occasion to refer to them more particularly afterwards, when I come to speak of the writings of Smith, Quesnay, and Turgot. At present, I shall only observe, that, in these fugitive and now neglected tracts, are to be found the first rudiments of that science of Political Economy, which is justly considered as the boast of the present age; and which, although the aid of learning and philosophy was necessary to rear it to maturity, may be justly said to have had its cradle in the Royal Exchange of London.

Mr Locke was one of the first retired theorists (and this singular feature in his history has not

1 History of England, chap. lxii.
2 Chalmers's Political Estimate, &c. (London, 1804) p. 44.
3 Essay of Civil Liberty.
been sufficiently attended to by his biographers), who condescended to treat of trade as an object of liberal study. Notwithstanding the manifold errors into which he fell in the course of his reasonings concerning it, it may be fairly questioned, if he has anywhere else given greater proofs, either of the vigour or of the originality of his genius. But the name of Locke reminds me, that it is now time to interrupt these national details, and to turn our attention to the progress of science on the Continent, since the times of Bodinus and of Campanella.

SECTION II.
Progress of Philosophy in France during the Seventeenth Century.

MONTAIGNE—CHARRON—LA ROCHEFOUCAULD.

At the head of the French writers who contributed, in the beginning of the seventeenth century, to turn the thoughts of their countrymen to subjects connected with the Philosophy of Mind, Montaigne may, I apprehend, be justly placed. Properly speaking, he belongs to a period somewhat earlier; but his tone of thinking and of writing classes him much more naturally with his successors, than with any French author who had appeared before him. 1

In assigning to Montaigne so distinguished a rank in the history of modern philosophy, I need scarcely say, that I leave entirely out of the account what constitutes (and justly constitutes) to the generality of readers the principal charm of his Essays; the good nature, humanity, and unaffected sensibility, which so irresistibly attach us to his character,—lending, it must be owned, but too often a fascination to his talk, when he cannot be recommended as the safest of companions. Nor do I lay much stress on the inviting frankness and vivacity with which he unsbosoms himself about all his domestic habits and concerns, and which render his book so expressive a portrait, not only of the author, but of the Gascon country gentleman, two hundred years ago. I have in view chiefly the minuteness and good faith of his details concerning his own personal qualities, both intellectual and moral. The only study which seems ever to have engaged his attention was that of man; and for this he was singularly fitted, by a rare combination of that talent for observation which belongs to men of the world, with those habits of abstracted reflection, which men of the world have commonly so little disposition to cultivate. "I study myself," says he, "more than any other subject. This is my metaphysic; this my natural philosophy." 2 He has accordingly produced a work, unique in its kind; valuable, in an eminent degree, as an authentic record of many interesting facts relative to human nature; but more valuable by far, as holding up a mirror in which every individual, if he does not see his own image, will at least occasionally perceive so many traits of resemblance to it, as can scarcely fail to invite his curiosity to a more careful review of himself. In this respect, Montaigne's writings may be regarded in the light of what painters call studies; in other words, of those slight sketches which were originally designed for the improvement or amusement of the artist, but which, on that account, are the more likely to be useful in developing the germs of similar endowments in others.

Without a union of these two powers (reflection

1 Montaigne was born in 1533, and died in 1592.
DISS. I. PART I.

2 Essays, Book iii, chap. xiii.
and observation), the study of Man can never be successfully prosecuted. It is only by retiring within ourselves that we can obtain a key to the characters of others; and it is only by observing and comparing the characters of others that we can thoroughly understand and appreciate our own.

After all, however, it may be fairly questioned, notwithstanding the scrupulous fidelity with which Montaigne has endeavoured to delineate his own portrait, if he has been always sufficiently aware of the secret folds and reduplications of the human heart. That he was by no means exempted from the common delusions of self-love and self-deceit, has been fully evinced in a very acute, though somewhat uncharitable, section of the Port-Royal logic; but this consideration, so far from diminishing the value of his Essays, is one of the most instructive lessons they afford to those who, after the example of the author, may undertake the salutary but humiliating task of self-examination.

As Montaigne’s scientific knowledge was, according to his own account, “very vague and imperfect,”¹ and his book-learning rather sententious and gossiping, than comprehensive and systematical, it would be unreasonable to expect, in his philosophical arguments, much either of depth or of solidity.² The sentiments he hazards are to be regarded but as the impressions of the moment; consisting chiefly of the more obvious doubts and difficulties which, on all metaphysical and moral questions, are apt to present themselves to a speculative mind, when it first attempts to dig below the surface of common opinions. In reading Montaigne, accordingly, what chiefly strikes us, is not the novelty or the refinement of his ideas, but the liveliness and felicity with which we see embodied in words the previous wanderings of our own imaginations. It is probably owing to this circumstance, rather than to any direct plagiarism, that his Essays appear to contain the germs of so many of the paradoxical theories which, in later times, Helvetius and others have laboured to systematise and to support with the parade of metaphysical discussion. In the mind of Montaigne, the same paradoxes may be easily traced to those deceitful appearances which, in order to stimulate our faculties to their best exertions, nature seems purposely to have thrown in our way, as stumbling-blocks in the pursuit of truth; and it is only to be regretted on such occasions, for the sake of his own happiness, that his genius and temper qualified and disposed him more to start the problem than to investigate the solution.

When Montaigne touches on religion, he is, in general, less pleasing than on other subjects. His constitutional temper, it is probable, predisposed him to scepticism; but this original bias could not fail to be mightily strengthened by the disputes, both religious and political, which, during his lifetime, convulsed Europe, and more particularly his own country. On a mind like his it may be safely presumed, that the writings of the Reformers, and the instructions of Buchanan, were not altogether without effect; and hence, in all probability, the perpetual struggle, which he is at no pains to conceal, between the creed of his infancy, and the lights of his mature understanding. He speaks, indeed, of “reposing tranquilly on the pillow of doubt;” but this language is neither reconcilable with the general complexion of his works, nor with the most authentic accounts we have received of his dying moments. It is a maxim of his own, that, “in forming a judgment of a man’s life, particular regard should be paid to his behaviour at the end of it,” to which he pathetically adds, “that the chief study of his own life was, that his latter end might be decent, calm, and silent.” The fact is (if we may credit the testimony of his biographers), that, in his declining years, he exchanged his boasted pillow of doubt for the more powerful opiates prescribed by the infallible church; and that he

¹ Book i. chap. xxv.
² Montaigne’s education, however, had not been neglected by his father. On the contrary, he tells us himself, that George Buchanan, the great poet of Scotland, and Marcus Antonius Muræus, the best orator of his time, were among the number of his domestic preceptors.”—Buchanan,” he adds, “when I saw him afterwards in the retinue of the late Maréchal de Briesse, told me, that he was about to write a treatise on the education of children, and that he would take the model of it from mine.”—Book i. chap. xxv.
expired in performing what his old preceptor Buchanan would not have scrupled to describe as an act of idolatry.1

The scepticism of Montaigue seems to have been of a very peculiar cast; and to have had little in common with that either of Bayle or of Hume. The great aim of the two latter writers evidently was, by exposing the uncertainty of our reasonings whenever we pass the limit of sensible objects, to inspire their readers with a complete distrust of the human faculties on all moral and metaphysical topics. Montaigne, on the other hand, never thinks of forming a sect; but, yielding passively to the current of his reflections and feelings, argues, at different times, according to the varying state of his impressions and temper, on opposite sides of the same question. On all occasions, he preserves an air of the most perfect sincerity; and it was to this, I presume, much more than to the superiority of his reasoning powers, that Montesquieu alluded, when he said, "In the greater part of authors I see the writer; in Montaigne I see nothing but the thinker." The radical fault of his understanding consisted in an incapacity of forming, on disputable points, those decided and fixed opinions which can alone impart either force or consistency to intellectual character. For remedying this weakness, the religious controversies, and the civil wars recently engendered by the Reformation, were but ill calculated. The minds of the most serious men, all over Christendom, must have been then unsettled in an extraordinary degree; and where any predisposition to scepticism existed, every external circumstance must have conspired to cherish and confirm it. Of the extent to which it was carried, about the same period, in England, some judgment may be formed from the following description of a Sceptic by a writer not many years posterior to Montaigue.

"A sceptic in religion is one that hangs in the balance with all sorts of opinions; whereof not one but stirs him, and none sways him. A man guiltier of credulity than he is taken to be; for it is out of his belief of every thing that he believes nothing. Each religion scares him from its contrary, none persuades him to itself. He would be wholly a Christian, but that he is something of an Atheist; and wholly an Atheist, but that he is partly a Christian; and a perfect Heretic, but that there are so many to distract him. He finds reason in all opinions, truth in none; indeed, the least reason perplexes him, and the best will not satisfy him. He finds doubts and scruples better than resolves them, and is always too hard for himself."2 If this portrait had been presented to Montaigne, I have little doubt that he would have had the candour to acknowledge, that he recognised in it some of the most prominent and characteristic features of his own mind.

The most elaborate, and seemingly the most serious, of all Montaigne's essays, is his long and somewhat tedious Apology for Raimond de Sebonde, contained in the twelfth chapter of his second book. This author appears, from Montaigne's account, to have been a Spaniard, who professed physic at Toulouse, towards the end of the fourteenth century; and who published a treatise, entitled, Theologia Naturalis, which was put into the hands of Montaigne's father by a friend, as a useful antidote against the innovations with which Luther was then beginning to disturb the ancient faith. That, in this particular instance, the book answered the intended purpose, may be presumed from the request of old Montaigne to his son, a few days before his

1 "Sentant sa fin approcher, il fit dire la messe dans sa chambre. A l'élévation de l'hostie, il se leva sur son lit pour l'adorer; mais une bûille l'enleva dans ce moment même, le 15 Septembre 1592, à 60 ans."—Nouveau Dict. Hist. à Lyon, 1804, Art. Montaigne.

2 Micro-cosmography, or a Piece of the World Discovered, in Essays and Characters. For a short notice of the author of this very curious book (Bishop Earle), See the edition published at London in 1811. The chapter containing the above passage is entitled, A Sceptic in Religion; and it has plainly suggested to Lord Clarendon some of the ideas, and even expressions, which occur in his account of Chillingworth.

3 "The writings of the best authors among the ancients," Montaigne tells us on one occasion, "being full and solid, tempt and carry me which way almost they will. He that I am reading seems always to have the most force; and I find that every one in turn has reason, though they contradict one another."—Book ii. chap. xii.
death, to translate it into French from the Spanish original. His request was accordingly complied with; and the translation is referred to by Montaigne in the first edition of his Essays, printed at Bourdeaux in 1580; but the execution of this filial duty seems to have produced on Montaigne's own mind very different effects from what his father had anticipated.

The principal aim of Sebonde's book, according to Montaigne, is to show that "Christians are in the wrong to make human reasoning the basis of their belief, since the object of it is only conceived by faith, and by a special inspiration of the divine grace." To this doctrine Montaigne professes to yield an implicit assent; and, under the shelter of it, contrives to give free vent to all the extravagances of scepticism. The essential distinction between the reason of man, and the instincts of the lower animals, is at great length, and with no inconsiderable ingenuity, disputed; the powers of the human understanding, in all inquiries, whether physical or moral, are held up to ridicule; an universal Pyrrhonism is recommended; and we are again and again reminded, that "the senses are the beginning and the end of all our knowledge." Whoever has the patience to peruse this chapter with attention, will be surprised to find in it the rudiments of a great part of the licentious philosophy of the eighteenth century; nor can he fail to remark the address with which the author avails himself of the language afterwards adopted by Bayle, Helvetius, and Hume:—"That, to be a philosophical sceptic, is the first step towards becoming a sound believing Christian." It is a melancholy fact in ecclesiastical history, that this insidious maxim should have been sanctioned, in our times, by some theologians of no common pretensions to orthodoxy; who, in direct contradiction to the words of Scripture, have ventured to assert, that "he who comes to God must first believe that he is not." Is it necessary to remind these grave retailers of Bayle's sly and ironical sophistry, that every argument for Christianity, drawn from its internal evidence, tacitly recognises the authority of human reason; and assumes, as the ultimate criteria of truth and of falsehood, of right and of wrong, certain fundamental articles of belief, discoverable by the light of Nature?

Charron is well known as the chosen friend of Montaigne's latter years, and as the confidential depository of his philosophical sentiments. Endowed with talents far inferior in force and originality to those of his master, he possessed, nevertheless, a much sounder and more regulated judgment; and as his reputation, notwithstanding the liberality of some of his peculiar tenets, was high among the most respectable and conscientious divines of his own church, it is far from improbable, that Montaigne committed to him the guardianship of his posthumous fame, from motives similar to those which influenced Pope, in selecting Warburton as his literary executor. The discharge of this trust, however, seems to have done less good to Montaigne than harm to Charron; for while the unlimited scepticism, and the indecent levities

1 The very few particulars known with respect to Sebonde have been collected by Bayle.—See his Dictionary, Art. Sebonde.
2 This expression is Mr Hume's; but the same proposition, in substance, is frequently repeated by the two other writers, and is very fully enlarged upon by Bayle in the Illustration upon the Sceptics, annexed to his Dictionary.
3 "I once asked Adrian Turnebus," says Montaigne, "what he thought of Sebonde's treatise. The answer he made to me was, That he believed it to be some extract from Thomas Aquinas, for that none but a genius like his was capable of such ideas." I must not, however, omit to mention, that a very learned Protestant, Hugo Gratius, has expressed himself to his friend Bignon not unfavourably of Sebonde's intentions, although the terms in which he speaks of them are somewhat equivocal, and imply but little satisfaction with the execution of his design. "Non ignoro quantum exculerint istam materiam (argumentum scil. pro Religione Christiana) philosophica substantiae Raimundus Sebundus, dialogorum varietate Ludovici Vives, maxima autem tum eruditione tum facundia vestras Philippus Mornnem." The authors of the Nouveau Dictionnaire Historique (Lyons, 1804) have entered much more completely into the spirit and drift of Sebonde's reasoning, when they observe, "Ce livre offre des singularités hardies, qui plurent dans le temps aux philosophes de ce siècle, et qui ne déplairont pas à ceux du notre." It is proper to add, that I am acquainted with Sebonde only through the medium of Montaigne's version, which does not lay claim to the merit of strict fidelity; the translator himself having acknowledged, that he had given to the Spanish philosopher "un accoutrement à la Française, et qu'il l'a dévoué de son port farouche et maintien barbaresque, de manière qu'il a mes-lui asser de façon pour se présenter en toute bonne compagnie."
of the former, were viewed by the zealots of those days with a smile of tenderness and indulgence, the slighter heresies of the latter were marked with a severity the more rigorous and unrelenting, that, in points of essential importance, they deviated so very little from the standard of the Catholic faith. It is not easy to guess the motives of this inconsistency; but such we find from the fact to have been the temper of religious bigotry, or, to speak more correctly, of political religionism in all ages of the world.

As an example of Charron’s solicitude to provide an antidote against the more pernicious errors of his friend, I shall only mention his ingenious and philosophical attempt to reconcile, with the moral constitution of human nature, the apparent discordancy in the judgments of different nations concerning right and wrong. His argument on this point is in substance the very same with that so well urged by Beattie, in opposition to Locke’s reasonings against the existence of innate practical principles. It is difficult to say, whether, in this instance, the coincidence between Montaigne and Locke, or that between Charron and Beattie, be the more remarkable.

Although Charron has affected to give to his work a systematical form, by dividing and subdividing it into books and chapters, it is in reality little more than an unconnected series of essays on various topics, more or less distantly related to the science of Ethics. On the powers of the understanding he has touched but slightly; nor has he imitated Montaigne, in anatomizing, for the edification of the world, the peculiarities of his own moral character. It has probably been owing to the desultory and popular style of composition common to both, that so little attention has been paid to either by those who have treated of the history of French philosophy. To Montaigne’s merits, indeed, as a lively and amusing essayist, ample justice has been done; but his influence on the subsequent habits of thinking among his countrymen remains still to be illustrated. He has done more, perhaps, than any other author (I am inclined to think with the most honest intentions), to introduce into men’s houses (if I may borrow an expression of Cicero) what is now called the new philosophy—a philosophy certainly very different from that of Socrates. In the fashionable world, he has, for more than two centuries, maintained his place as the first of moralists; a circumstance easily accounted for, when we attend to the singular combination, exhibited in his writings, of a semblance of erudition, with what Malebranche happily calls his air du monde, and air cavalier. As for the graver and less attractive Charron, his name would probably before now have sunk into oblivion, had it not been so closely associated, by the accidental events of his life, with the more celebrated name of Montaigne.

1 Montaigne, cet auteur charmant, Tour-à-tour profond et frivole, Dans son chateau paisiblement, Loin de tout frondeur maéléve, Doutoit de tout impunément, Et se moquait très librement Des bavards fourrés de l’école, Mais quand son élève Charron, Plus retenu, plus méthodique, De sagesse donna leçon, Il fut près de périr, dit-on, Par la haine théologique. — Voltaire, Épître au Président Hénaut.

2 See Beattie’s Essay on Fable and Romance; and Charron de la Sagesse, Liv. ii. c. 8. It may amuse the curious reader also to compare the theoretical reasonings of Charron with a memoir in the Phil. Trans. for 1773, by Sir Roger Curtis, containing some particulars with respect to the country of Labrador.

3 Ah l’aimable homme, qu’il est de bonne compagnie! C’est mon ancien ami; mais, à force d’être ancien, il m’est nouveau.” —Madame de Sevigne.

4 Montaigne himself seems, from the general strain of his writings, to have had but little expectation of the posthumous fame which he has so long continued to enjoy. One of his reflections on this head is so characteristic of the author as a man, and, at the same time, affords so fine a specimen of the graphical powers of his now antiquated style, that I am tempted to transcribe it in his own words: “J’écris mon livre à peu d’hommes et à peu d’années; s’il c’est été une matière de durée, il l’eut fallu commettre à un langage plus ferme. Selon la variation continue qui a suivi le notre jusqu’à cette
The preceding remarks lead me, by a natural connection of ideas (to which I am here much more inclined to attend than to the order of dates), to another writer of the seventeenth century, whose influence over the literary and philosophical taste of France has been far greater than seems to be commonly imagined. I allude to the Duke of La Rochefoucauld, author of the Maxims and Moral Reflections.

Voltaire was, I believe, the first who ventured to assign to La Rochefoucauld the pre-eminent rank which belongs to him among the French classics. "One of the works," says he, "which contributed most to form the taste of the nation to a justness and precision of thought and expression, was the small collection of maxims by Francis Duke of La Rochefoucauld. Although there be little more than one idea in the book, that self-love is the spring of all our actions, yet this idea is presented in so great a variety of forms, as to be always amusing. When it first appeared, it was read with avidity; and it contributed, more than any other performance, since the revival of letters, to improve the vivacity, correctness, and delicacy of French composition."

Another very eminent judge of literary merit (the late Dr Johnson) was accustomed to say of La Rochefoucauld's Maxims, that it was almost the only book written by a man of fashion, of which professed authors had reason to be jealous. Nor is this wonderful, when we consider the unwearied industry of the very accomplished writer, in giving to every part of it the highest and most finished polish which his exquisite taste could bestow. When he had committed a maxim to paper, he was in use to circulate it among his friends, that he might avail himself of their critical animadversions; and, if we may credit Segrais, altered some of them no less than thirty times, before venturing to submit them to the public eye.

That the tendency of these maxims is, upon the whole, unfavourable to morality, and that they always leave a disagreeable impression on the mind, must, I think, be granted. At the same time, it may be fairly questioned, if the motives of the author have in general been well understood, either by his admirers or his opponents. In affirming that self-love is the spring of all our actions, there is no good reason for supposing that he meant to deny the reality of moral distinctions as a philosophical truth;—a supposition quite inconsistent with his own fine and deep remark, that hypocrisy is itself an homage which vice renders to virtue. He states it merely as a position which, in the course of his experience as a man of the world, he had found very generally verified in the higher classes of society, and which he was induced to announce without any qualification or restriction, in order to give more force and poignancy to his satire. In adopting this mode of writing, he has unconsciously conformed himself, like many other French authors, who have since followed his example, to a suggestion which Aristotle has stated with admirable depth and acuteness in his Rhetoric. "Sentences or apophthegms lend much aid to eloquence. One reason of this is, that they flatter the pride of the hearers, who are delighted when the speaker, making use of general language, touches upon opinions which they had before known to be true in part. Thus, a person who had the misfortune to live in a bad neighbourhood, or to have worthless children, would easily assent to the speaker who should affirm, that nothing is more vexatious than to have any neighbours; nothing more irrational than to bring children into the world."1 This observation of Aristotle, while it goes far to account for the imposing and dazzling effect of these rhetorical exaggerations, ought to guard us against the common and popular error of mis-

The whole chapter is interesting and instructive, and shows how profoundly Aristotle had meditated the principles of the rhetorical art.
taking them for the serious and profound generalisations of science. As for La Rochefoucauld, we know, from the best authorities, that, in private life, he was a conspicuous example of all those moral qualities of which he seemed to deny the existence; and that he exhibited, in this respect, a striking contrast to the Cardinal de Retz, who has presumed to censure him for his want of faith in the reality of virtue.

In reading La Rochefoucauld, it should never be forgotten, that it was within the vortex of a court he enjoyed his chief opportunities of studying the world; and that the narrow and exclusive circle in which he moved was not likely to afford him the most favourable specimens of human nature in general. Of the Court of Lewis XIV. in particular, we are told by a very nice and reflecting observer (Madame de la Fayette), that “ambition and gallantry were the soul, actuating alike both men and women. So many contending interests, so many different cabals were constantly at work, and in all of these, women bore so important a part, that love was always mingled with business, and business with love. Nobody was tranquil or indifferent. Every one studied to advance himself by pleasing, serving, or ruining others. Idleness and languor were unknown, and nothing was thought of but intrigues or pleasures.”

In the passage already quoted from Voltaire, he takes notice of the effect of La Rochefoucauld's Maxims, in improving the style of French composition. We may add to this remark, that their effect has not been less sensible in vitiating the tone and character of French philosophy, by bringing into vogue those false and degrading representations of human nature and of human life, which have prevailed in that country, more or less, for a century past. Mr Addison, in one of the papers of the Tatler, expresses his indignation at this general bias among the French writers of his age. “It is impossible,” he observes, “to read a passage in Plato or Tully, and a thousand other ancient moralists, without being a greater and better man for it. On the contrary, I could never read any of our modish French authors, or those of our own country, who are the imitators and admirers of that nation, without being, for some time, out of humour with myself, and at everything about me. Their business is to depreciate human nature, and to consider it under the worst appearances; they give mean interpretations and base motives to the worthiest actions. In short, they endeavour to make no distinction between man and man, or between the species of man and that of the brutes.”

It is very remarkable, that the censure here bestowed by Addison on the fashionable French wits of his time should be so strictly applicable to Helvetius, and to many others of the most admired authors whom France has produced in our own day. It is still more remarkable to find the same depressing spirit shedding its malignant influence on French literature, as early as the time of La Rochefoucauld, and even of Montaigne; and to observe how very little has been done by the successors of these old writers, but to expand into grave philosophical systems their loose and lively paradoxes; disguising and fortifying them by the aid of those logical principles, to which the name and authority of Locke have given so wide a circulation in Europe.

In tracing the origin of that false philosophy on which the excesses of the French revolutionists have entailed such merited disgrace, it is usual to remount no higher than to the prolific period of the Regency; but the seeds of its most exceptionable doctrines had been sown in that country at an earlier era, and were indebted for the luxuriance of their harvest, much more to the political and religious soil where they struck their roots, than to the skill or foresight of the individuals by whose hands they were scattered.

I have united the names of Montaigne and of La Rochefoucauld, because I consider their writings as rather addressed to the world at large, than to the small and select class of speculative students. Neither of them can be said to have enriched the stock of human knowledge by the addition of any one important general

1 Tatler, No. 103. The last paper of the Tatler was published in 1711; and, consequently, the above passage must be understood as referring to the modish tone of French philosophy prior to the death of Louis XIV.
conclusion; but the maxims of both have operated very extensively and powerfully on the taste and principles of the higher orders all over Europe, and predisposed them to give a welcome reception to the same ideas, when afterwards reproduced with the imposing appendage of logical method, and of a technical phraseology.

DESCARTES—GASSENDI—MALEBRANCHE.

According to a late writer, whose literary decisions (excepting where he touches on religion or politics) are justly entitled to the highest deference, Descartes has a better claim than any other individual, to be regarded as the father of that spirit of free inquiry, which in modern Europe has so remarkably displayed itself in all the various departments of knowledge. Of Bacon, he observes, "that though he possessed, in a most eminent degree, the genius of philosophy, he did not unite with it the genius of the sciences; and that the methods proposed by him for the investigation of truth, consisting entirely of precepts which he was unable to exemplify, had little or no effect in accelerating the rate of discovery." As for Galileo, he remarks, "that his exclusive taste for mathematical and physical researches, disqualified him for communicating to the general mind that impulse of which it stood in need."

"This honour," he adds, "was reserved for Descartes, who combined in himself the characteristic endowments of both his predecessors. If, in the physical sciences, his march be less sure than that of Galileo—if his logic be less cautious than that of Bacon—yet the very temerity of his errors was instrumental to the progress of the human race. He gave activity to minds which the circumspection of his rivals could not awake from their lethargy. He called upon men to throw off the yoke of authority, acknowledging no influence but what reason should avow: And his call was obeyed by a multitude of followers, encouraged by the boldness, and fascinated by the enthusiasm of their leader."

In these observations, the ingenious author has rashly generalised a conclusion deduced from the literary history of his own country. That the works of Bacon were but little read there till after the publication of D'Alembert's Preliminary Discourse, is, I believe, an unquestionable fact; not that it necessarily follows from this, that, even in France, no previous effect had been produced by the labours of Boyle, of Newton, and of the other English experimentalists, trained in Bacon's school. With respect to England, it is a fact not less certain, that at a period did the philosophy of Descartes produce such an impression on public opinion, either in Physics or in Ethics, as to give the slightest colour to the supposition, that it contributed, in the most distant degree, to the subsequent advances made by our countrymen in these sciences. In Logic and Metaphysics, indeed, the case was different. Here the writings of Descartes did much; and if they had been studied with proper attention, they might have done much more. But of this part of their merits, Condorcet seems to have had no idea. His eulogy, therefore, is rather misplaced than excessive. He has extolled Descartes as the father of Experimental Physics: He would have been nearer the truth, if he had pointed him out as the father of the Experimental Philosophy of the Human Mind.

In bestowing this title on Descartes, I am far from being inclined to compare him, in the num-

1 Condorcet.
2 One reason for this is well pointed out by D'Alembert. "Il n'y a que les chefs de secte en tout genre, dont les ouvrages puissent avoir un certain éclat; Bacon n'a pas été étoit trop sage pour étonner personne."—Disc. Prél.
ber or importance of the facts which he has remarked concerning our intellectual powers, to various other writers of an earlier date. I allude merely to his clear and precise conception of that operation of the understanding (distinguished afterwards in Locke's Essay by the name of Reflection), through the medium of which all our knowledge of Mind is exclusively to be obtained. Of the essential subserviency of this power to every satisfactory conclusion that can be formed with respect to the mental phenomena, and of the futility of every theory which would attempt to explain them by metaphors borrowed from the material world, no other philosopher prior to Locke seems to have been fully aware; and from the moment that these truths were recognised as logical principles in the study of mind, a new era commences in the history of that branch of science. It will be necessary, therefore, to allot to the illustration of this part of the Cartesian philosophy a larger space than the limits of my undertaking will permit me to afford to the researches of some succeeding inquirers, who may, at first sight, appear more worthy of attention in the present times.

It has been repeatedly asserted by the Materialists of the last century, that Descartes was the first Metaphysician by whom the pure immateriality of the human soul was taught; and that the ancient philosophers, as well as the schoolmen, went no farther than to consider mind as the result of a material organisation, in which the constituent elements approached to evanescence in point of subtlety. Both of these propositions I conceive to be totally unfounded. That many of the schoolmen, and that the wisest of the ancient philosophers, when they described the mind as a spirit, or as a spark of celestial fire, employed these expressions, not with any intention to materialise its essence, but merely from want of more unexceptionable language, might be shown with demonstrative evidence, if this were the proper place for entering into the discussion. But what is of more importance to be attended to, on the present occasion, is the effect of Descartes' writings in disentangling the logical principle above mentioned, from the scholastic question about the nature of mind, as contradistinguished from matter. It were indeed to be wished, that he had perceived still more clearly and steadily the essential importance of keeping this distinction constantly in view; but he had at least the merit of illustrating, by his own example, in a far greater degree than any of his predecessors, the possibility of studying the mental phenomena, without reference to any facts but those which rest on the evidence of consciousness. The metaphysical question about the nature of mind he seems to have considered as a problem, the solution of which was an easy corollary from these facts, if distinctly apprehended; but still as a problem, whereof it was possible that different views might be taken by those who agreed in opinion, as far as facts alone were concerned. Of this a very remarkable example has since occurred in the case of Mr Locke, who, although he has been at great pains to show, that the power of reflection bears the same relation to the study of the mental phenomena, which the power of observation bears to the study of the material world, appears, nevertheless, to have been far less decided than Descartes with respect to the essential distinction between Mind and Matter; and has even gone so far as to hazard the unguarded proposition, that there is no absurdity in supposing the Deity to have superadded to the other qualities of matter the power of thinking. His scepticism, however, on this point, did not prevent his good sense from perceiving, with the most complete conviction, the indispensable necessity of abstracting from the analogy of matter, in studying the laws of our intellectual frame.

The question about the nature or essence of the soul, has been, in all ages, a favourite subject of discussion among Metaphysicians, from its supposed connection with the argument in proof of its immortality. In this light it has plainly been considered by both parties in the dispute; the one conceiving, that if Mind could be shown to have no quality in common with Matter, its dissolution was physically impossible; the other, that if this assumption could be disproved, it would necessarily follow, that the whole man must perish at death. For the last of these opinions Dr Priestley and many other speculative theologians have of late very zealously contended; flattering themselves, no doubt, with
the idea, that they were thus preparing a triumph for their own peculiar schemes of Christianity.

Neglecting, accordingly, all the presumptions for a future state, afforded by a companion of the course of human affairs with the moral judgments and moral feelings of the human heart; and overlooking, with the same disdain, the presumptions arising from the narrow sphere of human knowledge, when compared with the indefinite improvement of which our intellectual powers seem to be susceptible, this acute but superficial writer attached himself exclusively to the old and hackneyed pneumatological argument; tacitly assuming as a principle, that the future prospects of man depend entirely on the determination of a physical problem, analogous to that which was then dividing chemists about the existence or non-existence of Phlogiston. In the actual state of science, these speculations might well have been spared. Where is the sober metaphysician to be found, who now speaks of the immortality of the soul as a logical consequence of its immateriality; instead of considering it as depending on the will of that Being by whom it was at first called into existence? And, on the other hand, is it not universally admitted by the best philosophers, that whatever hopes the light of nature encourages beyond the present scene, rest solely (like all our other anticipations of future events) on the general tenor and analogy of the laws by which we perceive the universe to be governed? The proper use of the argument concerning the immateriality of mind, is not to establish any positive conclusion as to its destiny hereafter; but to repel the reasonings alleged by materialists, as proofs that its annihilation must be the obvious and necessary effect of the dissolution of the body.¹

I thought it proper to state this consideration pretty fully, lest it should be supposed that the logical method recommended by Descartes for studying the phenomena of mind, has any necessary dependence on his metaphysical opinion concerning its being and properties, as a separate substance.² Between these two parts of his system, however, there is, if not a demonstrative connection, at least a natural and manifest affinity; insomuch as a steady adherence to his logical method (or, in other words, the habitual exercise of patient reflection), by accustoming us to break asunder the obstinate associations to which materialism is indebted for the early hold it is apt to take of the fancy, gradually and insensibly predisposes us in favour of his metaphysical conclusion. It is to be regretted, that, in stating this conclusion, his commentators should so frequently make use of the word spirituality; for which I do not recollect that his own works afford any authority. The proper expression is immateriality, conveying merely a negative idea; and, of consequence, implying nothing more than a rejection of that hypothesis concerning the nature of Mind, which the scheme of materialism so gratuitously, yet so dogmatically assumes.³

The power of Reflection, it is well known, is the last of our intellectual faculties that unfolds itself; and, in by far the greater number of individuals, it never unfolds itself in any considerable degree. It is a fact equally certain, that, long before the period of life when this power begins to exercise its appropriate functions, the understanding is already preoccupied with a

¹ "We shall here be content," says the learned John Smith of Cambridge, "with that sober thesis of Plato, in his Timæus, who attributes the perpetuation of all substances to the benignity and liberality of the Creator; whom he therefore brings in thus speaking, ὑμιᾶς δὲ λήπτως, εὐδελνόν ἔποιη. You are not of yourselves immortal nor indissoluble, but would relapse and slide back from that being which I have given you, should I withdraw the influence of my own power from you; but yet you shall hold your immortality by a patent from myself."—(Select Discourses, Cambridge, 1660.) I quote this passage from one of the oldest partisans of Descartes among the English philosophers.

² Descartes himself is said to have been of a different opinion. "On a été étonné," says Thomas, "que dans ses Méditations Métaphysiques, Descartes n'ait point parlé de l'immortalité de l'âme. Mais il nous apprend lui-même par une de ses lettres, qu'ayant établi clairement, dans cet ouvrage, la distinction de l'âme et de la matière, il suivit nécessairement de cette distinction, que l'âme par sa nature ne pouvait périr avec le corps."—Éloge de Descartes. Note 21.

³ I employ the scholastic word substance, in conformity to the phraseology of Descartes; but I am fully aware of the strong objections to which it is liable, not only as a wide deviation from popular use, which has appropriated it to things material and tangible, but as implying a greater degree of positive knowledge concerning the nature of mind, than our faculties are fitted to attain.—For some further remarks on this point, See Note I.

² See Note K.
chasm of opinions, notions, impressions, and associations, bearing on the most important objects of human inquiry; not to mention the innumerable sources of illusion and error connected with the use of a vernacular language, learned in infancy by rote, and identified with the first processes of thought and perception.

The consequence is, that when man begins to reflect, he finds himself (if I may borrow an allusion of M. Turgot's) lost in a labyrinth, into which he had been led blindfold. To the same purpose, it was long ago complained of by Bacon, "that no one has yet been found of so constant and severe a mind, as to have determined and tasked himself utterly to abolish theories and common notions, and to apply his intellect, altogether smooth and even, to particulars anew. Accordingly, that human reason which we have, is a kind of medley and unsorted collection, from much trust and much accident, and the childish notions which we first drank in. Whereas, if one of ripe age and sound senses, and a mind thoroughly cleared, should apply himself freshly to experiment and particulars, of him were better things to be hoped." What Bacon has here recommended, Descartes attempted to execute; and so exact is the coincidence of his views on this fundamental point with those of his predecessor, that it is with difficulty I can persuade myself that he had never read Bacon's works. In the prosecution of this undertaking, the first steps of Descartes are peculiarly interesting and instructive; and it is these alone which merit our attention at present. As for the details of his system, they are now curious only as exhibiting an amusing contrast to the extreme rigour of the principle from which the author sets out; a contrast so very striking, as fully to justify the epigrammatic saying of D'Alembert, that "Descartes began with doubting of every thing, and ended in believing that he had left nothing unexplained."

Among the various articles of common belief which Descartes proposed to subject to a severe scrutiny, he enumerates particularly, the conclusiveness of mathematical demonstration; the existence of God; the existence of the material world; and even the existence of his own body. The only thing that appeared to him certain and incontrovertible, was his own existence; by which he repeatedly reminds us, we are to understand merely the existence of his mind, abstracted from all consideration of the material organs connected with it. About every other proposition, he conceived, that doubts might reasonably be entertained; but to suppose the non-existence of that which thinks, at the very moment it is conscious of thinking, appeared to him a contradiction in terms. From this single postulatum, accordingly, he took his departure; resolved to admit nothing as a philosophical truth, which could not be deduced from it by a chain of logical reasoning.

Having first satisfied himself of his own existence, his next step was to inquire, how far his perceptive and intellectual faculties were entitled to credit. For this purpose, he begins with offering a proof of the existence and attributes of God;—truths which he conceived to be necessarily involved in the idea he was able to form of a perfect, self-existent, and eternal being. His reasonings on this point it would be useless to state. It is sufficient to observe, that they led him to conclude, that God cannot possibly be supposed to deceive his creatures; and therefore, that the intimations of our senses, and the decisions of our reason, are to be trusted to with entire confidence, wherever they afford us clear and distinct ideas of their respective objects.

1 "Quand l'homme a voulu se replier sur lui-même, il s'est trouvé dans un labirinthe, où il était entré les yeux bandés."—Oeuvres de Turgot, Tom. II. p. 261.
2 See Note L.
3 "Sic autem rejicientes illa omnia, de quibus aliquo modo possimus dubitare, ac etiam falsa esse fingentes, facile quidem supponimus nullum esse Deum, nullum caelum, nulla corpora; nosque etiam ipsos, non habere manus, nec pedes, nec denique ullam corpus; non autem ideo nos qui falla cogitamus nihil esse: repugnat enim, ut putemus id quod cogitamus, esse tempore quo cogitamus, non existere. Ac praemine habe cogitatis, ergo cogito, ergo sum, est omnium prima et certissima, quae cuiuslibet ordine philosophanti occurrat."—Princip. Philos. Pars I. § 7.
4 The substance of Descartes' argument on these fundamental points, is thus briefly recapitulated by himself in the conclusion of his third Meditation:—"Dum in meipsum mentis aciem converto, non modo intelligo me esse rem incompletam, et ab alio dependcement, remque ad materiam meliora indefinite aspirantem, sed simul etiam intelligo illum, a
As Descartes conceived the existence of God (next to the existence of his own mind) to be the most indisputable of all truths, and rested his confidence in the conclusions of human reason entirely on his faith in the divine veracity, it is not surprising that he should have rejected the argument from *final causes*, as superfluous and unsatisfactory. To have availed himself of its assistance would not only have betrayed a want of confidence in what he professed to regard as much more certain than any mathematical theorem; but would obviously have exposed him to the charge of first appealing to the divine attributes in proof of the authority of his faculties; and afterwards, of appealing to these faculties, in proof of the existence of God.

It is wonderful that it should have escaped the penetration of this most acute thinker, that a *vicious circle* of the same description is involved in every appeal to the intellectual powers, in proof of their own credibility; and that unless this credibility be assumed as unquestionable, the farther exercise of human reason is altogether nugatory. The evidence for the existence of God seems to have appeared to Descartes too irresistible and overwhelming, to be subjected to those logical canons which apply to all the other conclusions of the understanding.¹

Extravagant and hopeless as these preliminary steps must now appear, they had nevertheless an obvious tendency to direct the attention of the author, in a singular degree, to the phenomena of thought; and to train him to those habits of abstraction from external objects, which, to the bulk of mankind, are next to impossible. In this way he was led to perceive, with the evidence of consciousness, that the attributes of Mind were still more clearly and distinctly knowable than those of Matter; and that, in studying the former, so far from attempting to explain them by analogies borrowed from the latter, our chief aim ought to be, to banish as much as possible from the fancy every analogy, and even every analogical expression, which, by inviting the attention abroad, might divert it from its proper business at home. In one word, that the only right method of philosophising on this subject was comprised in the old stoical precept (understood in a sense somewhat different from that originally annexed to it) *nec te quesiveris extra*. A just conception of this rule, and a steady adherence to its spirit, constitutes the ground-work of what is properly called the Experimental Philosophy of the Human Mind. It is thus that all our facts relating to Mind must be ascertained; and it is only upon facts thus attested by our own consciousness, that any just theory of Mind can be reared.

Agreeably to these views, Descartes was, I think, the first who clearly saw that our idea of Mind is not direct, but relative;—relative to the various operations of which we are conscious. What am I? he asks, in his second Meditation: *A thinking being,—that is, a being doubting,*

¹ How painful is it to recollect, that the philosopher who had represented his faith in the veracity of God, as the sole foundation of his confidence in the demonstrations of mathematics, was accused and persecuted by his contemporaries as an atheist; and *that*, too, in the same country (Holland), where, for more than half a century after his death, his doctrines were to be taught in all the universities with a blind idolatry! A zeal without knowledge, and the influence of those earthly passions, from which even Protestant divines are not always exempted, may, it is to be hoped, go far to account for this inconsistency and injustice, without adopting the uncharitable insinuation of D'Alembert: "Malgré toute la sagacité qu'il avait employée pour prouver l'existence de Dieu, il fut accusé de la nier par des ministres, qui peut-être ne la croyaient pas."
knowing, affirming, denying, consenting, refusing, susceptible of pleasure and of pain. Of all these things I might have had complete experience, without any previous acquaintance with the qualities and laws of matter; and therefore it is impossible that the study of matter can avail me in the study of myself. This, accordingly, Descartes laid down as a first principle, that *nothing comprehensible by the imagination can be at all subservient to the knowledge of Mind*; and that the sensible images involved in all our common forms of speaking concerning its operations, are to be guarded against with the most anxious care, as tending to confound, in our apprehensions, two classes of phenomena, which it is of the last importance to distinguish accurately from each other.

To those who are familiarly acquainted with the writings of Locke, and of the very few among his successors who have thoroughly entered into the spirit of his philosophy, the foregoing observations may not appear to possess much either of originality or of importance; but when first given to the world, they formed the greatest step ever made in the science of Mind, by a single individual. What a contrast do they exhibit, not only to the discussions of the schoolmen, but to the analogical theories of Hobbes at the very same period! and how often have they been since lost sight of, notwithstanding the clearest speculative conviction of their truth and importance, by Locke himself, and by the greatest part of his professed followers! Had they been duly studied and understood by Mr Horne Tooke, they would have furnished him with a key for solving those etymological riddles, which, although mistaken by many of his contemporaries for profound philosophical discoveries, derive, in fact, the whole of their mystery, from the strong bias of shallow reasoners to relapse into the same scholastic errors, from which Descartes, Locke, Berkeley, Hume, and Reid, have so successfully laboured to emancipate the mind.

If any thing can add to our admiration of a train of thought manifesting in its author so unexampled a triumph over the strongest prejudices of sense, it is the extraordinary circumstance of its having first occurred to a young man, who had spent the years commonly devoted to academic study, amid the dissipation and tumult of camps. Nothing could make this conceivable, but the very liberal education which he had previously received under the Jesuits, at the college of La Flèche; where, we are told, that while yet a boy, he was so distinguished by

1 "Non sum compages illa membrorum, quae corpus humanum appellatur; non sum etiam tenuis aliquis aet istis membris infusus; non ventus, non ignis, non vapor, non halitus—Quid igitur sum? res cogitans? quid est hoc? nempe dubitans, intelligentes, affirmati, negati, volens, nonoles," *c.e.*—Med. Sec.

2 Itaque cognosco, nihil eorum quos possum *Imaginationem* comprehendere, ad hanc quam de me habeo notionem pertinere; mentemque ab hia diligentissime esse avocandum, ut suam ipsa naturam quam distinctissime persequam.—*Ibid.* A few sentences before, Descartes explains with precision in what sense *Imagination* is here to be understood. “Nihil aliud est imaginari quam rei corporae figuram seu imaginem contemplari.”

The following extracts from a book published at Cambridge in 1690 (precisely ten years after the death of Descartes), while they furnish a useful comment on some of the above remarks, may serve to show, how completely the spirit of the Cartesian philosophy of Mind had been seized even then, by some of the members of that university.

3 "The souls of men exercising themselves first of all *σοφία*, as the Greek philosopher expressed himself, merely by a *progressive kind of motion*, spending themselves about bodily and material acts, and conversing only with sensible things: they are apt to acquire such deep stamps of material phantasms to themselves, that they cannot imagine their own *Being* to be any other than *material* and *divisible*, though of a fine ethereal nature. It is not possible for us well to know what our souls are, but only by their *σοφία*, their *circular or reflex motions*, and converse with themselves, which can only steal from them their own secrets."—SMITH'S Select Discourses, p. 65, 66.

4 "If we reflect but upon our own souls, how manifestly do the notions of *reason*, *freedom*, *perception*, and the like, offer themselves to us, whereby we may *know* a thousand times *more distinctly* what our souls are than what our bodies are. For the former, we know by an immediate converse with ourselves, and a distinct sense of their operations; whereas all our knowledge of the body is little better than merely historical, which we gather up by scraps and piecemeal, from more doubtful and uncertain experiments which we make of them; but the notions which we have of a *mind*, i.e. something within us that thinks, apprehends, reasons, and discourses, are so clear and distinct from all those notions which we can fasten upon a body, that we can easily conceive that if all *body-being* in the world were destroyed, yet we might then as well subsist as now we do."—*Ibid.* p. 93.

5 "Descartes porta les armes, d'abord en Hollande, sous le célèbre Maurice de Nassau; de-là en Allemagne, sous Maximilien de Bavière, au commencement de la guerre de trente ans. Il passa ensuite au service de l'Empereur Ferdinand II. pour vaincre de plus près les troubles de la Hongrie. On crut aussi, qu'au siège de la Rochelle, il combattit, comme volontaire, dans une bataille contre la flotte Angloise."—*THOMAS, Éloge de Descartes*, Note 8.

When Descartes quitted the profession of arms, he had arrived at the age of twenty-five.

6 It is a curious coincidence, that it was in the same village of *La Flèche* that Mr Hume fixed his residence, while com-
hhabits of deep meditation, that he went among his companions by the name of the Philosopher. Indeed, it is only at that early age, that such habits are to be cultivated with complete success.

The glory, however, of having pointed out to his successors the true method of studying the theory of Mind, is almost all that can be claimed by Descartes in logical and metaphysical science. Many important hints, indeed, may be gleaned from his works; but, on the whole, he has added very little to our knowledge of human nature. Nor will this appear surprising, when it is re-collected, that he aspired to accomplish a similar revolution in all the various departments of physical knowledge;—not to mention the time and thought he must have employed in those mathematical researches, which, however lightly esteemed by himself, have been long regarded as the most solid basis of his fame.

Among the principal articles of the Cartesian philosophy, which are now incorporated with our prevailing and most accredited doctrines, the following seem to me to be chiefly entitled to notice:

1. His luminous exposition of the common logical error of attempting to define words which express notions too simple to admit of analysis. Mr Locke claims this improvement as entirely his own; but the merit of it unquestionably belongs to Descartes, although it must be owned that he has not always sufficiently attended to it in his own researches.

2. His observations on the different classes of our prejudices—particularly on the errors to which we are liable in consequence of a careless use of language as the instrument of thought.

The greater part of these observations, if not the whole, had been previously hinted at by Bacon; but they are expressed by Descartes with greater precision and simplicity, and in a style better adapted to the taste of the present age.

3. The paramount and indisputable authority which, in all our reasonings concerning the human mind, he ascribes to the evidence of consciousness. Of this logical principle he has availed himself, with irresistible force, in refuting the scholastic sophisms against the liberty of human actions, drawn from the presence of the Deity, and other considerations of a theological nature.

4. The most important, however, of all his improvements in metaphysics, is the distinction which he has so clearly and so strongly drawn between the primary and the secondary qualities of matter. This distinction was not unknown to some of the ancient schools of philosophy in Greece; but it was afterwards rejected by Aristotle, and by the schoolmen; and it was reserved for Descartes to place it in such a light, as (with the exception of a very few sceptical or rather paradoxical theorists) to unite the opinions of all succeeding inquirers. For this step, so apparently easy, but so momentous in its consequences, Descartes was not indebted to any long or difficult processes of reasoning; but to those habits of accurate and patient attention to the operations of his own mind, which, from his early years, it was the great business of his life to cultivate. It may be proper to add, that the epithets primary and secondary, now universally employed to mark the distinction in question, were first introduced by Locke; a circumstance posing his Treatise of Human Nature. Is it not probable, that he was partly attracted to it, by associations similar to those which presented themselves to the fancy of Cicero, when he visited the walks of the Academy?

In the beginning of Descartes' dissertation upon Method, he has given a very interesting account of the pursuits which occupied his youth, and of the considerations which suggested to him the bold undertaking of reforming philosophy.

Such too is the judgment pronounced by D'Alembert. "Les Mathématiques, dont Descartes semble avoir fait assez peu de cas, sont néanmoins aujourd'hui la partie la plus solide et la moins contestée de sa gloire." To this he adds a very ingenious reflection on the comparative merits of Descartes, considered as a geometer and as a philosopher. "Comme philosophe, il a peut-être été aussi grand, mais il n'a pas été si heureux. La Géométrie, qui par la nature de son objet doit toujours gagner sans perdre, ne pouvait manquer, d'autant plus qu'il a été un peu grand génie de faire des progrès triomphants, et appréciables pour tout le monde. La Philosophie se trouvait dans un état bien différent, tout y était à commencer; et que ne coûte point les premiers pas en tout genre! le mérite de les faire dispense de celui d'en faire de grands."—Diss. Prélim.

"The names of simple ideas are not capable of any definitions; the names of all complex ideas are. It has not, that I know, been yet observed by any body, what words are, and what are not capable of being defined."—(Locke's Essay, Book iii. chap iv. 8 iv.)—Compare this with the Principles of Descartes, I. 16; and with Lord Stair's Philologia Nova Experimentalis, pp. 9 and 79, printed at Leyden in 1686.
which may have contributed to throw into the shade the merits of those inquirers who had previously struck into the same path.

As this last article of the Cartesian system has a close connection with several of the most refined conclusions yet formed concerning the intellectual phenomena, I feel it due to the memory of the author, to pause for a few moments, in order to vindicate his claim to some leading ideas, commonly supposed by the present race of metaphysicians to be of much later origin. In doing so, I shall have an opportunity, at the same time, of introducing one or two remarks, which, I trust, will be useful in clearing up the obscurity, which is allowed by some of the ablest followers of Descartes and Locke, still to hang over this curious discussion.

I have elsewhere observed, that Descartes has been very generally charged by the writers of the last century, with a sophistical play upon words in his doctrine concerning the non-existence of secondary qualities; while, in fact, he was the first person by whom the fallacy of this scholastic paralogism was exposed to the world. In proof of this, it might be sufficient to refer to his own statement, in the first part of the Principia; but, for a reason which will immediately appear, I think it more advisable, on this occasion, to borrow the words of one of his earliest and ablest commentators. "It is only (says Father Malebranche) since the time of Descartes, that to those confused and indeterminate questions, whether fire is hot, grass green, and sugar sweet, philosophers are in use to reply, by distinguishing the equivocal meaning of the words expressing sensible qualities. If by heat, cold, and savour, you understand such and such a disposition of parts, or some unknown motion of sensible qualities, then fire is hot, grass green, and sugar sweet. But if by heat and other qualities you understand what I feel by fire, what I see in grass, &c. fire is not hot, nor grass green; for the heat I feel, and the colours I see, are only in the soul." It is surprising how this, and other passages to the same purpose in Malebranche, should have escaped the notice of Dr Reid; for nothing more precise on the ambiguity in the names of secondary qualities is to be found in his own works. It is still more surprising that Buffier, who might have been expected to have studied with care the speculations of his illustrious countryman, should have directly charged, not only Descartes, but Malebranche, with maintaining a paradox, which they were at so much pains to banish from the schools of philosophy.

The important observations of Descartes upon this subject, made their way into England very soon after his death. They are illustrated at considerable length, and with great ingenuity, by Glanville, in his Sceptica Scientifica, published

1 "Descartes, Malebranche, and Locke, revived the distinction between primary and secondary qualities. But they made the secondary qualities mere sensations, and the primary ones resemblances of our sensations. They maintained that colour, sound, and heat, are not any thing in bodies, but sensations of the mind.---The paradoxes of these philosophers were only an abuse of words. For when they maintain, as an important modern discovery, that there is no heat in the fire, they mean no more than that the fire does not feel heat, which every one knew before."—Reid's Inquiry, chap. v. sect. viii.

2 See sections lxix. lxx. lxxi. The whole of these three paragraphs is highly interesting; but I shall only quote two sentences, which are fully sufficient to show, that, in the above observations, I have done Descartes no more than strict justice.

"Patet itaque in re idem esse, cum dicimus nos percipere colores in objectis, ac si dicercemus nos percipere aliquid in objectis, quod quidem quid sit ignorantus, sem a quo effectur in nobis ipsius sensum quidam valde manifestum et perspicuum, qui vocatur sensus colorum."—Cuncta vero putamus nos percipere colores in objectis, et si revera neciamus quidnam sit quod tunc nomine coloris appellamur, nec ullam similitudinem intelligere possimus, inter colorum quem supernumin esse in objectis, et illum quem experimur esse in sensu, quia tamen hoc ipsum non advertimus, et multa alia sunt, ut magnitudo, figura, numerus, &c. que clare percipimus non aliter a nobis sentiri vel intelligi, quam ut sunt, aut saltem esse possunt in objectis, facile, in cuncta errorem delabimur, ut judicimus id, quod in objectis vocamus colorum, esse quid omnino simile colori quem sensimus, atque ut id quod nullo modo percipimus, a nobis clare percepit arbitraremur."

3 Recherches de la Vérité, Livre iv. chap. ii.

"Je m'admirois souvent que d'auzui grands hommes que Descartes et Malebranche, avec leurs sectateurs, fussent valoir, comme une rare découverte de leur philosophie, que la chaleur était dans nous-mêmes et valablement dans le feu; au lieu que le commun des hommes trouvent que la chaleur était dans le feu aussi bien que dans nous.——Mais en ce fameux débat, de quoi s'agit-il? Uniquement de l'imperfection du langage, qui causoit une idée confuse par le mot de chaleur, ce mot exprimant également deux choses, qui à la vérité ont quelque rapport ou analogie, et pourtant qui sont très différentes: savoir, 1. le sentiment de chaleur qui nous éprouvons en nous; 2. la disposition qui est dans le feu à produire en nous ce sentiment de chaleur."—Cours de Sciences, par le Père Buffier, p. 819. A Paris, 1732.
about thirteen years before Malebranche's *Search after Truth*. So slow, however, is the progress of good sense, when it has to struggle against the prejudices of the learned, that, as lately as 1713, the paradox so clearly explained and refuted by Descartes, appears to have kept some footing in the English universities. In a paper of the *Guardian*, giving an account of a visit paid by Jack Lizard to his mother and sisters, after a year and half's residence at Oxford, the following *précis* is given of his logical attainments. "For the first week (it is said) Jack dealt wholly in paradoxes. It was a common jest with him to pinch one of his sister's lap dogs, and afterwards prove he could not feel it. When the girls were sorting a set of knots, he would demonstrate to them that all the ribbons were of the same colour; or rather, says Jack, of no colour at all. My Lady Lizard herself, though she was not a little pleased with her son's improvements, was one day almost angry with him; for having accidentally burnt her fingers as she was lighting the lamp for her tea-pot, in the midst of her anguish, Jack laid hold of the opportunity to instruct her, that there was no such thing as heat in the fire."

This miserable quibble about the non-existence of secondary qualities, never could have attracted the notice of so many profound thinkers, had it not been for a peculiar difficulty connected with our notions of *colour*, of which I do not know anyone English philosopher who seems to have been sufficiently aware. That this quality belongs to the same class with sounds, smells, tastes, heat and cold, is equally admitted by the partisans of Descartes and of Locke; and must, indeed, appear an indisputable fact to all who are capable of reflecting accurately on the subject. But still, between *colour* and the other qualities now mentioned, a very important distinction must be allowed to exist. In the case of smells, tastes, sounds, heat and cold, every person must immediately perceive, that his senses give him only a *relative idea* of the external quality; in other words, that they only convey to him the knowledge of the existence of certain properties or powers in external objects, which fit them to produce certain sensations in his mind; and, accordingly, nobody ever hesitated a moment about the truth of this part of the Cartesian philosophy, in so far as these qualities alone are concerned. But, in the application of the same doctrine to *colour*, I have conversed with many, with whom I found it quite in vain to argue; and *this*, not from any defect in their reasoning powers, but from their incapacity to reflect steadily on the subjects of their consciousness; or rather, perhaps, from their incapacity to separate, as objects of the understanding, two things indissolubly combined by early and constant habit, as objects of the imagination. The silence of modern metaphysicians on this head is the more surprising, as D'Alembert long ago invited their attention to it as one of the most wonderful phenomena in the history of the human mind. "The bias we acquire," I quote his own words, "in consequence of habits contracted in infancy, to refer to a substance material and divisible, what really belongs to a substance spiritual and simple, is a thing well worthy of the attention of metaphysicians. Nothing," he adds, "is perhaps more extraordinary, in the operations of the mind, than to see it transport its sensations out of itself, and to spread them, as it were, over a substance to which they cannot possibly belong."—It would be difficult to state the fact in question in terms more brief, precise, and perspicuous.

That the illusion, so well described in the above quotation, was not overlooked by Descartes and Malebranche, appears unquestionable, from their extreme solicitude to reconcile it with that implicit faith, which, from religious considerations, they conceived to be due to the testimony of those faculties with which our Maker has endowed us. Malebranche, in particular, is at pains to distinguish between the sensation, and the judgment combined with it. "The sensation never deceives us; it differs in no respect from what we conceive it to be. The judgment, too, is natural, or rather (says Malebranche), *it is only a sort of compound sensation*;¹ but this

¹ He would have expressed himself more accurately, if he had said, that the judgment is indissolubly combined with the sensation; but his meaning is sufficiently obvious.
judgment leads us into no error with respect to philosophical truth. The moment we exercise our reason, we see the fact in its true light, and can account completely for that illusive appearance which it presents to the imagination.

Not satisfied, however, with this solution of the difficulty, or rather perhaps apprehensive that it might not appear quite satisfactory to some others, he has called in to his assistance the doctrine of original sin; asserting, that all the mistaken judgments which our constitution leads us to form concerning external objects and their qualities, are the consequences of the fall of our first parents; since which adventure (as it is somewhat irreverently called by Dr Beattie), it requires the constant vigilance of reason to guard against the numberless tricks and impostures practised upon us by our external senses. In another passage, Malebranche observes very beautifully (though not very consistently with his theological argument on the same point), that our senses being given us for the preservation of our bodies, it was requisite for our well-being, that we should judge as we do of sensible qualities. "In the case of the sensations of pain and of heat, it was much more advantageous that we should seem to feel them in those parts of the body which are immediately affected by them, than that we should associate them with the external objects by which they are occasioned; because pain and heat, having the power to injure our members, it was necessary that we should be warned in what place to apply the remedy; whereas colours not being likely, in ordinary cases, to hurt the eye, it would have been superfluous for us to know that they are painted on the retina. On the contrary, as they are only useful to us, from the information they convey with respect to things external, it was essential that we should be so formed as to attach them to the corresponding objects on which they depend."

The two following remarks, which I shall state with all possible brevity, appear to me to go far towards a solution of the problem proposed by D'Alembert.

1. According to the new theory of vision commonly (but, as I shall afterwards show, not altogether justly) ascribed to Dr Berkeley, lineal distance from the eye is not an original perception of sight. In the meantime, from the first moment that the eye opens, the most intimate connection must necessarily be established between the notion of colour and those of visible extension and figure. At first, it is not improbable that all of them may be conceived to be merely modifications of the mind; but, however this may be, the manifest consequence is, that when a comparison between the senses of Sight and of Touch has taught us to refer to a distance the objects of the one, the indissolubly associated sensations of the other must of course accompany them, how far soever that distance may extend.

2. It is well known to be a general law of our constitution, when one thing is destined, either by nature or by convention, to be the sign of another, that the mind has a disposition to pass on, as rapidly as possible, to the thing signified, without dwelling on the sign as an object worthy of its attention. The most remarkable of all ex-

1. "We are informed by Father Malebranche, that the senses were at first as honest faculties as one could desire to be endowed with, till after they were debauched by original sin; an adventure from which they contracted such an invincible propensity to cheating, that they are now continually lying in wait to deceive us."—Essay on Truth, p. 241, second edition.

2. Recherche de la Vérité, Liv. i. chap. xiii. § 5. In Dr Reid's strictures on Descartes and Locke there are two remarks which I am at a loss how to reconcile. "'Colour,' says he, 'differs from other secondary qualities in this, that whereas the name of the quality is sometimes given to the sensation which indicates it, and is occasioned by it, we never, as far as I can judge, give the name of colour to the sensation, but to the quality only.'" A few sentences before, he had observed, "That when we think or speak of any particular colour, however simple the notion may seem to be which is presented to the imagination, it is really in some sort compounded. It involves an unknown cause, and a known effect. The name of colour belongs indeed to the cause only, and not to the effect. But as the cause is unknown, we can form no distinct conception of it, but by its relation to the known effect. And, therefore, both go together in the imagination, and are so closely united, that they are mistaken for one simple object of thought."—Inquiry, chap. vi. sect. 4.

These two passages seem quite inconsistent with each other. If, in the perception of colour, the sensation and the quality be so closely united as to be mistaken for one single object of thought, does it not obviously follow, that it is to this compounded notion the name of colour must, in general, be given? On the other hand, when it is said that the name of colour is never given to the sensation, but to the quality only, does this not imply, that every time the word is pronounced, the quality is separated from the sensation, even in the imaginations of the vulgar?

* See Note M.

Diss. 1. Part I.
amples of this occurs in the acquired perceptions of sight, where our estimates of distance are frequently the result of an intellectual process, comparing a variety of different signs together, without a possibility on our part, the moment afterwards, of recalling one single step of the process to our recollection. Our inattention to the sensations of colour, considered as affections of the Mind, or as modifications of our own being, appears to me to be a fact of precisely the same description; for all these sensations were plainly intended by nature to perform the office of signs, indicating to us the figures and distances of things external. Of their essential importance in this point of view, an idea may be formed, by supposing for a moment the whole face of nature to exhibit only one uniform colour, without the slightest variety even of light and shade. Is it not self-evident that, on this supposition, the organ of sight would be entirely useless, inasmuch as it is by the varieties of colour alone that the outlines or visible figures of bodies are so defined, as to be distinguishable one from another? Nor could the eye, in this case, give us any information concerning diversities of distance; for all the various signs of it, enumerated by optical writers, presuppose the antecedent recognition of the bodies around us, as separate objects of perception. It is not therefore surprising, that signs so indispensably subservient to the exercise of our noblest sense, should cease, in early infancy, to attract notice as the subjects of our consciousness; and that afterwards they should present themselves to the imagination rather as qualities of Matter, than as attributes of Mind.1

To this reference of the sensation of colour to the external object, I can think of nothing so analogous as the feelings we experience in sur-veying a library of books. We speak of the volumes piled up on its shelves, as treasures or magazines of the knowledge of past ages; and contemplate them with gratitude and reverence, as inexhaustible sources of instruction and delight to the mind. Even in looking at a page of print or of manuscript, we are apt to say, that the ideas we acquire are received by the sense of sight; and we are scarcely conscious of a metaphor, when we employ this language. On such occasions we seldom recollect, that nothing is perceived by the eye but a multitude of black strokes drawn upon white paper, and that it is our own acquired habits which communicate to these strokes the whole of that significance whereby they are distinguished from the unmeaning scrawling of an infant or a changeling. The knowledge which we conceive to be preserved in books, like the fragrance of a rose, or the gilding of the clouds, depends, for its existence, on the relation between the object and the percipient mind; and the only difference between the two cases is, that in the one, this relation is the local and temporary effect of conventional habits; in the other, it is the universal and the unchangeable work of nature. The art of printing, it is to be hoped, will in future render the former relation, as well as the latter, coeval with our species; but, in the past history of mankind, it is impossible to say how often it may have been dissolved. What vestiges can now be traced of those scientific attainments which, in early times, drew to Egypt, from every part of the civilised world, all those who were anxious to be initiated in the mysteries of philosophy? The symbols which still remain in that celebrated country, inscribed on eternal monuments, have long lost the correspondent minds which reflected upon them their own intellectual attributes. To us

1 In Dr Reid's Inquiry, he has introduced a discussion concerning the perception of visible figure, which has puzzled me since the first time (more than forty years ago) that I read his work. The discussion relates to this question, "Whether there be any sensation proper to visible figure, by which it is suggested in vision?" The result of the argument is, that "our eye might have been so framed as to suggest the figure of the object, without suggesting colour, or any other quality; and, of consequence, there seems to be no sensation appropriated to visible figure; this quality being suggested immediately by the material impression upon the organ, of which impression we are not conscious."—Inquiry, &c. chap. vi. sect. 8. To my apprehension, nothing can appear more manifest than this, that, if there had been no variety in our sensations of colour, and still more, if we had had no sensation of colour whatsoever, the organ of sight could have given us no information, either with respect to figures or to distances; and, of consequence, would have been as useless to us, as if we had been afflicted, from the moment of our birth, with a gutta serena.
they are useless and silent, and serve only to attest the existence of arts, of which it is impossible to unriddle the nature and the objects.

Varis nunc sculpta figuris
Marmora, truncus tamen visuntur mutaque nobis;
Signa repertorum tulnus, cecidere reperta.

What has now been remarked with respect to written characters, may be extended very nearly to oral language. When we listen to the discourse of a public speaker, eloquence and persuasion seem to issue from his lips; and we are little aware, that we ourselves infuse the soul into every word that he utters. The case is exactly the same when we enjoy the conversation of a friend. We ascribe the charm entirely to his voice and accents; but without our cooperation, its potency would vanish. How very small the comparative proportion is, which, in such cases, the words spoken contribute to the intellectual and moral effect, I have elsewhere endeavoured to show.

I have enlarged on this part of the Cartesian system, not certainly on account of its intrinsic value, as connected with the theory of our external perceptions (although even in this respect of the deepest interest to every philosophical inquirer), but because it affords the most palpable and striking example I know of, to illustrate the indissoluble associations established during the period of infancy between the intellectual and the material worlds. It was plainly the intention of nature, that our thoughts should be habitually directed to things external; and accordingly the bulk of mankind are not only indisposed to study the intellectual phenomena, but are incapable of that degree of reflection which is necessary for their examination. Hence it is, that when we begin to analyse our own internal constitution, we find the facts it presents to us so very intimately combined in our conceptions with the qualities of matter, that it is impossible for us to draw distinctly and steadily the line between them; and that, when Mind and Matter are concerned in the same result, the former is either entirely overlooked, or is regarded only as an accessory principle, dependent for its existence on the latter. To the same cause it is owing, that we find it so difficult (if it be at all practicable) to form an idea of any of our intellectual operations, abstracted from the images suggested by their metaphorical names. It was objected to Descartes by some of his contemporaries, that the impossibility of accomplishing the abstractions which he recommended, furnished of itself a strong argument against the soundness of his doctrines. The proper answer to this objection does not seem to have occurred to him, nor, so far as I know, to any of his successors;—that the abstractions of the understanding are totally different from the abstractions of the imagination; and that we may reason with most logical correctness about things considered apart, which it is impossible, even in thought, to conceive as separated from each other. His own speculations concerning the indissolubility of the union established in the mind between the sensations of colour and the primary qualities of extension and figure, might have furnished him, on this occasion, with a triumphant reply to his adversaries; not to mention that the variety of metaphors, equally fitted to denote the same intellectual powers and operations, might have been urged as a demonstrative proof, that none of these metaphors have any connection with the general laws to which it is the business of the philosopher to trace the mental phenomena.

When Descartes established it as a general principle, that nothing conceivable by the power of imagination could throw any light on the operations of thought (a principle which I consider as exclusively his own), he laid the foundation-stone of the Experimental Philosophy of the Human Mind. That the same truth had been previously perceived, more or less distinctly, by Bacon and others, appears probable from the general complexion of their speculations; but which of them has expressed it with equal precision, or laid it down as a fundamental maxim in their logic? It is for this reason, that I am disposed to date the origin of the true Philosophy of Mind from the Principia of Descartes rather

1 See, in particular, Gassendi Opera, Tom. III. pp. 300, 301. Lugduni, 1653.
than from the Organon of Bacon, or the Essay of Locke; without, however, meaning to compare the French author with our two countrymen, either as a contributor to our stock of facts relating to the intellectual phenomena, or as the author of any important conclusion concerning the general laws to which they may be referred. It is mortifying to reflect on the inconceivably small number of subsequent inquirers by whom the spirit of this cardinal maxim has been fully seized; and that, even in our own times, the old and inveterate prejudice to which it is opposed, should not only have been revived with success, but should have been very generally regarded as an original and profound discovery in metaphysical science. These circumstances must plead my apology for the space I have assigned to the Cartesian Metaphysics in the crowded historical picture which I am at present attempting to sketch. The fulness of illustration which I have bestowed on the works of the master, will enable me to pass over those of his disciples, and even of his antagonists, with a correspondent brevity.

After having said so much of the singular merits of Descartes as the father of genuine metaphysics, it is incumbent on me to add, that his errors in this science were on a scale of proportionate magnitude. Of these the most prominent (for I must content myself with barely mentioning a few of essential importance) were his obstinate rejection of all speculations about final causes; his hypothesis concerning the lower animals, which he considered as mere machines; his doctrine of innate ideas, as understood and expounded by himself; his noted paradox of placing the essence of mind in thinking, and of matter in extension; and his new modification of the ideal theory of perception, adopted afterwards, with some very slight changes, by Malebranche, Locke, Berkeley, and Hume. To some of these errors I shall have occasion to refer in the sequel of this Discourse. The foregoing slight enumeration is sufficient for my present purpose.

In what I have hitherto said of Descartes, I have taken no notice of his metaphysico-physiological theories relative to the connection between soul and body. Of these theories, however, groundless and puerile as they are, it is necessary for me, before I proceed farther, to say a few words, on account of their extensive and lasting influence on the subsequent history of the science of Mind, not only upon the Continent, but in our own island.

The hypothesis of Descartes, which assigns to the soul for its principal seat the pineal gland or conarion, is known to every one who has perused

1 The Cartesian doctrine concerning the secondary qualities of matter, is susceptible of various other important applications. Might it not be employed, at least as an argumentum ad hominem against Mr Hume and others, who, admitting this part of the Cartesian system, seem nevertheless to have a secret leaning to the scheme of materialism? Mr Hume has somewhere spoken of that little agitation of the brain we call thought. If it be unphilosophical to confound our sensations of colour, of heat, and of cold, with such qualities as extension, figure, and solidity, is it not, if possible, still more so, to confound with these qualities the phenomena of thought, of volition, and of moral emotion?

2 It is not unworthy of notice, that, in spite of his own logical rules, Descartes sometimes seems insensibly to adopt, on this subject, the common ideas and feelings of mankind. Several instances of this occur in his treatise on the Passions, where he offers various conjectures concerning the uses to which they are subservient. The following sentence is more peculiarly remarkable: "Mihi persuadere nequeo, naturam inde edisse hominibus uulum affectum qui semper vitiosus sit, nullumque uos bonum et laudabile habet."—Art. exxxiv.

3 This hypothesis never gained much ground in England; and yet a late writer of distinguished eminence in some branches of science, has plainly intimated that, in his opinion, the balance of probabilities inclined in its favour. "I omit mentioning other animals here," says Mr Kirwan in his Metaphysical Essays, "as it is at least doubtful whether they are not mere automata."—Met. Essays, p. 41. Lond. 1809.

4 I have added the clause in Italic, because, in Descartes’ reasonings on this question, there is no inconsiderable portion of the most important truth, debased by a large and manifest alloy of error.

5 To this paradox may be traced many of the conclusions of the author, both on physical and on metaphysical subjects. One of the most characteristic features, indeed, of his genius, is the mathematical concatenation of his opinions, even on questions which, at first sight, seem the most remote from each other; a circumstance which, when combined with the extraordinary perspicuity of his style, completely accounts for the strong hold his philosophy took of every mind, thoroughly initiated, at an early period of life, in its principles and doctrines. In consequence of conceiving the essence of matter to consist in extension, he was necessarily obliged to maintain the doctrine of a universal plenum; upon which doctrine the theory of the Vortices came to be grafted by a very short and easy process. The same idea forced him, at the very outset of his Metaphysical Meditations, to assert, much more dogmatically than his premises seem to warrant, the non-extension of Mind; and led him on many occasions to blend, very illogically, this comparatively disputable dogma, with the facts he has to state concerning the mental phenomena.

6 See Note N.
the Alma of Prior. It is not, perhaps, equally known, that the circumstance which determined him to fix on this particular spot, was the very plausible consideration, that, among the different parts of the brain, this was the only one he could find, which, being single and central, was fitted for the habitation of a being, of which he conceived unity and indivisibility to be essential and obvious attributes. In what manner the animal spirits, by their motions forwards and backwards in the nervous tubes, keep up the communication between this gland and the different parts of the body, so as to produce the phenomena of perception, memory, imagination, and muscular motion, he has attempted particularly to explain; describing the processes by which these various effects are accomplished, with as decisive a tone of authority, as if he had been demonstrating experimentally the circulation of the blood. How curious to meet with such speculations in the works of the same philosopher, who had so clearly perceived the necessity, in studying the laws of Mind, of abstracting entirely from the analogies of Matter; and who, at the outset of his inquiries, had carried his scepticism so far, as to require a proof even of the existence of his own body! To those, however, who reflect with attention on the method adopted by Descartes, this inconsistency will not appear so inexplicable as at first sight may be imagined; inasmuch as the same scepticism which led him to suspend his faith in his intellectual faculties till he had once proved to his satisfaction, from the necessary veracity of God, that these faculties were to be regarded as divine oracles, prepared him, in all the subsequent steps of his progress, to listen to the suggestions of his own fallible judgment, with more than common credulity and confidence.

The ideas of Descartes, respecting the communication between soul and body, are now so universally rejected, that I should not have alluded to them here, had it not been for their manifest influence in producing, at the distance of a century, the rival hypothesis of Dr Hartley. The first traces of this hypothesis occur in some queries of Sir Isaac Newton, which he was probably induced to propose, less from the conviction of his own mind, than from a wish to turn the attention of philosophers to an examination of the correspondent part of the Cartesian system. Not that I would be understood to deny that this great man seems, on more than one occasion, to have been so far misled by the example of his predecessor, as to indulge himself in speculating on questions altogether unsusceptible of solution. In the present instance, however, there cannot, I apprehend, be a doubt, that it was the application made by Descartes of the old theory of animal spirits, to explain the mental phenomena, which led Newton into that train of thinking which served as the groundwork of Hartley's Theory of Vibrations.

It would be useless to dwell longer on the re-

1 See in particular, the treatise De Passionebus, Art. 31. 32. See also Note O.
2 The physiological theory of Descartes, concerning the connection between soul and body, was adopted, together with some of his sounder opinions, by a contemporary English philosopher, Mr Smith of Cambridge, whom I had occasion to mention in a former note; and that, for some time after the beginning of the eighteenth century, it continued to afford one of the chief subjects of controversy between the two English universities, the Alma of Prior affords incontrovertible evidence. From the same poem it appears, how much the reveries of Descartes about the soul of the soul, contributed to wean the wits of Cambridge from their former attachment to the still more incomprehensible pneumatology of the schoolmen.

Here Matthew said,
Alma in verse, in prose the mind
By Aristotle's pen defined,
Throughout the body squat or tall,
Is, bona fide, all in all,
And yet, slap-dash, is all again
In every sinew, nerve, and vein;
Runs here and there like Hamlet's Ghost,
While everywhere she rules the roast.
This system, Richard, we are told,
The men of Oxford firmly hold;
The Cambridge wits, you know, deny
With ipse dixit to comply.
They say, (for in good truth they speak
With small respect of that old Greek)
That putting all his words together,
'Tis three blue beans in one blue bladder.
VERIES of a philosopher, much better known to the learned of the present age by the boldness of his exploded errors, than by the profound and important truths contained in his works. At the period when he appeared, it may perhaps be questioned, whether the truths which he taught, or the errors into which he fell, were most instructive to the world. The controversies provoked by the latter had certainly a more immediate and palpable effect in awakening a general spirit of free inquiry. To this consideration may be added an ingenious and not altogether unsound remark of D'Alembert, that "when absurd opinions are become inveterate, it is sometimes necessary to replace them by other errors, if nothing better can be done. Such (he continues) are the uncertainty and the vanity of the human mind, that it has always need of an opinion on which it may lean; it is a child to whom a play-thing must occasionally be presented, in order to get out of its hands a mischievous weapon; the play-thing will soon be abandoned, when the light of reason begins to dawn." 1

Among the opponents of Descartes, Gassendi was one of the earliest, and by far the most formidable. No two philosophers were ever more strongly contrasted, both in point of talents and of temper; the former as far superior to the latter in originality of genius—in powers of concentrated attention to the phenomena of the internal world—in classical taste—in moral sensibility, and in all the rarer gifts of the mind, as he fell short of him in erudition—in industry as a book-maker—in the justness of his logical views, so far as the phenomena of the material universe are concerned—and, in general, in those literary qualities and attainments, of which the bulk of mankind either are, or think themselves best qualified to form an estimate. The reputation of Gassendi, accordingly, seems to have been at its height in his own lifetime; that of Descartes made but little progress, till a considerable time after his death.

The comparative justness of Gassendi's views in natural philosophy may be partly, perhaps chiefly, ascribed to his diligent study of Bacon's works; which Descartes (if he ever read them), has nowhere alluded to in his writings. This extraordinary circumstance in the character of Descartes is the more unaccountable, that not only Gassendi, but some of his other correspondents, repeatedly speak of Bacon in terms which one should think could scarcely have failed to induce him to satisfy his own mind whether their encomiums were well or ill founded. One of these, while he contents himself, from very obvious feelings of delicacy, with mentioning the Chancellor of England as the person who, before the time of Descartes, had entertained the justest notions about the method of prosecuting physical inquiries, takes occasion, in the same letter, to present him, in the form of a friendly admonition from himself, with the following admirable summary of the instantia magna. "To all this it must be added, that no architect, however skilful, can raise an edifice, unless he be provided with proper materials. In like manner, your method, supposing it to be perfect, can never advance you a single step in the explanation of natural causes, unless you are in possession of the facts necessary for determining their effects. They who, without stirring from their libraries, attempt to discourse concerning the works of nature, may indeed tell us what sort of world they would have made, if God had committed that task to their ingenuity; but, without a wisdom truly divine, it is impossible for them to form an idea of the universe, at all approaching to that in the mind of its Creator. And, although your method promises everything that can be expected from human

Alma they strenuously maintain,
Sits cock-horse on her throne the brain,
And from that seat of thought dispenses
Her sovereign pleasure to the senses, &c. &c.

The whole poem, from beginning to end, is one continued piece of ridicule upon the various hypotheses of physiologists concerning the nature of the communication between soul and body. The amusing contrast between the solemn absurdity of these disputes, and the light pleasantry of the excursions to which they lead the fancy of the poet, constitutes the principal charm of this performance; by far the most original and characteristic of all Prior's Works.

1 See Note P.
genius, it does not, therefore, lay any claim to the art of divination; but only boasts of deducing from the assumed data, all the truths which follow from them as legitimate consequences; which data can, in physics, be nothing else but principles previously established by experiment.”

In Gassendi’s controversies with Descartes, the name of Bacon seems to be studiously introduced on various occasions, in a manner still better calculated to excite the curiosity of his antagonist; and in his historical review of logical systems, the heroical attempt which gave birth to the Novum Organum is made the subject of a separate chapter, immediately preceding that which relates to the Metaphysical Meditations of Descartes.

The partiality of Gassendi for the Epicurean physics, if not originally imbibed from Bacon, must have been powerfully encouraged by the favourable terms in which he always mentions the Atomic or Corpuscular theory. In its conformity to that luminous simplicity which everywhere characterises the operations of nature, this theory certainly possesses a decided superiority over all the other conjectures of the ancient philosophers concerning the material universe; and it reflects no small honour on the sagacity both of Bacon and of Gassendi, to have perceived so clearly the strong analogical presumption which this conformity afforded in its favour, prior to the unexpected lustre thrown upon it by the researches of the Newtonian school. With all his admiration, however, of the Epicurean physics, Bacon nowhere shows the slightest leaning towards the metaphysical or ethical doctrines of the same sect; but, on the contrary, considered (and, I apprehend, rightly considered) the atomic theory as incomparably more hostile to atheism, than the hypothesis of four mutable elements, and of one immutable fifth essence. In this last opinion, there is every reason to believe that Gassendi fully concurred; more especially, as he was a zealous advocate for the investigation of final causes, even in inquiries strictly physical. At the same time, it cannot be denied, that, on many questions, both of Metaphysics and of Ethics, this very learned theologian (one of the most orthodox, professedly, of whom the Catholic church has to boast), carried his veneration for the authority of Epicurus to a degree bordering on weakness and servility; and although, on such occasions, he is at the utmost pains to guard his readers against the dangerous conclusions commonly ascribed to his master, he has nevertheless retained more than enough of his system, to give a plausible colour to a very general suspicion, that he secretly adopted more of it than he chose to avow.

As Gassendi’s attachment to the physical doctrines of Epicurus, predisposed him to give an easier reception than he might otherwise have done to his opinions in Metaphysics and in Ethics, so his unqualified contempt for the hypothesis of the Vortices seems to have created in his mind an undue prejudice against the speculations of Descartes on all other subjects. His objections to the argument by which Descartes has so triumphantly established the distinction between Mind and Matter, as separate and heterogeneous objects of human knowledge, must now appear, to every person capable of forming a judgment upon the question, altogether frivolous and puerile; amounting to nothing more than this, that all our knowledge is received by the channel of the external senses,—insomuch, that there is not a single object of the understanding which may not be ultimately analysed into sensible images; and, of consequence, that when Descartes proposed to abstract from these images in studying the mind, he rejected the only materials out of which it is possible for our faculties to rear any superstructure. The sum of the whole matter is (to use his own language), that “there is no real distinction between imagination and intellect;” meaning, by the former of these words, the power which the mind possesses of representing to itself the material objects and qualities it has previously perceived. It is evident, that this conclusion coincides exactly with the tenets inculcated in England at the same period by his friend Hobbes, as well as with those revived at a later period by Di-
rot, Horne Tooke, and many other writers, both French and English, who, while they were only repeating the exploded dogmas of Epicurus, fancied they were pursuing, with miraculous success, the new path struck out by the genius of Locke. It is worthy of remark, that the argument employed by Gassendi against Descartes, is copied almost verbatim from his own version of the account given by Diogenes Laertius of the sources of our knowledge, according to the principles of the Epicurean philosophy:—so very little is there of novelty in the consequences deduced by modern materialists from the scholastic proposition, Nihil est in intellectu quod non fuit prorsus in sensu. The same doctrine is very concisely and explicitly stated in a maxim formerly quoted from Montaigne, that "the senses are the beginning and end of all our knowledge;"—a maxim which Montaigne learned from his oracle Raymond de Sebone; which, by the present race of French philosophers, is almost universally supposed to be sanctioned by the authority of Locke; and which, if true, would at once cut up by the roots, not only all metaphysics, but all ethics, and all religion, both natural and revealed. It is accordingly with this very maxim that Madame du Deffand (in a letter which rivals anything that the fancy of Molière has conceived in his Femmes Savantes) assails Voltaire for his imbecility in attempting a reply to an atheistical book recently published. In justice to this celebrated lady, I shall transcribe part of it in her own words, as a precious and authentic document of the philosophical tone affected by the higher orders in France, during the reign of Louis XV.

"J'entends parler d'une réfutation d'un certain livre (Système de la Nature). Je voudrais l'avoir. Je m'en tiens à connaître ce livre par vous. Toutes réfutations de système doivent être bonnes, surtout quand c'est vous qui les faites. Mais, mon cher Voltaire, ne vous en nuyez-vous pas de tous les raisonnemens métaphysiques sur les matières inintelligibles. Peut-on donner des idées, ou peut-on en admettre d'autres que celles que nous recevons par nos sens?"—If the Senses be the beginning and end of all our knowledge, the inference here pointed at is quite irresistible. A learned and profound writer has lately complained of the injustice done by the present age to Gassendi; in whose works, he asserts, may be found the whole of the doctrine commonly ascribed to Locke concerning the origin of our knowledge. The remark is certainly just, if restricted to Locke's doctrine as interpreted by the greater part of philosophers on the Continent; but it is very wide of the truth, if applied to it as now explained and modified by the most intelligent of his disciples in this country. The main scope, indeed, of Gassendi's argument against Descartes, is to materialise that class of our ideas which the Lockists as well as the Cartesians consider as the exclusive objects of the power of reflection; and to show that these ideas are all ultimately resolvable into images or conceptions borrowed from things external. It is not, therefore, what is sound and valuable in this part of Locke's system, but the errors grafted on it in the comments of some of his followers, that can justly be said to have been borrowed from Gassendi. Nor has Gassendi the merit of originality, even in these errors; for scarcely a remark on the subject occurs in his works, but what is copied from the accounts

1. Thomas Hobbes, Gassendi charissimus, cuius libellum De Corpore paucis ante obitum mensibus accipiens, osculatus est, subjugens, male quidem parcus est his liber, verum totum, ut opinor, modulam scatet."—(Sorberii Prof.) Gassendi's admiration of Hobbes' Treatise De Cive, was equally warm; as we learn from a letter of his to Sorbière, prefixed to that work.

2. Compare Gassendi Opera, Tom. III. p. 300, 301; and Tom. V. p. 12.

3. Notwithstanding the evidence (according to my judgment) of this conclusion, I trust it will not be supposed that I impute the slightest bias in its favour to the generality of those who have adopted the premises. If an author is to be held chargeable with all the consequences logically deducible from his opinions, who can hope to escape censure? And, in the present instance, how few are there among Montaigne's disciples, who have ever reflected for a moment on the real meaning and import of the proverbial maxim in question?

4. Gassendi fut le premier auteur de la nouvelle philosophie de l'esprit humain; car il est temps de lui rendre, a cet egard, une justice qui n'a presque jamais obtenue de ses propres compatriotes. Il est tres singulier en effet, qu'en parlant de la nouvelle philosophie de l'esprit humain, nous disions toujours, la philosophie de Locke. D'Alembert et Condillac ont autorisé cette expression, en rapportant l'un et l'autre a Locke exclusivement la gloire de cette invention, &c. &c.—DescruHANO, Hist. Comp. des Systèmes, Tome I. p. 391.
transmitted to us of the Epicurean metaphysics.

Unfortunately for Descartes, while he so clearly perceived that the origin of those ideas which are the most interesting to human happiness, could not be traced to our external senses, he had the weakness, instead of stating this fundamental proposition in plain and precise terms, to attempt an explanation of it by the extravagant hypothesis of innate ideas. This hypothesis gave Gassendi great advantages over him, in the management of their controversy; while the subsequent adoption of Gassendi's reasonings against it by Locke, has led to a very general but ill-founded belief, that the latter, as well as the former, rejected, along with the doctrine of innate ideas, the various important and well-ascertained truths combined with it in the Cartesian system.¹

The hypothetical language afterwards introduced by Leibnitz concerning the human soul (which he sometimes calls a living mirror of the universe, and sometimes proposes to contain within itself the seeds of that knowledge which is gradually unfolded in the progressive exercise of its faculties), is another impotent attempt to explain a mystery unfathomable by human reason. The same remark may be extended to some of Plato's reveries on this question, more particularly to his supposition, that those ideas which cannot be traced to any of our external senses, were acquired by the soul in its state of pre-existence. In all of these theories, as well as in that of Descartes, the cardinal truth is assumed as indisputable, that the Senses are not the only sources of human knowledge; nor is any thing wanting to render them correctly logical, but the statement of this truth as an ultimate fact (or at least as a fact hitherto unexplained) in our intellectual frame.

It is very justly observed by Mr Hume, with respect to Sir Isaac Newton, that "while he seemed to draw off the veil from some of the mysteries of nature, he showed, at the same time, the imperfections of the mechanical philosophy, and thereby restored her ultimate secrets to that obscurity in which they ever did, and ever will remain."² When the justness of this remark shall be as universally acknowledged in the science of Mind as it now is in Natural Philosophy, we may reasonably expect that an end will be put to those idle controversies which have so long diverted the attention of metaphysicians from the proper objects of their studies.

The text of Scripture, prefixed by Dr Reid as a motto to his Inquiry, conveys, in a few words, the result of his own modest and truly philosophical speculations on the origin of our knowledge, and expresses this result in terms strictly analogous to those in which Newton speaks of the law of gravitation: "The inspiration of the Almighty hath given them understanding." Let our researches concerning the development of Mind, and the occasions on which its various notions are first formed, be carried back ever so far towards the commencement of its history, in this humble confession of human ignorance they must terminate at last.

I have dwelt thus long on the writings of Gassendi, much less from my own idea of their merits, than out of respect to an author, in whose footsteps Locke has frequently condescended to tread. The epigrammatic encomium bestowed on him by Gibbon, who calls him, "le meilleur philosophe des litérateurs, et le meilleur litérateur des philosophes," appears to me quite extravagant.³ His learning, indeed, was at once vast and accurate; and, as a philosopher he is justly entitled to the praise of being one of the first who entered thoroughly into the spirit of the Baconian logic. But his inventive powers, which were probably not of the highest order, seem to have been either dissipated amidst the multiplicity of his literary pursuits, or laid asleep by his indefatigable labours as a commentator and a compiler. From a writer of this class, new lights were not to be expected in the study of the human Mind; and accordingly, here he has done little or nothing, but to revive and to repeat over the doctrines of the old Epicureans. His works amount to six large volumes in folio; but the substance of

¹ See Note Q.
² History of Great Britain, chap. lxxi.
³ Essai sur l'Etude de la Litterature.
them might be compressed into a much smaller compass, without any diminution of their value.

In one respect Gassendi had certainly a great advantage over his antagonist,—the good humour which never forsook him in the heat of a philosophical argument. The comparative indifference with which he regarded most of the points at issue between them, was perhaps the chief cause of that command of temper so uniformly displayed in all his controversies, and so remarkably contrasted with the constitutional irritability of Descartes. Even the faith of Gassendi in his own favourite master, Epicurus, does not seem to have been very strong or dogmatical, if it be true that he was accustomed to allege, as the chief ground of his preferring the Epicurean physics to the theory of the Vortices, "that chimera for chimera, he could not help feeling some partiality for that which was two thousand years older than the other."1

About twenty years after the death of Gassendi (who did not long survive Descartes), Malebranche entered upon his philosophical career. The earlier part of his life had, by the advice of some of his preceptors, been devoted to the study of ecclesiastical history, and of the learned languages; for neither of which pursuits does he seem to have felt that marked predilection which afforded any promise of future eminence. At length, in the twenty-fifth year of his age, he accidentally met with Descartes' Treatise on Man, which opened to him at once a new world, and awakened him to a consciousness of powers, till then unsuspected either by himself or by others. Fontenelle has given a lively picture of the enthusiastic ardour with which Malebranche first read this performance; and describes its effects on his nervous system as sometimes so great, that he was forced to lay aside the book till the palpitation of his heart had subsided.

It was only ten years after this occurrence when he published The Search after Truth; a work which, whatever judgment may now be passed on its philosophical merits, will always form an interesting study to readers of taste, and a useful one to students of human nature. Few books can be mentioned, combining, in so great a degree, the utmost depth and abstraction of thought, with the most pleasing sallies of imagination and eloquence; and none, where they who delight in the observation of intellectual character may find more ample illustrations, both of the strength and weakness of the human understanding. It is a singular feature in the history of Malebranche, that, notwithstanding the poetical colouring which adds so much animation and grace to his style, he never could read, without disgust, a page of the finest verses;2 and that, although Imagination was manifestly the predominant ingredient in the composition of his own genius, the most elaborate passages in his works are those where he inveighs against this treacherous faculty, as the prolific parent of our most fatal delusions.3

In addition to the errors, more or less incident to all men, from the unresisted sway of imagination during the infancy of reason, Malebranche had, in his own case, to struggle with all the prejudices connected with the peculiar dogmas of the Roman Catholic faith. Unfortunately, too, he everywhere discovers a strong disposition to blend his theology and his metaphysics together; availing himself of the one as an auxiliary to the other, wherever in either science his ingenuity fails him in establishing a favourite conclusion. To this cause is chiefly to be ascribed the little attention now paid to a writer formerly so universally admired, and, in point of fact, the indisputable author of some of the most refined speculations claimed by the theorists of the eighteenth century. As for those mystical controversies about Grace with Anthony Arnauld, on which he wasted so much of

1 See Note B.

2 Bayle—Fontenelle—D'Alembert.

3 In one of his arguments on this head, Malebranche refers to the remarks previously made on the same subject by an English philosopher, who, like himself, has more than once taken occasion, while warning his readers against the undue influence of imagination over the judgment, to exemplify the boundless fertility and originality of his own. The following allusion of Bacon's, quoted by Malebranche, is eminently apposite and happy:—"Omnis perceptionem tam sensus quam mentis sunt ex analogia hominis, non ex analogia universi: Estique intellectus humanus instar speculi inequalis ad radios rerum, qui suam naturam naturae rerum immiscet, eamque distorquet et infict.
his genius, they have long sunk into utter oblivion; nor should I have here revived the recollection of them, were it not for the authentic record they furnish of the passive bondage in which, little more than a hundred years ago, two of the most powerful minds of that memorable period were held by a creed, renounced at the Reformation by all the Protestant countries of Europe, and the fruitful source, wherever it has been retained, of other prejudices, not less to be lamented, of an opposite description.

When Malebranche touches on questions not positively decided by the church, he exhibits a remarkable boldness and freedom of inquiry; setting at nought those human authorities which have so much weight with men of unenlightened credulity; and sturdily opposing his own reason to the most inveterate prejudices of his age. His disbelief in the reality of sorcery, which, although cautiously expressed, seems to have been complete, affords a decisive proof of the soundness of his judgment, where he conceived himself to have any latitude in exercising it. The following sentences contain more good sense on the subject, than I recollect in any contemporary author. I shall quote them, as well as the other passages I may afterwards extract from his writings, in his own words, to which it is seldom possible to do justice in an English version.

"Les hommes même les plus sages se conduisent plutôt par l'imagination des autres, je veux dire par l'opinion et par la coutume, que par les regles de la raison. Ainsi dans les lieux où l'on brule les sorciers, on ne voit autre chose, parce que dans les lieux où l'on les condamne au feu, on croit véritablement qu'ils le sont, et cette croyance se fortifie par les discours qu'on en tient. Que l'on cesse de les punir, et qu'on les traite comme des fous, et l'on verra qu'avec le temps ils ne seront plus sorciers; parce que ceux qui ne le sont que par imagination, qui font certainement le plus grand nombre, deviendront comme les autres hommes.

"C'est donc avec raison que plusieurs Parlemens ne punissent point les sorciers: ils s'en trouvent beaucoup moins dans les terres de leur ressort: Et l'envie, et la malice des mechans ne peuvent se servir de ce pretexte pour aceanble les innocens."

How strikingly has the sagacity of these anticipations and reflections been verified, by the subsequent history of this popular superstition in our own country, and indeed in every other instance where the experiment recommended by Malebranche has been tried! Of this sagacity, much must, no doubt, be ascribed to the native vigour of a mind struggling against and controlling early prejudices; but it must not be forgotten, that, notwithstanding his retired and monastic life, Malebranche had breathed the same air with the associates and friends of Descartes and of Gassendi; and that no philosopher seems ever to have been more deeply impressed with the truth of that golden maxim of Montaigne—" Il est bon de frotter et limser notre cervelle contre celle d'autrui."

Another feature in the intellectual character of Malebranche, presenting an unexpected contrast to his powers of abstract meditation, is the attentive and discriminating eye with which he appears to have surveyed the habits and manners of the comparatively little circle around him; and the delicate yet expressive touches with which he has marked and defined some of the nicest shades and varieties of genius.

To this branch of the Philosophy of Mind, not certainly the least important and interesting, he

1 Of this disposition to blend theological dogmas with philosophical discussions, Malebranche was so little conscious in himself, that he seriously warned his readers against it, by quoting an aphorism of Bacon’s, peculiarly applicable to his own writings:—Ex divinorum et humanorum malesana admixtione non solum educitur philosophia plantastica, sed etiam religio heretica. Itaque salutare admodum est si mente sobria fidei tantum dentur quae fidei sunt.” In transcribing these words, it is amusing to observe, that Malebranche has silly suppressed the name of the author from whom they are borrowed; manifestly from an unwillingness to weaken their effect, by the suspicious authority of a philosopher not in communion with the Church of Rome.—Recherche de la Vérité, Liv. ii. chap. ix.

Dr Reid, proceeding on the supposition that Malebranche was a Jesuit, has ascribed to the antipathy between this order and the Jansenists, the warmth displayed on both sides, in his disputes with Arnauld (Essays on the Intell. Powers, p. 124): but the fact is, that Malebranche belonged to the Congregation of the Oratory; a society much more nearly allied to the Jansenists than to the Jesuits; and honourably distinguished, since its first origin, by the moderation as well as learning of its members.

2 See, among other passages, Recherche de la Vérité, Liv. ii. chap. ix.
PRELIMINARY DISSERTATIONS.

has contributed a greater number of original remarks than Locke himself; since whose time, with the single exception of Helvetius, hardly any attention has been paid to it, either by French or English metaphysicians. The same practical knowledge of the human understanding, modified and diversified, as we everywhere see it; by education and external circumstances, is occasionally discovered by his very able antagonist Arnauld; affording, in both cases, a satisfactory proof, that the narrowest field of experience may disclose to a superior mind those refined and comprehensive results, which common observers are forced to collect from an extensive and varied commerce with the world.

In some of Malebranche's incidental strictures on men and manners, there is a lightness of style and fineness of tact, which one would scarcely have expected from the mystical divine, who believed that he saw all things in God. Who would suppose that the following paragraph forms part of a profound argument on the influence of the external senses over the human intellect?

"Si, par exemple, celui qui parle s'énonce avec facilité, s'il garde une mesure agréable dans ses périodes, s'il a l'air d'un honnête homme et d'un homme d'esprit, si c'est une personne de qualité, s'il est suivi d'un grand train, s'il parle avec autorité et avec gravité, si les autres l'écoutevnt avec respect et en silence, s'il a quelque réputation, et quelque commerce avec les esprits du premier ordre, enfin, s'il est assez heureux pour plaire, ou pour être estimé, il aura raison dans tout ce qu'il avancera; et il n'y aura pas jusqu'à son collet et à ses manchettes, qui ne prouvent quelque chose." 12

In his philosophical capacity, Malebranche is

1 In one of Locke's most noted remarks of this sort, he has been anticipated by Malebranche, on whose clear yet concise statement he does not seem to have thrown much new light by his very diffuse and wordy commentary.

2 If in having our ideas in the memory ready at hand, consists quickness of parts; in this of having them unconfused, and being able to distinguish one thing from another, where there is but the least difference, consists, in a great measure, the exactness of judgment and clearness of reason, which is to be observed in one man above another. And hence, perhaps, may be given some reason of that common observation, that men who have a great deal of wit, and prompt memories, have not always the clearest judgment, or deepest reason. For Wit, lying most in the assemblage of ideas, and putting those together with quickness and variety, whereas can be found any resemblance or congruity, thereby to make up pleasant pictures, and agreeable visions in the fancy; Judgment, on the contrary, lies quite on the other side, in separating carefully, one from another, ideas wherein can be found the least difference, thereby to avoid being misled by similitude, and by affinity to take one thing for another."—Essay, §c. B. ii. c. xi. § 2.

At a still earlier period, Bacon had pointed out the same cardinal distinction in the intellectual characters of individuals.

"Maximum et velut radicale discrimen ingeniorum, quoad philosophiam et scientias, illud est: quod alia ingenia sint fortiora et aptiora ad notandas rerum differentias; alia, ad notandas rerum similitudines. Ingenia enim constantia et acuta, figere contemplationes, et morari, et haercer in omni subtilitate differentiarum possunt. Ingenia autem sublimias, et discursivas etiam tenueissimas et catholica rerum similitudines et cognoscent, et componunt. Utremque autem ingenium facile labitur in excessum, presando aut gradus rerum, aut umbras."

That strain I heard was of a higher mood! It is evident, that Bacon has here seized, in its most general form, the very important truth perceived by his two ingenious successors in particular cases. Wit, which, Locke contrasts with judgment, is only one of the various talents connected with what Bacon calls the discursive genius; and indeed, a talent very subordinate in dignity to most of the others.

I shall indulge myself only in one other citation from Malebranche, which I select partly on account of the curious extract it contains from an English publication long since forgotten in this country; and partly as a proof that this learned and noble father was not altogether insensible to the ludicrous.

"Un illustre entre les Saçans, qui a fondé des chaires de Géométrie et d'Astronomie dans l'Université d'Oxford, commence un livre, qu'il s'est avisé de faire sur les huit premières propositions d'Euclide, par ces paroles: Conilitium meum est, auditores, si vires et valetudo suffecturi, explicare definitiones, petitiones, communes sententias, et octo priores propositiones primi libri Elementorum, catena post me venientibus reliqueris: et il le finit par celles-ci: Exequiè per Dei gratiam, Domini auditores, promitterum, Liberaci fidei mean, replicacri pro modulo meo definitiones, petitiones, communes sententias, et octo priores propositiones Elementorum Euclides. Ille autem fuisse cyclopo aut reponum. Succedunt in hoc multis aliis fortasse magis vereri corpore et visuo ingenio. Il ne faut pas une heure à un esprit mediocre, pour apprendre par lui-même, ou par le secours du plus petit géomètre qu'il y ait, les definitions, demandes, axiomes, et les huit premières propositions d'Euclide; et voici un auteur qui parle de cette entreprise, comme de quelque chose de fort grand et de fort difficile. Il a peur que les forces lui manquent; Si vires et valetudo suffecturis. Il laisse à ses successeurs à pousser ces choses: catena post me venientibus reliqueris. Il remet ce Dieu de ce que, par une grace particulière, il a exécuté ce qu'il avait promis: exequiæ per Dei gratiam promissum, liberaci fidei mean, explicacri pro modulo meo. Quis puto, si dixi, la duplication du cercle? Ce grand homme a expliqué pro modulo suo, les definitions, les demandes, les axiomes, et les huit premières propositions du premier livre des Elementorum Euclidi, Ornatis habita, anno 1629."

Sir Henry Savile. The work here referred to is a 4to volume, entitled, Praelectiones xiiii. in Principium Elementorum Euclidis, Ornatis habita, anno 1629.
to be considered in two points of view: 1. As a commentator on Descartes; and, 2. As the author of some conclusions from the Cartesian principles, not perceived or not avowed by his predecessors of the same school.

1. I have already taken notice of Malebranche's comments on the Cartesian doctrine concerning the sensible, or, as they are now more commonly called, the secondary qualities of matter. The same fulness and happiness of illustration are everywhere else to be found in his elucidations of his master's system; to the popularity of which he certainly contributed greatly by the liveliness of his fancy, and the charms of his composition. Even in this part of his writings, he always preserves the air of an original thinker; and, while pursuing the same path with Descartes, seems rather to have accidentally struck into it from his own casual choice, than to have selected it out of any deference for the judgment of another. Perhaps it may be doubted, if it is not on such occasions that the inventive powers of his genius, by being somewhat restrained and guided in their aim, are most vigorously and most usefully displayed.

In confirmation of this last remark, I shall only mention, by way of examples, his comments on the Cartesian theory of Vision,—more especially on that part of it which relates to our experimental estimates of the distances and magnitudes of objects; and his admirable illustration of the errors to which we are liable from the illusions of sense, of imagination, and of the passions. In his physiological reveries on the union of soul and body, he wanders, like his master, in the dark, from the total want of facts as a foundation for his reasonings; but even here his genius has had no inconsiderable influence on the inquiries of later writers. The fundamental principle of Hartley is most explicitly stated in The Search after Truth; as well as a hypothesis concerning the nature of habits, which, rash and unwarranted as it must now appear to every novice in science, was not thought unworthy of adoption in The Essay on Human Understanding.

2. Among the opinions which chiefly characterise the system of Malebranche, the leading one is, that the causes which it is the aim of philosophy to investigate are only occasional causes; and that the Deity is himself the efficient and immediate cause of every effect in the

d'Euclide. Peut-être qu'entre ceux qui lui succéderont, il s'en trouvera qui auront plus de santé, et plus de force que lui pour continuer ce bel ouvrage: Succedent in hoc munus alti fortassè magis vegeto corpore et vivido ingenio. Mais pour lui il est temps qu'il se repose; hic annus fames cycle artemque regnavit.

After reading the above passage, it is impossible to avoid reflecting, with satisfaction, on the effect which the progress of philosophy has since had, in removing those obstacles to the acquisition of useful knowledge, which were created by the pedantic taste prevalent two centuries ago. What a contrast to a quarto commentary on the definitions, postulates, axioms, and first eight propositions of Euclid's First Book, is presented by Condorcet's estimate of the time now sufficient to conduct a student to the highest branches of Mathematics! "Dans le siècle dernier, il suffisit de quelques années d'étude pour savoir tout ce qu'Athénée et Hippiarche avoient pu comniter; et aujourd'hui deux années de l'enseignement d'un professeur vont au dela de ce que savoient Leibnitz ou Newton." (Sur l'instruction publique.) In this particular science, I am aware that much is to be ascribed to the subsequent invention of new and more general methods; but, I apprehend, not a little also to the improvements gradually suggested by experience, in what Bacon calls the tradition part of logic.

"Toutes nos différentes perceptions sont attachées aux différents changemens qui arrivent dans les fibres de la partie principale du cerveau dans laquelle l'âme réside plus particulièrement."—(Rech. de la Vérité, Liv. ii. chap. v.) These changes in the fibres of the brain are commonly called by Malebranche ébranlements:—a word which is frequently rendered by his old English translator (Taylor) vibrations. "La seconde chose," says Malebranche, "qui se trouve dans chacune de ses sensations, est l'ébranlement des fibres de nos nerfs, qui se communique jusqu'au cerveau!" thus translated by Taylor: "The second thing that occurs in every sensation is the vibration of the fibres of our nerves, which is communicated to the brain."—Liv. i. chap. xii.) Nor was the theory of association overlooked by Malebranche. See, in particular, the third chapter of his second book, entitled, De la liaison mutuelle des idées de l'esprit, et des traces du cerveau; et de la liaison mutuelle des traces avec les traces, et des idées avec les idées.

"Mais afin de suivre notre explication, il faut remarquer que les esprits ne trouvent pas toujours les chemins, par où ils doivent passer assez ouverts et assez libres; et que celui fait qui nous avons de la difficulté à remuer, par exemple, les doigts avec la vitesse qui est nécessaire pour jouer des instrumens de musique, ou les muscles qui servent à la prononciation, pour prononcer les mots d'une langue étrangère; Mais que peu-a-peu les esprits animaux par leur cours continu ont ouvert et appris ces chemins, en sorte qu'avec le temps ils n'y trouvent plus de resistance. Car c'est dans cette facilite que les esprits animaux ont de passer dans les membres de notre corps que consistent les habitudes."—Rech. de la Vérité, Liv. ii. chap. v.

Habits seem to be but trains of motion in the animal spirits, which, once set going, continue in the same steps they have been used to, which, by often treading, are worn into a smooth path.—Locke, Book ii. chap. xxxii. § 6.
universe. From this single principle, the greater part of his distinguishing doctrines may be easily deduced, as obvious corollaries.

That we are completely ignorant of the manner in which physical causes and effects are connected, and that all our knowledge concerning them amounts merely to a perception of constant conjunction, had been before remarked by Hobbes, and more fully shown by Glanville in his Scepsis Scientifica. Malebranche, however, has treated the same argument much more profoundly and ably than any of his predecessors, and has, indeed, anticipated Hume in some of the most ingenious reasonings contained in his Essay on Necessary Connexion. From these data, it was not unnatural for his pious mind to conclude, that what are commonly called second causes have no existence; and that the Divine power, incessantly and universally exerted, is, in truth, the connecting link of all the phenomena of nature.

It is obvious that, in this conclusion, he went farther than his premises warranted; for, although no necessary connections among physical events can be traced by our faculties, it does not therefore follow that such connections are impossible. The only sound inference was, that the laws of nature are to be discovered, not, as the ancients supposed, by a priori reasonings from causes to effects, but by experience and observation. It is but justice to Malebranche to own, that he was one of the first who placed in a just and strong light this fundamental principle of the inductive logic.

On the other hand, the objections to the theory of occasional causes, chiefly insisted on by Malebranche’s opponents, were far from satisfactory. By some it was alleged, that it ascribed every event to a miraculous interposition of the Deity; as if this objection were not directly met by the general and constant laws everywhere manifested to our senses,—in a departure from which laws, the very essence of a miracle consists. Not was it more to the purpose to contend, that the beauty and perfection of the universe were degraded by excluding the idea of mechanism; the whole of this argument turning, as is manifest, upon an application to Omnipotence of ideas borrowed from the limited sphere of human power. As to the study of natural philosophy, it is plainly not at all affected by the hypothesis in question; as the investigation and generalisation of the laws of nature, which are its only proper objects, present exactly the same field to our curiosity, whether we suppose these laws to be the immediate effects of the Divine agency, or the effects of second causes, placed beyond the reach of our faculties.

Such, however, were the chief reasonings opposed to Malebranche by Leibnitz, in order to prepare the way for the system of Pre-established Harmony; a system more nearly allied to that of occasional causes than its author seems to have suspected, and encumbered with every solid difficulty connected with the other.

From the theory of occasional causes, it is easy to trace the process which led Malebranche to

1 Afin qu'on ne puisse plus douter de la fausseté de cette misérable philosophie, il est nécessaire de prouver qu'il n'y a qu'un vrai Dieu, parce qu'il n'y a qu'une vraie cause; que la nature ou la force de chaque chose n'est que la volonté de Dieu: que toutes les causes naturelles ne sont point des véritables causes, mais seulement des causes occasionnelles.—De la Vérité, Livre vi, 2e Partie, chap. iii.

2 This objection, frivolous as it is, was strongly urged by Mr Boyle (Inquiry into the Vulgar Idea concerning Nature), and has been copied from him by Mr Hume, Lord Kames, and many other writers. Mr Hume’s words are these:—“It argues more wisdom to contrive at first the fabric of the world with such perfect foresight, that, of itself, and by its proper operation, it may serve all the purposes of Providence, than if the great Creator were obliged every moment to adjust its parts, and animate by his breath all the wheels of that stupendous machine.”—Essay on the Idea of Necessary Connection.) An observation somewhat similar occurs in the Treatise De Mundo, commonly ascribed to Aristotle.

3 In speaking of the theory of occasional causes, Mr Hume has committed a historical mistake, which it may be proper to rectify. “Malebranche,” he observes, and other Cartesians, made the doctrine of the universal and sole efficacy of the Deity, the foundation of all their philosophy. It had, however, no authority in England. Locke, Clarke, and Cudworth, never so much as take notice of it, but suppose all along that matter has a real, though subordinate and derived power.”—Hume’s Essays, Vol. II. p. 476. Edit. of 1784.

Mr Hume was probably led to connect, in this last sentence, the name of Clarke with those of Locke and Cudworth, by taking for granted that his metaphysical opinions agreed exactly with those commonly ascribed to Sir Isaac Newton. In fact, on the point now in question, his creed was the same with that of Malebranche. The following sentence is very nearly a translation of a passage already quoted from the latter. “The course of nature, truly and properly speaking, is nothing but the will of God producing certain effects in a continued, regular, constant, and uniform manner.”—Clarke’s Works, Vol. II. p. 698. Fol. Ed.
Dissertation First.

conclude, that we see all things in God. The same arguments which convinced him, that the Deity carries into execution every volition of the mind, in the movements of the body, could not fail to suggest, as a farther consequence, that every perception of the mind is the immediate effect of the divine illumination. As to the manner in which this illumination is accomplished, the extraordinary hypothesis adopted by Malebranche was forced upon him, by the opinion then universally held, that the immediate objects of our perceptions are not things external, but their ideas or images. The only possible expedient for reconciling these two articles of his creed, was to transfer the seat of our ideas from our own minds to that of the Creator.1

In this theory of Malebranche, there is undoubtedly, as Bayle has remarked,2 an approach to some speculations of the latter Platonists; but there is a much closer coincidence between it and the system of those Hindoo philosophers, who, according to Sir William Jones,3 believed that the whole creation was rather an energy than a work; by which the Infinite Mind, who is present at all times, and in all places, exhibits to his creatures a set of perceptions, like a wonderful picture, or piece of music, always varied, yet always uniform.”4

In some of Malebranche’s reasonings upon this subject, he has struck into the same train of thought which was afterwards pursued by Berkeley, an author to whom he bore a very strong resemblance in some of the most characteristic features of his genius; and, had he not been restrained by religious scruples, he would, in all probability, have asserted, not less confidently than his successor, that the existence of matter was demonstrably inconsistent with the principles then universally admitted by philosophers. But this conclusion Malebranche rejects, as not reconcilable with the words of Scripture, that “in the beginning God created the heavens and the earth.” “La foi m’apprend que Dieu a créé le ciel et la terre. Elle m’apprend que l’Ecriture est un livre divin. Et ce livre on son apparence me dit nettement et positivement, qu’il y a mille et mille creatures. Done voilà toutes mes appartenances changées en réalités. Il y a des corps; cela est démontré en toute rigueur la foi supposée.”5

In reflecting on the repeated reproduction of these, and other ancient paradoxes, by modern authors, whom it would be highly unjust to accuse of plagiarism;—still more, in reflecting on the affinity of some of our most refined theories to the popular belief in a remote quarter of the globe, one is almost tempted to suppose, that human invention is limited, like a barrel-organ, to a specific number of tunes. But is it not a fairer inference, that the province of pure Imagination, unbounded as it may at first appear, is narrow, when compared with the regions opened by truth and nature to our powers of observation and reasoning?6 Prior to the time of Bacon, the physical systems of the learned performed their periodical revolutions in orbits as small as the metaphysical hypotheses of their successors; and yet, who would now set any bounds to our curiosity in the study of the material universe? Is it reasonable to think, that the phenomena of the intellectual world are less various, or less marked with the signatures of Divine wisdom?

It forms an interesting circumstance in the history of the two memorable persons who have suggested these remarks, that they had once,

1 We are indebted to La Harpe for the preservation of an epigrammatic line (un vers fort plaisant, as he justly calls it), on this celebrated hypothesis: “Lui, qui voit tout en Dieu, n’y voit-il pas qu’il est fou!—C’était au moins,” La Harpe adds, “un fou qui avait beaucoup d’esprit.”

2 See his Dictionary, article Amalien.

3 Introduction to a Translation of some Hindoo verses.

4 Entretiens sur la Métaphysique, p. 207.

5 The celebrated doubt of Descartes concerning all truths but the existence of his own mind (it cannot be too often repeated), was the real source, not only of the inconsistency of Malebranche on this head, but of the chief metaphysical puzzles afterwards started by Berkeley and Hume. The illogical transition by which he attempted to pass from this first principle to other truths, was early remarked by some of his own followers, who were accordingly led to conclude, that no man can have full assurance of any thing but of his own individual existence. If the fundamental doubt of Descartes be admitted as reasonable, the conclusion of these philosophers (who were distinguished by the name of Egoists), is unavoidable.

6 The limited number of fables, of humorous tales, and even of jests, which, it should seem, are in circulation over the face of the globe, might perhaps be alleged as an additional confirmation of this idea.
and only once, the pleasure of a short interview. "The conversation," we are told, "turned on the non-existence of matter. Malebranche, who had an inflammation in his lungs, and whom Berkeley found preparing a medicine in his cell, and cooking it in a small pipkin, exerted his voice so violently in the heat of their dispute, that he increased his disorder, which carried him off a few days after." It is impossible not to regret, that of this interview there is no other record;—or rather, that Berkeley had not made it the groundwork of one of his own dialogues. Fine as his imagination was, it could scarcely have added to the picturesque effect of the real scene.

Anthony Arnauld, whom I have already mentioned as one of the theological antagonists of Malebranche, is also entitled to a distinguished rank among the French philosophers of this period. In his book on true and false ideas, written in opposition to Malebranche’s scheme of our seeing all things in God, he is acknowledged by Dr Reid to have struck the first mortal blow at the ideal theory; and to have approximated very nearly to his own refutation of this ancient and inveterate prejudice. A step so important would, of itself, be sufficient to establish his claim to a place in literary history; but what chiefly induces me again to bring forward his name, is the reputation he has so justly acquired by his treatise, entitled, The Art of Thinking; a treatise written by Arnauld, in conjunction with his friend Nicole, and of which (considering the time when it appeared) it is hardly possible to estimate the merits too highly. No publication, certainly, prior to Locke’s Essay, can be named, containing so much good sense, and so little nonsense on the science of Logic; and very few have since appeared on the same subject, which can be justly preferred to it, in point of practical utility. If the author had lived in the present age, or had been less fettered by a prudent regard to existing prejudices, the technical part would probably have been reduced within a still narrower compass; but even there, he has contrived to substitute for the puerile and contemptible examples of common logicians, several interesting illustrations from the physical discoveries of his immediate pre-

2 This interview happened in 1718, when Berkeley was in the thirty-first, and Malebranche in the seventy-seventh year of his age. What a change in the state of the philosophical world (whether for the better or worse is a different question) has taken place in the course of the intervening century!

Dr Warburton, who, even when he thinks the most unsoundly, always possesses the rare merit of thinking for himself, is one of the very few English authors who have spoken of Malebranche with the respect due to his extraordinary talents. "All you say of Malebranche," he observes in a letter to Dr Hurd, "is strictly true; he is an admirable writer. There is something very different in the fortune of Malebranche and Locke. When Malebranche first appeared, it was with a general applause and admiration; when Locke first published his Essay, he had hardly a single approver. Now Locke is universal, and Malebranche sunk into obscurity. All this may be easily accounted for. The intrinsic merit of either was out of the question. But Malebranche supported his first appearance on a philosophy in the highest vogue; that philosophy has been overturned by the Newtonian, and Malebranche has fallen with his master. It was to no purpose to tell the world, that Malebranche could stand without him. The publice never examines so narrowly. Not but that there was another cause sufficient to do the business; and that is, his debasing his noble work with his system of seeing all things in God. When this happens to a great author, one half of his readers out of folly, the other out of malice, dwell only on the unsound part, and forget the other, or use all their arts to have it forgotten. "But the sage Locke supported himself by no system on the one hand; nor, on the other, did he dishonour himself by any whimsies. The consequence of which was, that, neither following the fashion, nor striking the imagination, he, at first, had neither followers nor admirers; but being everywhere clear, and everywhere solid, he at length worked his way, and afterwards was subject to no reverses. He was not affected by the new fashions in philosophy, who leaned upon none of the old; nor did he afford ground for the after-attacks of envy and folly by any fanciful hypotheses, which, when grown stale, are the most nauseous of all things."

The foregoing reflections on the opposite fates of these two philosophers, do honour on the whole to Warburton’s penetration; but the unqualified panegyric on Locke will be now very generally allowed to furnish an additional example of that national spirit, which," according to Hume, "forms the great happiness of the English, and lends them to bestow on all their eminent writers such praises and acclamations, as may often appear partial and excessive."

2 The following very concise and accurate summary of Arnauld’s doctrine concerning ideas, is given by Brucker. "Antonius Arnauldus, ut argumenta Malebranchii co fortissius everteret, peculiarum sententiam defendit, asseruitque, ideas earumque perceptiones esse unum Ideamque, et non nisi relationibus differe. Ideam sic elicit esse, quatenus ad objectum referatur quod mens considerat; perceptionem vero, quatenus ad ipsam mentem qua percipiat; duplicem tamen illam relationem ad unum pertinere mente substitutionem."

3 Hist. Phil. de Idées, pp. 247, 248. Anthony Arnauld farther held, that "Material things are perceived immediately by the mind, without the intervention of ideas."—(Hist. de Idées, p. 26.) In this respect his doctrine coincided exactly with that of Reid.

More commonly known by the name of the Port-Royal Logic.
decessors; and has indulged himself in some short excursions, which excite a lively regret that he had not, more frequently and freely, given scope to his original reflections. Among these excursions, the most valuable, in my opinion, is the twentieth chapter of the third part, which deserves the attention of every logical student, as an important and instructive supplement to the enumeration of sophisms given by Aristotle.\(^1\)

The soundness of judgment, so eminently displayed in the *Art of Thinking*, forms a curious contrast to that passion for theological controversy, and that zeal for what he conceived to be the purity of the Faith, which seems to have been the ruling passions of the author's mind. He lived to the age of eighty-three, continuing to write against Malebranche's opinions concerning *Nature and Grace*, to his last hour. "He died," says his biographer, "in an obscure retreat at Brussels, in 1692, without fortune, and even without the comfort of a servant; he, whose nephew had been a Minister of State, and who might himself have been a Cardinal. The pleasure of being able to publish his sentiments, was to him a sufficient recompense." Nicole, his friend and companion in arms, worn out at length with these incessant disputes, expressed a wish to retire from the field, and to enjoy repose. "Repose!" replied Arnauld; "won't you have the whole of eternity to repose in?"

An anecdote which is told of his infancy, when considered in connection with his subsequent life, affords a good illustration of the force of impressions received in the first dawn of reason. He was amusing himself one day with some childish sport, in the library of the Cardinal du Perron, when he requested of the Cardinal to give him a pen:—"And for what purpose?" said the Cardinal. —"To write books, like you, against the Huguenots." The Cardinal, it is added, who was then old and infirm, could not conceal his joy at the prospect of so hopeful a successor; and, as he was putting the pen into his hand, said, "I give it to you, as the dying shepherd Dametas bequeathed his pipe to the little Corydon."

The name of Pascal (that prodigy of parts, as Locke calls him) is more familiar to modern ears than that of any of the other learned and polished anchorites, who have rendered the sanctuary of *Port-Royal* so illustrious; but his writings furnish few materials for philosophical history. Abstracting from his great merits in mathematics and in physics, his reputation rests chiefly on the *Provincial Letters*; a work from which Voltaire, notwithstanding his strong prejudices against the author, dates the fixation of the French language; and of which the same excellent judge has said, that "Molière's best comedies do not excels in wit, nor the compositions of Bossuet in sublimity." The enthusiastic admiration of Gibbon for this book, which he was accustomed from his youth to read once a year, is well known, and is sufficient to account for the rapture with which it never falls to be spoken of by *the erudite vulgar*\(^2\) in this country. I cannot help, however, suspecting,

1 According to *Crousaz*, *The Art of Thinking* contributed more than either the *Organon* of Bacon, or the *Method* of Descartes, to improve the established modes of academical education on the Continent.—(See the Preface to his *Logic*, printed at Geneva, 1724.) Leibnitz himself has mentioned it in the most flattering terms; coupling the name of the author with that of Pascal, a still more illustrious ornament of the *Port-Royal* Society:—"Ingeniosissimus Pascallius in praeciria dissertationes de ingenio Geometrico, cjuis fragmentum extat in egregio libro celeberrimi viri Antonii Arnauld de Arte bene Cogitandi," &c.; but lest this encomium from so high an authority should excite a curiosity somewhat out of proportion to the real value of the two works here mentioned, I think it right to add, that the praises bestowed by Leibnitz, whether on living or dead authors, are not always to be strictly and literally interpreted. "No one," says Hume, is so liable to an excess of admiration as a truly great genius." Wherever Leibnitz has occasion to refer to any work of solid merit, this remark applies to him with peculiar force; partly, it is probable, from his quick and sympathetic perception of congenial excellence, and partly from a generous anxiety to point it out to the notice of the world. It affords, on the other hand, a remarkable illustration of the force of prejudice, that Buffier, a learned and most able Jesuit, should have been so far influenced by the hatred of his order to the Jansenists, as to distinguish the *Port-Royal Logic* with the cold approbation of being "a judicious compilation from former works on the same subject,—particularly from a treatise by a Spanish Jesuit, Fonsiaca."—*Cours de Sciences*, p. 673. Paris, 1732. Gibbon also has remarked how much "the learned Society of Port-Royal contributed to establish in France a taste for just reasoning, simplicity of style, and philosophical method."—*Misc. Works*, Vol. II. p. 70.

DISSERTATION FIRST.

DISS. I. PART I.
that it is now more praised than read in Great Britain; so completely have those disputes, to which it owed its first celebrity, lost their interest. Many passages in it, indeed, will always be perused with delight; but it may be questioned, if Gibbon himself would have read it so often from beginning to end, had it not been for the strong hold which ecclesiastical controversies, and the Roman Catholic faith, had early taken of his mind.

In one respect, the Provincial Letters are well entitled to the attention of philosophers; inasmuch as they present so faithful and lively a picture of the influence of false religious views in perverting the moral sentiments of mankind. The overwhelming ridicule lavished by Pascal on the whole system of Jesuitical casuistry, and the happy effects of his pleasantry in preparing from a distance, the fall of that formidable order, might be quoted as proofs, that there are at least some truths, in whose defence this weapon may be safely employed; perhaps with more advantage than the commanding voice of Reason herself. The mischievous absurdities which it was his aim to correct, scarcely admitted of the gravity of logical discussion; requiring only the extirpation or the prevention of those early prejudices which choke the growth of common sense and of conscience: And for this purpose, what so likely to succeed with the open and generous minds of youth, as Ridicule, managed with decency and taste; more especially when seconded, as in the Provincial Letters, by acuteness of argument, and by the powerful eloquence of the heart? In this point of view, few practical moralists can boast of having rendered a more important service than Pascal to the general interests of humanity. Were it not, indeed, for his exquisite satire, we should already be tempted to doubt, if, at so recent a date, it were possible for such extravagances to have maintained a dangerous ascendant over the human understanding.

The unconnected fragment of Pascal, entitled Thoughts on Religion, contains various reflections which are equally just and ingenious; some which are truly sublime; and not a few which are false and puerile: the whole, however, deeply tinctured with that ascetic and morbid melancholy, which seems to have at last produced a partial eclipse of his faculties. Voltaire has animadverted on this fragment with much levity and petulance; mingling, at the same time, with many very exceptional structures, several of which it is impossible to dispute the justness. The following reflection is worthy of Addison, and bears a strong resemblance in its spirit to the amiable lessons inculcated in his papers on Cheerfulness:

"To consider the world as a dungeon, and the whole human race as so many criminals doomed to execution, is the idea of an enthusiast; to suppose the world to be a seat of delight, where we are to expect nothing but pleasure, is the dream of a Sybarite; but to conclude that the Earth, Man, and the lower Animals, are, all of them, subservient to the purposes of an unerring Providence, is, in my opinion, the system of a wise and good man."

From the sad history of this great and excellent person (on whose deep superstitious gloom it is the more painful to dwell, that, by an unaccountable, though not singular coincidence, it was occasionally brightened by the inoffensive play of a lively and sportive fancy) the eye turns with pleasure to repose on the nitis sapientiae, and the Elysian imagination of Fenelon. The interval between the deaths of these two writers is indeed considerable; but that between their births does not amount to thirty years; and, in point of education, both enjoyed nearly the same advantages.

The reputation of Fenelon as a philosopher would probably have been higher and more universal than it is, if he had not added to the depth, comprehension, and soundness of his judgment, so rich a variety of those more pleasing and attractive qualities, which are commonly regarded rather as the flowers than the fruits of study. The same remark may be extended to the Fenelon of England, whose ingenious and original essays on the Pleasures of Imagination would have been much more valued by modern

1 Spectator, No. 381 and 387.
metaphysicians, had they been less beautifully and happily written. The characteristic excellence, however, of the Archbishops of Canterbury, is that moral wisdom, which (as Shaftesbury has well observed), "comes more from the heart than from the head," and which seems to depend less on the reach of our reasoning powers, than on the absence of those narrow and malignant passions, which, on all questions of ethics and politics (perhaps I might add of religion also), are the chief source of our speculative errors.

The Adventures of Telemachus, when considered as a production of the seventeenth century, and still more as the work of a Roman Catholic Bishop, is a sort of prodigy; and it may, to this day, be confidently recommended, as the best manual extant, for impressing on the minds of youth the leading truths, both of practical morals and of political economy. Nor ought it to be concluded, because these truths appear to lie so near the surface, and command so immediately the cordial assent of the understanding, that they are therefore obvious or trite; for the case is the same with all the truths most essential to human happiness. The importance of agriculture and of religious toleration to the prosperity of states; the criminal impolicy of thwarting the kind arrangements of Providence, by restraints upon commerce; and the duty of legislators to study the laws of the moral world as the groundwork and standard of their own, appear, to minds unsophisticated by inveterate prejudices, as approaching nearly to the class of axioms;—yet, how much ingenious and refined discussion has been employed, even in our own times, to combat the prejudices which everywhere continue to struggle against them; and how remote does the period yet seem, when there is any probability that these prejudices shall be completely abandoned!

"But how," said Telemachus to Narbal, "can such a commerce as this of Tyre be established at Ithaca?" "By the same means," said Narbal, "that have established it here. Receive all strangers with readiness and hospitality; let them find convenience and liberty in your ports; and be careful never to disgust them by avarice or pride: above all, never restrain the freedom of commerce, by rendering it subservient to your own immediate gain. The pecuniary advantages of commerce, should be left wholly to those by whose labour it subsists; lest this labour, for want of a sufficient motive, should cease. There are more than equivalent advantages of another kind, which must necessarily result to the Prince from the wealth which a free commerce will bring into his state; and commerce is a kind of spring, which to divert from its natural channel is to lose." Had the same question been put to Smith or to Franklin in the present age, what sounder advice could they have offered?

In one of Fenelon's Dialogues of the Dead, the following remarkable words are put into the mouth of Socrates: "It is necessary that a people should have written laws, always the same, and consecrated by the whole nation; that these laws should be paramount to everything else; that those who govern should derive their authority from them alone; possessing an unbounded power to do all the good which the laws prescribe, and restrained from every act of injustice which the laws prohibit."

But it is chiefly in a work which did not appear till many years after his death, that we have an opportunity of tracing the enlargement of Fenelon's political views, and the extent of his Christian charity. It is entitled, Direction pour la Conscience d'un Roi; and abounds with as liberal and enlightened maxims of government as, under the freest constitutions, have ever been offered by a subject to a sovereign. Where the variety of excellence renders selection so difficult, I must not venture upon any extracts; nor, indeed, would I willingly injure the effect of the whole by quoting detached passages. A few sentences on liberty of conscience (which I will not presume to translate) may suffice to convey an idea of the general spirit with which it is animated. "Sur toute chose, ne forcez jamais vos sujets à changer de religion.

1 Hawkesworth's Translation.
Nulle puissance humaine ne peut forcer le re- tranchement impénétrable de la liberté du cœur. La force ne peut jamais persuader les hommes; elle ne fait que des hypocrites. Quand les rois se mêlent de religion, au lieu de la protéger, ils la mettent en servitude. Accordez à tous la tolérance civile, non en approuvant tout comme indiffèrent, mais en souffrant avec patience tout ce que Dieu souffre, et en tâchant de ramener les hommes par une douce persuasion."

And so much for the French philosophy of the seventeenth century. The extracts last quoted forewarn us, that we are fast approaching to a new era in the history of the Human Mind. The glow-worm 'gins to pale his ineffectual fire; and we scent the morning air of the coming day. This era I propose to date from the publications of Locke and of Leibnitz; but the remarks which I have to offer on their writings, and on those of their most distinguished successors, I reserve for the Second Part of this Discourse, confining myself, at present, to a very short retrospect of the state of philosophy, during the preceding period, in some other countries of Europe.¹

SECTION III.

Progress of Philosophy during the Seventeenth Century, in some parts of Europe, not included in the preceding Review.

During the first half of the seventeenth century, the philosophical spirit which had arisen with such happy auspices in England and in France, has left behind it few or no traces of its existence in the rest of Europe. On all questions connected with the science of mind (a phrase which I here use in its largest acceptation), authority continued to be everywhere mistaken for argument; nor can a single work be named, bearing, in its character, the most distant resemblance to the Organon of Bacon; to the Meditations of Descartes; or to the bold theories of that sublime genius, who, soon after, was to shed so dazzling a lustre on the north of Germany. Kepler and Galileo still lived;—the former languishing in poverty at Prague; the latter oppressed with blindness, and with ecclesiastical persecution, at Florence: but their pursuits were of a nature altogether foreign to our present subject.

One celebrated work alone, the treatise of Grotius De Jure Belli et Pacis (first printed in 1625), arrests our attention among the crowd of useless and forgotten volumes, which were then issuing from the presses of Holland, Germany, and Italy. The influence of this treatise, in giving a new direction to the studies of the learned, was so remarkable, and continued so long to operate with undiminished effect, that it is necessary to allot to the author, and to his successors, a space considerably larger than may, at first sight, seem due to their merits. Notwithstanding the just neglect into which they have lately fallen in our universities, it will be found, on a close examination, that they form an important link in the history of modern literature. It was from their school that most of our best writers on Ethics have proceeded, and many of our most original inquirers into the Human Mind; and it is to the same school (as

¹ I have classed Télémaque and the Direction pour la Conscience d'un Roi with the philosophy of the seventeenth century, although the publication of the former was not permitted till after the death of Louis XIV, nor that of the latter till 1746. The tardy appearance of both only shows how far the author had shot a-head of the orthodox religion and politics of his times.
I shall endeavour to show in the Second Part of this Discourse), that we are chiefly indebted for the modern science of Political Economy: 1

For the information of those who have not read the treatise De Jure Belli et Pacis, it may be proper to observe, that, under this title, Grotius has aimed at a complete system of Natural Law. Condillac says, that he chose the title, in order to excite a more general curiosity; adding (and, I believe, very justly), that many of the most prominent defects of his works may be fairly ascribed to a compliance with the taste of his age. "The author," says Condillac, "was able to think for himself; but he constantly labours to support his conclusions by the authority of others; producing, on many occasions, in support of the most obvious and indisputable propositions, a long string of quotations from the Mosaic law; from the Gospels; from the Fathers of the Church; from the CASUISTS; and, not unfrequently, in the very same paragraph, from Ovid and Aristophanes." In consequence of this cloud of witnesses, always at hand to attest the truth of his axioms, not only is the attention perpetually interrupted and distracted; but the author's reasonings, even when perfectly solid and satisfactory, fail in making a due impression on the reader's mind, while the very little that there probably was of systematical arrangement in the general plan of the book, is totally kept out of view.

In spite of these defects, or rather, perhaps, in consequence of some of them, the impression produced by the treatise in question, on its first publication, was singularly great. The stores of erudition displayed in it recommended it to the classical scholar; while the happy application of the author's reading to the affairs of human life, drew the attention of such men as Gustavus Adolphus; of his Prime Minister, the Chancellor Oxenstiern; and of the Elector Palatine, Charles Lewis. The last of these was so struck with it, that he founded at Heidelberg a Professorship for the express purpose of teaching the Law of Nature and Nations;—an office which he bestowed on Puffendorff, the most noted, and, on the whole, the most eminent of those who have aspired to tread in the footsteps of Grotius.

The fundamental principles of Puffendorff possess little merit in point of originality, being a sort of medley of the doctrines of Grotius, with some opinions of Hobbes; but his book is entitled to the praise of comparative conciseness, order, and perspicuity; and accordingly came very generally to supplant the treatise of Grotius, as a manual or institute for students, notwithstanding its immense inferiority in genius, in learning, and in classical composition.

The authors who, in different parts of the Continent, have since employed themselves in commenting on Grotius and Puffendorff; or in abridging their systems; or in altering their arrangements, are innumerable: but notwithstanding all their industry and learning, it would be very difficult to name any class of writers whose labours have been of less utility to the world. The same ideas are constantly recurring in an eternal circle; the opinions of Grotius and of Puffendorff, where they are at all equivocal, are anxiously investigated; and sometimes involved in additional obscurity; while, in the meantime, the science of Natural Jurisprudence never advances one single step; but, notwithstanding its recent birth, seems already sunk into a state of dotage. 8

In perusing the systems now referred to, it is impossible not to feel a very painful dissatisfaction, from the difficulty of ascertaining the precise object aimed at by the authors. So vague

1 From a letter of Grotius, quoted by Gassendi, we learn, that the treatise De Jure Belli et Pacis was undertaken at the request of his learned friend Peirescius. 4 Non otior, sed in illo de jure gentium opere pergo, quod si tale futurum est, ut lectores litterarum possit, habebit quod tibi debet posteritas, qui me ad hunc laborum et auxilio et hortatu tuo excitasti."—Gassendi Opera, Tom. V. p. 294.

2 I have borrowed, in this last paragraph, some expressions from Lampredi. 5 Grotti et Puffendorffii interpretes, viri quidem diligentissimi, sed qui vix fructum aliquem tot commentariis, adnotationibus, componitis, tabulis, ceterisque ejusmodi ardidissimis laboribus attulerunt: perpetuo circulo cadem res circumagitur, quid utebatur senserit ignorant, interdum etiam utriusque sententiae obscurantur; disciplina nostra tamen ne latum quidem unum progresserit, et dum aliorum sententiae disquisitor et explanator, Rerum Natura quasi semel confecta squalecit, neglectaque jacet et inobservata omnino.—(Juris Publici Theorematum, p. 34.)
and indeterminate is the general scope of their researches, that not only are different views of the subject taken by different writers, but even by the same writer in different parts of his work;—a circumstance which, of itself, sufficiently accounts for the slender additions they have made to the stock of useful knowledge; and which is the real source of that chaos of heterogeneous discussions, through which the reader is perpetually forced to fight his way. A distinct conception of these different views will be found to throw more light than might at first be expected on the subsequent history of Moral and of Political Science; and I shall therefore endeavour, as accurately as I can, to disentangle and separate them from each other, at the risk perhaps of incurring, from some readers, the charge of prolixity. The most important of them may, I apprehend, be referred to one or other of the following heads:

1. Among the different ideas which have been formed of Natural Jurisprudence, one of the most common (particularly in the earlier systems) supposes its object to be—to lay down those rules of justice which would be binding on men living in a social state, without any positive institutions; or (as it is frequently called by writers on this subject), living together in a state of nature. This idea of the province of Jurisprudence seems to have been uppermost in the mind of Grotius, in various parts of his treatise.

To this speculation about the state of nature, Grotius was manifestly led by his laudable anxiety to counteract the attempts then recently made to undermine the foundations of morality. That moral distinctions are created entirely by the arbitrary and revealed will of God, had, before his time, been zealously maintained by some theologians even of the reformed church; while, among the political theorists of the same period, it was not unusual to refer these distinctions (as was afterwards done by Hobbes) to the positive institutions of the civil magistrate. In opposition to both, it was contended by Grotius, that there is a natural law coeval with the human constitution, from which positive institutions derive all their force; a truth which, how obvious and trite soever it may now appear, was so opposite in its spirit to the illiberal systems taught in the monkish establishments, that he thought it necessary to exhaust in its support all his stores of ancient learning. The older writers on Jurisprudence must, I think, be allowed to have had great merit in dwelling so much on this fundamental principle; a principle which renders "Man a Law to himself," and which, if it be once admitted, reduces the metaphysical question concerning the nature of the moral faculty, to an object merely of speculative curiosity. To this faculty the ancients frequently give the name of reason; as in that noted passage of Cicero, where he observes, that "right reason is itself a law; congenial to the feelings of nature; diffused among all men; uniform; eternal; calling us imperiously to our duty, and peremptorily prohibiting every violation of it. Nor does it speak," continues the same author, "one language at Rome and another at Athens, varying from place to place, or time to time; but it addresses itself to all nations and to all ages; deriving its authority from the common sovereign of the universe, and carrying home its sanctions to every breast, by the inevitable punishment which it inflicts on transgressors."

The habit of considering morality under the similitude of a law (a law engraved on the human heart), led not unnaturally to an application to ethical subjects of the technical language and arrangements of the Roman jurisprudence, and this innovation was at once facilitated and

Footnotes:
1 "Upon whatever we suppose that our moral faculties are founded, whether upon a certain modification of reason, upon an original instinct, called a moral sense, or upon some other principle of our nature, it cannot be doubted that they were given us for the direction of our conduct in this life. They carry along with them the most evident badges of this authority, which denote that they were set up within us to be the supreme arbiters of all our actions, to superintend all our senses, passions, and appetites, and to judge how far each of them was either to be indulged or restrained. The rules, therefore, which they prescribe, are to be regarded as the commands and laws of the Deity, promulgated by those vicegerents which he has set up within us."—Smith's Theory of Moral Sentiments, Part iii. chap. v. See also Dr. Butler's very original and philosophical Discourse on Human Nature.

2 Frag. Lib. iii. de Rep.
encouraged, by certain peculiarities in the nature of the most important of all the virtues—that of justice; peculiarities which, although first explained fully by Hume and Smith, were too prominent to escape altogether the notice of preceding moralists.

The circumstances which distinguish justice from the other virtues, are chiefly two. In the first place, its rules may be laid down with a degree of accuracy, whereas moral precepts do not, in any other instance, admit. Secondly, its rules may be enforced, inasmuch as every transgression of them implies a violation of the rights of others. For the illustration of both propositions, I must refer to the eminent authors just mentioned.

As, in the case of justice, there is always a right, on the one hand, corresponding to an obligation on the other, the various rules enjoined by it may be stated in two different forms: either as a system of duties, or as a system of rights. The former view of the subject belongs properly to the moralist—the latter to the lawyer. It is this last view that the writers on Natural Jurisprudence (most of whom were lawyers by profession) have in general chosen to adopt; although, in the same works, both views will be found to be not unfrequently blended together.

To some indistinct conception among the earlier writers on Natural Law, of these peculiarities in the nature of justice, we may probably ascribe the remarkable contrast pointed out by Mr Smith, between the ethical systems of ancient and of modern times. "In none of the ancient moralists," he observes, "do we find any attempt towards a particular enumeration of the rules of justice. On the contrary, Cicero in his Offices, and Aristotle in his Ethics, treat of justice in the same general manner in which they treat of generosity or of charity." 1

But although the rules of justice are in every case precise and indispensable; and although their authority is altogether independent of that of the civil magistrate, it would obviously be absurd to spend much time in speculating about the principles of this natural law, as applicable to men, before the establishment of government. The same state of society which diversifies the condition of individuals to so great a degree as to suggest problematical questions with respect to their rights and their duties, necessarily gives birth to certain conventional laws or customs, by which the conduct of the different members of the association is to be guided; and agreeably to which the disputes that may arise among them are to be adjusted. The imaginary state referred to under the title of the State of Nature, though it certainly does not exclude the idea of a moral right of property arising from labour, yet excludes all that variety of cases concerning its alienation and transmission, and the mutual covenants of parties, which the political union alone could create;—an order of things, indeed, which is virtually supposed in almost all the speculations about which the law of nature is commonly employed.

2. It was probably in consequence of the very narrow field of study which Jurisprudence, considered in this light, was found to open, that its province was gradually enlarged, so as to comprehend, not merely the rules of justice, but the rules enjoining all our other moral duties. Nor was it only the province of Jurisprudence which was thus enlarged. A corresponding extension was also given, by the help of arbitrary definitions, to its technical phraseology, till at length the whole doctrines of practical ethics came to be moulded into an artificial form, originally copied from the Roman code. Although justice is the only branch of virtue in which every moral Obligation implies a corresponding Right, the writers on Natural Law have contrived, by fictions of imperfect rights, and of external rights, to treat indirectly of all our various duties, by pointing out the rights which are supposed to be their correlates:—in other words, they have contrived to exhibit, in the form of a system of rights, a connected view of the whole duty of man. This idea of Jurisprudence, which identifies its object with that of Moral Philosophy, seems to coincide nearly with that of Puffendorff; and some vague notion of the same sort

has manifestly given birth to many of the
disgressions of Grotius.

Whatever judgment may now be pronounced
on the effects of this innovation, it is certain
that they were considered, not only at the time,
but for many years afterwards, as highly favour-
able. A very learned and respectable writer,
Mr Carmichael of Glasgow, compares them to
the improvements made in Natural Philosophy
by the followers of Lord Bacon. "No person," he
observes, "liberally educated, can be igno-
ant, that, within the recollection of ourselves
and of our fathers, philosophy has advanced to
a state of progressive improvement hitherto un-
exampled; in consequence partly of the rejection
of scholastic absurdities, and partly of the ac-
cession of new discoveries. Nor does this re-
mark apply solely to Natural Philosophy, in
which the improvements accomplished by the
united labours of the learned have forced them-
selves on the notice even of the vulgar, by their
palpable influence on the mechanical arts.
The other branches of philosophy also have been pro-
secuted during the last century with no less suc-
cess; and none of them in a more remarkable
degree than the science of Morals.

"This science, so much esteemed, and so as-
sidiously cultivated by the sages of antiquity;
lay, for a length of time, in common with all the
other useful arts, buried in the rubbish of the
dark ages, till (soon after the commencement of
the seventeenth century), the incomparable
treatise of Grotius de Jure Belli et Pacis restored
to more than its ancient splendour that part of
it which defines the relative duties of individu-
als; and which, in consequence of the immense
variety of cases comprehended under it, is by
far the most extensive of any. Since that period,
the most learned and polite scholars of Europe,
as if suddenly roused by the alarm of a trumpet,
have vied with each other in the prosecution of
this study,—so strongly recommended to their
attention, not merely by its novelty, but by the
importance of its conclusions, and the dignity
of its object." ¹

I have selected this passage, in preference to
many others that might be quoted to the same
purpose from writers of higher name; because,
in the sequel of this historical sketch, it appears
to me peculiarly interesting to mark the progress
of Ethical and Political speculation in that seat
of learning, which, not many years afterwards,
was to give birth to the Theory of Moral Sen-
timents, and to the Inquiry into the Nature and Causes
of the Wealth of Nations. The powerful effect
which the last of these works has produced on
the political opinions of the whole civilised world,
renders it unnecessary, in a Discourse destined
to form part of a Scotch Encyclopedia, to offer
any apology for attempting to trace, with some

¹ The last sentence is thus expressed in the original. "Ex illo tempore, quasi classicum data, ab eruditissimis passim et
politissimis viris excollit certam coeptit, utilissima hanc nobiliissimam doctrinam."—See the edition of Puffendorff, De Officio
Homini et Civis, by Professor Gerschom Carmichael of Glasgow, 1724; an author whom Dr Hutchinson pronounces to be
"by far the best commentator on Puffendorff; and whose notes," he adds, "are of much more value than the text."—
See his short Introduction to Moral Philosophy.

Puffendorff's principal work, entitled De Jure Naturae et Gentium, was first printed in 1672, and was afterwards abridged
by the author into the small volume referred to in the foregoing paragraph. The idea of Puffendorff's aim, formed by Mr
Carmichael, coincides exactly with the account of it given in the text: "Hoc demum tractatu edito, facile intellec-
tuerunt aquiores harum rerum arbitri, non aliam esse genuinam Morum Philosophiam quam quae ex evidentibus principiis, in ipsa
rerum natura fundatis, hominis atque civis officia, in singulis vitis humanae circumstantiis debita, eruit ac demonstrat;
atque adeo Juris Naturalis scientiam, quantumvis diversam ab Ethica qua in scholaribus obviam, pra se ferret
faciem, non esse, quod ad scopum et rem tractandum, vere aliam disciplinam, sed eadem rectius duxata et solidius tra-
ditam, ita ut, ad quam prius male collinaverit, tandem reipsa ferret scopum."—See CARMICHAEL's edition of the treatise
De Officio Hominis et Civis, p. 7.

To so late a period did this admiration of the treatise De Officio Hominis et Civis, continue in our Scotch Universities,
that the very learned and respectable Sir John Pringle (afterwards President of the Royal Society of London), adopted it
as the text-book for his lectures, while he held the Professorship of Moral Philosophy at Edinburgh. Nor does the case
seem to have been different in England. "I am going," says Gray, in a letter written while a student at Cambridge, "to
attend a lecture on one Puffendorf." And, much in the same spirit, Voltaire thus expresses himself with respect to the
schools of the Continent:—"On est partagé, dans les écoles, entre Grotius et Puffendorf. Créez-moi, lisez les Offices
de Ciceron." From the contumacious tone of these two writers, it should seem that the old systems of Natural Jurispru-
dence had entirely lost their credit among men of taste and of enlarged views, long before they ceased to form an essential
part of academical instruction; thus affording an additional confirmation of Mr Smith's complaint, that the greater part of
universities have not been very forward to adopt improvements after they were made; and that several of those learned
societies have chosen to remain, for a long time, the sanctuaries in which exploded systems found shelter and protection,
after they had been hunted out of every other corner of the world." Considering his own successful exertions in his aca-
demical capacity, to remedy this evil, it is more than probable that Mr Smith had Grotius and Puffendorf in his view
when he wrote the foregoing sentence.
minuteness, the train of thought by which an undertaking, so highly honourable to the literary character of our country, seems to have been suggested to the author.

The extravagance of the praise lavished on Grotius and Puffendorff, in the above citation from Carnichael, can be accounted for only by the degraded state into which Ethics had fallen in the hands of those who were led to the study of it, either as a preparation for the casuistical discussions subservient to the practice of auricular confession, or to justify a scheme of morality which recommended the useless austerities of an ascetic retirement, in preference to the many duties of social life. The practical doctrines inculcated by the writers on Natural Law, were all of them favourable to active virtue; and, how reprehensible soever in point of form, were not only harmless, but highly beneficial in their tendency. They were at the same time so diversified (particularly in the work of Grotius) with beautiful quotations from the Greek and Roman classics, that they could not fail to present a striking contrast to the absurd and illiberal systems which they supplanted; and perhaps to these passages, to which they thus gave a sort of systematical connection, the progress which the science made in the course of the eighteenth century may, in no inconsiderable degree, be ascribed. Even now, when so very different a taste prevails, the treatise de Jure Belli et Pacis possesses many charms to a classical reader; who, although he may not always set a very high value on the author’s reasonings, must at least be dazzled and delighted with the splendid profusion of his learning.

The field of Natural Jurisprudence, however, was not long to remain circumscribed within the narrow limits commonly assigned to the province of Ethics. The contrast between natural law and positive institution, which it constantly presents to the mind, gradually and insensibly suggested the idea of comprehending under it every question concerning right and wrong, on which positive law is silent. Hence the origin of two different departments of Jurisprudence, little attended to by some of the first authors who treated of it, but afterwards, from their practical importance, gradually encroaching more and more on those ethical disquisitions by which they were suggested. Of these departments, the one refers to the conduct of individuals in those violent and critical moments when the bonds of political society are torn asunder; the other, to the mutual relations of independent communities. The questions connected with the former article, lie indeed within a comparatively narrow compass; but on the latter so much has been written, that what was formerly called Natural Jurisprudence, has been, in later times, not unfrequently distinguished by the title of the Law of Nature and Nations. The train of thought by which both subjects came to be connected with the systems now under consideration, consists of a few very simple and obvious steps.

As an individual who is a member of a political body necessarily gives up his will to that of the governors who are entrusted by the people with the supreme power, it is his duty to submit to those inconveniences which, in consequence of the imperfection of all human establishments, may incidentally fall to his own lot. This duty is founded on the Law of Nature, from which, indeed, (as must appear evident on the slightest reflection) conventional law derives all its moral force and obligation. The great end, however, of the political union being a sense of general utility, if this end should be manifestly frustrated, either by the injustice of laws, or the tyranny of rulers, individuals must have recourse to the principles of Natural Law, in order to determine how far it is competent for them to withdraw themselves from their country, or to resist its governors by force. To Jurisprudence, therefore, considered in this light, came with great propriety to be referred all those practical discussions which relate to the limits of allegiance, and the right of resistance.

By a step equally simple, the province of the science was still farther extended. As independent states acknowledge no superior, the obvious inference was, that the disputes arising among them must be determined by an appeal to the Law of Nature; and accordingly, this law, when applied to states, forms a separate part of Jurisprudence, under the title of the Law of Nations. By some writers we are told, that the
general principles of the Law of Nature, and of the Law of Nations, are one and the same, and that the distinction between them is merely verbal. To this opinion, which is very confidently stated by Hobbes, but Puffendorff has given his sanction; and in conformity to it, contents himself with laying down the general principles of Natural Law, leaving it to the reader to apply it as he may find necessary, to individuals or to societies.

The later writers on Jurisprudence have thought it expedient to separate the law of nations from that part of the science which treats of the duties of individuals; but without being at sufficient pains to form to themselves a definite idea of the object of their studies. Whoever takes the trouble to look into their systems, will immediately perceive, that their leading aim is not, as might have been expected, to ascertain the great principles of morality binding on all nations in their intercourse with each other; or to point out with what limitations the ethical rules recognised among individuals must be understood, when extended to political and unconnected bodies; but to exhibit a digest of those laws and usages, which, partly from considerations of utility, partly from accidental circumstances, and partly from positive conventions, have gradually arisen among those states of Christendom, which, from their mutual connections, may be considered as forming one great republic. It is evident, that such a digest has no more connection with the Law of Nature, properly so called, than it has with the rules of the Roman Law, or of any other municipal code. The details contained in it are highly interesting and useful in themselves; but they belong to a science altogether different; a science, in which the ultimate appeal is made, not to abstract maxims of right and wrong, but to precedents, to established customs, and to the authority of the learned.

The intimate alliance, however, thus established between the Law of Nature and the conventional Law of Nations, has been on the whole attended with fortunate effects. In consequence of the discussions concerning questions of justice and of expediency which came to be blended with the details of public law, more enlarged and philosophical views have gradually presented themselves to the minds of speculative statesmen; and, in the last result, have led, by easy steps, to those liberal doctrines concerning commercial policy, and the other mutual relations of separate and independent states, which, if they should ever become the creed of the rulers of mankind, promise so large an accession to human happiness.

In a late publication, from the title of which some attention to dates might have been expected, we are told, that "Hobbes's book De Cive appeared but a little time before the treatise of Grotius," whereas, in point of fact, Hobbes's book did not appear till twenty-two years after it. A few copies were indeed printed at Paris, and privately circulated by Hobbes, as early as 1642, but the book was not published till 1647.—(See "An Inquiry into the Foundation and History of the Law of Nations in Europe," &c. by Robert Ward of the Inner Temple, Esq. London, 1786). This inaccuracy, however, is trifling, when compared with those committed in the same work, in stating the distinguishing doctrines of the two systems.

As a writer on the Law of Nations, Hobbes is now altogether unworthy of notice. I shall therefore only remark on this part of his philosophy, that its aim is precisely the reverse of that of Grotius; the latter labouring, through the whole of his treatise, to extend, as far as possible, among independent states, the same laws of justice and of humanity which are universally recognised among individuals; while Hobbes, by inverting the argument, exerts his ingenuity to show, that the moral repulsion which commonly exists between independent and neighbouring communities, is an exact picture of that which existed among individuals prior to the origin of government. The inference, indeed, was most illogical, inasmuch as it is the social attraction among individuals which is the source of the mutual repulsion among nations, and as this attraction invariably operates with the greatest force where the individual is the most completely independent of his species, and where the advantages of the political union are the least sensibly felt. If, in any state of human nature, it be in danger of becoming quite evanescent, it is in large and civilised empires, where man becomes indispensably necessary to man, depending for the gratification of his artificial wants on the co-operation of thousands of his fellow citizens.

Let me add, that the theory so fashionable at present, which resolves the whole of morality into the principle of utility, is more nearly akin to Hobism, than some of its partisans are aware of.

The credit of this improvement is ascribed by Vattel (one of the most esteemed writers on the subject), to the celebrated German philosopher Wolfius, whose labours in this department of study he estimates very highly.—("Questions de Droit Naturel." Berne, 1702.) Of this great work I know nothing but the title, which is not calculated to excite much curiosity in the present times: "Christiani Wolfii Jus Nature methodo scientiae demonstratum, in 9 Tomos distributum." (Francof. 1740). "Non est," says Lampredi, himself a professor of public law, "qui non deterrat tanta librorum raritatem, quasi vero Herculeo labore opus esset ut quis honestamen ut Justitiam addisat."
3. Another idea of Natural Jurisprudence, essentially distinct from those hitherto mentioned, remains to be considered. According to this, its object is to ascertain the general principles of justice which ought to be recognised in every municipal code; and to which it ought to be the aim of every legislator to accommodate his institutions. It is to this idea of Jurisprudence that Mr Smith has given his sanction in the conclusion of his 'Theory of Moral Sentiments'; and this he seems to have conceived to have been likewise the idea of Grotius, in the treatise de Jure Belli et Pacis.

"It might have been expected," says Mr Smith, "that the reasonings of lawyers upon the different imperfections and improvements of the laws of different countries, should have given occasion to an inquiry into what were the natural rules of justice, independent of all positive institution. It might have been expected, that these reasonings should have led them to aim at establishing a system of what might properly be called Natural Jurisprudence, or a theory of the principles which ought to run through, and to be the foundation of the laws of all nations. But, though the reasonings of lawyers did produce something of this kind, and though no man has treated systematically of the laws of any particular country, without intermixing in his work many observations of this sort, it was very late in the world before any such general system was thought of; or before the philosophy of laws was treated of by itself, and without regard to the particular institutions of any nation. Grotius seems to have been the first who attempted to give the world anything like a system of those principles which ought to run through, and be the foundation of the laws of all nations; and his Treatise of the Laws of Peace and War, with all its imperfections, is perhaps, at this day, the most complete work that has yet been given on the subject."

Whether this was, or was not, the leading object of Grotius, it is not material to decide; but if this was his object, it will not be disputed that he has executed his design in a very desultory manner, and that he often seems to have lost sight of it altogether, in the midst of those miscellaneous speculations on political, ethical, and historical subjects, which form so large a portion of his Treatise, and which so frequently succeed each other without any apparent connection or common aim.¹

Nor do the views of Grotius appear always enlarged or just, even when he is pointing at the object described by Mr Smith. The Roman system of Jurisprudence seems to have warped, in no inconsiderable degree, his notions on all questions connected with the theory of legislation, and to have diverted his attention from that philosophical idea of law, so well expressed by Cicero,—"Non a praeoris edicto, neque a duodecim tabulis, sed penitus ex intima philosophia, haerendam juris disciplinam." In this idolatry, indeed, of the Roman law, he has not gone so far as some of his commentators, who have affirmed, that it is only a different name for the Law of Nature; but that his partiality for his professional pursuits has often led him to overlook the immense difference between the state of society in ancient and modern Europe, will not, I believe, be now disputed. It must, at the same time, be mentioned to his praise, that no writer appears to have been, in theory, more completely aware of the essential distinction between Natural and Municipal laws. In one of the paragraphs of his Prolegomena, he mentions it as a part of his general plan, to illustrate the Roman code, and to systematize those parts of it which have their origin in the Law of Nature. "The task," says he, "of moulding it into the form of a system, has been projected by many, but hitherto accomplished by none. Nor indeed was the thing possible, while so little attention was paid to the distinction between natural and positive institutions; for the former being everywhere the same, may be easily traced to a few general principles, while the latter, exhibiting different appearances at different times, and in different places, elude

¹ "Of what stamp," says a most ingenious and original thinker, "are the works of Grotius, Puffendorf, and Burlamaqui? Are they political or ethical, historical or juridical, expository or casuial?—Sometimes one thing, sometimes another: they seem hardly to have settled the matter with themselves."—BENTHAM'S Introduction to the Principles of Morals and Legislation, p. 327.
every attempt towards methodical arrangement, no less than the insulated facts which individual objects present to our external senses."

This passage of Grotius has given great offence to two of the most eminent of his commentators, Henry and Samuel de Coccœii, who have laboured much to vindicate the Roman legislators against that indirect censure which the words of Grotius appear to convey. "My chief object," says the latter of those writers, "was, by deducing the Roman Law from its source in the nature of things, to reconcile Natural Jurisprudence with the civil code; and, at the same time, to correct the supposition implied in the foregoing passage of Grotius, which is indeed one of the most exceptionable to be found in his work. The remarks on this subject, scattered over the following commentary, the reader will find arranged in due order in my twelfth Preliminary Dissertation, the chief design of which is to systematise the whole Roman Law, and to demonstrate its beautiful coincidence with the Law of Nature." In the execution of this design, Coccœii must, I think, be allowed to have contributed a very useful supplement to the jurisprudential labours of Grotius, the Dissertation in question being eminently distinguished by that distinct and luminous method, the want of which renders the study of the treatise de Jure Belli et Pacis so peculiarly irksome and unsatisfactory.

The superstitious veneration for the Roman code expressed by such writers as the Coccœii, will appear less wonderful, when we attend to the influence of the same prejudice on the liberal and philosophical mind of Leibnitz; an author who has not only gone so far as to compare the civil law (considered as a monument of human genius) with the remains of the ancient Greek geometry; but has strongly intimated his dissent from the opinions of those who have represented its principles as being frequently at variance with the Law of Nature. In one very powerful paragraph, he expresses himself thus: "I have often said, that, after the writings of geometricians, there exists nothing which, in point of strength, subtlety, and depth, can be compared to the works of the Roman lawyers. And as it would be scarcely possible, from mere intrinsic evidence, to distinguish a demonstration of Euclid's from one of Archimedes or of Appollonius (the style of all of them appearing no less uniform than if reason herself were speaking through their organs), so also the Roman lawyers all resemble each other like twin-brothers; inasmuch that, from the style alone of any particular opinion or argument, hardly any conjecture could be formed about its author. Nor are the traces of a refined and deeply meditated system of Natural Jurisprudence anywhere to be found more visible, or in greater abundance. And even in those cases where its principles are departed from, either in compliance with the language consecrated by technical forms, or in consequence of new statutes, or of ancient traditions, the conclusions which the assumed hypothesis renders it necessary to incorporate with the eternal dictates of right reason, are deduced with the soundest logic, and with an ingenuity that excites admiration. Nor are these deviations from the Law of Nature so frequent as is commonly apprehended."

In the last sentence of this passage, Leibnitz had probably an eye to the works of Grotius and his followers; which, however narrow and timid in their views they may now appear, were, for a long time, regarded among civilians as savouring somewhat of theoretical innovation, and of political heresy.

To all this may be added, as a defect still more important and radical in the systems of Natural Jurisprudence considered as models of universal legislation, that their authors reason concerning laws too abstractedly, without specifying the particular circumstances of the society to which they mean that their conclusions should be applied. It is very justly observed by Mr Bentham, that "if there are any books of universal Jurisprudence, they must be looked for within very narrow limits." He certainly, however, carries this idea too far, when he asserts, that "to be susceptible of an universal application, all that a book of the expository kind can have to treat of is the import of words; and that, to be strictly speaking universal, it must confine itself to terminology; that is, to an explanation of such words con-
nected with law, as power, right, obligation, liberty, to which are words pretty exactly cor-
respondent in all languages." His expressions, too, are somewhat unguarded, when he calls the Law of Nature "an obscure phantom, which in the imaginations of those who go in chase of it, points sometimes to manners, sometimes to laws, sometimes to what law is, sometimes to what it ought to be." Nothing, indeed, can be more exact and judicious than this description, when restricted to the Law of Nature, as commonly treated of by writers on Jurisprudence; but if extended to the Law of Nature, as originally understood among ethical writers, it is impossible to assent to it, without abandoning all the principles on which the science of morals ultimately rests. With these obvious, but, in my opinion, very essential limitations, I perfectly agree with Mr. Bentham, in considering an abstract code of laws as a thing equally unphilosophical in the design, and useless in the execution.

In stating these observations, I would not be understood to dispute the utility of turning the attention of students to a comparative view of the municipal institutions of different nations; but only to express my doubts whether this can be done with advantage, by referring these institutions to that abstract theory called the Law of Nature, as to a common standard. The code of some particular country must be fixed on as a groundwork for our speculations; and its laws studied, not as consequences of any abstract principles of justice, but in their connection with the circumstances of the people among whom they originated. A comparison of these laws with the corresponding laws of other nations, considered also in their connection with the circumstances whence they arose, would form a branch of study equally interesting and useful, not merely to those who have in view the profession of law, but to all who receive the advantages of a liberal education. In fixing on such a standard, the preference must undoubtedly be given to the Roman Law, if for no other reason than this, that its technical language is more or less incorporated with all our munici-
pal regulations in this part of the world; and the study of this language, as well as of the other technical parts of Jurisprudence (so revolted to the taste when considered as the arbitrary jargon of a philosophical theory), would possess sufficient attractions to excite the curiosity, when considered as a necessary passport to a knowledge of that system which so long determined the rights of the greatest and most celebrated of nations.

"Universal grammar," says Dr. Lowth, "cannot be taught abstractedly; it must be done with reference to some language already known, in which the terms are to be explained and the rules exemplified." The same observation may be applied (and for reasons strikingly analogous) to the science of Natural or Universal Jurisprudence.

Of the truth of this last proposition Bacon seems to have been fully aware; and it was manifestly some ideas of the same kind which gave birth to Montesquieu's historical speculations with respect to the origin of laws, and the reference which they may be expected to bear, in different parts of the world, to the physical and moral circumstances of the nations among whom they have sprung up. During this long interval, it would be difficult to name any intermediate writer, by whom the important considerations just stated were duly attended to.

In touching formerly on some of Bacon's ideas concerning the philosophy of law, I quoted a few of the most prominent of those fortunate anticipations, so profusely scattered over his works, which, outstripping the ordinary march of human reason, associate his mind with the luminaries of the eighteenth century, rather than with his own contemporaries. These anticipations, as well as many others of a similar description, hazarded by his bold yet prophetic imagination, have often struck me as resembling the pierres d'attente, jutting out from the corners of an ancient building, and inviting the fancy to complete what was left unfinished of the architect's design;—or the slight and broken sketches traced on the skirts of an American

1 Introduction to the Principles of Morals and Legislation, p. 323. 2 Ibid. p. 327. 3 Preface to his English Grammar.
map, to connect its chains of hills and branches of rivers with some future survey of the contiguous wilderness. Yielding to such impressions, and eager to pursue the rapid flight of his genius, let me abandon for a moment the order of time, while I pass from the Fontes Juris to the Spirit of Laws. To have a just conception of the comparatively limited views of Grotius, it is necessary to attend to what was planned by his immediate predecessor, and first executed (or rather first begun to be executed) by one of his remote successors.

The main object of the Spirit of Laws (it is necessary here to premise) is to show, not, as has been frequently supposed, what laws ought to be, but how the diversities in the physical and moral circumstances of the human race have contributed to produce diversities in their political establishments, and in their municipal regulations. On this point, indeed, an appeal may be made to the author himself. "I write not," says he, "to censure any thing established in any country whatsoever; every nation will here find the reasons on which its maxims are founded." This plan, however, which, when understood with proper limitations, is highly philosophical, and which raises Jurisprudence, from the uninteresting and useless state in which we find it in Grotius and Puffendorf, to be one of the most agreeable and important branches of useful knowledge (although the execution of it occupies by far the greater part of his work), is prosecuted by Montesquieu in so very desultory a manner, that I am inclined to think he rather fell into it insensibly, in consequence of the occasional impulse of accidental curiosity, than from any regular design he had formed to himself when he began to collect materials for that celebrated performance. He seems, indeed, to confess this in the following passage of his preface: "Often have I begun, and as often laid aside, this undertaking. I have followed my observations without any fixed plan, and without thinking either of rules or exceptions. I have found the truth only to lose it again."

But whatever opinion we may form on this point, Montesquieu enjoys an unquestionable claim to the grand idea of connecting Jurisprudence with History and Philosophy, in such a manner as to render them all subservient to their mutual illustration. Some occasional disquisitions of the same kind may, it is true, be traced in earlier writers, particularly in the works of Bodinus; but they are of a nature too trifling to detract from the glory of Montesquieu. When we compare the jurisprudential researches of the latter with the systems previously in possession of the schools, the step which he made appears to have been so vast as almost to justify the somewhat too ostentatious motto prefixed to them by the author; Prolcm sine Matre creatam. Instead of confining himself, after the example of his predecessors, to an interpretation of one part of the Roman code by another, he studied the Spirit of these laws in the political views of their authors, and in the peculiar circumstances of that extraordinary race. He combined the science of law with the history of political society, employing the latter to account for the varying aims of the legislator; and the former, in its turn, to explain the nature of the government, and the manners of the people. Nor did he limit his inquiries to the Roman Law, and to Roman History; but, convinced that the general principles of human nature are everywhere the same, he searched for new lights among the subjects of every government, and the inhabitants of every climate; and, while he thus opened inexhaustible and unthought of resources to the student of Jurisprudence, he indirectly marked out to the legislator the extent and the limits of his power, and recalled the attention of the philosopher from abstract and useless theories, to the only authentic monuments of the history of mankind.

1 This, though somewhat ambiguously expressed, must, I think, have been the idea of D'Alembert in the following sentence: "Dans cet ouvrage, M. de Montesquieu s'occupe moins des loix qu'on a faites, que de celles qu'on a du faire."—(Eloge de M. de Montesquieu.) According to the most obvious interpretation of his words, they convey a meaning which I conceive to be the very reverse of the truth.
2 As examples of Montesquieu's peculiar and characteristic style of thinking in The Spirit of Laws, may be mentioned his Observations on the Origin and Revolutions of the Roman Laws on Successions; and what he has written on the History of the Civil Laws in his own Country; above all, his Theory of the Feudal Laws among the Franks, considered in relation to the re-
This view of law, which unites History and Philosophy with Jurisprudence, has been followed out with remarkable success by various authors since Montesquieu's time; and for a considerable number of years after the publication of the *Spirit of Laws*, became so very fashionable, particularly in this country, that many seem to have considered it, not as a step towards a farther end, but as exhausting the whole science of Jurisprudence. For such a conclusion there is undoubtedly some foundation, so long as we confine our attention to the ruder periods of society, in which governments and laws may be universally regarded as the gradual result of time and experience, of circumstances and emergencies. In enlightened ages, however, there cannot be a doubt, that political wisdom comes in for its share in the administration of human affairs; and there is reasonable ground for hoping, that its influence will continue to increase, in proportion as the principles of legislation are more generally studied and understood. To suppose the contrary, would reduce us to be mere *spectators* of the progress and decline of society, and put an end to every species of patriotic exertion.

Montesquieu's own aim in his historical disquisitions, was obviously much more deep and refined. In various instances, one would almost think he had in his mind the very shrewd aphorism of Lord Coke, that, "to trace an error to its fountain-head, is to refute it;"—a species of refutation, which, as Mr Bentham has well remarked, is, with many understandings, the only one that has any weight. To men prepossessed with a blind veneration for the wisdom of antiquity, and strongly impressed with a conviction that every thing they see around them is the result of the legislative wisdom of their ancestors, the very existence of a legal principle, or of an established custom, becomes an argument in its favour; and an argument to which no reply can be made, but by tracing it to some acknowledged prejudice, or to a form of society so different from that existing at present, that the same considerations which serve to account for its first origin, demonstrate indirectly the expediency of now accommodating it to the actual circumstances of mankind.

According to this view of the subject, the speculations of Montesquieu were ultimately directed to the same practical conclusion with that pointed out in the prophetic suggestions of Bacon; aiming, however, at this object, by a process more circuitous; and, perhaps, on that account, the more likely to be effectual. The plans of both have been since combined with extraordinary sagacity, by some of the later writers on Political Economy, but with their systems we have no concern in the present section. I shall therefore only remark, in addition to the foregoing observations, the peculiar utility of these researches concerning the history of laws, in repressing the folly of sudden and violent innovation, by illustrating the reference which laws must necessarily have to the actual circumstances of a people,—and the tendency which natural causes have to improve gradually and progressively the condition of mankind, under every government which allows them to enjoy the blessings of peace and of liberty.

The well-merited popularity of the *Spirit of Laws*, gave the first fatal blow to the study of *Natural Jurisprudence*; partly by the proofs of their monarchy. On many points connected with these researches, his conclusions have been since controverted; but all his successors have agreed in acknowledging him as their common master and guide.

1 If our ancestors have been all along under a mistake, how came they to have fallen into it?" is a question that naturally occurs upon all such occasions. The case is, that, in matters of law more especially, such is the dominion of authority over our minds, and such the prejudice it creates in favour of whatever institution it has taken under its wing, that, after all manner of reasons that can be thought of in favour of the institution have been shewn to be insufficient, we still cannot forbear looking to some unassignable and latent reason for its efficient cause. But if, instead of any such reason, we can find a cause for it in some notion, of the erroneousness of which we are already satisfied, then at last we are content to give it up without further struggle; and then, and not till then, our satisfaction is complete."—Defence of Usury, pp. 94, 95.

2 Above all, by Mr Smith; who, in his Wealth of Nations, has judiciously and skilfully combined with the investigation of general principles, the most luminous sketches of historical relative to that form of political society which has given birth to so many of the institutions and customs peculiar to modern Europe.—"The strong ray of philosophic light on this interesting subject," which, according to Gibbon, "broke from Scotland in our times," was but a reflection, though with a far steadier and more concentrated force, from the scattered but brilliant sparks kindled by the genius of Montesquieu. I shall afterwards have occasion to take notice of the mighty influence which his writings have had on the subsequent history of Scottish literature.
which, in every page, the work afforded, of the absurdity of all schemes of Universal Legislation; and partly by the attractions which it possessed, in point of eloquence and taste, when contrasted with the insupportable dulness of the systems then in possession of the schools. It is remarkable, that Montesquieu has never once mentioned the name of Grotius;—in this, probably, as in numberless other instances, conceiving it to be less expedient to attack established prejudices openly and in front, than gradually to undermine the unsuspected errors upon which they rest.

If the foregoing details should appear tedious to some of my readers, I must request them to recollect, that they relate to a science which, for much more than a hundred years, constituted the whole of philosophy, both ethical and political, of the largest portion of civilized Europe. With respect to Germany, in particular, it appears from the Count de Hertzberg, that this science continued to maintain its undisputed ground, till it was supplanted by that growing passion for Statistical details, which, of late, has given a direction so different, and in some respects so opposite, to the studies of his countrymen.

When from Germany we turn our eyes to the south of Europe, the prospect seems not merely sterile, but afflicting and almost hopeless. Of Spanish literature I know nothing but through the medium of Translations; a very imperfect one, undoubtedly, when a judgment is to be passed on compositions addressed to the powers of imagination and taste; yet fully sufficient to enable us to form an estimate of works which treat of science and philosophy. On such subjects, it may be safely concluded, that whatever is unfit to stand the test of a literal version, is not worth the trouble of being studied in the original. The progress of the Mind in Spain during the seventeenth century, we may therefore confidently pronounce, if not entirely suspended, to have been too inconsiderable to merit attention.

"The only good book," says Montesquieu, "which the Spaniards have to boast of, is that which exposes the absurdity of all the rest." In this remark, I have little doubt that there is a considerable sacrifice of truth to the pointed effect of an antithesis. The unqualified censure, at the same time, of this great man, is not unworthy of notice, as a strong expression of his feelings with respect to the general insignificance of the Spanish writers.

The inimitable work here referred to by Montesquieu, is itself entitled to a place in this Discourse, not only as one of the happiest and most wonderful creations of human fancy, but as the record of a force of character, and an enlargement of mind, which, when contrasted with the prejudices of the author's age and nation, seem almost miraculous. It is not merely against Books of Chivalry that the satire of Cervantes is directed. Many other follies and absurdities of a less local and temporary nature have their share in his ridicule; while not a single expression escapes his pen that can give offence to the most fastidious moralist. Hence those amusing and interesting contrasts by which Cervantes so powerfully attaches us to the hero of his story; chastising the wildest freaks of a disordered imagination, by a statel-ness yet courtesy of virtue, and (on all subjects but one) by a superiority of good sense and of philosophical refinement, which, even under the most ludicrous circumstances, never cease to

1 "La connaissance des états qu'on se plait aujourd'hui d'appeler Statistique, est une de ces sciences qui sont devenues à la mode, et qui ont pris une vogue générale depuis quelques années; elle a presque dépossédé celle du Droit Public, qui régnait au commencement et jusques vers le milieu du siècle présent."—Réflexions sur la Force des Etats. Par M. le Comte de Hertzberg. Berlin, 1782.

2 "Lord Bolingbroke told Mr Spence, as he informs us in his Anecdotes, that Dryden assured him, he was more indebted to the Spanish critics, than to the writers of any other nation."—(Malone, in a Note on Dryden's Essay on Dramatic Poetry.)

The same anecdote is told, though with a considerable difference in the circumstances, by Warton, in his Essay on the writings of Pope. "Lord Bolingbroke assured Pope, that Dryden often declared to him, that he got more from the Spanish critics, than from the Italian, French, and all other critics put together." I suspect that there is some mistake in this story. A Spanish gentleman, equally well acquainted with the literature of his own country and with that of England, assures me, that he cannot recollect a single Spanish critic from whom Dryden can reasonably be supposed to have derived any important lights.
command our respect, and to keep alive our sympathy.

In Italy, notwithstanding the persecution undergone by Galileo, Physics and Astronomy continued to be cultivated with success by Torricelli, Borelli, Cassini, and others; and in pure Geometry, Viviani rose to the very first eminence, as the Restorer, or rather as the Diviner of ancient discoveries; but, in all those studies which require the animating spirit of civil and religious liberty, this once renowned country exhibited the most melancholy symptoms of mental decrepitude. "Rome," says a French historian, "was too much interested in maintaining her principles, not to raise every imaginable barrier against what might destroy them. Hence that Index of prohibited books, into which were put the history of the President de Thou; the works on the liberties of the Gallican church; and (who could have believed it?) the translations of the Holy Scriptures. Meanwhile, this tribunal, though always ready to condemn judicious authors upon frivolous suspicions of heresy, approved those seditions and fanatical theologians, whose writings tended to the encouragement of regicide, and the destruction of government. The approbation and censure of books (it is justly added) deserves a place in the history of the human mind."

The great glory of the Continent towards the end of the seventeenth century (I except only the philosophers of France) was Leibnitz. He was born as early as 1646, and distinguished himself, while still a very young man, by a display of those talents which were afterwards to contend with the united powers of Clarke and of Newton. I have already introduced his name among the writers on Natural Law; but, in every other respect, he ranks more fitly with the contemporaries of his old age than with those of his youth. My reasons for thinking so will appear in the sequel. In the meantime, it may suffice to remark, that Leibnitz, the Jurist, belongs to one century, and Leibnitz, the Philosopher, to another.

In this, and other analogous distributions of my materials, as well as in the order I have fol-

lowed in the arrangement of particular facts, it may be proper, once for all, to observe, that much must necessarily be left to the discretionary, though not to the arbitrary decision of the author's judgment; that the dates which separate from each other the different stages in the progress of Human Reason, do not, like those which occur in the history of the exact sciences, admit of being fixed with chronological and indisputable precision; while, in adjusting the perplexed rights of the innumerable claimants in this intellectual and shadowy region, a task is imposed on the writer, resembling not unfrequently the labour of him, who should have attempted to circumscribe, by mathematical lines, the melting and intermingling colours of Arachne's web;

In quo diversi niteant cum mille colores,
Transitus ipse tamen spectantium lumina fallit;
Usque adeo quod tangit idem est, tamen ultima distant.

But I will not add to the number (already too great) of the foregoing pages, by anticipating, and attempting to obviate, the criticisms to which they may be liable. Nor will I dissemble the confidence with which, amid a variety of doubts and misgivings, I look forward to the candid indulgence of those who are best fitted to appreciate the difficulties of my undertaking. I am certainly not prepared to say with Johnson, that "I dismiss my work with frigid indifference, and that to me success and miscarriage are empty sounds." My feelings are more in unison with those expressed by the same writer in the conclusion of the admirable preface to his edition of Shakspeare. One of his reflections, more particularly, falls in so completely with the train of my own thoughts, that I cannot forbear, before laying down the pen, to offer it to the consideration of my readers.

"Perhaps I may not be more censured for doing wrong, than for doing little; for raising in the public, expectations which at last I have not answered. The expectation of ignorance is indefinite, and that of knowledge is often tyrannical. It is hard to satisfy those who know not what to demand, or those who demand by design what they think impossible to be done."
null
Dissertation First.

Part Second.

In the farther prosecution of the plan of which I traced the outline in the Preface to the First Part of this Dissertation, I find it necessary to depart considerably from the arrangement which I adopted in treating of the Philosophy of the seventeenth century. During that period, the literary intercourse between the different nations of Europe was comparatively so slight, that it seemed advisable to consider separately and successively, the progress of the mind in England, in France, and in Germany. But from the era at which we are now arrived, the Republic of Letters may be justly understood to comprehend, not only these and other countries in their neighbourhood, but every region of the civilised earth. Disregarding, accordingly, all diversities of language and of geographical situation, I shall direct my attention to the intellectual progress of the species in general; enlarging, however, chiefly on the Philosophy of those parts of Europe, from whence the rays of science have, in modern times, diverged to the other quarters of the globe. I propose also, in consequence of the thickening crowd of useful authors, keeping pace in their numbers with the diffusion of knowledge and of liberality, to allot separate discourses to the history of Metaphysics, of Ethics, and of Politics; a distribution which, while it promises a more distinct and connected view of these different subjects, will furnish convenient resting-places, both to the writer and to the reader, and can scarcely fail to place, in a stronger and more concentrated light, whatever general conclusions may occur in the course of this survey.

The foregoing considerations, combined with the narrow limits assigned to the sequel of my work, will sufficiently account for the contracted scale of some of the following sketches, when compared with the magnitude of the questions to which they relate, and the peculiar interest which they derive from their immediate influence on the opinions of our own times.

In the case of Locke and Leibnitz, with whom the metaphysical history of the eighteenth century opens, I mean to allow myself a greater degree of latitude. The rank which I have assigned to both in my general plan seems to require, of course, a more ample space for their leading doctrines, as well as for those of some of their contemporaries and immediate successors, than I can spare for metaphysical systems of a more modern date; and as the rudiments of the most important of these are to be found in the speculations either of one or of the other, I shall endeavour, by connecting with my review of their works, those longer and more abstract discussions which are necessary for the illustration of fundamental principles, to avoid, as far as possible, in the remaining part of my discourse, any tedious digressions into the thorny paths of scholastic controversy. The critical remarks, accordingly, which I am now to offer on their philosophical writings, will, I trust,
enable me to execute the very slight sketches which are to follow, in a manner at once more easy to myself, and more satisfactory to the bulk of my readers.

But what I have chiefly in view in these preliminary observations, is to correct certain misapprehensions concerning the opinions of Locke and of Leibnitz, which have misled (with very few exceptions) all the later historians who have treated of the literature of the eighteenth century. I have felt a more particular solicitude to vindicate the fame of Locke, not only against the censures of his opponents, but against the mistaken comments and eulogies of his admirers, both in England and on the Continent. Appeals to his authority are so frequent in the reasonings of all who have since canvassed the same subjects, that, without a precise idea of his distinguishing tenets, it is impossible to form a just estimate, either of the merits or demerits of his successors. In order to assist my readers in this previous study, I shall endeavour, as far as I can, to make Locke his own commentator; earnestly entreating them, before they proceed to the sequel of this dissertation, to collate carefully those scattered extracts from his works, which, in the following section, they will find brought into contact with each other, with a view to their mutual illustration. My own conviction, I confess, is, that the Essay on Human Understanding has been much more generally applauded than read; and if I could only flatter myself with the hope of drawing the attention of the public from the glosses of commentators to the author’s text, I should think that I had made a considerable step towards the correction of some radical and prevailing errors, which the supposed sanction of his name has hitherto sheltered from a free examination.

PROGRESS OF METAPHYSICS DURING THE EIGHTEENTH CENTURY.

SECTION I.

Historical and Critical Review of the Philosophical Works of Locke and Leibnitz.

LOCKE.

Before entering on the subject of this section, it is proper to premise, that, although my design is to treat separately of Metaphysics, Ethics, and Politics, it will be impossible to keep these sciences wholly unmixed in the course of my reflections. They all run into each other by insensible gradations; and they have all been happily united in the comprehensive speculations of some of the most distinguished writers of the eighteenth century. The connection between Metaphysics and Ethics is more particularly close; the theory of Morals having furnished, ever since the time of Cudworth, several of the most abstruse questions which have been agitated concerning the general principles, both intellectual and active, of the human frame. The inseparable affinity, however, between the different branches of the Philosophy of the Mind, does not afford any argument against the arrangement which I have adopted. It only shows, that it cannot, in every instance, be rigorously adhered to. It shall be my aim to deviate from it as seldom, and as slightly, as the miscellaneous nature of my materials will permit.

John Locke, from the publication of whose Essay on Human Understanding a new era is to be dated in the History of Philosophy, was born at Wrington in Somersetshire, in 1632. Of
his father nothing remarkable is recorded, but that he was a captain in the Parliament's army during the civil wars; a circumstance which, it may be presumed from the son's political opinions, would not be regarded by him as a stain on the memory of his parent.

In the earlier part of Mr Locke's life, he prosecuted for some years, with great ardour, the study of medicine; an art, however, which he never actually exercised as a profession. According to his friend Le Clerc, the delicacy of his constitution rendered this impossible. But, that his proficiency in the study was not inconsiderable, we have good evidence in the dedication prefixed to Dr Sydenham's Observations on the History and Cure of Acute Diseases; where he boasts of the approbation bestowed on his METHOD by Mr John Locke, who (to borrow Sydenham's own words) "examined it to the bottom; and who, if we consider his genius and penetrating and exact judgment, has scarce any superior, and few equals, now living." The merit of this METHOD, therefore, which still continues to be regarded as a model by the most competent judges, may be presumed to have belonged in part to Mr Locke,—a circumstance which deserves to be noticed, as an additional confirmation of what Bacon has so sagaciously taught, concerning the dependence of all the sciences relating to the phenomena, either of Matter or of Mind, on principles and rules derived from the resources of a higher philosophy. On the other hand, no science could have been chosen, more happily calculated than Medicine, to prepare such a mind as that of Locke for the prosecution of those speculations which have immortalised his name; the complicated, and fugitive, and often equivocal phenomena of disease, requiring in the observer a far greater portion of discriminating sagacity, than those of Physics, strictly so called; resembling, in this respect, much more nearly, the phenomena about which Metaphysics, Ethics, and Politics, are conversant.

I have said, that the study of Medicine forms one of the best preparations for the study of Mind, to each an understanding as Locke's. To an understanding less comprehensive, and less cultivated by a liberal education, the effect of this study is likely to be similar to what we may trace in the works of Hartley, Darwin, and Cabanis; to all of whom we may more or less apply the sarcasm of Cicero on Aristoxenus, the Musician, who attempted to explain the nature of the soul by comparing it to a Harmony; hic ab artificio suo non rectissim. In Locke's Essay, not a single passage occurs, savouring of the Anatomical Theatre, or of the Chemical Laboratory.

In 1666, Mr Locke, then in his thirty-fifth year, formed an intimate acquaintance with Lord Ashley, afterwards Earl of Shaftesbury; from which period a complete change took place, both in the direction of his studies, and in his habits of life. His attention appears to have been then turned, for the first time, to political subjects; and his place of residence transferred from the university to the metropolis. From London (a scene which gave him access to a society very different from what he had previously lived in) he occasionally passed over to the Continent, where he had an opportunity of profiting by the conversation of some of the most distinguished persons of his age. In the course of his foreign excursions, he visited France, Germany, and Holland; but the last of these countries seems to have been his favourite place of residence; the blessings which the people there enjoyed, under a government peculiarly favourable to civil and religious liberty, amply compensat-

1 Published in the year 1676.
2 It is remarked of Sydenham, by the late Dr John Gregory, "That though full of hypothetical reasoning, it had not the usual effect of making him less attentive to observation; and that his hypotheses seem to have sat so loosely about him, that either they did not influence his practice at all, or he could easily abandon them, whenever they would not bend to his experience."
3 This is precisely the idea of Locke concerning the true use of hypotheses. "Hypotheses, if they are well made, are at least good helps to the memory, and often direct us to new discoveries."—Locke's Works, Vol. III. p. 81. See also some remarks on the same subject in one of his letters to Mr Molyneux. (The edition of Locke to which I uniformly refer, is that printed at London in 1812, in Ten Volumes 8vo.)
4 Tusc. Quest. Lib. I.
5 Villiers Duke of Buckingham, and the Lord Halifax, are particularly mentioned among those who were delighted with his conversation.
ing, in his view, for what their uninviting territory wanted in point of scenery and of climate. In this respect, the coincidence between the taste of Locke and that of Descartes throws a pleasing light on the characters of both.

The plan of the Essay on Human Understanding is said to have been formed as early as 1670; but the various employments and avocations of the Author prevented him from finishing it till 1687, when he fortunately availed himself of the leisure which his exile in Holland afforded him, to complete his long meditated design. He returned to England soon after the Revolution, and published the first edition of his work in 1690; the busy and diversified scenes through which he had passed during its progress, having probably contributed, not less than the academical retirement in which he had spent his youth, to enhance its peculiar and characteristic merits.

Of the circumstances which gave occasion to this great and memorable undertaking, the following interesting account is given in the Prefatory Epistle to the Reader: "Five or six friends, meeting at my chamber, and discoursing on a subject very remote from this, found themselves quickly at a stand, by the difficulties that rose on every side. After we had a while puzzled ourselves, without coming any nearer a resolution of those doubts which perplexed us, it came into my thoughts that we took a wrong course, and that, before we set ourselves upon inquiries of that nature, it was necessary to examine our own abilities, and see what objects our understandings were, or were not, fitted to deal with. This I proposed to the company, who all readily assented, and thereupon it was agreed, that this should be our first inquiry. Some hasty and undigested thoughts on a subject I had never before considered, which I set down against our next meeting, gave the first entrance into this discourse, which having been thus begun by chance, was continued by entreaty; written by incoherent parcels and, after long intervals of neglect, resumed again as my humour or occasions permitted; and at last in retirement, where an attendance on my health gave me leisure, it was brought into that order thou now seest it."

Mr Locke afterwards informs us, that "when he first put pen to paper, he thought all he should have to say on this matter would have been contained in one sheet, but that the farther he went the larger prospect he had; -- new discoveries still leading him on, till his book grew insensibly to the bulk it now appears in."

On comparing the Essay on Human Understanding with the foregoing account of its origin and progress, it is curious to observe, that it is the fourth and last book alone which bears directly on the author's principal object. In this book, it is further remarkable, that there are few, if any references to the preceding parts of the Essay; insomuch that it might have been published separately, without being less intelligible than it is. Hence, it seems not unreasonable to conjecture, that it was the first part of the work in the order of composition, and that it contains those leading and fundamental thoughts which offered themselves to the author's mind, when he first began to reflect on the friendly conversation which gave rise to his philosophical researches. The inquiries in the first and second books, which are of a much more abstract, as well as scholastic nature, than the sequel of the work, probably opened gradually on the author's mind in proportion as he studied his subject with a closer and more continued attention. They relate chiefly to the origin and to the technical classification of our ideas, frequently branching out into collateral and sometimes into digressive discussions, without much regard to method or connection. The third book (by far the most important of the whole), where the nature, the use, and the abuse of language are so clearly and happily illustrated, seems, from Locke's own account, to have been a sort of after-thought; and the two excellent chapters on the Association of Ideas and on Enthusiasm (the former of which has contributed, as much as any thing else in Locke's writings, to the subsequent progress of Metaphysical Philosophy, were printed, for the first time, in the fourth edition of the Essay.

I would not be understood, by these remarks, to undervalue the two first books. All that I have said amounts to this, that the subjects which they treat of are seldom susceptible of any prac-
tical application to the conduct of the understanding; and that the author has adopted a new phraseology of his own, where, in some instances, he might have much more clearly conveyed his meaning without any departure from the ordinary forms of speech. But although these considerations render the two first books inferior in point of general utility to the two last, they do not materially detract from their merit, as a precious accession to the theory of the Human Mind. On the contrary, I do not hesitate to consider them as the richest contribution of well-observed and well-described facts, which was ever bequeathed to this branch of science by a single individual, and as the indisputable, though not always acknowledged, source of some of the most refined conclusions, with respect to the intellectual phenomena, which have been since brought to light by succeeding inquirers.

After the details given by Locke himself, of the circumstances in which his Essay was begun and completed; more especially, after what he has stated of the "discontinued way of writing," imposed on him by the avocations of a busy and unsettled life, it cannot be thought surprising, that so very little of method should appear in the disposition of his materials; or that the opinions which, on different occasions, he has pronounced on the same subject, should not always seem perfectly steady and consistent. In these last cases, however, I am inclined to think that the inconsistencies, if duly reflected on, would be found rather apparent than real. It is but seldom that a writer possessed of the powerful and upright mind of Locke, can reasonably be suspected of stating propositions in direct contradiction to each other. The presumption is, that, in each of these propositions, there is a mixture of truth, and that the error lies chiefly in the unqualified manner in which the truth is stated; proper allowances not being made, during the fervour of composition, for the partial survey taken of the objects from a particular point of view. Perhaps it would not be going too far to assert, that most of the seeming contradictions which occur in authors animated with a sincere love of truth, might be fairly accounted for by the different aspects which the same object presented to them upon different occasions. In reading such authors, accordingly, when we meet with discordant expressions, instead of indulging ourselves in the captiousness of verbal criticism, it would better become us carefully and candidly to collate the questionable passages; and to study so to reconcile them by judicious modifications and corrections, as to render the oversights and mistakes of our illustrious guides subservient to the precision and soundness of our own conclusions. In the case of Locke, it must be owned, that this is not always an easy task, as the limitations of some of his most exceptionable propositions are to be collected, not from the context, but from different and widely separated parts of his Essay.

In a work thus composed by snatches (to borrow a phrase of the author's), it was not to be expected, that he should be able accurately to draw the line between his own ideas, and the hints for which he was indebted to others. To those who are well acquainted with his speculations, it must appear evident, that he had studied diligently the metaphysical writings both of Hobbes and of Gassendi; and that he was no stranger to the Essays of Montaigne, to the philosophical works of Bacon, or to Malebranche's Inquiry after Truth. That he was familiarly conversant with the Cartesian system may be presumed from what we are told by his bio-

1 That Locke himself was sensible that some of his expressions required explanation, and was anxious that his opinions should be judged of rather from the general tone and spirit of his work, than from detached and isolated propositions, may be inferred from a passage in one of his notes, where he replies to the animadversions of one of his antagonists (the Reverend Mr Lowde), who had accused him of calling in question the immutability of moral distinctions. "But (says Locke) the good man does well, and as becomes his calling, to be watchful in such points, and to take the alarm, even at expressions which, standing alone by themselves, might sound ill, and be suspected."—Locke's Works, Vol. II. p. 93. Note.

2 Mr Addison has remarked, that Malebranche had the start of Locke, by several years, in his notions on the subject of Duration.—(Spectator, No. 94.) Some other coincidences, not less remarkable, might be easily pointed out in the opinions of the English and of the French philosopher.
grapher, that it was this which first inspired him with a disgust at the jargon of the schools, and led him into that train of thinking which he afterwards prosecuted so successfully. I do not, however, recollect that he has anywhere in his Essay mentioned the name of any one of these authors. It is probable, that, when he sat down to write, he found the result of his youthful reading so completely identified with the fruits of his subsequent reflections, that it was impossible for him to attempt a separation of the one from the other; and that he was thus occasionally led to mistake the treasures of memory for those of invention. That this was really the case, may be farther presumed from the peculiar and original cast of his phraseology, which, though in general careless and unpolished, has always the merit of that characteristic unity and raciness of style, which demonstrate, that, while he was writing, he conceived himself to be drawing only from his own resources.

With respect to his style, it may be further observed, that it resembles that of a well educated and well informed man of the world, rather than of a recluse student who had made an object of the art of composition. It everywhere abounds with colloquial expressions, which he had probably caught by the ear from those whom he considered as models of good conversation; and hence, though it now seems somewhat antiquated, and not altogether suited to the dignity of the subject, it may be presumed to have contributed its share towards his great object of turning the thoughts of his contemporaries to logical and metaphysical inquiries. The author of the Characteristics, who will not be accused of an undue partiality for Locke, acknowledges, in strong terms, the favourable reception which his book had met with among the higher classes. "I am not sorry, however," says Shaftesbury, to one of his correspondents, "that I lent you Locke's Essay, a book that may as well qualify men for business and the world, as for the sciences and a university. No one has done more towards the recalling of philosophy from barbarity, into use and practice of the world, and into the company of the better and politer sort, who might well be ashamed of it in its other dress. No one has opened a better and clearer way to reasoning."

In a passage of one of Warburton's letters to Hurd, which I had occasion to quote in the first part of this Dissertation, it is stated as a fact, that, "when Locke first published his Essay, he had neither followers nor admirers, and hardly a single approver." I cannot help suspecting very strongly the correctness of this assertion, not only from the flattering terms in which the Essay is mentioned by Shaftesbury in the foregoing quotation, and from the frequent allusions to its doctrines by Addison and other popular writers of the same period, but from the unexampled sale of the book, during the fourteen years which elapsed between its publication and Locke's death. Four editions were printed in the space of ten years, and three others must have appeared in the space of the next four; a reference being made to the sixth edition by the author himself, in the epistle to the reader, prefixed to all the subsequent impressions. A copy of the thirteenth edition, printed as early as 1748, is now lying before me. So rapid and so extensive a circulation of a work, on a subject so little within the reach of common readers, is the best proof of the established popularity of the author's name, and of the respect generally entertained for his talents and his opinions.

That the Essay on Human Understanding should have excited some alarm in the University of Oxford, was no more than the author had reason to expect from his boldness as a philosophical reformer; from his avowed zeal in the cause of liberty, both civil and religious; from the suspected orthodoxy of his Theological Creed; and (it is but candid to add) from the apparent

1 The name of Hobbes occurs in Mr. Locke's Reply to the Bishop of Worcester. See the Notes on his Essay, B. iv. c. 3. It is curious that he classes Hobbes and Spinoza together, as writers of the same stamp; and that he disclaims any intimate acquaintance with the works of either. "I am not so well read in Hobbes and Spinoza as to be able to say what were their opinions in this matter, but possibly there be those who will think your Lordship's authority of more use than those justly decried names," &c. &c.

2 See Shaftesbury's First Letter to a Student at the University.
coincidence of his ethical doctrines with those of Hobbes. It is more difficult to account for the long continuance, in that illustrious seat of learning, of the prejudice against the logic of Locke (by far the most valuable part of his work), and of that partiality for the logic of Aristotle, of which Locke has so fully exposed the futility. In the University of Cambridge, on the other hand, the Essay on Human Understanding was, for many years, regarded with a reverence approaching to idolatry; and to the authority of some distinguished persons connected with that learned body may be traced (as will afterwards appear) the origin of the greater part of the extravagancies which, towards the close of the last century, were grafted on Locke's errors, by the disciples of Hartley, of Law, of Priestley, of Tocke, and of Darwin.

To a person who now reads with attention and candour the work in question, it is much more easy to enter into the prejudices which at first opposed themselves to its complete success, than to conceive how it should so soon have acquired its just celebrity. Something, I suspect, must be ascribed to the political importance which Mr. Locke had previously acquired as the champion of religious toleration; as the great apostle of the Revolution; and as the intrepid opponent of a tyranny which had been recently overthrown.

In Scotland, where the liberal constitution of the universities has been always peculiarly favourable to the diffusion of a free and eclectic spirit of inquiry, the philosophy of Locke seems very early to have struck its roots, deeply and permanently, into a kindly and congenial soil. Nor were the errors of this great man implicitly adopted from a blind reverence for his name. The works of Descartes still continued to be studied and admired; and the combined systems of the English and the French metaphysicians served, in many respects, to correct what was faulty, and to supply what was deficient, in each. As to the ethical principles of Locke, where they appear to lean towards Hobbsism, a powerful antidote against them was already prepared in the Treatise De Jure Belli et Pacis, which was then universally and deservedly regarded in this country as the best introduction that had yet appeared to the study of moral science. If Scotland, at this period, produced no eminent authors in these branches of learning, it was not from want of erudition or of talents; nor yet from the narrowness of mind incident to the inhabitants of remote and insulated regions; but from the almost insuperable difficulty of writing in a dialect, which imposed upon an author the double task of at once acquiring a new language, and of unlearning his own.

The success of Locke's Essay, in some parts of the Continent, was equally remarkable; owing, no doubt, in the first instance, to the very accurate translation of it into the French language by Coste, and to the eagerness with which every thing proceeding from the author of the Letters on Toleration may be presumed to

1 "It was proposed at a meeting of the heads of houses of the University of Oxford, to censure and discourage the reading of Locke's Essay; and, after various debates among themselves, it was concluded, that each head of a house should endeavour to prevent its being read in his college, without coming to any public censure."—(See Des Maizeaux's note on a letter from Locke to Collins.—Locke's Works, Vol. X. p. 284.

2 I have taken notice, with due praise, in the former part of this discourse, of the metaphysical speculations of John Smith, Henry More, and Ralph Cudworth; all of them members and ornaments of the University of Cambridge about the middle of the seventeenth century. They were deeply conversant in the Platonic Philosophy, and applied it with great success in combating the Materialists and Necessitarians of their times. They carried, indeed, some of their Platonic notions to an excess bordering on mysticism, and may, perhaps, have contributed to give a bias to some of their academic successors towards the opposite extreme. Very pleasing and interesting account of the characters of these amiable and ingenious men, and of the spirit of their philosophy, is given by Burnet in the History of his Own Times.

To the credit of Smith and of More it may be added, that they were among the first in England to perceive and to acknowledge the merits of the Cartesian Metaphysics.

3 Note 8.

4 The principle of religious toleration was at that time very imperfectly admitted, even by those philosophers who were the most zealously attached to the cause of civil liberty. The great Scottish lawyer and statesman, Lord Stair, himself no mean philosopher, and, like Locke, a warm partisan of the Revolution, seems evidently to have regretted the impunity which Spinosa had experienced in Holland, and Hobbes in England. "Execribabilis ille Atheneus Spinosa adeo impudentes est, ut affirmet omnia esse absolute necessaria, et nihil quod est, fuit, aut erit, aliter fieri potuisse, in quo omnes superiores Atheos exessit, aperte negans omnem Deitatem, nihilque praeter potentias naturae agnoscentes.

Vaininus Deitatem non aperte negavit, sed causam illius prodictit, in tractatu quem edidit, argumenta pro Dei existentia tamquam futilis et vana reiiciens, adserendo contrarias omnes rationes per modum objectionum, easque prosequendo ut
have been read by the multitude of learned and enlightened refugees, whom the revocation of the edict of Nantz forced to seek an asylum in Protestant countries. In Holland, where Locke was personally known to the most distinguished characters, both literary and political, his work was read and praised by a discerning few, with all the partiality of friendship; but it does not seem to have made its way into the schools till a period considerabily later. The doctrines of Descartes, at first so vehemently opposed in that country, were now so completely triumphant, both among philosophers and divines, that it was difficult for a new reformer to obtain a hearing. The case was very nearly similar in Germany, where Leibnitz (who always speaks coldly of Locke's Essay) was then looked up to as the great oracle in every branch of learning and of science. If I am not mistaken, it was in Switzerland, where (as Gibbon observes) "the intermixture of sects had rendered the clergy acute and learned on controversial topics," that Locke's real merits were first appreciated on the Continent with a discriminating impartiality. In Crousaz's Treatise of Logie (a book which, if not distinguished by originality of genius, is at least strongly marked with the sound and unprejudiced judgment of the author), we everywhere trace the influence of Locke's doctrines; and, at the same time, the effects of the Cartesian Metaphysics, in limiting those hasty expressions of Locke, which have been so often misinterpreted by his followers. Nor do Crousaz's academical labours appear to have been less

indissolubiles videatur; postea tamen larvam exuit, et athelium clare professus est, ET JUSTISSIME IN INCLYTA URBE THOLOSA DAMNATUS EST ET CREMATUS.

Among those whose society Locke chiefly cultivated while in Holland, was the celebrated Le Clerc, the author of the Bibliotheca Universelle, and the Bibliotheca Choisie, besides many other learned and ingenious publications. He appears to have been warmly attached to Locke, and embraced the fundamental doctrines of his Essay without any slavish deference for his authority. Though he fixed his residence at Amsterdam, where he taught Philosophy and the Belles Lettres, he was a native of Geneva, where he also received his academical education. He is, therefore, to be numbered with Locke's Stæus disciples. I shall have occasion to speak of him more at length afterwards, when I come to mention his controversy with Bayle. At present, I shall only observe, that his Elogio on Locke was published in the Bibliotheca Choisie (Annee 1705.) Tom. VI.; and that some important remarks on the Essay on Human Understanding, particularly on the chapter on Power, are to be found in the 12th Vol. of the same work (Annee 1707.)

Quamvis hic secte (Cartesiana) initio scriber se opponerent Theologi et PhiloPhi Belge, in Academia tamen eorum loco (1797) vix alta, quam Cartesiana principia inculcantur.—(Heineccius Elem. Hist. Philosoph.) In Gravesande's Introductio ad Philosophiam, published in 1736, the name of Locke is not once mentioned. It is probable that this last author was partly influenced by his admiration for Leibnitz, whom he servilie followed even in his physical errors.

6 M. de Crousaz est de la subtilité et de l'adresse, et quelque espèce de métaphysique superficielle qu'il savoit relever.—(Ibid. pp. 11, 12.)

Heineccius, a native of Saxony, in a Sketch of the History of Philosophy, printed in 1728, omits altogether the name of Locke in his enumeration of the logical and metaphysical writers of modern Europe. In a passage of his logic, where the same author treats of clear and obscure, adequate and inadequate ideas (a subject on which little or nothing of any value had been advanced before Locke), he observes, in a note, "Debemus hanc Doctrinam Leibniti, esamque deinde sequentia illustrat. Wolfs."

"Of the Essay on Human Understanding Crousaz speaks in the following terms: "Clarissimi, et merito celebratissimi, Locii de Intelectu Humano eximium opus, et auctore suo dignissimum, logicis usumis semper annumeratur."—(Fragt.) If Pope had ever looked into this Treatise, he could not have committed so gross a mistake, as to introduce the author into the Dunciad, among Locke's Aristotelian opponents; a distinction for which Crousaz was probably indebted to his acute stricton on these passages in the Essay on Man, which seem favourable to fatalism.

Prompt at the call, around the goddess roll
Broad hats, and hoods, and caps, a sable shal ;
Thick and more thick the black blockade extends,
A hundred head of Aristotle's friends.
Nor wert thou, Isis! wanting to the day
(Though Christ-church long kept prudishly away).
Each stanch Polemic, stubborn as a rock,
Each fierce Logician, still expelling Locke,
Came whip and spur, and dash'd through thin and thick
On German Crousaz, and Dutch Burgerdyck.

Warburton, with his usual scurrility towards all Pope's adversaries as well as his own, has called Crousaz a blundering Swiss; but a very different estimate of his merits has been formed by Gibbon, who seems to have studied his works much more carefully than the Right Reverend Commentator on the Dunciad.

"M. de Crousaz, the adversary of Bayle and Pope, is not distinguished by lively fancy or profound reflection; and
useful than his writings; if a judgment on this point may be formed from the sound philosophical principles which he diffused among a numerous race of pupils. One of these (M. Allaman), the friend and correspondent of Gibbon, deserves particularly to be noticed here, on account of two letters published in the posthumous works of that historian, containing a criticism on Locke's argument against innate ideas, so very able and judicious, that it may still be read with advantage by many logicians of no small note in the learned world. Had these letters happened to have sooner attracted my attention, I should not have delayed so long to do this tardy justice to their merits.

I am not able to speak with confidence of the period at which Locke's Essay began to attract public notice in France. Voltaire, in a letter to Horace Walpole, asserts, that he was the first person who made the name of Locke known to his countrymen; 2 but I suspect that this assertion must be received with considerable qualifications. The striking coincidence between some of Locke's most celebrated doctrines and those of Gassendi, can scarcely be supposed to have been altogether overlooked by the followers and admirers of the latter; considering the immediate and very general circulation given on the Continent to the Essay on Human Understanding, by Coste's French version. The Gassendiists, too, it must be remembered, formed, even before the death of their master, a party formidable in talents as well as in numbers; including, among other distinguished names, those of Molière, 3

even in his own country, at the end of a few years, his name and writings are almost obliterated. But his Philosophy had been formed in the school of Locke, his Divinity in that of Limborch and Le Clerc: in a long and laborious life, several generations of pupils were taught to think, and even to write; his lessons rescued the Academy of Lausanne from Calvinistic prejudices; and he had the rare merit of diffusing a more liberal spirit among the people of the Pays de Vaud. — (Gibbon's Memoirs.)

In a subsequent passage Gibbon says, "the logic of Crousaz had prepared me to engage with his master Locke, and his antagonists Bayle; of whom the former may be used as a bridle, and the latter applied as a spur to the curiosity of a young philosopher." — (Ibid.)

The following details, independently of their reference to Crousaz, are so interesting in themselves, and afford so strong a testimony to the utility of logical studies, when rationally conducted, that I am tempted to transcribe them.

"December 1755. In finishing this year, I must remark how favourable it was to my studies. In the space of eight months, I learned the principles of drawing; made myself completely master of the French and Latin languages, with which I was very superficially acquainted before, and wrote and translated a great deal in both; read Cicero's Epistles ad Familiares, his Brutus, all his Orations, his Dialogues de Amicitia et de Senectute; Terence twice, and Pliny's Epistles. In French, Giannoni's History of Naples, l'Abbé Banier's Mythology, and M. Roehat's Memoires sur la Suisse, and wrote a very ample relation of my tour. I likewise began to study Greek, and went through the grammar. I began to make very large collections of what I read. But what I esteem most of all,—from the perusal and meditation of De Crousaz's logic, I not only understood the principles of that science, but formed my mind to a habit of thinking and reasoning, I had no idea of before."

After all, I very readily grant, that Crousaz's logic is chiefly to be regarded as the work of a sagacious and enlightened compiler; but even this (due allowance being made for the state of philosophy when it appeared) is no mean praise.

"Good sense (as Gibbon very truly observed) is a quality of mind hardly less rare than genius." 4

4 For some remarks of M. Allaman, which approach very near to Reid's Objections to the Ideal Theory, See Note T. Of this extraordinary man Gibbon gives the following account in his Journal: "C'est un ministre dans le Pays de Vaud, et un des plus beaux génies que je connaisse. Il a voulu embrasser tous les genres; mais c'est la Philosophie qu'il a le plus approfondi. Sur toutes les questions il s'est fait des systèmes, ou du moins des arguments toujours originaux et toujours ingénieux. Ses idées sont fines et lumineuses, son expression heureuse et facile. On lui reproche avec raison trop de raffinement et de subtilité dans l'esprit; trop de fierté, trop d'ambition, et trop de violence dans le caractère. Cet homme, qui aurait pu décliner ou troubler une nation, vit et mourra dans l'oubliure."

It is of the same person that Gibbon so unfairly says, in the words of Vossius, "Est sacrificulus in pago, et rusticus degetis."

"Je peux vous assurer qu'avant moi personne en France ne connaissait la poésie Anglaise; à peine avais-je entendu parler de Locke. J'ai été persecué pendant trente ans par une nuée de fanatiques pour avoir dit que Locke est le Père de la Méthaphysique, qui a posé les bornes de l'Esprit Humain."—(Ferney, 1768.)

In the following passage of the Age of Louis XIV. the same celebrated writer is so lavish and undistinguishing in his praise of Locke, as almost to justify a doubt whether he had ever read the book which he extols so highly. — "Locke seul a développé l'intelligence humaine, dans un livre où il n'y a que des vérités; et ce qui rend l'ouvrage parfait, toutes ces vérités sont claires."

Molière was in his youth so strongly attached to the Epicurean theories, that he had projected a translation of Lucretius into French. He is even said to have made some progress in executing his design, when a trifling accident determined him, in a movement of ill humour, to throw his manuscript into the fire. The plan on which he was to proceed in this bold undertaking does honour to his good sense and good taste, and seems to me the only one on which a successful version of Lucretius can ever be executed. The didactic passages of the poem were to be translated into prose, and the descriptive passages into verse. Both parts would have gained greatly by this compromise; for, where Lucretius wishes to unfold the philosophy of his master, he is not less admirable for the perspicuity and precision of his expressions, than he is on other occasions, where his object is to delight and delight the imaginations of his readers, for the charms of his figurative diction, and for the bold relief of his images. In instances of the former kind, no modern language can give
Chapelle, and Bernier; all of them eminently calculated to give the tone, on disputed questions of Metaphysics, to that numerous class of Parisians of both sexes, with whom the practical lessons, vulgarly imputed to Epicurus, were not likely to operate to the prejudice of his speculative principles. Of the three persons just mentioned, the two last died only a few years before Locke's Essay was published; and may be presumed to have left behind them many younger pupils of the same school. One thing is certain, that, long before the middle of the last century, the Essay on Human Understanding was not only read by the learned, but had made its way into the circles of fashion at Paris. In what manner this is to be accounted for, it is not easy to say; but the fact will not be disputed by those who are at all acquainted with the history of French literature.

In consequence of this rapid and extensive circulation of the work in question, and the strong impression that it everywhere produced, by the new and striking contrast which it exhibited to the doctrines of the schools, a very remarkable change soon manifested itself in the prevailing habits of thinking on philosophical subjects. Not that it is to be supposed that the opinions of men, on particular articles of their former creed, underwent a sudden alteration. I speak only of the general effect of Locke's discussions, in preparing the thinking part of his readers, to a degree till then unknown, for the unshackled use of their own reason. This has always appeared to me the most characteristic feature of Locke's Essay; and that to which it is chiefly indebted for its immense influence on the philosophy of the eighteenth century. Few books can be named, from which it is possible to extract more exceptionable passages; but, such is the liberal tone of the author; such the manliness with which he constantly appeals to reason, as the paramount authority which, even in religious controversy, every candid disputant is bound to acknowledge; and such the sincerity and simplicity with which, on all occasions, he appears to inquire after truth, that the general effect of the whole work may be regarded as the best of all antidotes against the errors involved in some of its particular conclusions.

To attempt any general review of the doctrines even the semblance of poetry to the theories of Epicurus; while, at the same time, in the vain attempt to conquer this difficulty, the rigorous precision and simplicity of the original are inevitably lost.

The influence of Gassendi's instructions may be traced in several of Molière's comedies; particularly in the Femmes Savantes, and in a little piece Le Mariage Forcé, where an Aristotelian and a Cartesian doctor are both held up to the same sort of ridicule, which, in some other of his performances, he has so lavishly bestowed on the medical professors of his time. The joint author, with Bachaumont, of the Voyage en Provence, which is still regarded as the most perfect model of light, easy, and graceful satire—which seems to belong exclusively to French poetry. Gassendi, who was an intimate friend of his father, was so charmed with his vivacity while a boy, that he condescended to be his instructor in philosophy; admitting, at the same time, to his lessons, two other illustrious pupils, Molière and Bernier. The life of Chappelle, according to all his biographers, exhibited a complete contrast to the simple and ascetic manners of his master; but, if the following account is to be credited, he missed no opportunity of propagating, as widely as he could, the speculative principles in which he had been educated. "Il était fort éconduit dans l'ivresse. Il restait ordinairement le dernier à table, et se mettait à expliquer aux valets la philosophie d'Epicure."—(Biographie Universelle, article Chapelle, Paris, 1813.)

He died in 1686.

The well known author of one of our most interesting and instructive books of travels. After his return from the East, where he resided twelve years at the court of the Great Mogul, he published at Lyons, an excellent Abridgment of the Philosophy of Gassendi, in 5 vols. 12mo; a second edition of which, corrected by himself, afterwards appeared, in seven volumes. To this second edition (which I have never met with) is annexed a Supplement, entitled "Doutes de M. Bernier sur quelques uns des principaux Chapitres de son Abrégé de la Philosophie de Gassendi. It is to this work, I presume, that Leibnitz alludes in the following passage of a letter to John Bernouilli; and, from the manner in which he speaks of its contents, it would seem to be an object of some curiosity. "Frustra quesvis apud typographos librum cui titulus; Doutes de M. Bernier sur la Philosophie, in Gallia ante annos aliquot editum et mili visum, sed nunc non repertum. Vel autem ideo iterum legere, quia ille Gassendistornn fuit Princeps; sed paullo ante mortem, libello hoc edito ingenuo professus est, in quibus nec Gassendus nec Cartesius satisfaciant."—(Leibnitz et Jo. Bernoulli Comment. Epist. 2 vol. 4to. Laussanae et Genevae, 1745.)

Bernier died in 1683.

A decisive proof of this is afforded by the allusions to Locke's doctrines in the dramatic pieces then in possession of the French stage. See Note U.

The maxim which he constantly inculcates is, that "Reason must be our last judge and guide in every thing." (Locke's Works, Vol. III. p. 145.) To the same purpose, he elsewhere observes, that "he who makes use of the light and faculties God has given him, and seeks sincerely to discover truth by those helps and abilities he has, may have this satisfaction in doing his duty as a rational creature; that, though he should miss truth, he will not miss the reward of it. For he governs his assent right, and places it as he should, who in any case or matter whatsoever, believes or disbelieves, according as reason directs him. He that does otherwise, transgresses against his own light, and misuses those faculties which were given him to no other end, but to search and follow the clearer evidence and greater probability."—(Ibid. p. 128.)
sanctioned, or supposed to be sanctioned, by the name of Locke, would be obviously incompatible with the design of this Discourse; but, among these doctrines, there are two, of fundamental importance, which have misled so many of his successors, that a few remarks on each form a necessary preparation for some historical details which will afterwards occur. The first of these doctrines relates to the origin of our ideas; the second to the power of moral perception; and the immutability of moral distinctions. On both questions, the real opinion of Locke has, if I am not widely mistaken, been very grossly misapprehended or misrepresented, by a large portion of his professed followers, as well as of his avowed antagonists.

1. The objections to which Locke's doctrine concerning the origin of our ideas, or, in other words, concerning the sources of our knowledge, are, in my judgment, liable, I have stated so fully in a former work, that I shall not touch on them here. It is quite sufficient, on the present occasion, to remark, how very unjustly this doctrine (imperfect, on the most favourable construction, as it undoubtedly is) has been confounded with those of Gassendi, of Condillac, of Diderot, and of Horne Tooke. The substance of all that is common in the conclusions of these last writers, cannot be better expressed than in the words of their Master, Gassendi. "All our knowledge (he observes in a letter to Descartes) appears plainly to derive its origin from the senses; and although you deny the maxim, 'Quicquid est in intellectu præesse debere in sensu,' yet this maxim appears, nevertheless, to be true; since our knowledge is all ultimately obtained by an influx or incursion from things external; which knowledge afterwards undergoes various modifications by means of analogy, composition, division, amplification, extenuation, and other similar processes, which it is unnecessary to enumerate."*

This doctrine of Gassendi's coincides exactly with that ascribed to Locke by Diderot and by Horne Tooke; and it differs only verbally from the more concise statement of Condillac, that "our ideas are nothing more than transformed sensations." "Every idea," says the first of these writers, "must necessarily, when brought to its state of ultimate decomposition, resolve itself into a sensible representation or picture; and since every thing in our understanding has been introduced there by the channel of sensation, whatever proceeds out of the understanding is either chimerical, or must be able, in returning by the same road, to re-attach itself to its sensible archetype. Hence an important rule in philosophy,—that every expression which cannot find an external and a sensible object, to which

* Philosophical Essays.
† Deinde omnis nostra notitia videtur plane ducere originem a sensibus; et quamvis tu neges quicquid est in intellectu præesse debere in sensu, videtur id esse nihilominus verum, cum nisi sola incursio sive influxus ut loquuntur, fiat; perdelatur tamen analogia, compositione, divisione, amplificatione, extenuatione, alliisque similibus modis, quos commemorare nihil est necesse."—Objectiones in Meditationem Secondam.)
This doctrine of Gassendi's is thus very clearly stated and illustrated, by the judicious authors of the Port Royal Logic: "Un philosophe qui est établi dans le monde commence sa logique par cette proposition: Omnis idea orsum ducet a sensibus. Toute idée tire son origine des sens. Il avoue néanmoins que toutes nos idées n'ont pas été dans nos sens telles qu'elles sont dans notre esprit: mais il prétend qu'elles ont au moins été formées de celles qui ont passé par nos sens, ou par composition, comme lorsque des images séparées de l'œil et d'une montagne, on s'en fait une montagne d'or; ou par amplification et diminution, comme lorsque de l'image d'un homme d'une grande ordinaire on s'en forme un géant ou un pigmé; ou par association et proportion, comme lorsque de l'idée d'une maison qu'on a vue, on s'en forme l'image d'une maison qu'on n'a pas vue. Et ainsi, dit il, nous concevons Dieu qui ne peut tomber sous les sens, sous l'image d'un vénéritable vieillard."—Selon cette pensée, quoique toutes nos idées ne fussent semblables à quelque corps particulier que nous ayons vu, ou qui ait frappé nos sens, elles seroient néanmoins toutes corporelles, et ne vous représenteroient rien qui ne fût entré dans nos sens, au moins par parties. Et ainsi nous ne concevons rien que par des images, semblables à celles qui se forment dans le cerveau quand nous voyons, ou nous nous imaginons des corps."—L'Art de Penser, 1e Partie, c. 1.)
The reference made, in the foregoing quotation, to Gassendi's illustration drawn from the idea of God, affords me an opportunity, of which I gladly availed myself, to contrast it with Locke's opinion on the same subject. "How many amongst us will be found, upon inquiry, to fancy God, in the shape of a man, sitting in heaven, and to have many other absurd and unfit conceptions of him? Christians, as well as Turks, have had whole sects owning, or professing earnestly for it, that the Deity was corporeal and of human shape: And although we find few amongst us, who profess themselves Anthropomorphites (though some I have met with that own it), yet, I believe, he that will make it his business, may find amongst the ignorant and uninstructed Christians, many of that opinion." —(Vol. I. p. 67.)

* In the judgment of a very learned and pious divine, the bias towards Anthropomorphism, which Mr Locke has here so severely reprehended, is not confined to "ignorant and uninstructed Christians."
† If Anthropomorphism (says Dr Machine) was banished from theology, orthodoxy would be deprived of some of its most precious phrases, and our confessions of faith
it can thus establish its affinity, is destitute of signification."—(Oeuvres de Diderot, Tom. VI.)

Such is the exposition given by Diderot, of what is regarded in France as Locke's great and capital discovery; and precisely to the same purpose we are told by Condorcet, that "Locke was the first who proved that all our ideas are compounded of sensations."—(Esquisse Historique, &c.)

If this were to be admitted as a fair account of Locke's opinion, it would follow, that he has not advanced a single step beyond Gassendi and Hobbes; both of whom have repeatedly expressed themselves in nearly the same words with Diderot and Condorcet. But although it must be granted, in favour of their interpretation of his language, that various detached passages may be quoted from his work, which seem, on a superficial view, to justify their comments, yet of what weight, it may be asked, are these passages, when compared with the stress laid by the author on Reflection, as an original source of our ideas, altogether different from Sensation? "The other fountain," says Locke, "from which experience furnisheth the understanding with ideas, is the perception of the operations of our own minds within us, as it is employed about the ideas it has got; which operations, when the soul comes to reflect on and consider, do furnish the understanding with another set of ideas, which could not be had from things without; and such are Perception, Thinking, Doubting, Be-

"Let the ideas of being and matter be strongly joined either by education or much thought, whilst these are still combined in the mind, what notions, what reasonings will there be about separate spirits? Let custom, from the very childhood, have joined figure and shape to the idea of God, and what absurdities will that mind be liable to about the Deity?"—(Vol. II. p. 144.)

The authors of the Port Royal Logic have expressed themselves on this point to the very same purpose with Locke; and have enlarged upon it still more fully and forcibly. (See the sequel of the passage above quoted.) Some of their remarks on the subject, which are more particularly directed against Gassendi, have led Brucker to rank them among the advocates for innate ideas (Brucker, Historia de Ideis, p. 271), although these remarks coincide exactly in substance with the foregoing quotation from Locke. Like many other modern metaphysicians, this learned and laborious, but not very acute historian, could imagine no intermediate opinion between the theory of innate ideas, as taught by the Cartesianis, and the Epicurean account of our knowledge, as revived by Gassendi and Hobbes; and accordingly thought himself entitled to conclude, that whoever rejected the one must necessarily have adopted the other. The doctrines of Locke and of his predecessor Arnauld will be found, on examination, essentially different from both.

Persons little acquainted with the metaphysical speculations of the two last centuries are apt to imagine, that when "all knowledge is said to have its origin in the senses," nothing more is to be understood than this, that it is by the impressions of external objects on our organs of perception, that the dormant powers of the understanding are at first awakened. The foregoing quotation from Gassendi, together with those which I am about to produce from Diderot and Condorcet, may, I trust, be useful in correcting this very common mistake: all of these quotations explicitly asserting, that the external senses furnish not only the occasional by which our intellectual powers are excited and developed, but all the materials about which our thoughts are conversant; or, in other words, that it is impossible for us to think of anything, which is not either a sensible image, or the result of sensible images combined together, and transmuted into new forms by a sort of logical chemistry. That the powers of the understanding would for ever continue dormant, were it not for the action of things external on the bodily frame, is a proposition now universally admitted by philosophers. Even Mr Harris and Lord Monboddo, the two most zealous, as well as most learned of Mr Locke's successors in England, have, in the most explicit manner, expressed their assent to the common doctrine. "The first class of ideas (says Monboddo) is produced from ideas furnished by the senses; the second arises from the operations of the mind upon these materials: for I do not deny, that in this our present state of existence, all our ideas, and all our knowledge, are ultimately to be derived from sense and matter." (Vol. I. p. 44. 2d Ed.) Mr Harris, while he holds the same language, points out, with greater precision, the essential difference between his philosophy and that of the Hobbesites. "Though sensible objects may be the destined medium to awaken the dormant energies of man's understanding, yet are these energies themselves no more contained in sense, than the explosion of a cannon in the spark which gave it fire."—(Hermes.) On this subject see Elements of the Philosophy of the Human Mind, Vol. I. chap. i. sect. 4.

To this doctrine I have little doubt that Descartes himself would have assented, although the contrary opinion has been generally supposed by his adversaries to be virtually involved in his Theory of Innate Ideas. My reasons for thinking so, the reader will find stated in Note X.

and systems of doctrine would be reduced within much narrower bounds."—(Note on Mosheim's Church History, Vol. IV. p. 550.)

On this point I do not presume to offer any opinion; but one thing I consider as indisputable, that it is by means of Anthropomorphism, and other idolatrous pictures of the invisible world, that superstition lays hold of the infant mind. Such pictures operate not upon Reason, but upon the Imagination; producing that temporary belief with which I conceive all the operations of Imagination to be accompanied.

In point of fact, the bias of which Locke speaks extends in a greater or less degree to all men of strong imaginations; whose education has not been very carefully superintended in early infancy.

I have applied to Anthropomorphism the epithet idolatrous, as it seems to be essentially the same thing to bow down and worship a graven image of the Supreme Being, and to worship a supposed likeness of Him conceived by the Imagination.

In Bernard's Abridgment of Gassendi's Philosophy (Tom. III. p. 13 et seq.) an attempt is made to reconcile with the Epicurean system of the origin of our knowledge, that more pure and exalted idea of God to which the mind is gradually led by the exercise of its reasoning powers: But I am very doubtful, if Gassendi would have subscribed, in this instance, to the comments of his ingenious disciple.
Dissertation First.

111

1. Note Y.

2. The idea attached by Locke in the above passages to the word Reflection is clear and precise. But in the course of his subsequent speculations, he does not always rigidly adhere to it, frequently employing it in that more extensive and popular sense in which it denotes the attentive and deliberate consideration of any object of thought, whether relating to the ex-

Living, Reasoning, Knowing, Willing, and all the different actings of our own minds, which, we being conscious of, and observing in ourselves, do from these receive into our understandings ideas as distinct as we do from bodies affecting our senses. This source of ideas every man has wholly in himself: And though it be not sense, as having nothing to do with external objects, yet it is very like it, and might properly enough be called internal sense. But as I call the other Sensation, so I call this Reflection; the ideas it affords being such only as the mind gets by reflecting on its own operations within itself." (Locke's Works, Vol. I. p. 73.)

"The understanding seems to me not to have the least glimmering of any ideas which it doth not receive from one of these two. External objects furnish the mind with the ideas of sensible qualities; and the mind furnishes the understanding with ideas of its own operations." (Ibid. p. 79.)

In another part of the same chapter, Locke expresses himself thus: "Men come to be furnished with fewer or more simple ideas from without, according as the objects they converse with afford greater or less variety; and from the operations of their minds within, according as they more or less reflect on them. For, though he that contemplates the operations of his mind, cannot but have plain and clear ideas of them; yet, unless he turn his thoughts that way, and consider them attentively, he will no more have clear and distinct ideas of all the operations of his mind, and all that may be observed therein, than he will have all the particular ideas of any landscape, or of the parts and motions of a clock, who will not turn his eyes to it, and with attention heed all the parts of it. The picture, or clock, may be so placed, that they may come in his way every day; but yet he will have but a confused idea of all the parts they are made up of, till he applies himself with attention to consider them in each particular.

"And hence we see the reason why it is pretty late before most children get ideas of the operations of their own minds; and some have not any very clear or perfect ideas of the greatest part of them all their lives. Children, when they first come into it, are surrounded with a world of new things, which, by a constant solicitation of their senses, draw the mind constantly to them—forward to take notice of new, and apt to be delighted with the variety of changing objects. Thus, the first years are usually employed and directed in looking abroad. Men's business in them is to acquaint themselves with what is to be found without; and so growing up in a constant attention to outward sensations, seldom make any considerable reflection on what passes within them, till they come to be of riper years; and some scarce ever at all." (Ibid. pp. 80. 81.)

I beg leave to request more particularly the attention of my readers to the following paragraphs:

"If it be demanded, when a man begins to have any ideas? I think the true answer is, when he first has any sensation. . . . I conceive that ideas in the understanding are coeval with sensation; which is such an impression or motion, made in some part of the body, as produces some perception in the understanding. It is about these impressions made on our senses by outward objects, that the mind seems first to employ itself in such operations as we call Perception, Remembering, Consideration, Reasoning, &c.

"In time, the mind comes to reflect on its own operations, and about the ideas got by sensation, and thereby stores itself with a new set of ideas, which I call ideas of reflection. These impressions that are made on our senses by objects extrinsical to the mind; and its own operations, proceeding from powers intrinsical and proper to itself (which, when reflected on by itself, become also objects of its contemplation), are, as I have said, the original of all knowledge." (Ibid. pp. 91. 92.)

A few other scattered sentences, collected
from different parts of Locke's Essay, may throw additional light on the point in question.

"I know that people, whose thoughts are immersed in matter, and have so subjected their minds to their senses, that they seldom reflect on anything beyond them, are apt to say, they cannot comprehend a thinking thing, which perhaps is true: But I affirm, when they consider it well, they can no more comprehend an extended thing.

"If any one say, he knows not what 'tis thinks in him; he means he knows not what the substance is of that thinking thing: No more, say I, knows he what the substance is of that solid thing. Farther, if he says, he knows not how he thinks; I answer, Neither knows he how he is extended; how the solid parts of body are united, or cohere together to make extension."

—(Vol. II. p. 22.)

"I think we have as many and as clear ideas belonging to mind, as we have belonging to body, the substance of each being equally unknown to us; and the idea of thinking in mind as clear as of extension in body; and the communication of motion by thought which we attribute to mind, is as evident as that by impulse, which we ascribe to body. Constant experience makes us sensible of both of these, though our narrow understanding can comprehend neither."

"To conclude; Sensation convinces us, that there are solid extended substances; and Reflection, that there are thinking ones: Experience assures us of the existence of such beings; and that the one hath a power to move body by impulse, the other by thought; this we cannot doubt of. But beyond these ideas, as received from their proper sources, our faculties will not reach. If we would inquire farther into their nature, causes, and manner, we perceive not the nature of Extension clearer than we do of Thinking. If we would explain them any farther, one is as easy as the other; and there is no more difficulty to conceive how a substance we know not should by thought set body into motion, than how a substance we know not should, by impulse, set body into motion."—(Ibid. pp. 26. 27.)

The passage in Locke which, on a superficial view, appears the most favourable to the misinterpretation put on his account of the Sources of our Knowledge, by so many of his professed followers, is, in my opinion, the following:

"It may also lead us a little towards the original of all our notions and knowledge, if we remark, how great a dependence our words have on common sensible ideas; and how those which are made use of to stand for actions and notions quite removed from sense, have their rise from thence, and from obvious sensible ideas are transferred to more abstruse significations, and made to stand for ideas that come not under the cognizance of our senses; e. g. to imagine, apprehend, comprehend, adhere, conceive, instil, disgust,
disturbance, tranquillity, &c. are all words taken
from the operations of sensible things, and ap-
plied to certain modes of thinking: Spirit, in
its primary signification, is breath; angel, a mes-
senger: and I doubt not, but if we could trace them
to their sources, we should find, in all languages,
the names which stand for things that fall not under
our senses, to have had their first rise from sensible
ideas. By which we may give some kind of
guess what kind of notions they were, and
whence derived, which filled their minds, who
were the first beginners of languages; and how
nature, even in the naming of things, unawares
suggested to men the originals and principles of
all their knowledge."

So far the words of Locke coincide very near-
ly, if not exactly, with the doctrines of Hobbes
and of Gassendi; and I have not a doubt, that
a mistaken interpretation of the clause which I
have distinguished by italics, furnished the germ
of all the mighty discoveries contained in the
Essa Frapuirz. If Mr Tooke, however, had studied
with due attention the import of what immediately
follows, he must have instantly perceived how
essentially different Locke's real opinion on the
subject was from what he conceived it to be.—

"Whilst to give names, that might make known
to others any operations they felt in themselves,
or any other ideas that came not under their
senses, they were fain to borrow words from
ordinary known ideas of sensation, by that means
to make others the more easily to conceive those
operations which made no outward sensible appear-
ances." According to this statement, the
purpose of these "borrowed" or metaphorical
words is not (as Mr Tooke concluded) to explain
the nature of the operations, but to direct the
attention of the hearer to that internal world,
the phenomena of which he can only learn to
comprehend by the exercise of his own power
of reflection. If Locke has nowhere affirmed
so explicitly as his predecessor Descartes, that
"nothing conceivable by the power of imagina-
tion can throw any light on the operations of
thought," it may be presumed that he consid-
ered this as unnecessary, after having dwelt so
much on reflection as the exclusive source of all
our ideas relating to mind; and on the peculiar
difficulties attending the exercise of this power,
in consequence of the effect of early associations
in confounding together our notions of mind and
of matter.

The misapprehensions so prevalent on the
Continent, with respect to Locke's doctrine on
this most important of all metaphysical questions,
began during his own life time, and were coun-
tenanced by the authority of no less a writer than
Leibnitz, who always represents Locke as a par-
tizan of the scholastic maxim, Nihil est in intel-
lectu quod non fuerit in sensu.—" Nempe (says
Preliminary Dissertations.

Leibnitz, in reply to this maxim) nihil est in intellectu quod non fuerit in sensu, nisi ipse intellectus."

The remark is excellent, and does honour to the acuteness of the critic; but it is not easy to conceive on what grounds it should have been urged as an objection to a writer, who

1 Opusc., Tom. V., pp. 358, 359.

That the same mistake still keeps its ground among many foreign writers of the highest class, the following passage affords a sufficient proof: "Leibnitz a combattu avec une force de dialectique admirable Le Systeme de Locke, qui attribue toutes nos idees à nos sensations. On avoit mis en avant cet axiome si connu, qu'il n'y ait rien dans l'intelligence qui n'eut été d'abord dans les sensations, et Leibnitz y ajouta cette sublime restriction, si ce n'est l'intelligence elle-même. De ce principe derive toute la philosophie nouvelle qui exerce tant d'influence sur les esprits en Allemagne."—(MAD. DE STAEL, de L'Allemagne, Tom. III. p. 65.)

I observed in the First Part of this Dissertation (page 67), that this sublime restriction on which so much stress has been laid by the partizans of the German school, is little more than a translation of the following words of Aristotle: Καὶ ἀπόκειται καὶ μὴ τοῦ ἡμῶν λέγων, οὐκ ἂν ἦν ἀληθῆ καὶ πάντα καὶ πᾶσα νομοσ. (De Anima, Lib. III. cap. v.)

As to Locke, the same injustice which he received from Leibnitz was very early done to him in his own country. In a tract printed in 1697, by a mathematician of some note, the author of the Essay on Human Understanding is represented as holding the same opinion with Gassendi concerning the origin of our ideas. "Ideas nomine sensu uto; earum origine an sensibibus solum, ut Gassend et Locke nostratis, ceterisque plurimis visum est, asilum: hujus loci non est inquirere."—(De Stativo Reale, seu Endo Infinito Common Mathematico-Metaphysicum. Autor: JOSEPHO RAPHSON. Reg. Soc. Scole. This tract is annexed to the second edition of a work entitled Analysis Equationum Universalis. Lond. 1702.)

In order to enable my readers more easily to form a judgment on the argument in the text, I must beg leave once more to remind them of the distinction already pointed out between the Gassendists and the Cartesian, the former asserting, that all our ideas are derived from the external senses; the intellectual phenomena can admit of no other explanation than what is furnished by analogies drawn from the material world; the latter rejecting these analogies altogether, as delusive and treacherous lights in the study of mind; and contending, that the exercise of the power of reflection is the only medium through which any knowledge of our operations is to be obtained. To the one or the other of these two classes, all the metaphysicians of the last century may be referred; and even at the present day, the fundamental question which formed the chief ground of controversy between Gassendi and Descartes (I mean the question concerning the proper logical method of studying the mind) still continues the hinge on which the most important disputes relating to the internal world will be found ultimately to turn.

According to this distinction, Locke, notwithstanding some occasional slips of his pen, belongs indubitably to the class of Cartesian; as well as the very small number of his followers who have entered thoroughly into the spirit of his philosophy. To the class of Gassendists, on the other hand, belong all those French metaphysicians, who professing to tread in Locke's footsteps, have derived all their knowledge of the Essay on Human Understanding from the works of Condillac; together with most of the commentators on Locke who have proceeded from the school of Bishop Law. To these may be added (among the writers of later times) Priestley, Darwin, Beddoes, and, above all, Horne Tooke with his numerous disciples.

The doctrine of Hobbes on this cardinal question coincided entirely with that of Gassendi, and, accordingly, it is not unusual in the present times, among Hobbes's disciples, to ascribe to him the whole merit of that account of the origin of our knowledge, which, from a strange misconception, has been supposed to have been claimed by Locke as his own discovery. But where, it may be asked, has Hobbes said anything about the origin of those ideas which Locke refers to the power of reflection? and may not the numerous observations which Locke has made on this power as a source of ideas peculiar to itself, be regarded as an indirect refutation of that theory which would resolve all the objects of our knowledge into sensations, as their ultimate elements? This was not merely a step beyond Hobbes; but the correction of an error which lies at the very root of Hobbes's system:—an error under which (it may be added) the greater part of Hobbes's eugloists have the misfortune still to labour.

It is with much regret I add, that a very large proportion of the English writers, who call themselves Lockists, and who, I have no doubt, believe themselves to be so in reality, are at bottom (at least in their metaphysical opinions) Gassendists or Hobists. In what respect do the following observations differ from the Epicurean theory concerning the origin of our knowledge, as expounded by Gassendi? "The ideas conveyed by sight, and by our other senses, having entered the mind, intermingling, unite, separate, throw themselves into various combinations and postures, and thereby generate new ideas of reflection, strictly so called; such as those of comparing, dividing, distinguishing,—of abstraction, relation, with many others; all which remain with us as stock for our further use on future occasions." I do not recollect any passage, either in Helvetius or Diderot, which contains a more explicit and decided avowal of that Epicurean system of Metaphysics, which it was the great aim both of Descartes and of Locke to overthrow.

In the following conjectures concerning the nature of our ideas, the same author has far exceeded in extravagance any of the Metaphysicians of the French school. "What those substances are, whereof our ideas are the modifications, whether parts of the mind as the members are of our body, or contained in it like waters in a box, or enveloped by it like fish in water, whether of a spiritual, corporeal, or middle nature between both, I need not now ascertain. All I mean to lay down at present is this, that in every exercise of the understanding, that which is numerically and substantially distinct from that which is discerned; and that an act of the understanding is not so much our own proper act, as the act of something else operating upon us." Should scarcely have thought it worth while to take notice of these passages, had not the doctrines contained in the work from which they are taken, been sanctioned in the most unqualified terms by the high authority of Dr Paley. "There is one work (he observes) to which I owe so much, that it would be ungrateful not to confess the obligation: I mean the writings of the late Abraham Tucker, Esq. part of which were published by himself, and the remainder since his death, under the title of the Light of Nature Pursued, by Edward Search, Esq." "I have found, in this writer, more original thinking and observation upon the several subjects that he has taken in hand, than in any other, not to say than in all others put together. His talent also for illustration is unrivaled. But his thoughts are diffused through a long, various, and irregular work. I shall account
has insisted so explicitly and so frequently on reflection as the source of a class of ideas essentially different from those which are derived from sensation. To myself it appears, that the words of Leibnitz only convey, in a more concise and epigrammatic form, the substance of Locke's doctrine. Is any thing implied in them which Locke has not more fully and clearly stated in the following sentence? "External objects furnish the mind with the ideas of sensible qualities; and the mind furnishes the understanding with ideas of its own operations." (Locke's Works, Vol. I. p. 79.)

The extraordinary zeal displayed by Locke, at the very outset of his work, against the hypothesis of innate ideas, goes far to account for the mistakes committed by his commentators, in interpreting his account of the origin of our knowledge. It ought, however, to be always kept in view, in reading his argument on the subject, that it is the Cartesian theory of innate ideas which he is here combating; according to which theory (as understood by Locke), an innate idea signifies something coeval in its existence with the mind to which it belongs, and illuminating the understanding before the external senses begin to operate. The very close affinity between this theory, and some of the doctrines of the Platonic school, prevented Leibnitz, it is probable, from judging of Locke's argument against it, with his usual candour; and disposed him hastily to conclude, that the opposition of Locke to Descartes proceeded from views essentially the same with those of Gassendi, and of his other Epicurean antagonists. How very widely he was mistaken in this conclusion, the numerous passages which I have quoted in Locke's own words sufficiently demonstrate.

In what respects Locke's account of the origin of our ideas falls short of the truth, will appear, when the metaphysical discussions of later times come under our review. Enough has been already said to show, how completely this account has been misapprehended, not only by his opponents, but by the most devoted of his admirers: a misapprehension so very general, and at the same time so obviously at variance with the whole spirit of his Essay, as to prove to a demonstration that, in point of numbers, the intelligent readers of this celebrated work have hitherto borne but a small proportion to its purchasers and panegyrists. What an illustration of the folly of trusting, in matters of literary history, to the traditionary judgments copied by one commentator or critic from another, when recourse may so easily be had to the original sources of information!

II. Another misapprehension, not less prevalent than the former, with respect to Locke's philosophical creed, relates to the power of moral perception, and the immutability of moral distinctions. The consideration of such ques-

1 In justice to Dr Hartley, I must here observe, that, although his account of the origin of our ideas is precisely the same with that of Gassendi, Hobbes, and Condillac—one of his fundamental principles being, that the ideas of sensation are the elements of which all the rest are compounded—(Hartley on Man, 4th Ed. p. 2. of the Introduction)—he has not availed himself, like the other Gassendists of later times, of the name of Locke to recommend this theory to the favour of his readers. On the contrary, he has very clearly and candidly pointed out the wide and essential distinction between the two opinions. "It may not be amiss here to take notice how far the theory of these papers has led me to differ, in respect of logic, from Mr. Locke's excellent Essay on the Human Understanding, to which the world is so much indebted for removing prejudices and encumbrances, and advancing real and useful knowledge."

"First, then, it appears to me, that all the most complex ideas arise from sensation, and that reflection is not a distinct source, as Mr. Locke makes it."—(Hartley on Man, 4th Ed. p. 260 of the Introduction.)

This last proposition Hartley seems to have considered as an important and original improvement of his own on Locke's.

it no mean praise, if I have been sometimes able to dispose into method, to collect into heads and articles, or to exhibit in more compact and tangible masses, what, in that excellent performance, is spread over too much surface."—(Principles of Moral and Political Philosophy, Preface, pp. 23, 26.)

Of an author whom Dr Paley has honoured with so very warm an eulogy, it would be equally absurd and presumptuous to dispute the merits. Nor have I any wish to detract from the praise here bestowed on him as an original thinker and observer. I readily admit, also, his talent for illustration, although it sometimes leads him to soar into bombast, and more frequently to sink into buffonery. As an honest inquirer after moral and religious truth, he is entitled to the most unqualified approbation. But, I must be permitted to add, that, as a metaphysician, he seems to me much more fanciful than solid; and, at the same time, to be so rambling, verbose, and excurusive, as to be more likely to unsettle than to fix the principles of his readers.
Preliminary Dissertations.

...ions, it may at first sight be thought, belongs rather to the history of Ethics than of Metaphysics; but it must be recollected, that, in introducing them here, I follow the example of Locke himself, who has enlarged upon them at considerable length, in his Argument against the Theory of Innate Ideas. An Ethical disquisition of this sort formed, it must be owned, an awkward introduction to a work on the Human Understanding; but the conclusion on which it is meant to bear is purely a Metaphysical nature; and when combined with the premises from which it is deduced, affords a good illustration of the impossibility, in tracing the progress of these two sciences, of separating completely the history of the one from that of the other.

In what sense Locke’s reasonings against Innate Ideas have been commonly understood, may be collected from the following passage of an author, who had certainly no wish to do injustice to Locke’s opinions.

...logic; whereas, in fact, it is only a relapse into the old Epicurean hypothesis, which it was one of the main objects of Locke’s Essay to explode.

I would not have enlarged so fully on Locke’s account of the origin of our ideas, had not a mistaken view of his argument on this head, served as a ground-work for the whole Metaphysical Philosophy of the French Encyclopédie. That all our knowledge is derived from our external senses, is everywhere assumed by the conductors of that work as a demonstrated principle; and the credit of this demonstration is uniformly ascribed to Locke, who, we are told, was the first that fully unfolded and established a truth, of which his predecessors had only an imperfect glimpse. La Harpe, in his Légée, has, on this account, justified the metaphysical phraseology of the Encyclopédie, as tending to degrade the intellectual nature of man; while, with a strange inconsistency, he bestows the most unqualified praise on the writings of Condillac. Little did he suspect, when he wrote the following sentences, how much the reasonings of his favourite logician had contributed to pave the way for those conclusions which he reproaches with so much asperity in Diderot and D’Alembert.

...La Harpe proceeds in the same panegyric strain through more than seventy pages, and concludes his eulogy of Condillac with these words: “Le style de Condillac est clair et pur comme ses conceptions; c’est en general l’esprit le plus juste et le plus lumineux qui ait contribué, dans ce siècle, aux progrès de la bonne philosophie.” (Ibid. p. 214.)

La Harpe’s account of the power of Reflection will form an appropriate supplement to his comments on Condillac. “L’impression sentie des objets se nomme perception; l’action de l’âme qui les considère, se nomme reflexion.” This notion, which, as in another passage, he defines Reflection as follows: “La faculté de reflexion, c’est-à-dire, le pouvoir qu’a notre âme, de comprendre, d’assembler, de combiner les perceptions des sens,” (Ibid. p. 138.) How truly do these definitions of reflexion differ from that given by Locke; and how exactly do they accord with the Philosophy of Gassendi, of Hobbes, and of Diderot!

In a lately published sketch Of the State of French Literature during the Eighteenth Century (a work, to which the Author’s taste and powers as a writer have attracted a degree of public attention something beyond what was due to his philosophical depth and discernment), there are some shrewd, and, in my opinion, sound remarks, on the moral tendency of that metaphysical system to which Condillac gave so much circulation and celebrity. I shall quote some of his strictures which bear more particularly on the foregoing argument.

“Autrefois, négligeant d’examiner tout ce mécanisme des sens, tous ces rapports directs du corps avec les objets, les philosophes ne s’occupoient que de ce qui se passe au-dedans de l’homme. La science de l’âme, telle a été la noble étude de Descartes, de Pascal, de Malebranche; de Leibnitz. (Why omit in this list the name of Locke?) Peut-être se perdoient-ils quelquefois dans les nuages des hauteurs régions où ils avaient pris leur vol; peut-être leurs travaux étaient-ils sans application directe; mais du moins ils suivaient une direction élevée, leur doctrine étoit en rapport avec les pensées qui nous agitent quand nous réfléchissons profondément sur nous-mêmes. Cette route conduisit nécessairement au plus nobles des sciences, à la religion, et à la morale. Elle supposoit dans ceux qui la cultivoient un génie élevé et de vastes méditations.

On se lasse de les suivre; on traîne de vaines subtilités, on flétrit du titre de rêveries scholastiques les travaux de ces grands esprits. On se jeta dans la science des sensations, espérant qu’elle se serait plus à la portée de l’intelligence humaine. On s’occupa de plus en plus des rapports mécaniques de l’homme avec les objets, et de l’industrie d’une organisation physique. De cette sorte, la métaphysique alla toujours se rassaisissant au point que maintenant, pour quelques personnes, elle se confond presque avec la physiologie. . . . Le dix-huitième siècle a voulu faire de cette manière d’envisager l’homme un de ses principaux titres de gloire. . . .

Condillac est le chef de cette école. C’est dans ses ouvrages que cette métaphysique exerce toutes les séductions de la méthode, et de la lucidité; d’autant plus claire, qu’elle est moins profonde. Peu d’écrivains ont obtenu plus de succès. Il réduisit à la portée du vulgaire la science de la pensée, en retraitant tout ce qu’elle avait d’élévé. Chacun fut surpris et glorieux de pouvoir philosopher si facilement; et l’on eut une grande reconnaissance pour celui à qui l’on devait ce bienfait. On ne s’aperçut pas qu’il avait rabassé la science, au lieu de rendre ses disciples capable d’y atteindre.” (Tableau de la Littérature Française pendant le dix-huitième Siècle, pp. 87, 88, 89, 92.)
"The First Book (says Dr Beattie) of the Essay on Human Understanding, which, with submission, I think the worst, tends to establish this dangerous doctrine, that the human mind, previous to education and habit, is as susceptible of any one impression as of any other:—a doctrine which, if true, would go near to prove, that truth and virtue are no better than human contrivances; or at least, that they have nothing permanent in their nature, but may be as changeable as the inclinations and capacities of men." Dr Beattie, however, candidly and judiciously adds, "Surely this is not the doctrine that Locke meant to establish; but his zeal against innate ideas, and innate principles, put him off his guard, and made him allow too little to instinct, for fear of allowing too much."

In this last remark, I perfectly agree with Dr Beattie; although I am well aware, that a considerable number of Locke's English disciples have not only chosen to interpret the first book of his Essay in that very sense in which it appeared to Dr Beattie to be of so mischievous a tendency, but have avowed Locke's doctrine, when thus interpreted, as their own ethical creed. In this number, I am sorry to say, the respectable name of Paley must be included.¹

It is fortunate for Locke's reputation, that, in other parts of his Essay, he has disavowed, in the most unequivocal terms, those dangerous conclusions which, it must be owned, the general strain of his first book has to too much the appearance of favouring. "He that hath the idea (he observes on one occasion) of an intelligent, but frail and weak being, made by and depending on another, who is omnipotent, perfectly wise, and good, will as certainly know, that man is to honour, fear, and obey God, as that the sun shines when he sees it; nor can he be surer, in a clear morning, that the sun is risen, if he will but open his eyes, and turn them that way. But yet these truths being never so certain, never so clear, he may be ignorant of either, or all of them, who will never take the pains to employ his faculties as he should to inform himself about them." To the same purpose, he has elsewhere said, that "there is a Law of Nature, as intelligible to a rational creature and studier of that law, as the positive laws of commonwealths." Nay, he has himself, in the most explicit terms, anticipated and disclaimed those dangerous consequences which, it has been so often supposed, it was the chief scope of this introductory chapter to establish. "I would not be mistaken, as if, because I deny an innate law, I thought there were none but positive laws. There is a great deal of difference between an innate law and a law of nature; between something imprinted on our minds in their very original, and something that we, being ignorant of, may attain to the knowledge of, by the use and due application of our natural faculties. And I think they equally forsake the truth, who, running into the contrary extremes, either affirm an innate law, or deny that there is a law knowable by the light of nature, without the help of a positive revelation." (Vol. I. p. 44.) Nor was Locke unaware of the influence on men's lives of their speculative tenets concerning these metaphysical and ethical questions. On this point, which can alone render such discussions interesting to human happiness, he has expressed himself thus: "Let that principle of some of the philosophers, that all is matter, and that there is nothing else, be received for certain and indubitable, and it will be easy to be seen, by the writings of some that have revived it again in our days, what consequences it will lead into....Nothing can be so dangerous as principles thus taken up without due questioning or examination; especially if they be such as influence men's lives, and give a bias to all their actions. He that with Archeaeus shall lay it down as a principle, that right and wrong, honest and dishonest, are defined only by laws, and not by nature, will have other measures of moral rectitude and pravity, than those who take it for granted, that we are under obligations antecedent to all human constitutions." (Vol. III. p. 75.) Is not the whole of this passage evidently

¹ See Principles of Moral and Political Philosophy, Book I. Chap. 5, where the author discusses the question concerning a moral sense.
pointed at the Epicurean maxims of Hobbes and of Gassendi?

Lord Shaftesbury was one of the first who sounded the alarm against what he conceived to be the drift of that philosophy which denies the existence of innate principles. Various strictures on this subject occur in the Characteristics; particularly in the treatise entitled Advice to an Author; but the most direct of all his attacks upon Locke is to be found in his 8th Letter, addressed to a Student at the University. In this letter he observes, that "all those called free writers now-a-days have espoused those principles which Mr Hobbes set a foot in this last age."—

"Mr Locke (he continues), as much as I honour him on account of other writings (on Government, Policy, Trade, Coin, Education, Toleration, &c.) and as well as I knew him, and can answer for his sincerity as a most zealous Christian and believer, did however go in the self-same tract; and is followed by the Tindals, and all the other free authors of our times!"

"'Twas Mr Locke that struck the home blow: for Mr Hobbes's character, and base slavish principles of government, took off the poison of his philosophy. 'Twas Mr Locke that struck at all fundamentals, threw all order and virtue out of the world, and made the very ideas of these (which are the same with those of God) unnatural, and without foundation in our minds.

Innate is a word he poorly plays upon: the right word, though less used, is connatural. For what has birth or progress of the fetus out of the womb to do in this case?—the question is not about the time the ideas entered, or the moment that one body came out of the other; but whether the constitution of man be such, that, being adult and grown up, at such a time, sooner or later (no matter when,) the idea and sense of order, administration, and a God, will not infallibly, inevitably, necessarily spring up in him."

In this last remark Shaftesbury appears to me to place the question about innate ideas upon the right and only philosophical footing; and to afford a key to all the confusion running through Locke's argument against their existence. The sequel of the above quotation is not less just and valuable—but I must not indulge myself in any farther extracts. It is sufficient to mention the perfect coincidence between the opinion of Shaftesbury, as here stated by himself, and that formerly quoted in the words of Locke; and, of consequence, the injustice of concluding, from some unguarded expressions of the latter, that there was, at bottom, any essential difference between their real-sentiments.

Under the title of Locke's *Metaphysical* (or, to speak with more strict precision, his *Logical*) writings, may also be classed his tracts on Education, and on the Conduct of the Understand-

1 To the above quotations from Locke, the following deserves to be added: "Whilst the parties of men eram their tenets down all men's throats, whom they can get into their power, without permitting them to examine their truth or falsehood, and will not let truth have fair play in the world, nor men the liberty to search after it; what improvements can be expected of this kind? What greater light can be hoped for in the moral sciences? The subject part of mankind in most places might, instead thereof, with Egyptian bondage expect Egyptian darkness, were not the candle of the Lord set up by himself in men's minds, which it is impossible for the breath or power of man wholly to extinguish."—Vol. II. pp. 343, 344.

2 Lord Shaftesbury should have said, "grown up to the possession and exercise of his reasoning powers."

3 I must, at the same time, again repeat, that the facts and reasonings contained in the introduction to Locke's Essay go very far to account for the severity of Shaftesbury's censures on this part of his work. Sir Isaac Newton himself, an intimate friend of Locke's, appears, from a letter of his which I have read in his own handwriting, to have felt precisely in the same manner with the author of the Characteristics. Such, at least, were his first impressions; although he afterwards requested, with a humility and candour worthy of himself, the forgiveness of Locke, for this injustice done to his character. "I beg your pardon (says he) for representing that you struck at the root of morality in a principle you laid down in your book of ideas, and designed to pursue in another book; and that I took you for a Hobbit." In the same letter Newton alludes to certain unfounded suspicions which he had been led to entertain of the propriety of Locke's conduct in some of their private concerns; adding, with an ingenuous and almost infantine simplicity, "I was so much affected with this, that when one told me you was sickly and would not live, I answered, 'twere better if you were dead. I desire you to forgive me this uncharitableness." The letter is subscribed, your most humble and most unfortunate servant, Is. Newton."

The rough draft of Mr Locke's reply to these afflicting acknowledgments was kindly communicated to me by a friend some years ago. It is written with the magnumity of a philosopher, and with the good-humoured forbearance of a man of the world; and it breathes throughout so tender and so unaffected a veneratio for the good as well as great qualities of the excellent person to whom it is addressed, as demonstrates at once the conscious integrity of the writer, and the superiority of his mind to the irritation of little passions. I know of nothing from Locke's pen which does more honour to his

* It is dated at *The Bull in Shoreástich, London, September 1603*; and is addressed, *For John Locke, Esq. Sir Fr. Masham's Bart. at Ostea, in Essex.*
These tracts are entirely of a practical nature, and were plainly intended for a wider circle of readers than his Essay; but they everywhere bear the strongest marks of the same zeal for extending the empire of Truth and of Reason, and may be justly regarded as parts of the same great design. It has been often remarked, that they display less originality than might have been expected from so bold and powerful a thinker; and, accordingly, both of them have long fallen into very general neglect. It ought, however, to be remembered, that, on the most important points discussed in them, new suggestions are not now to be looked for; and that the great object of the reader should be, not to learn something which he never heard of before, but to learn, among the multiplicity of discordant precepts current in the world, which of them were sanctioned, and which reprobated by the judgment of Locke. The candid and unreserved thoughts of such a writer upon such subjects as Education, and the culture of the intellectual powers, possess an intrinsic value, which is not diminished by the consideration of their triteness. They not only serve to illustrate the peculiarities of the author's own character, and views, but, considered in a practical light, come recommended to us by all the additional weight of his discriminating experience. In this point of view, the two tracts in question, but more especially that on the Conduct of the Understanding, will always continue to be interesting manuals to such as are qualified to appreciate the mind from which they proceeded.

It must not, however, be concluded from the apparent triteness of some of Locke's remarks, to the present generation of readers, that they were viewed in the same light by his own contemporaries and character; and I introduce it with peculiar satisfaction, in connection with those strictures which truth has exported from me on that part of his system which to the moralist stands most in need of explanation and apology.

Mr Locke to Mr Newton.

"Sir,"

"I have been ever since I first knew you so kind and sincerely your friend, and thought you so much mine, that I could not but believe what you tell me of yourself; had I had it from any body else. And though I cannot but be mightily troubled that you should have had so many wrong and unjust thoughts of me, yet, next to the return of good offices, such as from a sincere good will I have ever done you, I receive your acknowledgment of the contrary as the kindest thing you could have done me, since it gives me hopes I have not lost a friend I so much valued. After what your letter expresses, I shall not need to say anything to justify myself to you; I shall always think your own reflection on my carriage both to you and all mankind will sufficiently do that. Instead of that, give me leave to assure you, that I am more ready to forgive you than you can be to desire it; and I do it so freely and fully that I wish for nothing more than the opportunity to convince you that I truly love and esteem you; and that I have still the same good will for you as if nothing of this had happened. To confirm this to you more fully, I should be glad to meet you anywhere, and the rather, because the conclusion of your letter makes me apprehend it would not be wholly useless to you. I shall always be ready to serve you to your utmost, in any way you shall like, and shall only need your commands or permission to do it.

"My book is going to press for a second edition; and, though I can answer for the design with which I write it, yet, since you have so opportunely given me notice of what you have said of it, I should take it as a favour if you would point out to me the places that gave occasion to that censure, that, by explaining myself better, I may avoid being mistaken by others, or unwillingly doing the least prejudice to truth or virtue. I am sure you are so much a friend to both, that, were you to show me, I could expect this from you. But I cannot doubt but you would do a great deal more than this for my sake, who, after all, have all the concern of a friend for you, wish you extremely well, and am, without compliment,"

"(For the preservation of this precious memorial of Mr Locke, the public is indebted to the descendants of his friend and relation the Lord Chancellor King, to whom his papers and library were bequeathed. The original is still in the possession of the present representative of that noble family; for whose flattering permission to enrich my Dissertation with the above extracts, I feel the more grateful, as I have not the honour of being personally known to his Lordship.)"

"Mr Locke, it would appear, had once intended to publish his thoughts on the Conduct of the Understanding, as an additional chapter to his Essay. "I have lately," says he, in a Letter to Mr Molyneux, "got a little leisure to think of some additions to my book against the next edition, and within these few days have fallen upon a subject that I know not how far it will lead me. I have written several pages on it, but the matter, the farther I go, opens the more upon me, and I cannot get sight of any end of it. The title of the chapter will be, Of the Conduct of the Understanding, which, if I shall pursue as far as I imagine it will reach, and as it deserves, will, I conclude, make the largest chapter of my Essay.""

"(Locke's Works, Vol. IX. p. 407.)"

A similar remark may be extended to a letter from Locke to his friend Mr Samuel Bold, who had complained to him of the disadvantages he laboured under from a weakness of memory. It contains nothing but what might have come from the pen of one of Newberry's authors; but with what additional interest do we read it, when considered as a comment by Locke on a suggestion of Bacon's! ("Locke's Works, Vol. XI. p. 347.)"

"It is a judicious reflection of Shene's, that "every single observation published by a man of genius, he it ever so trivial, should be esteemed of importance, because he speaks from his own impressions; whereas common men publish common things, which they have perhaps gleaned from frivolous writers. I know of few authors to whom this observation applies more forcibly and happily than to Locke, when he touches on the culture of the intellectual powers. His precepts, indeed, are not all equally sound; but they, in general, contain a large proportion of truth, and may always furnish to a speculative mind matter of useful meditation.""
raries. On the contrary, Leibnitz speaks of the Treatise on Education as a work of still greater merit than the Essay on Human Understanding. Nor will this judgment be wondered at by those who, abstracting from the habits of thinking in which they have been reared, transport themselves in imagination to the state of Europe a hundred years ago. How flat and nugatory seem now the cautions to parents about watching over those associations on which the dread of spirits in the dark is founded! But how different was the case (even in Protestant countries) till a very recent period of the last century!

I have, on a former occasion, taken notice of the slow but (since the invention of printing) certain steps by which Truth makes its way in the world; "the discoveries, which, in one age, are confined to the studious and enlightened few, becoming, in the next, the established creed of the learned; and, in the third, forming part of the elementary principles of education." The harmony, in the meantime, which exists among truths of all descriptions, tends perpetually, by blending them into one common mass, to increase the joint influence of the whole; the contributions of individuals to this mass (to borrow the fine allusion of Middleton) "resembling the drops of rain, which, falling separately into the water, mingle at once with the stream, and strengthen the general current." Hence the ambition, so natural to weak minds, to distinguish themselves by paradoxical and extravagant opinions; for these, having no chance to incorporate themselves with the progressive reason of the species, are the more likely to immortalise the eccentricity of their authors, and to furnish subjects of wonder to the common compilers of literary history. This ambition is the more general, as so little expence of genius is necessary for its gratification.

"Truth (as Mr Hume has well observed) is one thing, but errors are numberless;" and hence (he might have added) the difficulty of seizing the former, and the facility of swelling the number of the latter.

Having said so much in illustration of Locke's philosophical merits, and in reply to the common charge against his metaphysical and ethical principles, it now only remains for me to take notice of one or two defects in his intellectual character, which exhibit a strong contrast to the general vigour of his mental powers.

Among these defects, the most prominent is, the facility with which he listens to historical evidence, when it happens to favour his own conclusions. Many remarkable instances of this occur in his long and rambling argument (somewhat in the style of Montaigne) against the existence of innate practical principles; to which may be added, the degree of credit he appears to have given to the popular tales about mermaids, and to Sir William Temple's idle story of Prince Maurice's "rational and intelligent parrot." Strange! that the same person who, in matters of reasoning, had divested himself, almost to a fault, of all reverence for the opinions of others, should have failed to perceive, that, of all the various sources of error, one of the most copious and fatal is an unreflecting faith in human testimony!

The disrespect of Locke for the wisdom of antiquity, is another prejudice which has frequently given a wrong bias to his judgment. The idolatry in which the Greek and Roman writers were held by his immediate predecessors, although it may help to account for this weakness, cannot altogether excuse it in a man of so strong and enlarged an understanding. Locke (as we are told by Dr Warton) "affected to depreciate the ancients; which circumstance (he adds), as I am informed from undoubted authority, was the source of perpetual discontent and dispute betwixt him and his pupil, Lord Shaftes-
bury; who, in many parts of the Characteristics, has ridiculed Locke's philosophy, and endeavoured to represent him as a disciple of Hobbes. To those who are aware of the direct opposition between the principles of Hobbes, of Montaigne, of Gassendi, and of the other minute philosophers with whom Locke sometimes seems unconsciously to unite his strength,—and the principles of Socrates, of Plato, of Cicero, and of all the soundest moralists, both of ancient and of modern times, the foregoing anecdote will serve at once to explain and to palliate the acrimony of some of Shaftesbury's strictures on Locke's Ethical paradoxes.

With this disposition of Locke to deprecate the ancients, was intimately connected that contempt which he everywhere expresses for the study of Eloquence, and that perversion of taste which led him to consider Blackmore as one of the first of our English poets. That his own imagination was neither sterile nor torpid, appears sufficiently from the agreeable colouring and animation which it has not unfrequently imparted to his style: but this power of the mind he seems to have regarded with a peculiarly jealous and unfriendly eye; confining his view exclusively to its occasional effects in misleading the judgment, and overlooking altogether the important purposes to which it is subservient, both in our intellectual and moral frame. Hence, in all his writings, an inattention to those more attractive aspects of the mind, the study of which (as Burke has well observed) "while it communicates to the taste a sort of philosophical solidity, may be expected to reflect back on the severer sciences some of those graces and elegancies, without which the greatest proficiency in these sciences will always have the appearance of something illiberal."

To a certain hardiness of character, not unfrequently united with an insensibility to the charms of poetry and of eloquence, may partly be ascribed the severe and forbidding spirit which has suggested some of the maxims in his Tract on Education. He had been treated, himself, it would appear, with very little indulgence by his parents; and probably was led by that filial veneration which he always expressed for their memory, to ascribe to the early habits of self-denial imposed on him by their ascetic system of ethics, the existence of those moral qualities which he owed to the regulating influence of his own reason in fostering his natural dispositions; and which, under a gentler and more skilful culture, might have assumed a still more engaging and amiable form. His father, who had served in the Parliament's army, seems to have retained through life that austerity of manners which characterised his puritanical associates; and, notwithstanding the comparative enlargement and cultivation of Mr Locke's mind, something of this hereditary leaven, if I am not mistaken, continued to operate upon many of his opinions and habits of thinking. If, in the Conduct of the Understanding, he trusted (as many have thought) too much to nature, and laid too little stress on logical rules, he certainly fell into the opposite extreme in everything connected with the culture of the heart; distrusting nature altogether, and placing his sole confidence in the effects of a systematical and vigilant discipline. That the great object of education is not to thwart and disturb, but to study the aim, and to facilitate the accomplishment of her beneficial arrangements, is a maxim, one should think, obvious to common sense; and yet it is only of late years that it has begun to gain ground even among philosophers. It is but justice to Rousseau to acknowledge, that the zeal and eloquence with which he has enforced it, go far to compensate the mischievous tendency of some of his other doctrines.

To the same causes it was probably owing, that Locke has availed himself so little in his Conduct of the Understanding, of his own favourite doctrine of the Association of Ideas. He

1 Plebei Philosopli (says Cicero) qui a Platone et Socrate, et ab ea familia dissident.

2 "All our English poets, except Milton," says Molyneux in a letter to Locke, "have been mere ballad-makers in comparison to Sir Richard Blackmore." In reply to which Locke says, "There is, I wish to inform, a strange harmony throughout between your thoughts and mine."—(Locke's Works, Vol. IX. pp. 423, 426.)

3 Such, for example, as this, that "a child should never be suffered to have what he craves, or so much as speak for it." A maxim (as his correspondent Molyneux observes) "which seems to bear hard on the tender spirits of children, and the natural affections of parents."—(Locke's Works, Vol. IX. p. 319.)
has been, indeed, at sufficient pains to warn parents and guardians of the mischievous consequences to be apprehended from this part of our constitution, if not diligently watched over in our infant years. But he seems to have altogether overlooked the positive and immense resources which might be derived from it, in the culture and amelioration, both of our intellectual and moral powers;—in strengthening (for instance), by early habits of right thinking, the authority of reason and of conscience;—in blending with our best feelings the congenial and ennobling sympathies of taste and of fancy;—and in identifying, with the first workings of the imagination, those pleasing views of the order of the universe, which are so essentially necessary to human happiness. A law of our nature, so mighty and so extensive in its influence, was surely not given to man in vain; and the fatal purchase which it has, in all ages, afforded to Machiavellian statesmen, and to political religionists, in carrying into effect their joint conspiracy against the improvement and welfare of our species, is the most decisive proof of the manifold uses to which it might be turned in the hands of instructors, well disposed and well qualified humbly to co-operate with the obvious and unerring purposes of Divine Wisdom.

A more convenient opportunity will afterwards occur for taking some notice of Locke's writings on Money and Trade, and on the Principles of Government. They appear to me to connect less naturally and closely with the literary history of the times when they appeared, than with the systematical views which were opened on the same subjects about fifty years afterwards, by some speculative politicians in France and in England. I shall, therefore, delay any remarks on them which I have to offer, till we arrive at the period when the questions to which they relate began everywhere to attract the attention of the learned world, and to be discussed on those general principles of expediency and equity, which form the basis of the modern science of Political Economy. With respect to his merits as a logical and metaphysical reformer, enough has been already said for this introductory section: but I shall have occasion, more than once, to recur to them in the following pages, when I come to review those later theories, of which the germs or rudiments may be distinctly traced in his works; and of which he is, therefore, entitled to divide the praise with such of his successors as have reared to maturity the prolific seeds scattered by his hand.¹

SECTION II.

Continuation of the Review of Locke and Leibnitz.

LEIBNITZ.

Independently of the pre-eminent rank, which the versatile talents and the universal learning of Leibnitz entitle him to hold among the illustrious men who adorned the Continent of Europe during the eighteenth century, there are other considerations which have determined me to unite his name with that of Locke, in fixing the commencement of the period, on the history of which I am now to enter. The school of which he was the founder was strongly discriminated from that of Locke, by the general spirit of its doctrines; and to this school a large proportion of the metaphysicians, and also of the mathematicians of Germany, Hol-

¹ And yet with what modesty does Locke speak of his own pretensions as a Philosopher! "In an age that produces such masters as the great Huygenius and the incomparable Mr. Newton, it is ambition enough to be employed as an under-labourer in clearing the ground a little, and removing some of the rubbish that lies in the way to knowledge."—(Essay on Human Understanding. Epistle to the Reader.) See Note Z.
land, France, and Italy, have ever since his
time had a decided leaning. On the funda-
mental question, indeed, concerning the Origin
of our Knowledge, the philosophers of the Con-
tinent (with the exception of the Germans, and
a few eminent individuals in other countries)
have, in general, sided with Locke, or rather
with Gassendi; but, in most other instances, a
partiality for the opinions, and a deference for
the authority of Leibnitz, may be traced in their
speculations, both on metaphysical and physical
subjects. Hence a striking contrast between
the characteristic features of the continental
philosophy, and those of the contemporary sys-
tems which have succeeded each other in our
own island; the great proportion of our most
noted writers, notwithstanding the opposition
of their sentiments on particular points, having
either attached themselves, or professed to attach
themselves, to the method of inquiry recom-
ended and exemplified by Locke.

But the circumstance which chiefly induced
me to assign to Leibnitz so prominent a place
in this historical sketch, is the extraordinary
influence of his industry and zeal, in uniting,
by a mutual communication of intellectual lights
and of moral sympathies, the most powerful
and leading minds scattered over Christendom.
Some preliminary steps towards such an union
had been already taken by Wallis in England,
and by Mersenne in France; but the literary
commerce, of which they were the centres, was
confined almost exclusively to Mathematics and
to Physics; while the comprehensive corre-
spondence of Leibnitz extended alike to every
pursuit interesting to man, either as a specu-
lative or as an active being. From this time
forward, accordingly, the history of philosophy
involves, in a far greater degree than at any
former period, the general history of the human
mind; and we shall find, in our attempts to
trace its farther progress, our attention more
destails to more enlarged views of the globe which
we inhabit. A striking change in this literary
commerce among nations took place, at least in
the western parts of Europe, before the death of
Leibnitz; but, during the remainder of the
last century, it continued to proceed with an
accelerated rapidity over the whole face of the
civilised world. A multitude of causes, un-
doubtedly, conspired to produce it; but I know
of no individual whose name is better entitled
than that of Leibnitz, to mark the era of its
commencement. 1

I have already, in treating of the philosophy
of Locke, said enough, and perhaps more than
enough, of the opinion of Leibnitz concerning
the origin of our knowledge. Although expressed
in a different phraseology, it agrees in the most
essential points with the innate ideas of the Car-
tesians; but it approaches still more nearly to
some of the mystical speculations of Plato. The
very exact coincidence between the language of
Leibnitz on this question, and that of his con-
temporary Cudworth, whose mind, like his own,
was deeply tintured with the Platonic Meta-
physics, is not unworthy of notice here, as an
historical fact; and it is the only remark on this
part of his system which I mean to add at pre-
sent to those in the preceding history.

"The seeds of our acquired knowledge," says
Leibnitz, "or, in other words, our ideas, and
the eternal truths which are derived from them,
are contained in the mind itself; nor is this won-
derful, since we know by our own consciousness,
that we possess within ourselves the ideas of ex-
istence, of unity, of substance, of action, and other
ideas of a similar nature." To the same purpose,
we are told by Cudworth, that "the mind con-
tains in itself virtually (as the future plant or
tree is contained in the seed) general notions of
all things which unfold and discover themselves
as occasions invite, and proper circumstances
occur."

The metaphysical theories, to the establish-

1 The following maxims of Leibnitz deserve the serious attention of all who have at heart the improvement of mankind:
"On trouve dans le monde plusieurs personnes bien intentionnées; mais le mal est, qu'elles ne s'entendent point, et ne
travaillent point de concert. S'il y avait moyen de trouver une espèce de glu pour les réunir, on ferait quelque chose.
Le mal est souvent que les gens de bien ont quelques caprices ou opinions particulières, qui font qu'elles sont contraires
entre eux.............L'esprit sectaire consiste proprement dans cette prétention de vouloir que les autres se regrant sur nos
maximes, au lieu qu'on se devrait contenter de voir qu'on aille au but principal."—(Leib. Op. Tom. I. p. 740.)
ment of which Leibnitz chiefly directed the force of his genius, are the doctrine of Pre-established Harmony; and the scheme of Optimism, as new modelled by himself. On neither of these heads will it be necessary for me long to detain my readers.

1. According to the system of Pre-established Harmony, the human mind and human body are two independent but constant correspondent machines;—adjusted to each other like two unconnected clocks, so constructed, that, at the same instant, the one should point the hour, and the other strike it. Of this system the following summary and illustration are given by Leibnitz himself, in his Essay entitled Theodiccea:

"I cannot help coming into this notion, that God created the soul in such manner at first, that it should represent within itself all the simultaneous changes in the body; and that he has made the body also in such manner, as that it must of itself do what the soul wills:—So that the laws which make the thoughts of the soul follow each other in regular succession, must produce images which shall be coincident with the impressions made by external objects upon our organs of sense; while the laws by which the motions of the body follow each other, are likewise so coincident with the thoughts of the soul, as to give to our volitions and actions the very same appearance, as if the latter were really the natural and necessary consequences of the former." (Leib. Op. I. p. 163.) Upon another occasion he observes, that "every thing goes on in the soul as if it had no body, and that every thing goes on in the body as if it had no soul." (Ibid. II. p. 44.)

To convey his meaning still more fully, Leibnitz borrows from Mr Jaquelot¹ a comparison, which, whatever may be thought of its justness, must be at least allowed some merit in point of ingenuity. "Suppose that an intelligent and powerful being, who knew, beforehand, every particular thing that I should order my footman to do to-morrow, should make a machine to resemble my footman exactly, and punctually to perform, all day, whatever I directed. On this supposition, would not my will in issuing all the details of my orders, remain, in every respect, in the same circumstances as before? And would not my machine-footman, in performing his different movements, have the appearance of acting only in obedience to my commands?" The inference to be drawn from this comparison is, that the movements of my body have no direct dependence whatever on the volitions of my mind, any more than the actions of my machine-footman would have on the words issuing from my lips. The same inference is to be extended to the relation which the impressions made on my different senses bear to the co-existent perceptions arising in my mind. The impressions and perceptions have no mutual connection, resembling that of physical causes with their effects; but the one series of events is made to correspond invariably with the other, in consequence of an eternal harmony between them pre-established by their common Creator.

From this outline of the scheme of Pre-established Harmony, it is manifest, that it took its rise from the very same, train of thinking which produced Malebranche's doctrine of Occasional Causes. The authors of both theories saw clearly the impossibility of tracing the mode in which mind acts on body, or body on mind; and hence were led rashly to conclude, that the connection or union which seems to exist between them is not real, but apparent. The inferences, however, which they drew from this common principle were directly opposite; Malebranche maintaining, that the communication between mind and body was carried on by the immediate and incessant agency of the Deity; while Leibnitz conceived, that the agency of God was employed only in the original contrivance and mutual adjustment of the two machines;—all the subsequent phenomena of each being the necessary results of its own independent mechanism, and, at the same time, the progressive evolutions of a comprehensive design, harmonising the laws of the one with those of the other.

Of these two opposite hypotheses, that of Leibnitz is by far the more unphilosophical and untenable. The chief objection to the doctrine of

¹ Author of a Book entitled Conformité de la Foi avec la Raison.
occasional causes is, that it preserves to decide upon a question of which human reason is altogether incompetent to judge; — our ignorance of the mode in which matter acts upon mind, or mind upon matter, furnishing not the shadow of a proof that the one may not act directly and immediately on the other, in some way incomprehensible by our faculties. But the doctrine of Pre-established Harmony, besides being equally liable to this objection, labours under the additional disadvantage of involving a perplexed and totally inconsistent conception of the nature of Mechanism; — an inconsistency, by the way, with which all those philosophers are justly chargeable, who imagine that, by likening the universe to a machine, they get rid of the necessity of admitting the constant agency of powers essentially different from the known qualities of matter. The word Mechanism properly expresses a combination of natural powers to produce a certain effect. When such a combination is successful, a machine, once set a-going, will sometimes continue to perform its office for a considerable time, without requiring the interposition of the artist: And hence we are led to conclude, that the case may perhaps be similar with respect to the universe, when once put into motion by the Deity. This idea Leibnitz carried so far as to exclude the supposition of any subsequent agency in the first contriver and mover, excepting in the case of a miracle. But the falseness of the analogy appears from this, that the moving force in every machine is some natural power, such as gravity or elasticity; and, consequently, the very idea of mechanism assumes the existence of those active powers, of which it is the professed object: of a mechanical theory of the universe to give an explanation. Whether, therefore, with Malebranche, we resolve every effect into the immediate agency of God, or suppose, with the great majority of Newtonians, that he employs the instrumentality of second causes to accomplish his purposes, we are equally forced to admit-with Bacon, the necessity not only of a first contriver and mover, but of his constant and efficient concurrence (either immediately or medially) in carrying his design into execution:—

"Opus (says Bacon) quod operatur Deus a priorio usque ad finem."

In what I have now said I have confined myself to the idea of Mechanism as it applies to the material universe; for, as to this word, when

1 The mutual action, or (as it was called in the schools) the mutual influence (influentia) of soul and body, was, till the time of Descartes, the prevailing hypothesis, both among the learned and the vulgar. The reality of this influence, if not positively denied by Descartes, was at least mentioned by him as a subject of doubt; but by Malebranche and Leibnitz it was confidently rejected as absurd and impossible. (See their works passim.) Gravesande, who had a very strong leaning towards the doctrines of Leibnitz, had yet the good sense to perceive the inconclusiveness of his reasoning in this particular instance, and states in opposition to it: the following sound and decisive remarks:—"Non concipio, quomodo mens in corpus agere possit; non etiam video, quomodo ex motu nervorum sequatur; non tamen inde sequitur nihil apparent, omnem influentiam esse relinquendum."

2 Substantiam incognitam sunt. Jam videmus naturam mentis nos latere; seminum hanc esse aliquid, quod ideae habet, has confert, &c.; sed ignoramus quid sit, quomodo se habet, cui haeret proprietates convenient.

3 Idem de corpore diximus; est extensum, imperceptibile, &c.; sed quid est quod habet, hasa proprietates? Nulla nobis via aperta est, quae ad hanc cognitionem pervenire possimus.

4 Inclusio conclusionem, multa nos latere, quae proprietates mentis et corporis spectant.

5 Invicta demonstratione constat, non mentem in corpus, neque hoc in illam agere, ut corpus in corporis agit; sed mihi non videtur inde concludi possit, omnem influentiam esse impossibilem.

6 Motum suo corpus non agit in aliqui corpore, sine resistente; sed non actio, omnino diversa, et cujus ideae non habemus, in aliqui substantiam dari possit, et in tamen, ut causa effectu; respondet, in re adeo obscura, determinare non ausim. Difficile certe est influentiam negare, quando exacte perpendimus, quomodo in minimis quae mens percipit, relatio detar cum agitamentibus in corpore, et quomodo hujus motus cum mentis determinationibus convenient. Attendo ad illa quae medici, et anatomici, nos de hunc decent.

7 Nulla est, ergo, de systemate influentiae determinata, praeter hoc, mihi nondum hujus impossibilitatem satis clare demonstrat esse videri. — Introductio ad Philosopham. — See Note A A.

With respect to the manner in which the intercourse between Mind and Matter carry on a, very rash assertion escaped Mr Locke in the first edition of his Essay. "The next thing to be considered is, how bodies produce ideas in us, and that is manifestly by impulse, the only way which we can conceive bodies operate in."(Essay, II. ch. viii. § 11.)

In the course of Locke’s controversial discussions with the Bishop of Worcester, he afterwards became fully sensible of this important oversight; and he had the candour to acknowledge his error in the following terms:—"It is true, I have said, that bodies operate by impulse, and nothing else. And so I thought when I wrote it, and can yet conceive no other way of their operations. But I am since convinced, by the judicious Mr Newton’s incomparable book, that it is too bold a presumption to limit God’s power in this point by my narrow conceptions. "

And, therefore, in the next edition of my book, I will take care to have that passage rectified.

"It is a circumstance that can only be accounted for by the variety of Mr. Locke’s other pursuits, that in all the later editions of the Essay which have fallen in my way, the proposition in question has been allowed to remain as it originally stood.
applied by Leibnitz to the mind, which he calls a Spiritual Automaton, I confess myself quite unable to annex a meaning to it: I shall not, therefore, offer any remarks on this part of his system.1

To these visionary speculations of Leibnitz, a strong and instructive contrast is exhibited in the philosophy of Locke; a philosophy, the main object of which is less to enlarge our knowledge, than to make us sensible of our ignorance; or (as the author himself expresses it) "to prevail with the busy mind of man to be cautious in meddling with things exceeding its comprehension; to stop when it is at the utmost extent of its tether; and to sit down in a quiet ignorance of those things, which, upon examination, are found to be beyond the reach of our capacities."...... "My right hand writes," says Locke, in another part of his Essay, "whilst my left hand is still. What causes rest in one, and motion in the other? Nothing but my will, a thought of my mind; my thought only changing, my right hand rests, and the left hand moves. This is Matter of fact which cannot be denied. Explain this and make it intelligible, and then the next step will be to understand Creation......In the meantime, it is an overvaluing ourselves, to reduce all to the narrow measure of our capacities; and to conclude all things impossible to be done, whose manner of doing exceeds our comprehension......If you do not understand the operations of your own finite Mind, that thinking thing within you, do not deem it strange that you cannot comprehend the operations of that eternal infinite Mind, who made and governs all things, and whom the heaven of heavens cannot contain."—(Vol. II. pp. 249, 250.)

This contrast between the philosophical characters of Locke and of Leibnitz is the more deserving of notice, as something of the same sort has ever since continued to mark and to discriminate the metaphysical researches of the English and of the German schools. Various exceptions to this remark may, no doubt, be mentioned; but these exceptions will be found of trifling moment, when compared with the indisputable extent of its general application.

The theory of pre-established harmony led, by a natural and obvious transition, to the scheme of Optimism. As it represented all events, both in the physical and moral worlds, as the necessary effects of a mechanism originally contrived and set a-going by the Deity, it reduced its author to the alternative of either calling in question the Divine power, wisdom, and goodness, or of asserting that the universe which he had called into being was the best of all possible systems. This last opinion, accordingly, was eagerly embraced by Leibnitz; and forms the subject of a work entitled Théodicée, in which are combined together, in an extraordinary degree, the acuteness of the logician, the imagination of the poet, and the impenetrable, yet sublime darkness, of the metaphysical theologian.2

The modification of Optimism, however, adopted by Leibnitz, was, in some essential respects, peculiar to himself. It differed from that of Plato, and of some other sages of antiquity, in considering the human mind in the light of a spiritual machine, and, of consequence, in posi-

1 Absurd as the hypothesis of a Pre-established Harmony may now appear, not many years have elapsed since it was the prevailing, or rather universal creed, among the philosophers of Germany. "Il fut un temps" (says the celebrated Euler) "où le système de l'harmonie pré-établie était tellement en vogue dans toute l'Allemagne, que ceux qui en doutaient, passaient pour des ignorans, ou des esprits bornés."—(Lettres de M. Euler à une Princesse d'Allemagne, 83e Lettre.) It would be amusing to reckon up the succession of metaphysical creeds which have been since swallowed with the same implicit faith by this learned and speculative, and (in all those branches of knowledge where imagination has no influence over the judgment) profound and inventive nation.

2 That this is a fair representation of the scope of Locke's philosophy, according to the author's own view of it, is demonstrated by the two mottoes prefixed to the Essay on Human Understanding. The one is a passage of the book of Ecclesiastes, which, from the place it occupies in the front of his work, may be presumed to express what he himself regarded as the most important moral to be drawn from his speculations. "As thou knowest not what is the way of the spirit, nor how the bones do grow in the womb of her that is with child; even so, thou knowest not the works of God, who maketh all things." The other motto (from Cicero) strongly expresses a sentiment which every competent judge must feel on comparing the above quotations from Locke, with the monads and the pre-established harmony of Leibnitz. "Quam bellum est velle confiteri potius nescire quod nescias, quam iusta effutientem nauseare, atque ipsum sibi displicare!" See Note B B.

3 "La Théodicée seule (says Fontenelle) suffrit pour représenter M. Leibnitz. Une lecture immense, des anecdotes curieuses sur les livres ou les personnes, beaucoup d'équité et même de faveur pour tous les auteurs cités, fut ce en les combattant; des vues sublimes et lumineuses, des raisonnements au fond desquels on sent toujours l'esprit géométrique, un style où la force domine, et où cependant sont admis les agréments d'une imagination heureuse."—Eloge de Leibnitz.
Dissertation First.

...tively denying the freedom of human actions. According to Plato, every thing is right, so far as it is the work of God; the creation of beings endowed with free will, and consequently liable to moral delinquency—and the government of the world by general laws, from which occasional evils must result,—furnishing no objection to the perfection of the universe, to which a satisfactory reply may not be found in the partial and narrow views of it, to which our faculties are at present confined. But he held at the same time, that, although the permission of moral evil does not detract from the goodness of God, it is nevertheless imputable to man as a fault, and renders him justly obnoxious to punishment. This system (under a variety of forms) has been in all ages maintained by the wisest and best philosophers, who, while they were anxious to vindicate the perfections of God, saw the importance of stating their doctrine in a manner not inconsistent with man's free will and moral agency.

The scheme of Optimism, on the contrary, as proposed by Leibnitz, is completely subversive of these cardinal truths. It was, indeed, viewed by the great and excellent author in a very different light; but in the judgment of the most impartial and profound inquirers, it leads, by a short and demonstrative process, to the annihilation of all moral distinctions.1

It is of great importance to attend to the distinction between these two systems; because it has, of late, become customary among sceptical writers, to confound them studiously together, in order to extend to both that ridicule to which the latter is justly entitled. This, in particular, was the case with Voltaire, who, in many parts of his later works, and more especially in his Candide, has, under the pretence of exposing the extravagancies of Leibnitz, indulged his satirical raillery against the order of the universe. The success of his attempt was much aided by the confused and inaccurate manner in which the scheme of optimism had been recently stated by various writers, who, in their zeal to "vindicate the ways of God," had been

1 It is observed by Dr Akenside, that "the Theory of Optimism has been delivered of late, especially abroad, in a manner which subverts the freedom of human actions; whereas Plato appears very careful to preserve it, and has been in that respect imitated by the best of his followers." (Notes on the 2d Book of the Pleasures of the Imagination.)

I am perfectly aware, at the same time, that different opinions have been entertained of Plato's real sentiments on this subject; and I readily grant that passages with respect to Fate and Necessity may be collected from his works, which it would be very difficult to reconcile with any one consistent scheme. (See the Notes of Mosheim on his Latin Version of Cudworth's Intellectual System, Tome I. pp. 10. 310, et seq. Lugd. Batav. 1775.)

Without entering at all into this question, I may be permitted here to avow myself, for the sake of conciseness, of Plato's name, to distinguish that modification of optimism which I have opposed in the text to the optimism of Leibnitz. The following sentence, in the 10th Book De Republica, seems sufficient of itself to authorise this liberty:—"Asenio di Diogenes, et eum qui ad conditam, aule, et audeat audeat, audeat audeat. Deus hoc sequitur. Virtute inviolabilia ad libera quem primum honorabili quot quin neglexerit, et plus aut minus ex ea posside. Eligentis quidque est annus. Deus vero extra culpam." A short abstract of the allegory with which Leibnitz concludes his Theodicea, will convey a clearer idea of the scope of that work, than I could hope to do by any metaphysical comment. The groundwork of this allegory is taken from a dialogue on Free-Will, written by Laurentius Valla, in opposition to Boethius; in which dialogue, Sextus, the son of Tarquin the Proud, is introduced as consulting Apollo about his destiny. Apollo predicts to him that he is to violate Lucretia, and afterwards, with his family, to be expelled from Rome. (Exul inopique cades intra palus ubi urbs.) Sextus complains of the prediction. Apollo replies, that the fault is not his; that he has only the gift of seeing into futurity; that all things are regulated by Jupiter; and that it is to him his complaint should be addressed. (Here finishes the allegory of Valla, which Leibnitz thus continues, agreeably to his own principles.) In consequence of the advice of the Oracle, Sextus goes to Dodona to complain to Jupiter of the crime which he is destined to perpetrated. "Why (says he), oh Jupiter! have you made me wicked and miserable? Either change my lot and my will, or admit that the fault is yours, not mine." Jupiter replies to him: "Renounce all thoughts of Rome and of the crown; be wise, and you shall be happy. If you return to Rome you are undone." Sextus, unwilling to submit to such a sacrifice, quits the Temple, and abandons himself to his fate.

After his departure, the high priest, Theodorus, asks Jupiter why he had not given another Will to Sextus. Jupiter sends Theodorus to Athens to consult Minerva. The goddess shows him the Palace of the Destinies, where are representations of all possible worlds; each of them containing a Sextus Tarquinius with a different Will, leading to a catastrophe more or less happy. In the last and best of these worlds, forming the summit of the pyramid composed by the others, the high priest sees Sextus go to Rome, throw every thing into confusion, and violate the wife of his friend. "You see," (says the Goddess of Wisdom) "it was not my father that made Sextus wicked. He was wicked from all eternity, and he was always so in consequence of his own will. Jupiter has only bestowed on him that existence which he could not refuse him in the best of all possible worlds. He only transferred him from the region of possible to that of actual beings. What great
led to hazard principles more dangerous in their consequences, than the prejudices and errors which it was their aim to correct. 1

The zeal of Leibnitz in propagating the dogma of Necessity is not easily reconcileable with the hostility which, as I have already remarked, he uniformly displays against the congenial doctrine of Materialism. Such, however, is the fact, and I believe it to be quite unprecedented in the previous history of philosophy. Spinoza himself has not pushed the argument for necessity further than Leibnitz,—the reasonings of both concluding not less forcibly against the free-will of God than against the free-will of man, and, of consequence, terminating ultimately in this proposition, that no event in the universe could possibly have been different from what has actually taken place. 2 The distinguishing feature of this article of the Leibnitzean creed is, that, while the Hobbits and Spinozists were employing their ingenuity in connecting together Materialism and Necessity, as branches springing from one common root, Leibnitz always speaks of the soul as a machine purely spiritual, 3—a machine, however, as necessarily regulated by pre-ordained and immutable laws, as the movements of a clock or the revolutions of the planets. In consequence of holding this language, he seemed to represent Man in a less degrading light than other necessitarians; but, in as far as such speculative te-

1 Among this number must be included the author of the Essay on Man, who, from a want of precision in his metaphysical ideas, has unconsciously fallen into various expressions, equally inconsistent with each other and with his own avowed opinions:

If plagues and earthquakes break not Heaven's design,
Why then a Borgia or a Catiline?—
Who knows but He whose hand the lightning forms,
Who heaves old Ocean, and who wings the storm,
Pours fierce ambition on a Cesar's mind,
Or turns young Ammon loose to scourge mankind?—

—The general order since the whole began,
Is kept in Nature, and is kept in Man.
This approaches very nearly to the optimism of Leibnitz, and has certainly nothing in common with the optimism of Plato.
Nor is it possible to reconcile it with the sentiments inculcated by Pope in other parts of the same poem.
What makes all physical and moral ill?
There deviates Nature, and here wanders Will.

In this last couplet he seems to admit, not only that Will may wander, but that Nature herself may deviate from the general order; whereas the doctrine of his universal prayer is, that, while the material world is subjected to established laws, man is left to be the arbiter of his own destiny:

Yet gav'st me in this dark estate
To know the good from ill,
And, binding Nature fast in fate,
Left free the human will.

In the Dunciad, too, the scheme of Necessity is coupled with that of Materialism, as one of the favourite doctrines of the sect of free-thinkers.

Of nought so certain as our Reason still,
Of nought so doubtful as of Soul and Will.

4 Two things" (says Warburton, who professes to speak Pope's sentiments) "the most self-evident, the existence of our souls and the freedom of our will!"

5 So completely, indeed, and so mathematically linked, did Leibnitz conceive all truths, both physical and moral, to be with each other, that he represents the eternal geometrician as incessantly occupied in the solution of this problem,—The State of one Monad (or elementary atom) being given, to determine the state, past, present, and future, of the whole universe.

In a note on this sentence, the editor quotes a passage from Bilfinger, a learned German, in which an attempt is made to vindicate the propriety of the phrase, by a reference to the etymology of the word automaton. This word, it is observed, when traced to its source, literally expresses something which contains within itself its principle of motion, and, consequently, it applies still more literally to Mind than to a machine. The remark, considered in a philological point of view, is indisputably just; but is it not evident, that it leads to a conclusion precisely contrary to what this author would deduce from it? Whatever may have been the primitive meaning of the word, its common, or rather its universal meaning, even among scientific writers, is a material machine, moving without any foreign impulse; and, that this was the idea annexed to it by Leibnitz, appears from his distinguishing it by the epithet spirituale—an epithet which would have been altogether superfluous had he intended to convey the opinion ascribed to him by Bilfinger. In applying, therefore, this language to the mind, we may conclude, with confidence, that Leibnitz had no intention to contrast together mind and body, in respect of their moving or actuating principles, but only to contrast them in respect of the substances of which they are composed. In a word, he conceived both of them to be equally machines, made and wound up by the Supreme Being; but the machinery in the one case to be material, and in the other spiritual.
nets may be supposed to have. any practical effect on human conduct, the tendency of his doctrines is not less dangerous than that of the most obnoxious systems avowed by his predecessors. 1

The scheme of necessity was still farther adorned and sublimed in the Theodicee of Leibnitz, by an imagination nurtured and trained in the school of Plato. "May there not exist," he asks on one occasion, "an immense space beyond the region of the stars? and may not this empyreal heaven be filled with happiness and glory? It may be conceived to resemble an ocean, where the rivers of all those created beings that are destined for bliss shall finish their course, when arrived in the starry system, at the perfection of their respective natures."—(Leib. Op. Tom. I. p. 135.) 2

In various other instances, he rises from the deep and seemingly hopeless abyss of Fatalism, to the same lofty conceptions of the universe; and has thus invested the most humiliating article of the atheistic creed, with an air of Platonic mysticism. The influence of his example appears to me to have contributed much to corrupt the taste and to bewilder the speculations of his countrymen; giving birth, in the last result, to that heterogeneous combination of all that is pernicious in Spinozism, with the transcendental eccentricities of a heated and exalted fancy, which, for many years past, has so deeply tinctured both their philosophy and their works of fiction. 3

In other parts of Europe, the effects of the Theodicee have not been equally unfavourable. In France, more particularly, it has furnished to the few who have cultivated with success the Philosophy of Mind, new weapons for combating the materialism of the Gassendiists and Hobists; and, in England, we are indebted to it for the irresistible reasonings by which Clarke subverted the foundations on which the whole superstructure of Fatalism rests. 4

It may be justly regarded as a proof of the

1 The following remark in Madame de Stahl's interesting and eloquent review of German philosophy bears marks of a haste and precipitation with which her criticisms are seldom chargeable: "Les opinions de Leibnitz tendent surtout au perfectionnement moral, s'il est vrai, comme les philosophes Allemands ont taché de le prouver, que le libre arbitre repose sur la doctrine qui affranchit l'âme des objets extérieurs, et que la vertu ne puisse exister sans la parfaite indépendance du voluer.

2 The celebrated Charles Bonnet, in his work entitled, Contemplation de la Nature, has indulged his imagination so far, in following out the above conjecture of Leibnitz, as to rival some of the wildest flights of Jacob Behmen. "Mais l'échelle de la creation ne termine point au plus élevés des mondes planétaires. Là commence un autre univers, dont l'étendue est peut-être à celle de l'univers des Fiers, ce qu'est l'espace du système solaire à la capacité d'une noix."

3 "La, comme des Astres resplendissants, brillent les Hierarchies Celestes.

4 "La rayonnement de toutes parts les Anges, les Archanges, les Seraphins, les Cherubins, les Trones, les Vertus, les Principautés, les Dominations, les Puissances.

5 "Au centre de ces Augustes Sphères, éclate le Soleil de Justice, l'Orient d'Enfant, dont tous les Astres empruntent leur lumière et leur splendeur."

6 "La Theodicee de Leibnitz," the same author tells us in another passage, "est un de mes livres de devotion: J'ai intitulé mon Exemplaire, Manuel de Philosophie Chrétienne."

7 "The gross appetite of Love (says Gibbon) becomes most dangerous when it is elevated, or rather disguised, by sentimental passion." The remark is strikingly applicable to some of the most popular novels and dramas of Germany; and something very similar to it will be found to hold with respect to those speculative extravagancies which, in the German systems of philosophy, are elevated or disguised by the imposing cant of moral enthusiasm.

8 In one of Leibnitz's controversial discussions with Dr Clarke, there is a passage which throws some light on his taste, not only in matters of science, but in judging of works of imagination. "Du temps de M. Boyle, et d'autres excellens hommes qui fleurissaient en Angletre sous Charles II. on n'auroit pas osé nous debiter des notions si creuses. (The notions here alludées to are those of Newton concerning the law of gravitation.) J'espére que le beaumes reviendra sous un aussi bon gouvernement que celui d'à present. Le capital de M. Boyle estoit d'inculquer que tout se fairoit mécaniquement dans la physique. Mais c'est un malheur des hommes, de se dégouter enfin de la raison même, et de s'ennuyer de la lumière. Les chimeres commencent à revenir, et plaisent parce qu'elles ont quelque chose de merveilleux. Il arrive dans le pays philosophique ce qui est arrivé dans le pays poétique. On s'est lasse des romans raisonnables, tel que la Cité Françoise ou l'Armene Allemande; et on est revenu depuis quelque temps aux Contes des Fées."—(Cinquiéme Écrit de M. LEIBNITZ, p. 266.)

From this passage it would seem, that Leibnitz looked forward to the period, when the dreams of the Newtonian philosophy would give way to some of the exploded mechanical theories of the universe; and when the Fairy-tales then in fashion (among which number must have been included those of Count Anthony Hamilton) would be supplanted by the rival of such reasonable Romances as the Grand Céléla. In neither of these instances does there seem to be much probability, at present, that his prediction will be ever verified.

1 The German writers, who, of late years, have made the greatest noise among the sciolists of this country, will be found less indebted for their fame to the new lights which they have struck out, than to the unexpected and grotesque forms in which they have combined together the materials supplied by the invention of former ages, and of other nations. It is this combination of truth and error in their philosophical systems, and of right and wrong in their works of fiction, which has enabled them to perplex the understandings, and to unsettle the principles of so many, both in Metaphysics and Ethics. In point of profound and extensive erudition, the scholars of Germany still continue to maintain their long established superiority over the rest of Europe.

2 A very interesting account is given by Leibnitz, of the circumstances which gave occasion to his Theodicee, in a letter

DISSERTATION FIRST.

Diss. I. Part II.
progress of reason and good sense among the Metaphysicians of this country, since the
time of Leibnitz, that the two theories of which I
have been speaking, and which, not more than a
century ago, were honoured by the opposition
of such an antagonist as Clarke, are now re-
membered only as subjects of literary history.—
In the arguments, however, alleged in support of
these theories, there are some logical principles
involved, which still continue to have an ex-
tensive influence over the reasonings of the
learned, on questions seemingly the most remote
from all metaphysical conclusions. The two
most prominent of these are, the principle of
the Sufficient Reason, and the Law of Continuity;
both of them so intimately connected with some
of the most celebrated disputes of the last cen-
tury, as to require a more particular notice than
may, at first sight, seem due to their importance.

I. Of the principle of the Sufficient Reason,
the following succinct account is given by Leib-
nitz himself, in his controversial correspondence
with Dr Clarke: “The great foundation of
Mathematics is the principle of contradiction or
identity; that is, that a proposition cannot be
true and false at the same time. But, in order
to proceed from Mathematics to Natural Phi-
losophy, another principle is requisite (as I have
observed in my Theodicce); I mean, the prin-
ciple of the Sufficient Reason; or, in other words,
that nothing happens without a reason why it
should be so, rather than otherwise: And, ac-
cordingly, Archimedes was obliged, in his book
De Aequilibrio, to take for granted, that if there
be a balance, in which every thing is alike on
both sides, and if equal weights are hung on the
two ends of that balance, the whole will be at
rest. It is because no reason can be given why
one side should weigh down rather than the
other. Now, by this single principle of the
Sufficient Reason, may be demonstrated the being
of a God, and all the other parts of Metaphysics
or Natural Theology; and even, in some measure,
those physical truths that are independent of
Mathematics, such as the Dynamical Principles,
or the Principles of Forces.”

To a Scotch gentleman, Mr Burnet of Kembry; to whom he seems to have unbound himself on all subjects without any reserve: “Mon livre intitulé Essais de Théodicée, sur la bonté de Dieu, la liberté de l'homme, et l'origine de mal, sera bientôt achevé. La plus grande partie de cet ouvrage avait été faite par lambeaux, quand je me trouvais chez la feue Renée de Prusse, où ces matières étoient souvent agitées à l'occasion du Dictionnaire et des autres ouvrages de M. Bayle, qu'on y lisoit beaucoup. Après la mort de cette grande Princesse, j'ai rassemblé et augmenté ces pièces sur l'exhortation des amis qui en étoient informés, et j'en ai fait l'ouvrage dont je viens de parler. Comme j'ai médité sur cette matière depuis ma jeunesse, je prends de l'avoir discutée à fond.”—(Leibnitz, Opera, Tom. VI. p. 234.)

In another letter to the same correspondent, he expresses himself thus:

“La plupart de mes sentiments ont été enfin arrêtés après une délibération de 20 ans: car j'ai commencé bien jeune à méditer, et je n'avais pas encore 15 ans, quand je me promenais des journées entières dans un bois, pour prendre part entre Aristote et Democrite. Cependant j'ai changé et réchauffé sur des nouvelles lumières, et ce n'est que depuis environ 12 ans que je me trouve satisfait, et que je suis arrivé à des démonstrations, sur ces vérités qui n'ont paradoct point capables: Cependant de la manière que je m'y prends, ces démonstrations peuvent être sensibles comme celles des nombres, quoiqu'aussi je n'aie jamais n'en passe l'imagination.”—(Ibid. p. 253.)

The letter from which this last paragraph is taken is dated in the year 1697.

My chief reason for introducing these extracts, was to do away an absurd suspicion, which has been countenanced by some respectable writers (among others by Le Clerc), that the opinions maintained in the Théodicé of Leibnitz were not his real sentiments, and that his own creed, on the most important questions there discussed, was not very different from that of Bayle. Gibbon has given even so far as to say, that “in his defence of the attributes and providence of the Deity, he was suspected of a secret correspondence with his adversary.”—(Antiquities of the House of Brunswick.) In support of this very improbable charge, I do not know that any evidence has ever been produced, except the following passage, in a letter of his, addressed to a Professor of Theology in the University of Tubingen (Phaffius):—“Ita prostrus est, vir summe reverendissimo, uti scribis, de Théodicae meae. Hic acu detegisti; et miror, nemo habet tamen fuisse, qui sensum hunc meum senserit. Neque enim Philosophorum est venio serio semper agere; qui in fingendi hypothesis, uti bene mones, ingenii sui vires experimur. Tu, qui Theolugas, in refutandis erroribus Theologum sagis.” In reply to this it is observed, by the learned editor of Leibnitz's works, that it is much more probable that Leibnitz should have expressed himself on this particular occasion in jocular and ironical terms, that he should have wasted so much ingenuity and learning in support of an hypothesis to which he attached no faith whatever; an hypothesis, he might have added, with which the whole principles of his philosophy are systematically, and, as he conceived, mathematically connected. It is difficult to believe, that among the innumerable correspondents of Leibnitz, he should have selected a Professor of Theology at Tubingen, as the sole depository of a secret which he was anxious to conceal from all the rest of the world.

Surely a solitary document such as this weighs less than nothing, when opposed to the details quoted in the beginning of this note; not to mention its complete inconsistency with the character of Leibnitz, and with the whole tenor of his writings.

For my own part, I cannot help thinking, that the passage in question has far more the air of persiflage provoked by the vanity of Phaffius, than of a serious compliment to his sagacity and penetration. No injunction to secrecy, it is to be observed, is here given by Leibnitz to his correspondent.
Some of the inferences deduced by Leibnitz from this almost gratuitous assumption are so paradoxical, that one cannot help wondering he was not a little staggered about its certainty. Not only was he led to conclude, that the mind is necessarily determined in all its elections by the influence of motives, insomuch that it would be impossible for it to make a choice between two things perfectly alike; but he had the boldness to extend this conclusion to the Deity, and to assert, that two things perfectly alike could not have been produced even by Divine Power. It was upon this ground that he rejected a vacuum, because all the parts of it would be perfectly like to each other; and that he also rejected the supposition of atoms, or similar particles of matter, and ascribed to each particle a monad, or active principle, by which it is discriminated from every other particle. The application of his principle, however, on which he evidently valued himself the most, was that to which I have already alluded; the demonstrative evidence with which he conceived it to establish the impossibility of free-agency, not only in man, but in any other intelligent being: a conclusion which, under whatever form of words it may be disguised, is liable to every objection which can be urged against the system of Spinoza.

With respect to the principle from which these important consequences were deduced, it is observable, that it is stated by Leibnitz in terms so general and vague, as to extend to all the different departments of our knowledge; for he tells us, that there must be a sufficient reason for every existence, for every event, and for every truth. This use of the word reason is so extremely equivocal, that it is quite impossible to annex any precise idea to the proposition. Of this it is unnecessary to produce any other proof than the application which is here made of it to things so very different as existences, events, and truths; in all of which cases, it must of necessity have different meanings. It would be a vain attempt, therefore, to combat the maxim in the form in which it is commonly appealed to: Nor, indeed, can we either adopt or reject it, without considering particularly how far it holds in the various instances to which it may be applied.

The multifarious discussions, however, of a physical, a metaphysical, and a theological nature, necessarily involved in so detailed an examination, would, in the present times (even if this were a proper place for introducing them), be equally useless and uninteresting; the peculiar opinions of Leibnitz on most questions connected with these sciences having already fallen into complete neglect. But as the maxim still continues to be quoted by the latest advocates for the scheme of necessity, it may not be altogether superfluous to observe, that, when understood to refer to the changes that take place in the material universe, it coincides entirely with the common maxim, that every change implies the operation of a cause; and that it is in consequence of its intuitive evidence in this particular case, that so many have been led to acquiesce in it, in the unlimited terms in which Leibnitz has announced it. One thing will be readily

See Note C.

The following comment on this part of the Leibnitzian system is from the pen of one of his greatest admirers, Charles Bonnet: "Cette Métaphysique transcandante déviera un peu plus intelligible, si l'on fait attention, qu'en vertu du principe de la raison suffisante, tout est nécessairement lié dans l'univers. Toutes les Actions des Etre Simple sont harmoniques, ou subordonnées les unes aux autres. L'exercice actuel de l'activité d'une monade donnée, est déterminé par l'exercice actuel de l'activité des monades auxquelles elle correspond immédiatement. Cette correspondance continue d'un point quelconque de l'univers jusqu'à ses extrémités. Représentez-vous les ordres circulaires et concentriques qu'une pierre excite dans une eau dormante: Elles vont toujours en s'élargissant et en s'affilant.

Mais, l'état actuel d'une monade est nécessairement déterminé par son état antédécédent. Celui-ci par un état qui a précédé, et ainsi en remontant jusqu'à l'instant de la création."

Ainsi le passé, le présent, et le futur ne forment dans la même monade qu'une seule chaîne. Notre philosophie disait ingénieusement, que le présent est toujours gros de Passé.

Il disait encore que l'Éternel Géomètre résolvait sans cesse ce Problème: l'état d'une monade étant donné, en déterminer l'état passé, présent, et futur de tout l'Univers. — Bonnet. Tom. VIII. p. 303, 304, 305.)

Since the time of Leibnitz, the principle of the sufficient reason has been adopted by some mathematicians as a legitimate mode of reasoning in plane geometry; in which case, the application made of it has been in general just and logical, notwithstanding the vague and loose manner in which it is expressed. In this science, however, the use of it can never be attended with much advantage; except perhaps in demonstrating a few elementary truths (such as the 8th and 6th propositions of Euclid's first book), which are commonly established by a more circuitous process: and, even in these instances, the spirit of the reasoning might easily be preserved under a different form, much less exceptional in point of phraseology.
granted; that the maxim, when applied to the determinations of intelligent and moral agents, is not quite so obvious and indisputable, as when applied to the changes that take place in things altogether inanimate and passive.

What then, it may be asked, induced Leibnitz, in the enunciation of his maxim, to depart from the form in which it has generally been stated, and to substitute, instead of the word cause, the word reason, which is certainly not only the more unusual, but the more ambiguous expression of the two? Was it not evidently a perception of the impropriety of calling the motives from which we act the causes of our actions; or, at least of the inconsistency of this language with the common ideas and feelings of mankind? The word reason is here much less suspicious, and much more likely to pass current without examination. It was therefore with no small dexterity, that Leibnitz contrived to express his general principle in such a manner, that the impropriety of his language should be most apparent in that case in which the proposition is instantaneously admitted by every reader as self-evident; and to adapt it, in its most precise and definite shape, to the case in which it was in the greatest danger of undergoing a severe scrutiny. In this respect, he has managed his argument with more address than Collins, or Edwards, or Hume, all of whom have applied the maxim to mind, in the very same words in which it is usually applied to inanimate matter.

But on this article of Leibnitz's philosophy, which gave occasion to his celebrated controversy with Clarke, I shall have a more convenient opportunity to offer some strictures, when I come to take notice of another antagonist, more formidable still, whom Clarke had soon after to contend with on the same ground. The person I allude to is Anthony Collins; a writer certainly not once to be compared with Leibnitz, in the grasp of his intellectual powers; but who seems to have studied this particular question with greater attention and accuracy, and who is universally allowed to have defended his opinions concerning it in a manner far more likely to mislead the opinions of the multitude.

II. The same remark which has been already made on the principle of the Sufficient Reason may be extended to that of the Law of Continuity. In both instances the phraseology is so indeterminate, that it may be interpreted in various senses essentially different from each other; and, accordingly, it would be idle to argue against either principle as a general theorem, without attending separately to the specialties of the manifold cases which it may be understood to comprehend. Where such a latitude is taken in the enunciation of a proposition, which, so far as it is true, must have been inferred from an induction of particulars, it is at least possible that, while it holds in some of its applications, it may yet be far from possessing any claim to that universality which seems necessarily to belong to it, when considered in the light of a metaphysical axiom, resting on its own intrinsic evidence.

Whether this vagueness of language was the effect of artifice, or of a real vagueness in the author's notions, may perhaps be doubted; but that it has contributed greatly to extend his reputation among a very numerous class of readers, may be confidently asserted. The possession of a general maxim, sanctioned by the authority of an illustrious name, and in which, as in those of the schoolmen, more seems to be meant than meets the ear, affords of itself no slight gratification to the vanity of many; nor is it inconvenient for a disputant, that the maxims to which he is to appeal should be stated in so dubious a shape, as to enable him, when pressed in an argument, to shift his ground at pleasure, from one interpretation to another. The extraordinary popularity which, in our own times, the philosophy of Kant enjoyed, for a few years, among the countrymen of Leibnitz, may, in like manner, be in a great degree ascribed to the imposing aspect of his enigmatical oracles, and to the consequent facility of arguing without end, in defence of a system so transmutable and so elusive in its forms.

The extension, however, given to the Law of Continuity, in the later publications of Leibnitz, and still more by some of his successors, has been far greater than there is any reason to think was originally in the author's contemplation. It first occurred to him in the course of one of his physical controversies, and was probably
suggested by the beautiful exemplifications of it which occur in pure geometry. At that time it does not appear that he had the slightest idea of its being susceptible of any application to the objects of natural history; far less to the succession of events in the intellectual and moral worlds. The supposition of bodies perfectly hard, having been shown to be inconsistent with two of his leading doctrines, that of the constant maintenance of the same quantity of force in the Universe, and that of the proportionality of forces to the squares of the velocities,—he found himself reduced to the necessity of asserting, that all changes are produced by insensible gradations, so as to render it impossible for a body to have its state changed from motion to rest, or from rest to motion, without passing through all the intermediate states of velocity. From this assumption he argued, with much ingenuity, that the existence of atoms, or of perfectly hard bodies, is impossible; because, if two of them should meet with equal and opposite motions, they would necessarily stop at once, in violation of the law of continuity. It would, perhaps, have been still more logical, had he argued against the universality of a law so gratuitously assumed, from its incompatibility with an hypothesis, which, whether true or false, certainly involves nothing either contradictory or improbable; but as this inversion of the argument would have undermined some of the fundamental principles of his physical system, he chose rather to adopt the other alternative, and to announce the law of continuity as a metaphysical truth, which admitted of no exception whatever.

The facility with which this law has been adopted by subsequent philosophers is not easily explainable; more especially, as it has been maintained by many who reject those physical errors, in defence of which Leibnitz was first led to advance it.

One of the earliest, and certainly the most illustrious, of all the partizans and defenders of this principle, was John Bernouilli, whose discourse on motion first appeared at Paris in 1727, having been previously communicated to the Royal Academy of Sciences, in 1724 and 1726. It was from this period it began to attract the general attention of the learned; although many years were yet to elapse, before it was to acquire that authority which it now possesses among our most eminent mathematicians.

Mr Maclaurin, whose Memoir on the Percussion of Bodies gained the prize from the Royal Academy of Sciences, in 1724, continued from that time, till his death, the steady opposer of this new law. In his Treatise of Fluxions, published in 1742, he observes, that "the existence of hard bodies void of elasticity has been rejected for the sake of what is called the Law of Continuity; a law which has been supposed to be general, without sufficient ground." And still more explicitly, in his Posthumous Account of Newton's Philosophical Discoveries, he complains of those who "have rejected hard bodies as impossible, from far-fetched and metaphysical considerations;" proposing to his adversaries this unanswerable question, "Upon what grounds is the law of continuity assumed as an universal law of nature?"

1 "En effet (says Bernouilli), un pareil principe de dureté (the supposition to wit of bodies perfectly hard) ne sçaurait exister; c'est une chimère qui repugne à cette loi générale que la nature observe constamment dans toutes ses opérations; je parle de cet ordre immuable et perpétuel établi depuis la création du univers, qu'on peut appeller LOI DE CONTINUITÉ, en vertu de laquelle tout ce qui s'exécute, s'exécute par des degrés infiniment petits. Il semble que le bon sens dicte, qu'aucun changement ne peut se faire par saut; nature non operatur per saltum; rien ne peut passer d'une extrémité à l'autre, sans passer par tous les degrés du milieu," &c. The continuation of this passage (which I have not room to quote) is curious, as it suggests an argument, in proof of the law of continuity, from the principle of the sufficient reason.

2 It may be worth while to observe here, that though, in the above quotation, Bernouilli speaks of the law of continuity as an arbitrary arrangement of the Creator, he represents, in the preceding paragraph, the idea of perfectly hard bodies, as involving a manifest contradiction.

3 Nearly to the same purpose Mr Robins, a mathematician and philosopher of the highest eminence, expresses himself thus: "M. Bernouilli (in his Discours sur les Lois de la Communication du Mouvement), in order to prove that, there are no bodies perfectly hard and inflexible, lays it down as an immutable law of nature, that no body can pass from motion to rest instantaneously, or without having its velocity gradually diminished. That this is a law of nature, M. Bernouilli thinks is evident from that principle, Nature non operatur per saltum, and from good sense. But how good sense can, of itself, without experiment, determine any of the laws of nature, is to me very astonishing. Indeed, from any thing M. Bernouilli has said, it would have been altogether as conclusive to have begun at the other end, and have disput-
In the speculations hitherto mentioned, the law of continuity is applied merely to such successive events in the material world as are connected together by the relation of cause and effect; and, indeed, chiefly to the changes which take place in the state of bodies with respect to motion and rest. But in the philosophy of Leibnitz, we find the same law appealed to as an indisputable principle in all his various researches, physical, metaphysical, and theological. He extends it with the same confidence to mind as to matter, urging it as a demonstrative proof, in opposition to Locke, that the soul never ceases to think even in sleep or in delirium; nay, inferring from it the impossibility that, in the case of any animated being, there should be such a thing as death, in the literal sense of that word. It is by no means probable that the author was at all aware, when he first introduced this principle into the theory of motion, how far it was to lead him in his researches concerning other questions of greater moment; nor does it appear that it attracted much notice from the learned, but as a new mechanical axiom, till a considerable time after his death.

Charles Bonnet of Geneva, a man of unquestionable talents and of most exemplary worth, was, as far as I know, the first who entered fully into the views of Leibnitz on this point; perceiving how inseparably the law of continuity (as well as the principle of the sufficient reason) was interwoven with his scheme of universal concatenation and mechanism; and inferring from thence not only all the paradoxical corollaries deduced from it by its author, but some equally bold conclusions of his own, which Leibnitz either did not foresee in their full extent, or to which the course of his inquiries did not particularly attract his attention. The most remarkable of these conclusions was, that all the various beings which compose the universe, form a scale descending downwards without any chasm or saltus, from the Deity to the simplest forms of unorganised matter; a proposition not altogether new in the history of philosophy, but which I do not know that any writer before Bonnet had ventured to assert as a metaphysical and necessary truth. With what important limitations and exceptions it must be received, even when confined to the compa-

ed, that no body can pass instantaneously from motion to rest; because it is an immutable law of nature that all bodies shall be flexible."—(Robins, Vol. II. p. 174. 176.)

In quoting these passages, I would not wish to be understood as calling in question the universality of the Law of Continuity in the phenomena of moving bodies; a point on which I am not led by the subject of this discourse to offer any opinion; but on which I intend to hazard some remarks in a Note at the end of it. See Note D D. All that I would here assert is, that it is a law, the truth of which can be inferred only by an induction from the phenomena; and to which, accordingly, we are not entitled to say that there cannot possibly exist any exceptions.

Je tiens que l'âme, et même le corps, n'est jamais sans action, et que l'âme n'est jamais sans quelque perception; même en dormant on a quelque sentiment confus et sombre du lieu où l'on est, et d'autres choses. Mais quand l'expérience ne le confirmerait pas, je crois qu'il y en a démonstration. C'est à peu près comme on ne se fera prouver absolument par les expériences, s'il n'y a point de void dans l'espace, et s'il n'y a point de repos dans la matière. Et cependant ces questions me paroissent décidées démonstrativement, aussi bien qu'à M. Locke."—(Leib. Op. Tome II. p. 220.)

* See Note E E.

1 Leibnitz admettoit comme un principe fondamental de sa sublime philosophie, qu'il n'y a jamais de sauts dans la nature, et que tout est continu ou nuancé dans le physique et dans le moral. C'était sa fameuse Loi de Continuité, qu'il croyait retrouver encore dans les mathématiques, et s'avoir été cette loi qui lui ait inspiré la singulière prédiction dont je parle." "Tous les êtres, disait il, ne forment qu'une seule chaîne, dans laquelle les différentes classes, comme autant d'anneaux, tiennent si étroitement les unes aux autres, qu'il est impossible aux sens et à l'imagination de fixer précisément le point où quelqu'un commence ou finit: toutes les espèces qui bordent ou qui occupent, pour ainsi dire, les régions d'insuffisance, et de rebroussement, devraient être équivoques et douces de caractères qui peuvent se rapporter aux espèces voisines également. Ainsi, l'existence des zoophytes ou Plant-Animaux n'a rien de monstrueux; mais il est même convenable à l'ordre de la nature qu'il y en ait. Et telle est la force du principe de continuité chez moi, que non seulement je ne serais point étonné d'apprendre, qu'on eût trouvé des êtres, qui par rapport à plusieurs propriétés, par exemple, celle de ne souffrir que de se multiplier, puissent passer pour des végétaux à aussi bon droit que pour des animaux, ... J'en serois si peu étonné, dis-je, que même je suis convaincu qu'il doit y en avoir de tels, que l'Histoire Naturelle partira pour chercher un jour." &c. &c.—("Contemplation de la Nature," pp. 341, 342.)

Bonnet, in the sequel of this passage, speaks of the words of Leibnitz, as a prediction of the discovery of the Polyphys, deduced from the Metaphysical principle of the Law of Continuity. But would it not be more philosophical to regard it as a query founded on the analogy of nature, as made known to us by experience and observation?

* La prédiction de la découverte des Polyphys.

Ad eum mortem omnem cum rerum seriem concatenavit a planta ad hominem, ut quasi sine ullo cohevent al intervallo; sic Zoophytes cum plantis bruta conjugant; sic cum homine simul quadrupedes. Itaque in hominum quaque specie invenimus divinos, humanos, ferais.—Scaliger, (prefixed as a motto to Mr. White's Essay on the regular gradation in Man. London, 1790.)
rative anatomy of animals, has been fully demonstrated by Cuvier; and it is of material consequence to remark, that these exceptions, how few soever, to a metaphysical principle, are not less fatal to its truth than if they exceeded in number the instances which are quoted in support of the general rule.

At a period somewhat later, an attempt has been made to connect the same law of continuity with the history of human improvement, and more particularly with the progress of invention in the sciences and arts. Helvétius is the most noted writer in whom I have observed this last extension of the Leibnitzian principle; and I have little doubt, from his known opinions, that, when it occurred to him, he conceived it to afford a new illustration of the scheme of necessity, and of the mechanical concatenation of all the phenomena of human life. Arguing in support of his favourite paradox concerning the original equality of all men in point of mental capacity, he represents the successive advances made by different individuals in the career of discovery, as so many imperceptible or infinitesimal steps, each individual surpassing his predecessor by a trifle, till at length nothing is wanting but an additional mind, not superior to the others in natural powers, to combine together, and to turn to its own account, their accumulated labours. "It is upon this mind," he observes, "that the world is always ready to bestow the attribute of genius. From the tragedies of The Passion, to the poets Hardy and Rotrou, and to the Mariamme of Tristan, the French theatre was always acquiring successively an infinite number of inconsiderable improvements. Corneille was born at a moment, when the addition he made to the art could not fail to form an epoch; and accordingly Corneille is universally regarded as a Genius. I am far from wishing," Helvétius adds, "to detract from the glory of this great poet. I wish only to prove, that Nature never proceeds per saltum, and that the Law of Continuity is always exactly observed. The remarks, therefore, now made on the dramatic art, may also be applied to the sciences which rest on observation." — (De l'Esprit, Dis. IV. Chap. I.)

With this last extension of the Law of Continuity, as well as with that of Bonnet, a careless reader is the more apt to be dazzled, as there is a large mixture in both of unquestionable truth. The mistake of the ingenious writers lay in pushing to extreme cases a doctrine, which,

1 Leçons d'Anatomie Comparée.

While Bonnet was thus employing his ingenuity in generalising, still farther than his predecessors had done, the law of continuity, one of the most distinguished of his fellow citizens, with whom he appears to have been connected in the closest and most confidential friendship (the very ingenious M. Le Sage), was led, in the course of his researches concerning the physical cause of gravitation, to deny the existence of the law, even in the descent of heavy bodies. "The action of gravity (according to him) is not continuous." In other words, "each of its impressions is finite; and the interval of time which separates it from the following impression is of a finite duration." Of this proposition he offers a proof, which he considers as demonstrative; and thence deduces the following very paradoxical corollary, That "Projectiles do not move in curvilinear paths, but in rectilinear polygons." — "C'est ainsi (he adds) qu'un pres, qui vu de près, se trouve couvert de parties vertes réellement séparées, offre cependant aux personnes qui le regardent de loin, la sensation d'une veritable continuité; Et qu'un corps poli, auquel le microscope découvre mille solutions de continuité, paraît à l'oeil nu, possèder une continuité parfaite."

2 Généralement, le simple bon sens, qui veut, qu'on suspende son jugement sur ce qu'on ignore, et que l'on ne tranche pas hardiment sur la non-existence de ce qui échappe à nos sens, aurait dû empêcher des gens qui s'appellent philosophes de décider si dogmatiquement, la continuité réelle, de ce qui avait une continuité apparente; et la non-existence des intervalles qu'ils n'apercevaient pas."—(Essai de Chymie Mécanique. Couronné en 1756, par l'Académie de Rouen; Imprimé à Genève, 1761. pp. 94. 95. 96.)

It may, perhaps, be alleged, that the above allusion to the Law of Continuity was introduced merely for the sake of illustration, and that the author did not mean his words to be strictly interpreted; but this remark will not be made by those who are acquainted with the philosophy of Helvétius.

Let me add, that, in selecting Corneille as the only exemplification of this theory, Helvétius has been singularly unfortunate. It would have been difficult to have named any other modern poet, in whose works, when compared with those of his immediate predecessors, the Law of Continuity has been more remarkably violated. "Corneille (says a most judicious French critic) est, pour ainsi dire, de notre temps; mais ses contemporains n'en sont pas. Le Cid, les Horaces, Cidna, Poires forment le commencement de cette chaîne brillante qui réunit notre lettrature actuelle de celle du règne de Richelieu et de la minorité de Louis XIV.; mais autour de ces points lumineux regne encore une nuit profonde; leur éclat les rapproche en apparence de nos yeux; le reste, repoussé dans l'obscurité, semble bien loin de nous. Pour nous Corneille est moderne, et Rotrou ancien." &c. (For detailed illustrations and proofs of these positions, see a slight but masterly historical sketch of the French Theatre, by M. Suarez.)

when kept within certain limits, is not only solid but important; a mode of reasoning, which, although it may be always safely followed out in pure Mathematics (where the principles on which we proceed are mere definitions), is a never-failing source of error in all the other sciences; and which, when practically applied to the concerns of life, may be regarded as an infallible symptom of an understanding better fitted for the subtle contentions of the schools, than for those average estimates of what is expedient and practicable in the conduct of affairs, which form the chief elements of political sagacity and of moral wisdom.

If on these two celebrated principles of Leibnitz, I have enlarged at greater length than may appear to some of my readers to be necessary, I must remind them, 1st, Of the illustration they afford of what Locke has so forcibly urged with respect to the danger of adopting, upon the faith of reasonings a priori, metaphysical conclusions concerning the laws by which the universe is governed: 2dly, Of the proof they exhibit of the strong bias of the human mind, even in the present advanced stage of experimental knowledge, to grasp at general maxims, without a careful examination of the grounds on which they rest; and of that less frequent, but not less unfortunate bias, which has led some of our most eminent mathematicians to transfer to sciences, resting ultimately on an appeal to facts, those habits of thinking which have been formed amidst the hypothetical abstractions of pure geometry: Lastly, Of the light they throw on the mighty influence which the name and authority of Leibnitz have, for more than a century past, exercised over the strongest and acutest understandings in the most enlightened countries of Europe.

It would be improper to close these reflections on the philosophical speculations of Leibnitz, without taking some notice of his very ingenious and original thoughts on the etymological study of languages, considered as a guide to our conclusions concerning the origin and migrations of different tribes of our species. These thoughts were published in 1710, in the Memoirs of the Berlin Academy; and form the first article of the first volume of that justly celebrated collection. I do not recollect any author of an earlier date, who seems to have been completely aware of the important consequences to which the prosecution of this inquiry is likely to lead; nor, indeed, was much progress made in it by any of Leibnitz's successors, till towards the end of the last century; when it became a favourite object of pursuit to some very learned and ingenious men, both in France, Germany, and England. Now, however, when our knowledge of the globe, and of its inhabitants, is so wonderfully enlarged by commerce, and by conquest; and when so great advances have been made in the acquisition of languages, the names of which, till very lately, were unknown of in this quarter of the world;—there is every reason to hope for a series of farther discoveries, strengthening progressively, by the multiplication of their mutual points of contact, the common evidence of their joint results; and tending more and more to dissipate the darkness in which the primeval history of our race is involved. It is a field, of which only detached corners have hitherto been explored; and in which, it may be confidently presumed, that unthought of treasures still lie hid, to reward sooner or later the researches of our posterity.

My present subject does not lead me to speak of the mathematical and physical researches,

1 Locke has fallen into a train of thought very similar to that of Bonnet, concerning the Scale of Beliefs; but has expressed himself with far greater caution,—stating it modestly as an inference deduced from an induction of particulars, not as the result of any abstract or metaphysical principle.—(See Locke's Works, Vol. III. p. 101.) In one instance, indeed, he avails himself of an allusion, which, at first sight, may appear to favour the extension of the mathematical Law of Continuity to the works of creation; but it is evident, from the context, that he meant this allusion merely as a popular illustration of a fact in Natural History; not as the rigorous enunciation of a theorem applicable alike to all truths, mathematical, physical, and moral. "It is a hard matter to say where sensible and rational begin, and where sensible and irrational end; and who is there quick-sighted enough to determine precisely, which is the lowest species of living things, and which is the first of those who have no life? Things, as far as we can observe, lessen and augment, as the quantity does in a regular cone, where, though there be a manifest odds betwixt the bigness of the diameter at a remote distance, yet the difference between the upper and under, where they touch one another, is hardly discernible."—(Ibid.)

2 See some Reflections on this speculation of Locke's in the Spectator, No. 510.

which have associated so closely the name of Leibnitz with that of Newton, in the history of modern science; of the inexhaustible treasures of his erudition, both classical and scholastic; of his vast and manifold contributions towards the elucidation of German antiquities and of Roman jurisprudence; or of those theological controversies, in which, while he combated with one hand the enemies of revelation, he defended, with the other, the orthodoxy of his own dogmas against the profoundest and most learned divines of Europe. Nor would I have digressed so far as to allude here to these particulars, were it not for the unparalleled example they display, of what a vigorous and versatile genius, seconded by habits of persevering industry, may accomplish, within the short span of human life. Even the relaxations with which he was accustomed to fill up his moments of leisure, partook of the general character of his more serious engagements. By early and long habit, he had acquired a singular facility in the composition of Latin verses; and he seems to have delighted in loading his muse with new fetters of his own contrivance, in addition to those imposed by the laws of classical prosody. The number, besides, of his literary correspondents was immense; including all that was most illustrious in Europe; and the rich materials everywhere scattered over his letters are sufficient of themselves to show, that his amusements consisted rather in a change of objects, than in a suspension of his mental activity. Yet while we admire these stupendous monuments of his intellectual energy, we must not forget (if I may borrow the language of Gibbon) that "even the powers of Leibnitz were dissipated by the multiplicity of his pursuits. He attempted more than he could finish; he designed more than he could execute; his imagination was too easily satisfied with a bold and rapid glance on the subject which he was impatient to leave; and he may be compared to those heroes whose empire has been lost in the ambition of universal conquest."

From some expressions which Leibnitz has occasionally dropped, I think it probable, that he himself became sensible, as he advanced in life, that his time might have been more profitably employed, had his studies been more confined in their aim. "If the whole earth (he has observed on one occasion) had continued to be of one language and of one speech, human life might be considered as extended beyond its present term, by the addition of all that part of it which is devoted to the acquisition of dead and foreign tongues. Many other branches of knowledge, too, may, in this respect, be classed with the languages; such as Positive Laws, Ceremonies, the Styles of Courts, and a great proportion of what is called critical erudition. The utility of all these arises merely from opinion; nor is there to be found, in the innumerable volumes that have been written to illustrate them, a hundredth part, which contains anything subservient to the happiness or improvement of mankind."

The most instructive lesson, however, to be drawn from the history of Leibnitz, is the incompetency of the most splendid gifts of the understanding, to advance essentially the interests either of Metaphysical or of Ethical Science, unless accompanied with that rare devotion to truth, which may be regarded, if not as the basis, at least as one of the most indispensable elements, of moral genius. The chief attraction to the study of philosophy, in his mind, seems to have been (what many French critics have considered as a chief source of the charms of the imitative arts) the pride of conquering difficulties: a feature of his character which he had probably in his own eye, when he remarked (not without some degree of conscious vanity), as a peculiarity in the turn or cast of his intellect, that to him "all difficult things were easy, and all easy things..."

1 A remarkable instance of this is mentioned by himself in one of his letters. "Anno natus tredicim una die trecentos versus hexametris effuisti, sine elisione omnes, quod hoc fieri facile posse forte affirmasset." (Leib. Op. Tom. V. p. 304.) He also amused himself occasionally with writing verses in German and in French.

2 May I presume to remark farther, that the native powers of Leibnitz's mind, astonishing and preternatural as they certainly were, seem sometimes oppressed and overlaid under the weight of his still more astonishing erudition? The influence of his scholastic reading is more peculiarly apparent in warping his judgment, and clouding his reason, on all questions connected with Metaphysical Theology.

Diss. I. Part. II.
difficult." Hence the disregard manifested in his writings to the simple and obvious conclusions of experience and common sense; and the perpetual effort to unridge mysteries over which an impenetrable veil is drawn. "Seicet sublime et erectum ingeniun, pulchritudinem ac speciem excelsa magnaeque glorae vehementius quam caute appetebat." It is to be regretted, that the sequel of this fine eulogy does not equally apply to him. 2 Mox mitigat ratio et vetas; retinuitque, quod est difficillimum, et in sapientia modam. 3 How happily does this last expression characterise the temperate wisdom of Locke; when contrasted with that towering, but impotent ambition, which, in the Theories of Optimism and of Pre-established Harmony, seemed to realize the fabled revolt of the giants against the sovereignty of the gods!

After all, a similarity may be traced between these two great men in one intellectual weakness common to both; a facility in the admission of facts, stamped sufficiently (as we should now think) by their own intrinsic evidence, with the marks of incredibility. The observation has been often made with respect to Locke; but it would be difficult to find in Locke's writings, any thing so absurd as an account gravely transmitted by Leibnitz to the Abbe de St Pierre, and by him communicated to the Royal Academy of Sciences at Paris, of a dog who spoke. 4 No person liberally educated could, I believe, be found at present in any Protestant country of Christendom, capable of such credulity. By what causes so extraordinary a revolution in the minds of men has been effected, within the short space of a hundred years, I must not here stop to inquire. Much, I apprehend, must be ascribed to our enlarged knowledge of nature; and more particularly to those scientific voyages and travels which have annihilated so many of the prodigies which exercised the wonder and subdued the reason of our ancestors. But, in whatever manner the revolution is to be explained, there can be no doubt that this growing disposition to weigh scrupulously the probability of alleged facts against the faith due to the testimonies brought to attest them, and, even in some cases, against the apparent evidence of our own senses, enters largely and essentially into the composition of that philosophical spirit or temper, which so strongly distinguishes the eighteenth century from all those which preceded it. 5 It is not a small consolation to reflect, that some important maxims of good sense have been thus familiarised to the most ordinary understandings; which, at so very recent a period, failed in producing their due effect on two of the most powerful minds in Europe.

On reviewing the foregoing paragraphs, I am almost tempted to retract part of what I have written, when I reflect on the benefits which the world has derived even from the errors of Leibnitz. It has been well and justly said, that "every desideratum is an imperfect discovery;" to which it may be added, that every new problem which is started, and still more every attempt, however abortive, towards its solution, strikes out a new path, which must sooner or later lead to the truth. If the problem be insoluble, a solution will in due time be obtained: if insoluble, it will soon be abandoned as hopeless by general consent; and the legitimate field of scientific research will become more fertile, in proportion as a more accurate survey of its boundaries adapts it better to the limited resources of the cultivators.

In this point of view, what individual in modern times can be compared to Leibnitz! To how many of these researchers, which still usefully employ the talents and industry of the learned, did he not point out and open the way! From how many more did he not warn the wise to withhold their curiosity, by his bold and fruitless attempts to burst the barriers of the invisible world!

The best elogie of Leibnitz is furnished by the literary history of the eighteenth century,—a history which, whoever takes the pains to compare with his works, and with his epistolary correspondence, will find reason to doubt

2 Tactus, Agric.
3 See Note G G.
4 See Note H H.
whether, at the singular era when he appeared, he could have more accelerated the advancement of knowledge by the concentration of his studies, than he has actually done by the universality of his aims; and whether he does not afford one of the few instances to which the words of the poet may literally be applied:

"Si non errasset, fecerat ille minus."

SECTION III.

Of the Metaphysical Speculations of Newton and Clarke. Digression with respect to the System of Spinoza.—Collins and Jonathan Edwards.—Anxiety of both to reconcile the Scheme of Necessity with Man’s Moral Agency.—Departure of some later Necessitarians from their views.

The foregoing review of the philosophical writings of Locke and of Leibnitz naturally leads our attention, in the next place, to those of our illustrious countrymen Newton and Clarke; the former of whom has exhibited, in his Principia and Optics, the most perfect exemplifications which have yet appeared, of the cautious logic recommended by Bacon and Locke; while the other, in defending against the assaults of Leibnitz the metaphysical principles on which the Newtonian philosophy proceeds, has been led, at the same time, to vindicate the authority of various other truths, of still higher importance, and more general interest.

The chief subjects of dispute between Leibnitz and Clarke, so far as the principles of the Newtonian philosophy are concerned, have been long ago settled, to the entire satisfaction of the learned world. The monads, and the plenum, and the pre-established harmony of Leibnitz, already rank, in the public estimation, with the vortices of Descartes, and the plastic nature of Cudworth; while the theory of gravitation prevails everywhere over all opposition; and (as Mr Smith remarks) “has advanced to the acquisition of the most universal empire that was ever established in philosophy.” On these points, therefore, I have only to refer my readers to the collection published by Dr Clarke, in 1717, of the controversial papers which passed between him and Leibnitz during the two preceding years—a correspondence equally curious and instructive; and which, it is to be lamented, that the death of Leibnitz in 1716 prevented from being longer continued.

Although Newton does not appear to have de-

1 See Note I.
2 In conformation to the plan announced in the preface to this Dissertation, I confine myself to those authors whose opinions have had a marked and general influence on the subsequent history of philosophy; passing over a multitude of other names well worthy to be recorded in the annals of metaphysical science. Among these, I shall only mention the name of Boyle, whom the world is indebted, beside some very acute remarks and many fine illustrations of his own upon metaphysical questions of the highest moment, for the philosophical arguments in defence of religion, which have added so much lustre to the names of Duhem and Bentley; and, far above both, to that of Clarke. The remarks and illustrations, which I here refer to, are to be found in his Inquiry into the Vulgar Notion of Nature, and in his Essay, inquiring whether, and how, a Naturalist should consider Final Causes. Both of these tracts display powers which might have placed their author on a level with Descartes and Locke, had not his taste and inclination determined him more strongly to other pursuits. I am inclined to think, that neither of them is so well known as were to be wished. I do not even recollect to have seen it anywhere noticed, that some of the most striking and beautiful instances of design in the order of the material world, which occur in the Sermons preached at Boyle’s Lecture, are borrowed from the works of the founder.†

Notwithstanding, however, these great merits, he has written too little on such abstract subjects to entitle him to a place among English metaphysicians; nor has he, like Newton, started any leading thoughts which have since given a new direction to the studies of metaphysical inquirers. From the slight specimens he has left, there is reason to conclude, that his mind was still more happily turned than that of Newton, for the prosecution of that branch of science to which their contemporary Locke was then beginning to invite the attention of the public.

† From a letter of Leibnitz to Mr. Remond de Montmort, it appears that he considered Newton, and not Clarke, as his

* To the English reader it is unnecessary to observe, that I allude to the Sermons preached at the Lecture founded by the Honourable Robert Boyle.
* These instances, more especially, which are drawn from the anatomical structure of animals, and the adaptation of their perceptive organs to the habits of life for which they are destined.
voted much of his time to Metaphysical researches, yet the general spirit of his physical investigations has had a great, though indirect, influence on the metaphysical studies of his successors. It is justly and profoundly remarked by Mr Hume, that "while Newton seemed to draw off the veil from some of the mysteries of nature, he shewed, at the same time, the imperfections of the mechanical philosophy, and thereby restored her ultimate secrets to that obscurity in which they ever did, and ever will remain." In this way, his discoveries have co-operated powerfully with the reasonings of Locke in producing a general conviction of the inadequacy of our faculties to unravel those sublime enigmas on which Descartes, Malebranche, and Leibnitz, had so recently wasted their strength, and which, in the ancient world, were regarded as the only fit objects of philosophical curiosity. It is chiefly too since the time of Newton, that the ontology and pneumatology of the dark ages have been abandoned for inquiries resting on the solid basis of experience and analogy; and that philosophers have felt themselves emboldened by his astonishing discoveries concerning the more distant parts of the material universe, to argue from the known to the unknown parts of the moral world. So completely has the prediction been verified which he himself hazarded, in the form of a query, at the end of his Optics, that "if natural philosophy should continue to be improved in its various branches, the bounds of moral philosophy would be enlarged also."

How far the peculiar cast of Newton's genius qualified him for prosecuting successfully the study of Mind, he has not afforded us sufficient data for judging; but such was the admiration with which his transcendental powers as a Mathematician and Natural Philosopher were universally regarded, that the slightest of his hints on other subjects have been eagerly seized upon as indisputable axioms, though sometimes with little other evidence in their favour but the supposed sanction of his authority. The part of his works, however, which chiefly led me to connect his name with that of Clarke, is a passage in the Scholium annexed to his Principia, which may be considered as the germ of the celebrated

real antagonist in this controversy. "M. Clarke, ou plutôt M. Newton, dont M. Clarke soutient les dogmes, est en dispute avec moi sur la philosophie."—(Lett. Op. Tom. V. p. 33.) From another letter to the same correspondent we learn, that Leibnitz aimed at nothing less than the complete overthrow of the Newtonian philosophy; and that it was chiefly to his grand principle of the sufficient reason that he trusted for the accomplishment of this object. "J'ai réduit l'état de notre dispute à ce grand axiome, que rien n'existe ou n'arrive sans qu'il y ait une raison suffisante, pourquoi il en est plutôt ainsi qu'aussi-tant. S'il continue à me le nier, où en sera sa sincérité? S'il me l'acorde, adieu le voile, les atomes, et toute la philosophie de M. Newton."—(Ibid.) See also a letter from Leibnitz to M. des Maiziens in the same volume of his works, p. 39.

1 Witness Hartley's Physiological Theory of the Mind, founded on a query in Newton's Optics; and a long list of theories in medicine, grafted on a hint thrown out in the same query, in the form of a modest conjecture.

2 This Scholium, it is to be observed, first appeared at the end of the second edition of the Principia, printed at Cambridge in 1713. The former edition, published at London in 1687, has no Scholium annexed to it. From a passage, however, in a letter of Newton's to Dr Bentley (dated 1692), it seems probable, that as far back, at least, as that period, he had thoughts of attempting a proof a priori of the existence of God. After some new illustrations, drawn from his own discoveries, of the common argument from final causes, he thus concludes: "There is yet another argument for a Deity, which I take to be a very strong one; but, till the principles on which it is grounded are better received, I think it more advisable to let it sleep."—(Four Letters from Sir I. Newton to Dr Bentley, p. 11. London, Dodson, 1756.)

It appears from this passage, that Newton had no intention, like his predecessor Descartes, to supersede, by any new argument of his own for the existence of God, the common one drawn from the consideration of final causes; and, therefore, nothing could be more uncandid than the following sarcasm pointed by Pope at the laudable attempts of his two countrymen to add to the evidence of this conclusion, by deducing it from other principles:

"Let others creep by timid steps and slow, On plain experience lay foundations low, By common sense to common knowledge bred, And last to Nature's cause thro' Nature led: We nobly take the high priori-read, And reason downwards till we doubt of God."

That Pope had Clarke in his eye when he wrote these lines, will not be doubted by those who recollect the various other occasions in which he has stepped out of his way, to vent an impotent spleen against this excellent person.

"Let Clarke live half his life the philisop's support, But let him live the other half at court."

And again:

"Even in an ornament it's place remark; Nor in a hermitage set Dr Clarke:"

in which last couplet there is a manifest allusion to the bust of Clarke, placed in a hermitage by Queen Caroline, together with those of Newton, Boyle, Locke, and Wallaston. See some fine verses on these busts in a poem called the Grotto, by Matthew Green.
argument *a priori* for the existence of God, which is commonly, though, I apprehend, not justly, regarded as the most important of all Clarke's contributions to Metaphysical Philosophy. I shall quote the passage in Newton's own words, to the oracular conciseness of which no English version can do justice.

"Æternus est et infinitus, omnipotens et omnisciens; id est, durat ab æterno in æternum, et adest ab infinito in infinitum. . . . Non est æternitas et infinitas sed æternus et infinitus; non est duratio et spatium, sed durat et adest. Durat semper et adest ubique, et existendo semper et ubique durationem et spatium constituit."

Proceeding on these principles, Dr Clarke argued, that, as immensity and eternity (which force themselves irresistibly on our belief as necessary existences, or, in other words, as existences of which the annihilation is impossible) are not substances, but attributes, the immense and eternal Being, whose attributes they are, must exist of necessity also. The existence of God, therefore, according to Clarke, is a truth that follows with demonstrative evidence from those conceptions of space and time which are inseparable from the human mind. . . . "These (says Dr Reid) are the speculations of men of superior genius; but whether they be as solid as they are sublime, or whether they be the wanderings of imagination in a region beyond the limits of the human understanding, I am at a loss to determine." After this candid acknowledgment from Dr Reid, I need not be ashamed to confess my own doubts and difficulties on the same question.

But although the argument, as stated by Clarke, does not carry complete satisfaction to my mind, I think it must be granted that there is something peculiarly wonderful and overwhelming in those conceptions of immensity and eternity, which it is not less impossible to banish from our thoughts, than the consciousness of our own existence. Nay, further, I think that these conceptions are very intimately connected with the fundamental principles of Natural Religion. For when once we have established, from the evidences of design everywhere manifested around us, the existence of an intelligent and powerful cause, we are unavoidably led to apply to this cause our conceptions of immensity and eternity, and to conceive Him as filling the infinite extent of both with his presence and with his power. Hence we associate with the idea of God those awful impressions which are naturally produced by the idea of infinite space, and perhaps still more by the idea of endless duration. Nor is this all. It is from the immensity of space that the notion of eternity is originally derived; and it is hence that we transfer the expression, by a sort of metaphor, to other subjects. When we speak, therefore, of infinite power, wisdom, and goodness, our notions, if not wholly borrowed from space, are at least greatly aided by this analogy; so that the conceptions of Immensity and Eternity, if they do not of themselves demonstrate the existence of God, yet necessarily enter into the ideas we form of his nature and attributes.

To these various considerations it may be added that the notion of necessary existence which we derive from the contemplation of Space and of Time, renders the same notion, when applied to the Supreme Being, much more easy to be apprehended than it would otherwise be.

It is not, therefore, surprising, that Newton and Clarke should have fallen into that train of thought which encouraged them to attempt a demonstration of the being of God from our conceptions of Immensity and Eternity; and still less is it to be wondered at, that, in pursuing this lofty argument, they should have soared into regions where they were lost in the clouds.

I have said above, that Clarke's demonstration seems to have been suggested to him by a passage in Newton's *Scholium*. It is, however,

1 Thus translated by Dr Clarke: "God is eternal and infinite, omnipotent and omniscient; that is, he endures from everlasting to everlasting, and is present from infinity to infinity. He is not eternity or infinity, but eternal and infinite. He is not duration or space, but he endures and is present. He endures always, and is present everywhere, and by existing always and everywhere, constitutes duration and space."—(See Clarke's Fourth Reply to Leibnitz.)

more than probable that he had himself struck into a path very nearly approaching to it, at a much earlier period of his life. The following anecdote of his childhood, related, upon his own authority, by his learned and authentic, though, in many respects, weak and visionary biographer (Whiston), exhibits an interesting example of an anomalous development of the powers of reflection and abstraction, at an age when, in ordinary cases, the attention is wholly engrossed with sensible objects. Such an inversion of the common process of nature in unfolding our different faculties, is perhaps one of the rarest phenomena in the intellectual world; and, wherever it occurs, may be regarded as strongly symptomatic of something peculiar and decided in the philosophical character of the individual.

"One of his parents," says Whiston, "asked him when he was very young, Whether God could do every thing? He answered, Yes! He was asked again, Whether God could tell a lie? He answered, No! And he understood the question to suppose, that this was the only thing that God could not do; nor durst he say, so young was he then, that he thought there was anything else which God could not do; while yet, well he remembered, that he had, even then, a clear conviction in his own mind, that there was one thing which God could not do;—that he could not annihile that space which was in the room where they were."1

With this early and deep impression on his mind, it is easy to conceive, how Newton's Scholium should have encouraged him to resume the musings of his boyish days, concerning the necessary existence of space; and to trace, as far as he could, its connection with the principles of Natural Theology. But the above anecdote affords a proof how strongly his habits of thought had long before predisposed him for the prosecution of a metaphysical idea, precisely the same with that on which this Scholium proceeds.

It would be superfluous to dwell longer on the history of these speculations, which, whatever value they may possess in the opinion of persons accustomed to deep and abstract reasoning, are certainly not well adapted to ordinary or to uncultivated understandings. This consideration furnishes, of itself, no slight presumption, that they were not intended to be the media by which the bulk of mankind were to be led to the knowledge of truths so essential to human happiness; and, accordingly, it was on this very ground, that Bishop Butler, and Dr. Francis Hutcheson, were induced to strike into a different and more popular path for establish-

1 The question concerning the necessary existence of Space and of Time formed one of the principal subjects of discussion between Clarke and Leibnitz. According to the former, space and time are, both of them, infinite, immutable, and indestructible. According to his antagonist, "space is nothing" but "the order of things co-existing," and "time nothing but the order of things successive!" The notion of real absolute Space, in particular, he pronounces to be a mere chimera and superficial imagination; classing it with those prejudices which Bacon called idola tribus. (See his 4th Paper, § 14.)

It has always appeared to me a thing quite inexplicable, that the great majority of philosophers, both in Germany and in France, have, on the above question, decided in favour of Leibnitz. Even D'Alembert himself, who, on most metaphysical points, reasons so justly and so profoundly, has, in this instance, been carried along by the prevailing opinion (or, perhaps, it would be more correct to say, by the fashionable phraseology) among his countrymen, "Y aura it un espace, s'il n'y avoit point de corps, et une duree s'il n'y avoit rien? Ces questions viennent, ce me semble, de ce qu'on suppose au temps et à l'espace plus de realité qu'ils n'en ont . . . Les enfants, qui disent que le vide n'est rien, ont raison parce qu'ils s'en tiennent au simples notions de sens commun; et les philosophes qui veulent realiser le vide se perdent dans leurs speculations; le vide a ete enfermé par les abstractions, et voila l'abus d'une methode si utile a bien des egards. S'il n'y avoit point de corps et de succession, l'espace et le temps seroient possibles, mais ils n'existeroient pas." (Melanges, &c. T. V. § xvi.) Bailly, a writer by no means partial to D'Alembert, quotes, with entire approbation, the foregoing observations; subjoining to them, in the following terms, his own judgment on the merits of this branch of the controversy between Clarke and Leibnitz. "La notion de temps et de l'espace, est un des points sur lesquels Leibnitz a combattu contre Clarke; mais il nous semble que l'Anglais n'a rien oppose de satisfaisant aux raisons de Leibnitz." (Eloge de Leibnitz.)

As for the point here in dispute, I must own, that it does not seem to me a fit subject for argument; insomuch as I cannot even form a conception of the proposition contended for by Leibnitz. The light in which the question struck Clarke in his childhood, is the same in which I am still disposed to view it; or rather, I should say, is the light in which I must ever view it, while the frame of my understanding continues unaltered. Of what date is human reason possessed, from which it is entitled to argue in opposition to truths, the contrary of which it is impossible not to prove, but to express in terms comprehendible by our faculties?

For some remarks on the scholastic controversies concerning space and time, see the First Part of this Dissertation, Note I. See also Locke's Essay, Book ii. Chap. 13. §§ 16, 17, 18.

* I quote the sequel of this passage on the authority of Bailly (see his Eloge de Leibnitz), for it is not to be found in the copy of the Mélanges before me printed at Amsterdam in 1767.
ing the fundamental principles of religion and morality. Both of these writers appear to have communicated, in very early youth, their doubts and objections to Dr Clarke; and to have had, even then, a glimpse of those inquiries by which they were afterwards to give so new and so fortunate a direction to the ethical studies of their countrymen. It is sufficient here to remark this circumstance as an important step in the progress of Moral Philosophy. The farther illustration of it properly belongs to another part of this discourse.

The chief glory of Clarke, as a metaphysical author, is due to the boldness and ability with which he placed himself in the breach against the Necessitarians and Fatalists of his times. With a mind far inferior to that of Locke, in comprehensiveness, in originality, and in fertility of invention, he was nevertheless the more wary and skilful disputant of the two, possessing, in a singular degree, that reach of thought in grasping remote consequences, which effectually saved him from those rash concessions into which Locke was frequently betrayed by the greater warmth of his temperament, and vivacity of his fancy. This logical foresight (the natural result of his habits of mathematical study) rendered him peculiarly fit to contend with adversaries, eager and qualified to take advantage of every vulnerable point in his doctrines; but it gave, at the same time, to his style a tameness, and monotony, and want of colouring, which never appear in the easy and spirited, though often unfinished and unequal, sketches of Locke. Voltaire has somewhere said of him, that he was a mere reasoning machine (un moulin à raisonnement), and the expression (though doubtless much too unqualified) possesses a merit, in point of just discrimination, of which Voltaire was probably not fully aware.

I have already taken notice of Clarke's defence of moral liberty in opposition to Leibnitz; but soon after this controversy was brought to a

1 In the extent of his learning, the correctness of his taste, and the depth of his scientific acquirements, Clarke possessed indisputable advantages over Locke; with which advantages he combined another not less important, the systematical steadiness with which his easy fortune and unbroken leisure enabled him to pursue his favourite speculations through the whole course of his life.

On the subject of Free-will, Locke is more indistinct, undecided, and inconsistent, than might have been expected from his powerful mind, when directed to so important a question. This was probably owing to his own strong feelings in favour of man's moral liberty, struggling with the deep impression left on his philosophical creed by the writings of Hobbes, and with his deference for the talents of his own intimate friend, Anthony Collins.* 'That Locke conceived himself to be an advocate for free-will, appears indisputably from many expressions in his Chapter on Power; and yet, in that very chapter, he has made various concessions to his adversaries, in which he seems to yield all that was contended for by Hobbes and Collins: And, accordingly, he is ranked, with some appearance of truth, by Priestley, with those who, while they opposed verbally the scheme of necessity, have adopted it substantially, without being aware of their mistake.

In one of Locke's letters to Mr Molinet, he has stated, in the strongest possible terms, his conviction of man's free agency; resting this conviction entirely on our indisputable consciousness of the fact. This declaration of Locke I consider as well worthy of attention in the argument about Free Will; for, although in questions of pure speculation, the authority of great names is entitled to no weight, excepting in so far as it is supported by solid reasonings, the case is otherwise with facts relating to the phenomena of the human mind. The patient attention with which Mr Locke had studied these very nice phenomena during the course of a long life, gives to the results of his metaphysical experience a value of the same sort, but much greater in degree, with that which we attach to a delicate experiment in chemistry, when vouched by a Black or a Davy. The ultimate appeal, after all, must be made by every person to his own consciousness; but when we have the experience of Locke on the one hand, and that of Priestley and Belsham on the other, the contrast is sufficiently sure to induce every cautious inquirer to re-examine his feelings before he allows himself to listen to the statements of the latter in preference to that of the former.

For the information of some of my readers, it may be proper to mention that it has of late become fashionable among a certain class of metaphysicists, boldly to assert, that the evidence of their consciousness is decidedly in favour of the scheme of necessity.

But to return to Mr Locke. The only consideration on this subject which seems to have staggered him, was the difficulty of reconciling this opinion with the presence of God. As to this theological difficulty, I have nothing to say at present. The only question which I consider as of any consequence, is the matter of fact: and, on this point, nothing can be more explicit and satisfactory than the words of Locke. In examining these, the attentive reader will be satisfied, that Locke's declaration is not (as Priestley asserts) in favour of the Liberty of Spontaneity, but in favour of the Liberty of Indifference; for as to the former, there seems to be no difficulty in reconciling it with the presence of God... "I own (says Mr Locke) freely to you the weakness of my understanding, that though it be unquestionable that there is omnipotence and omniscience in God our Maker, and though I cannot have a clearer perception of anything than that I am free; yet I cannot make free-will a man consistent with omnipotence and omniscience in God, though I am as fully persuaded of both as of any truth I most firmly assent to; and therefore I have long since given up the consideration of that question; resolving all into this short conclusion, that, if it be possible for God to make a free agent, then man is free, though I see not the way of it."
conclusion by the death of his antagonist, he had to resume the same argument, in reply to his countryman, Anthony Collins; who, following the footsteps of Hobbes, with logical talents not inferior to those of his master, and with a weight of personal character in his favour, to which his master had no pretensions, gave to the cause which he so warmly espoused, a degree of credit among sober and serious inquirers, which it had never before possessed in England. I have reserved, therefore, for this place, the few general reflections which I have to offer on this endless subject of controversy. In stating these, I shall be the less anxious to condense my thoughts, as I do not mean to return to the discussion in the sequel of this historical sketch. Indeed, I do not know of anything that has been advanced by later writers, in support of the scheme of necessity, of which the germ is not to be found in the inquiry of Collins.

In order to enter completely into the motives which induced Clarke to take so zealous and so prominent a part in the dispute about Free Will, it is necessary to look back to the system of Spinoza; an author, with whose peculiar opinions I have hitherto avoided to distract my readers' attention. At the time when he wrote, he does not appear to have made many proselytes; the extravagant and alarming consequences in which his system terminated, serving with most persons as a sufficient antidote against it. Clarke was probably the first who perceived distinctly the logical accuracy of his reasoning; and that, if the principles were admitted, it was impossible to resist the conclusions deduced from them. It seems to have been the object both of Leibnitz and of Collins, to obviate the force of this indirect argument against the scheme of necessity, by attempting to reconcile it with the moral agency of man; a task which, I think, it must be allowed, was much less ably and plausibly executed by the former than by the latter. Convinced, on the other hand, that Spinoza had reasoned from his premises much more rigorously than either Collins or Leibnitz, Clarke bent the whole force of his mind to demonstrate that these premises were false; and, at the same time, to put incautious reasoners on their guard against the seducing sophistry of his antagonists, by showing, that there was no medium between admitting the free-agency of man, and of acquiescing in all the monstrous absurdities which the creed of Spinoza involves.

Spinoza, it may be proper to mention, was an Amsterdam Jew of Portuguese extraction, who (with a view probably to gain a more favourable reception to his philosophical dogmas) withdrew himself from the sect in which he had been educated, and afterwards appears to have lived chiefly in the society of Christians; without, however, making any public profession of the Christian faith, or even submitting to the ceremony of baptism. In his philosophical creed, he at first embraced the system of Descartes,
and began his literary career with a work entitled, Renati Descartes Principiorum Philosophiae, Pars Prima et Secunda, More Geometrico Demonstratae, 1663. It was, however, in little else than his physical principles that he agreed with Descartes; for no two philosophers ever differed more widely in their metaphysical and theological tenets. Fontenelle characterises his system as a "Cartesianism pushed to extravagance" (une Car tésianisme outré); an expression which, although far from conveying a just or adequate idea of the whole spirit of his doctrines, applies very happily to his boldness and pertinacity in following out his avowed principles to the most paradoxical consequences which he conceived them to involve. The reproduction of his writings, accordingly, has fallen entirely (excepting perhaps in Germany and in Holland) with the philosophy on which they were grafted; although some of the most obnoxious opinions contained in them are still, from time to time, obtruded upon the world, under the disguise of a new form, and of a phraseology less revolting to modern taste.¹

In no part of Spinoza's works has he avowed himself an atheist; but it will not be disputed, by those who comprehend the drift of his reasonings, that, in point of practical tendency, Atheism and Spinozism are one and the same. In this respect, we may apply to Spinoza (and I may add to Vanini also) what Cicero has said of Epicurus, Verbis reliquit Deos, re sustulit:—

a remark which coincides exactly with an expression of Newton's in the Scholium at the end of the Principia: "Deus sine domino, providentia, et causis finalibus, nihil alii est quam Fatum et Natura."²

Among other doctrines of natural and revealed religion, which Spinoza affected to embrace, was that of the Divine Omnipresence; a doctrine which, combined with the Plenum of Descartes, led him, by a short and plausible process of reasoning, to the revival of the old theory which represented God as the soul of the world; or rather to that identification of God and of the material universe, which I take to be still more agreeable to the idea of Spinoza.³ I am particularly anxious to direct the attention of my readers to this part of his system, as I conceive it to be at present very generally misrep-

¹ "On vient de proposer à l'Académie de Berlin, pour sujet de concours: "Quels sont les points de contact du Cartesianisme et du système de Spinoza?"—(Richesrches Philosophiques, par M. de Ronsald, 1818.)

² One of the most elaborate and acute refutations of Spinozism which has yet appeared is to be found in Bayle's Dictionary, where it is described as "the most monstrous scheme imaginable, and the most diametrically opposite to the clearest notions of the mind."—The same author affirms, that "it has been fully overthrown, even by the weakest of its adversaries."—"It does not, indeed, appear possible" (as Mr Maclaurin has observed) "to invent another system equally absurd; amounting (as it does in fact) to this proposition, that there is but one substance in the universe, endowed with infinite attributes (particularly infinite extension and cogitation), which produces all other things necessarily as its own modifications, and which alone is, in all events, both physical and moral, at once cause and effect, agent and patient.—View of Newton's Discoveries, Book I. Chap. 4.

³ It supposes that there are in God two eternal properties, thought and extension; and as he held, with Descartes, that extension is the essence of matter, he must necessarily have conceived materiality to be an essential attribute of God.

"Per Corptus intelligi modum, qui Del essentia quatenus ut res extensa consideratur, certo et determinato modo exprimit."—(Ethica ordine Geometrico Demonstrata, Pars 2. Def. 1. See also Ethic. Pars 1. Prop. 14.) With respect to the other attributes of God, he held, that God is the cause of all things; but that he acts, not from choice, but from necessity; and of consequence, that he is the involuntary author of all the good and evil, virtue and vice, which are exhibited in human life.

"Res nullo ali modo, neque alio ordine a Deo producti putetur, quam producta sunt."—(Ibid. Pars 1. Prop. 33.) In one of his letters to Mr Oldenburgh (Letter 21), he acknowledges, that his ideas of God and of nature were very different from those entertained by modern Christians; adding by way of explanation, "Deum rerum omnium causam immemorant, non vero transumant statum;"—an expression to which I can annex no other meaning but this, that God is inseparably and essentially united with his works, and that they form together but one being.

The diversity of opinions entertained concerning the nature of Spinozism has been chiefly owing to this, that some have formed their notions of it from the books which Spinoza published during his life, and others from his posthumous remains. It is in the last alone (particularly in his Ethics) that his system is to be seen completely unveiled and undisguised. In the former, and also in the letters addressed to his friends, he occasionally accommodates himself, with a very tempering spirit, to what he considered as the prejudices of the world. In proof of this, see his Tractatus Theologico-Politicus, and his epistolary correspondence, passim above all, his letter to a young friend who had apostatised from Protestantism to the Catholic Church. The letter is addressed, "Nobilissimo Juremi, Alberto Burg,"—(Spin. Op. T. II p. 655.)

The edition of Spinoza's works to which my references are made, is the complete and very accurate one published at Jena in 1802, by Henr. Eberh. Gottlob Paulus, who styles himself Doctor and Professor of Theology.

This learned divine is at no pains to conceal his admiration of the character as well as talents of his author: nor does he seem to have much object to the system of Spinozism, as explained in his posthumous work upon Ethics;—a work which, the editor admits, contains the only genuine exposition of Spinoza's creed. "Sodeo systema non quidem subjectum in ethica est."—(Prof. Iterata Editiones, p. 15.) In what manner all this was reconciled in his theological lectures with the doctrines either of natural or of revealed religion, is not very easy to imagine. Perhaps he only affords a new example of what

DISSERTATION FIRST.
sent, or, at least, very generally misunderstood; a thing not to be wondered at, considering the total neglect into which his works have long fallen. It is only in this way I can account for the frequent use which has most unfairly been made of the term Spinozism to stigmatise and discredit some doctrines, or rather some modes of speaking, which have been sanctioned, not only by the wisest of the ancients, but by the highest names in English philosophy and literature; and which, whether right or wrong, will be found, on a careful examination and comparison, not to have the most distant affinity to the absurd creed with which they have been confounded. I am afraid that Pope, in the following lines of the Dunciad, suffered himself so far to be misled by the malignity of Warburton, as to aim a secret stab at Newton and Clarke, by associating their figurative, and not altogether unexceptionable language, concerning space (when they called it the sensorium of the Deity), with the opinion of Spinoza, as I have just explained it.

"Thrust some Mechanic Cause into His place,
Or bind in matter, or diffuse in space."

Dr Clarke long ago remarked, that "Believing too much and too little have commonly the luck to meet together, like two things moving contrary ways in the same circle."—(Third Letter to Dodwell.)

A late German writer, who, in his own opinions, has certainly no leaning towards Spinozism, has yet spoken of the moral tendency of Spinoza's writings, in terms of the warmest praise. "The morality of Spinoza (says M. Fred. Schlegel) is not indeed that of the Bible, for he himself was no Christian, but it is still a pure and noble morality, resembling that of the ancient Stoics, perhaps possessing considerable advantages over that system. That which makes him strong when opposed to adversaries who do not understand or feel his depth, or who unconsciously have fallen into errors not much different from his, is not merely the scientific clearness and decision of his intellect, but in a much higher degree the open-heartedness, strong feeling, and conviction, with which all that he says seems to gush from his heart and soul."—(Lect. of Fred. Schlegel, Eng. transl. Vol. II. p. 244.) The rest of the passage, which contains a sort of apology for the system of Spinoza, is still more curious.

Although it is with the metaphysical tenets of Spinoza alone that we are immediately concerned at present, it is not altogether foreign to my purpose to observe, that he had also speculated much about the principles of government; and that the coincidence of his opinions with those of Hobbes, on this last subject, was not less remarkable than the similarity of their views on the most important questions of metaphysics and ethics. Unconnected as these different branches of knowledge may at first appear, the theories of Spinoza and of Hobbes concerning all of them, formed parts of one and the same system; the whole terminating ultimately in the maxim with which, according to Plutarch, Anaxarchus confessed Alexander after the murder of Cyzicus: Πάντα σώζων υπήρκε το ρατίον του τον κόσμον εικονίσω. Even in discussing the question about Liberty and Necessity, Hobbes cannot help glancing at this political corollary. "The power of God alone is a sufficient justification of any action he doth." "That which he doth is made just by his doing it." "Power irresistible justifies all actions really and properly, in whomever it is found."—(Of Liberty and Necessity, addressed to the Lord Marquis of Newcastle.) Spinoza has expressed himself exactly to the same purpose.—(See his Tractatus Politicus, Cap. 2. §§ 3, 4.) So steadily, indeed, is this practical application of their abstract principles kept in view by both these writers, that not one generous feeling is ever suffered to escape the pen of either in favour of the rights, the liberties, or the improvement of their species.

The close affinity between those abstract theories which tend to degrade human nature, and that accommodating morality which prepares the minds of men for receiving passively the yoke of slavery, although too little attended to by the writers of literary history, has not been overlooked by those deeper politicians who are disposed (as has been alleged of the first of the Caesars) to consider their fellow-creatures "but as rubbish in the way of their ambition, or tools to be employed in removing it." This practical tendency of the Epicurean philosophy is remarked by one of the wisest of the Roman statesmen; and we learn from the same high authority, how fashionable this philosophy was in the higher circles of his countrymen, at that disastrous period which immediately preceded the ruin of the Republic. "Nunquam audivi in Epicuri schola, Lycurgurum, Solonem, Miltiadem, Themistoclem, Esevnomandam, nominari; qui in ore sunt ceterorum omnium philosophorum."—(De Fin. Lib. ii. c. 21.) "Nec tamen Epicuri licet oblivici, si cupiam; cujus imaginem non modo in tabulis nostris familiare, sed etiam in pocius, et annulis habent."—(Ibid. Lib. v. c. 1.)

The prevalence of Hobism at the court of Charles II. (a fact acknowledged by Clarendon himself) is but one of the many instances which might be quoted from modern times in confirmation of these remarks. The practical tendency of such doctrines as would pave the way to universal scepticism, by holding up to ridicule the extravagancies and inconsistencies of the learned, is precisely similar. We are told by Tacitus (Annal. Lib. 14), that Nero was accustomed, at the close of a banquet, to summon a party of philosophers, that he might amuse himself with listening to the endless diversity and discordancy of their respective systems: nor were there wanting philosophers at Rome, the same historian adds, who were flattered to be thus exhibited as a spectacle at the table of the Emperor. "What a deep and instructive moral is conveyed by this, as it affects the sentiment of one of Nero's successors, who was himself a philosopher in the best sense of the word, and whose reign furnishes some of the fairest pages in the annals of the human race! I search for truth (says Marcus Antoninus), by which no person has ever been injured."

1 Warburton, indeed, always professes great respect for Newton; but of his hostility to Clarke it is unnecessary to produce any other proof than his note on the following line of the Dunciad:

"Where Tindal dictates, and Silenus snores."—B. iv. l. 492.

"May I venture to add, that the noted line of the Essay on Man:

"And showed a Newton as we show an ape,"

could not possibly have been written by any person impressed with a due veneration for this glory of his species?
Dissertation First.

How little was it suspected by the poet, when this sarcasm escaped him, that the charge of Spinozism and Pantheism was afterwards to be brought against himself, for the sublimest passage to be found in his writings!

"All are but parts of one stupendous whole, Whose body Nature is, and God the soul. Lives through all Life, extends through all extent, Spreads unconfined, operates unspent."

Bayle was, I think, the writer who first led the way to this misapplication of the term Spinozism; and his object in doing so was plainly to destroy the effect of the most refined and philosophical conceptions of the Deity which were ever formed by the unassisted power of human reason.

"Is there a place that God would choose to love Beyond this earth, the sea, yon Heaven above, And virtuous minds, the noblest throne for Jove? Why seek we farther then? Behold around, How all thou seest does with the God abound, Jove is alike to all, and always to be found."

Rowe's Lucan.

Who but Bayle, could have thought of extracting anything like Spinozism from such verses as these!

On a subject so infinitely disproportioned to our faculties, it is vain to expect language which will bear a logical and captious examination. Even the Sacred Writers themselves are forced to adapt their phraseology to the comprehension of those to whom it is addressed, and frequently borrow the figurative diction of poetry to convey ideas which must be interpreted, not according to the letter, but the spirit of the passage. It is thus that thunder is called the voice of God; the wind, His breath; and the tempest, the blast of His nostrils. Not attending to this circumstance, or rather not choosing to direct it to the attention of his readers, Spinoza has laid hold of the well known expression of St Paul, that "in God we live, and move, and have our being," as a proof that the ideas of the apostle, concerning the Divine Nature, were pretty much the same with his own; a consideration which, if duly weighed, might have protected some of the passages above quoted from the uncharitable criticisms to which they have frequently been exposed.

To return, however, to Collins, from whose controversy with Clarke I was insensibly led aside into this short digression about Spinoza:

1 This passage, as Warton has remarked, bears a very striking analogy to a noble one in the old Orphic verses quoted in the treatise Monogenesis, ascribed to Aristotle; and it is not a little curious, that the same ideas occur in some specimens of Hindoo poetry, translated by Sir W. Jones: more particularly in the Hymn to Narayna, or the Spirit of God, taken, as he informs us, from the writings of their ancient authors:

- Omnipotent Spirit, whose all-ruling power
- Bids from each sense bright emanations beam;
- Glows in the rainbow, sparkles in the stream,

&c. &c.

2 Mr Gibbon, in commenting upon the celebrated lines of Virgil,

- Spiritus intus alti, totamque infusa per artus,
- Mens agitat molem, et magno se corpore miscet,

observes, that "the mind which is infused into the different parts of matter, and which mixes itself with the mighty mass, scarcely retains any property of a spiritual substance, and bears too near an affinity to the principles which the impious Spinoza revived rather than invented." He adds, however, that "the poverty of human language, and the obscurity of human ideas, make it difficult to speak worthily of the great first cause; and that our most religious poets (particularly Pope and Thomson), in striving to express the presence and energy of the Deity in every part of the universe, deviate unwarily into images which require a favourable construction. But these writers (he candidly remarks) deserve that favour, by the sublime manner in which they celebrate the Great Father of the universe, and by those effusions of love and gratitude which are inconsistent with the materialist's system." (Misc. Works, Vol. II. pp. 500, 510.)

May I be permitted here to remark, that it is not only difficult but impossible to speak of the omnipresence and omnipotence of God, without deviating into such images! With the doctrine of the Animus Mundi, some philosophers, both ancient and modern, have connected another theory, according to which the souls of men are portions of the Supreme Being, with whom they are re-united at death, and in whom they are finally absorbed and lost. To assist the imagination in conceiving this theory, death has been compared to the breaking of a phial of water, immersed in the ocean. It is needless to say, that this incomprehensible jargon has no necessary connection with the doctrine which represents God as the soul of the world, and that it would have been loudly disclaimed, not only by Pope and Thomson, but by Epictetus, Antoninus, and all the wisest and soberest of the Stoical school. Whatever objections, therefore, may be made to this doctrine, let not its supposed consequences be charged upon any but those who may expressly avow them. On such a subject, as Gibbon has well remarked, "we should be slow to suspect, and still slower to condemn." (Hist. p. 510.)

Sir William Jones mentions a very curious modification of this theory of absorption, as one of the doctrines of the Vedanta school. "The Vedanta school represent Elysium happiness as a total absorption, though not such as to destroy consciousness, in the Divine Essence." (Dissertation on the Gods of Greece, Italy, and India.)
I have already said, that it seems to have been the aim of Collins to vindicate the doctrine of Necessity from the reproach brought on it by its supposed alliance with Spinozism; and to retort upon the partizans of free-will the charges of favouring atheism and immorality. In proof of this I have only to quote the account given by the author himself, of the plan of his work:

"Too much care cannot be taken to prevent being misunderstood and prejudged, in handling questions of such nice speculation as those of Liberty and Necessity; and, therefore, though I might in justice expect to be read before any judgment be passed on me, I think it proper to premise the following observations:

"1. First, Though I deny liberty in a certain meaning of that word, yet I contend for liberty, as it signifies a power in man to do as he wills or please.

"2. Secondly, When I affirm necessity, I contend only for moral necessity; meaning thereby, that man, who is an intelligent and sensible being, is determined by his reason and his senses; and I deny man to be subject to such necessity as is in clocks, watches, and such other beings, which, for want of sensation and intelligence, are subject to an absolute, physical, or mechanical necessity.

"3. Thirdly, I have undertaken to show, that the notions I advance are so far from being inconsistent with, that they are the sole foundations of morality and laws, and of rewards and punishments in society; and that the notions I explode are subsersive of them."1

In this view of the subject, and, indeed, in the very selection of his premises, it is remarkable how completely Collins has anticipated Dr Jonathan Edwards, the most celebrated and indisputably the ablest champion of the scheme of Necessity who has since appeared. The coincidence is so perfect, that the outline given by the former, of the plan of his work, might have served with equal propriety as a preface to that of the latter.

From the above summary, and still more from the whole tenor of the Philosophical Inquiry, it is evident, that Collins (one of the most obnoxious writers of his day to divines of all denominations) was not less solicitous than his successor Edwards to reconcile his metaphysical notions with man’s accountableness and moral agency. The remarks, accordingly, of Clarke upon Collins’s work, are equally applicable to that of Edwards. It is to be regretted that they seem never to have fallen into the hands of this very acute and honest reasoner. As for Collins, it is a remarkable circumstance, that he attempted no reply to this tract of Clarke’s, although he lived twelve years after its publication. The reasonings contained in it, together with those on the same subject in his correspondence with Leibnitz, and in his Demonstration of the Being and Attributes of God, form, in my humble opinion, the most important as well as powerful of all his metaphysical arguments.2 The adversaries with whom he had to contend were, both of them, eminently distinguished by ingenuity and subtlety, and he seems to have put forth to the utmost his logical strength, in contending with such antagonists. “The liberty or moral agency of man (says his friend Bishop Hoadly) was a darling point to him. He excelled always, and showed a superiority to all, whenever it came into private dis course or public debate. But he never more excelled than when he was pressed with the strength Leibnitz was master of; which made him exert all his

1 A Philosophical Inquiry concerning Human Liberty, 3d edit. Lond. 1735.
2 See Note M M.
3 See Note N N.
4 Voltaire, who, in all probability, never read either Clarke or Collins, has said that the former replied to the latter only by Theological reasonings: "Clarke n’a répondu à Collins qu’en Théologien."—(Quest. sur l’Encyclopédie, Art. Liberté.) Nothing can be more remote from the truth. The argument of Clarke is wholly Metaphysical; whereas, his antagonist, in various instances, has attempted to wrest to his own purposes the words of Scripture.
talents to set it once again in a clear light, to guard it against the evil of metaphysical obscurities, and to give the finishing stroke to a subject which must ever be the foundation of morality in man, and is the ground of the accountableness of intelligent creatures for all their actions."

It is needless to say, that neither Leibnitz nor Collins admitted the fairness of the inferences which Clarke conceived to follow from the scheme of necessity: But almost every page in the subsequent history of this controversy may be regarded as an additional illustration of the soundness of Clarke's reasonings, and of the sagacity with which he anticipated the fatal errors likely to issue from the system which he opposed.

Thus (says a very learned disciple of Leibnitz, who made his first appearance as an author about thirty years after the death of his master) 6 —thus, the same chain embraces the physical and moral worlds, binds the past to the present, the present to the future, the future to eternity."

"That wisdom which has ordained the existence of this chain, has doubtless willed that of every link of which it is composed. A Caligula is one of those links, and this link is of iron: A Marcus Aurelius is another link, and this link is of gold. Both are necessary parts of one whole, which could not but exist. Shall God then be angry at the sight of the iron link? What absurdity! God esteems this link at its proper value: He sees it in its cause, and he approves this cause, for it is good. God beholds moral monsters as he beholds physical monsters. Happy is the link of gold! Still more happy if he know that he is only fortunate. 7 He has attained the highest degree of moral perfection, and is nevertheless without pride, knowing that what he is, is the necessary result of the place which he must occupy in the chain."

"The gospel is the allegorical exposition of this system; the simile of the potter is its summary."

(Bonnet, T. VIII. pp. 237, 238.)

In what essential respect does this system differ from that of Spinoza? Is it not even more dangerous in its practical tendency, in consequence of the high strain of mystical devotion by which it is exalted?

This objection, however, does not apply to the quotations which follow. They exhibit, without any colourings of imagination or of enthusiasm, the scheme of necessity pushed to the remotest and most alarming conclusions which it appeared to Clarke to involve; and as they express the serious and avowed creed of two of our contemporaries (both of them men of distinguished talents), may be regarded as a proof, that the zeal displayed by Clarke against the

1 Preface to the folio ed. of Clarke's Works.—The vital importance which Clarke attached to this question, has given to the concluding paragraphs of his remarks on Collins, an earnestness and a solemnity of which there are not many instances in his writings. These paragraphs cannot be too strongly recommended to the attention of those well-meaning persons, who, in our own times, have come forward as the apostles of Dr Priestley's "great and glorious Doctrine of Philosophical Necessity."

2 Charles Bonnet, born 1720, died 1793.

3 The words in the original are, "Heureux le chainon d'or! plus heureux encore, s'il sait qu'il n'est qu'heureux." The double meaning of heureux, if it render the expression less logically precise, gives it at least an epigrammatic turn, which cannot be preserved in our language.

4 See Note O O.

5 Among the various forms which religious enthusiasm assumes, there is a certain prostration of the mind, which, under the specious disguise of a deep humility, aims at exalting the Divine perfections, by annihilating all the powers which belong to Human Nature. Nothing is more usual for fervent devotion (says Sir James Mackintosh, in speaking of some theories current among the Hindoos), than to dwell so long and so warmly on the meanness and worthlessness of created things, and on the all-sufficiency of the Supreme Being, that it slides insensibly from comparative to absolute language, and in the eagerness of its zeal to magnify the Deity seems to annihilate everything else.—(See Philosophy of the Human Mind, Vol. II. p. 529, 2d ed.)

This excellent observation may serve to account for the zeal displayed by Bonnet, and many other devout men, in favour of the Scheme of Necessity. "We have nothing (they frequently and justly remind us) but what we have received."—But the question here is simply a matter of fact, whether we have or have not received from God the gift of Free Will; and the only argument, it must be remembered, which they have yet been able to advance for the negative proposition, is, that this gift was impossible, even for the power of God; nay, the same argument which annihilates the power of Man, annihilates that of God also, and subjects him, as well as all his creatures, to the control of causes which he is unable to resist. So completely does this scheme defeat the pious views in which it has sometimes originated.—I say sometimes; for the very same argument against the liberty of the Will is employed by Spinoza, according to whom the free-agency of man involves the absurd supposition of an imperium in imperio in the universe.—(Tractat. Polit. Cap. II. § 6.)
metaphysical principles which led ultimately to such results, was not so unfounded as some worthy and able inquirers have supposed.

May I be permitted to observe farther on this head, that, as one of these writers spent his life in the pay of a German prince, and as the other was the favourite philosopher of another sovereign, still more illustrious, the sentiments which they were so anxious to proclaim to the world, may be presumed to have been not very offensive, in their judgments, to the ears of their protectors?

"All that is must be (says the Baron de Grimm, addressing himself to the Duke of Saxe-Gotha)—all that is must be, even because it is; this is the only sound philosophy; as long as we do not know this universe a priori (as they say in the schools), ALL IS NECESSITY.¹ Liberty is a word without meaning, as you shall see in the letter of M. Diderot."

The following passage is extracted from Diderot's letter here referred to:

"I am now, my dear friend, going to quit the tone of a preacher, to take, if I can, that of a philosopher. Examine it narrowly, and you will see that the word Liberty is a word devoid of meaning;² that there are not, and that there cannot be free beings; that we are only what accords with the general order, with our organization, our education, and the chain of events. These dispose of us invincibly. We can no more conceive a being acting without a motive, than we can one of the arms of a balance acting without a weight. The motive is always exterior and foreign, fastened upon us by some cause distinct from ourselves. What deceives us, is the prodigious variety of our actions, joined to the habit which we catch at our birth, of confounding the voluntary and the free. We have been so often praised and blamed, and have so often praised and blamed others, that we contract an inveterate prejudice of believing that we and they will and act freely. But if there is no liberty, there is no action that merits either praise or blame; neither vice nor virtue, nothing that ought either to be rewarded or punished. What then is the distinction among men? The doing of good and the doing of ill! The doer of ill is one who must be destroyed, not punished. The doer of good is lucky, not virtuous. But though neither the doer of good or of ill be free, man is nevertheless a being to be modified; it is for this reason the doer of ill should be destroyed upon the scaffold. From thence the good effects of education, of pleasure, of grief, of grandeur, of poverty, &c.; from thence a philosophy full of pity, strongly attached to the good, nor more angry with the wicked, than with the whirlwind which fills one's eyes with dust. Strictly speaking, there is but one sort of causes, that is, physical causes. There is but one sort of necessity, which is the same for all beings. This is what reconciles me to humankind: it is for this reason I exorted you to philanthropy. Adopt these principles if you think them good, or show me that they are bad. If you adopt them, they will reconcile you too with others and with yourself: you will neither be pleased nor angry with yourself for being what you are. Reproach others for nothing, and repent of nothing; this is the first step to wisdom. Besides this, all is prejudice and false philosophy.³"

The prevalence of the principles here so earnestly inculcated among the higher orders in France, at a period somewhat later in the history of the monarchy, may be judged of from the occasional allusions to them in the dramatic pieces then chiefly in request at Paris. In the Mariage de Figaro (the popularity of which was quite un-

¹ The logical inference ought undoubtedly to have been. "As long as we know nothing of the universe a priori, we are not entitled to say of anything that it either is, or is not, necessary."² Does not this remark of Diderot apply with infinitely greater force to the word necessity, as employed in this controversy?³ Nearly to the same purpose, we are told by Mr Belsham, that "the fallacious feeling of remorse is superseded by the doctrine of necessity."—(Blem. p. 264.) And again, "Remorse supposes free will. It is of little or no use in moral discipline. In a degree, it is even pernicious."—(Ibid. p. 406.) Nor does the opinion of Hartley seem to have been different. "The doctrine of Necessity has a tendency to abate all resentment against men. Since all they do against us is by the appointment of God, it is rebellion against him to be offended with them." For the originals of the quotations from Grimm and Diderot, see Note P P.
exampled), the hero of the piece, an intriguing valet in the service of a Spanish courtier, is introduced as thus moralising, in a soliloquy on his own free-agency and personal identity. Such an exhibition upon the English stage would have been universally censured as out of character and extravagant, or rather, would have been completely unintelligible to the crowds by which our theatres are filled.

"Oh bizarre suite d'événements! Comment cela m'a-t-il arrivé? Pourquoi ces choses et non pas d'autres? Qui les a fixées sur ma tête? Forcé de parcourir la route où je suis entré sans le savoir, comme j'en sortirai sans le vouloir, je l'ai jonchée d'autant de fleurs que ma gaieté me la permit: encore je dis ma gaieté, sans savoir si elle est à moi plus que le reste, ni même qui est ce moi dont je m'occupe."

That this soliloquy, though put into the mouth of Figaro, was meant as a picture of the philosopical jargon at that time affected by courtiers and men of the world, will not be doubted by those who have attended to the importance of the rolles commonly assigned to confidential valets in French comedies, and to the habits of familiarity in which they are always represented as living with their masters. The sentiments which they are made to utter may, accordingly, be safely considered as but an echo of the lessons which they have learned from their superiors.

My anxiety to state, without any interruption, my remarks on some of the most important questions to which the attention of the public was called by the speculations of Locke, of Leibnitz, of Newton, and of Clarke, has led me, in various instances, to depart from the strict order of Chronology. It is time for me, however, to pause, and, before I proceed farther, to supply a few chasms in the foregoing sketch.

SECTION IV.

Of some Authors who have contributed, by their Critical or Historical Writings, to diffuse a Taste for Metaphysical Studies.—Bayle—Fontenelle—Addison. Metaphysical Works of Berkeley.

Among the many eminent persons who were either driven from France, or who went into voluntary exile, in consequence of the revocation of the edict of Nantz, the most illustrious by far was Bayle, who, fixing his residence in Holland, and availing himself, to the utmost extent, of the religious toleration then enjoyed in that country, diffused from thence, over Europe, a greater mass of accurate and curious information, accompanied by a more splendid display of acute and lively criticism, than had ever before come from the pen of a single individual.

Happy! if he had been able to restrain within due bounds his passion for sceptical and licentious discussion, and to respect the feelings of the wise and good, on topics connected with religion.

1 A reflection of Voltaire's on the writings of Spinoza may, I think, be here quoted without impropriety. "Vous êtes tres confus, Baruc Spinoza, mais êtes vous aussi dangereux qu'en le dit? Je soutiens que non, et ma raison c'est que vous êtes confus, que vous avez écrit en mauvais Latin, et qu'il n'y a pas dix personnes en Europe qui y lisent d'un bout à l'autre. Quel est l'auteur dangereux? C'est celui qui est lu par les Osîfs de la Cour, et par les Dames."—(Quæst. sur l'Encyclop. Art. Dieu.)

2 Had Voltaire kept this last remark steadily in view in his own writings, how many of those pages would he have canceled which he has given to the world!

3 The erudition of Bayle is greatly undervalued by his antagonist Le Clerc. "Toutes les lumières philosophiques de M. Bayle consistoient en quelque peu de Périgapiatisme, qu'il avoit appris des Jésuites de Toulouse, et un peu de Cartésianisme, qu'il n'avoyt jamais approfondi."—(Bibl. Chétifs, Tom. XII. p. 106.)

4 In the judgment of Gibbon, "Bayle's learning was chiefly confined to the Latin authors; and he had more of a certain multifarious reading than of real erudition. Le Clerc, his great antagonist, was as superior to him in that respect as inferior in every other."—(Extraites Raisonnés de mes Lectures, p. 62.)
and morality. But, in the peculiar circumstances in which he was educated, combined with the seducing profession of a literary adventurer, to which his hard fortune condemned him, such a spirit of moderation was rather to be wished than expected.

When Bayle first appeared as an author, the opinions of the learned still continued to be divided between Aristotle and Descartes. A considerable number leaned, in secret, to the metaphysical creed of Spinoza and of Hobbes; while the clergy of the Roman Catholic and the Protestant churches, instead of uniting their efforts in defence of those truths which they professed in common, wasted their strength against each other in fruitless disputes and recriminations. In the midst of these controversies, Bayle, keeping aloof as far as possible from all the parties, indulged his sceptical and ironical humour at the common expense of the various combatants. Unattached himself to any system, or, to speak more correctly, unfixed in his opinions on the most fundamental questions, he did not prosecute any particular study with sufficient perseverance to add materially to the stock of useful knowledge. The influence, however, of his writings on the taste and views of speculative men of all persuasions, has been so great, as to mark him out as one of the most conspicuous characters of his age; and I shall accordingly devote to him a larger space than may, at first sight, appear due to an author who has distinguished himself only by the extent of his historical researches, and by the sagacity and subtlety of his critical disquisitions.

We are informed by Bayle himself, that his favourite authors, during his youth, were Plutarch and Montaigne; and from them, it has been alleged by some of his biographers, he imbibed his first lessons of scepticism. In what manner the first of these writers should have contributed to inspire him with this temper of mind, is not very obvious. There is certainly no heathen philosopher or historian whose morality is more pure or elevated; and none who has drawn the line between superstition and religion with a nicer hand. Pope has with perfect truth said of him, that "he abounds more in strokes of good nature than any other author;" to which it may be added, that he abounds also in touches of simple and exquisite pathos, seldom to be met with among the greatest painters of antiquity. In all these respects what a contrast does Bayle present to Plutarch!

Considering the share which Bayle ascribes to Montaigne's Essays in forming his literary taste, it is curious, that there is no separate article allotted to Montaigne in the *Historical and Critical Dictionary*. What is still more curious, there is more than one reference to this article, as if it actually existed; without any explanation of the omission (as far as I recollect) from the author or the publisher of the work. Some very interesting particulars, however, concerning Montaigne's life and writings, are scattered over the Dictionary, in the notices of other persons, with whom his name appeared to Bayle to have a sufficient connection to furnish an apology for a short episode.

It does not seem to me a very improbable conjecture, that Bayle had intended, and perhaps attempted, to write an account of Montaigne; and that he had experienced greater difficulties than he was aware of, in the execution of his design. Notwithstanding their common tendency to scepticism, no two characters were ever more strongly discriminated in their most prominent features; the doubts of the one resulting from the singular coldness of his moral temperament, combined with a subtlety and over-refinement in his habits of thinking, which rendered his ingenuity, acuteness, and erudition, more than a match for his good sense and sagacity;—the indecision of the other partaking

1 See, in particular, his account of the effects produced on the character of Pericles by the sublime lessons of Anaxagoras. Plutarch, it is true, had said before Bayle, that atheism is less pernicious than superstition; but how wide the difference between this paradox, as explained and qualified by the Greek philosopher, and as interpreted and applied in the Reflections on the Comet? Mr Addison himself seems to give his sanction to Plutarch's maxim in one of his papers on Cheerfulness.

"An eminent Pagan writer has made a discourse to show, that the atheist, who denies a God, does him less dishonour than the man who owns his being, but, at the same time, believes him to be cruel, hard to please, and terrible to human nature. For my own part, says he, I would rather it should be said of me, that there was never any such man as Plutarch, than that Plutarch was ill-natured, capricious, and inhuman."—(*Spectator*, No. 494.)
more of the shrivd and soldier-like étourderie of Henry IV. when he exclaimed, after hearing two lawyers plead on opposite sides of the same question, "Ventre St Gris! il me semble que tous les deux ont raison."

Independently of Bayle's constitutional bias towards scepticism, some other motives, it is probable, conspired to induce him, in the composition of his Dictionary, to copy the spirit and tone of the old Academic school. On these collateral motives a strong and not very favourable light is thrown by his own candid avowal in one of his letters. "In truth (says he to his correspondent Minutoli), it ought not to be thought strange, that so many persons should have inclined to Pyrrhonism; for of all things in the world it is the most convenient. You may dispute with impunity against every body you meet, without any dread of that vexatious argument which is addressed ad hominem. You are never afraid of a retort; for as you announce no opinion of your own, you are always ready to abandon those of others to the attacks of sophists of every description. In a word, you may dispute and jest on all subjects without in-curring any danger from the les talions."

It is amusing to think, that the Pyrrhonism which Bayle himself has here so ingeniously accounted for, from motives of conveniency and of literary cowardice, should have been mistaken by so many of his disciples for the sportive triumph of a superior intellect over the weaknesses and errors of human reason.

The profession of Bayle, which made it an object to him to turn to account even the sweepings of his study, affords an additional explanation of the digested mass of heterogeneous and inconsistent materials contained in his Dictionary. Had he adopted any one system exclusively, his work would have shrunk in its dimensions into a comparatively narrow compass.

When these different considerations are maturely weighed, the omission by Bayle of the article Montaigne will not be much regretted by the admirers of the Essays. It is extremely doubtful if Bayle would have been able to seize the true spirit of Montaigne's character; and, at any rate, it is not in the delineation of character that Bayle excels. His critical acumen, indeed, in the examination of opinions and

1 "En verité, il ne faut pas trouver étrange que tant des gens aient donné dans le Pyrrhonisme. Car c'est la chose du monde le plus commune. Vous pouvez impunément disputer contre tous venans, et sans craindre ces arguments ad hominem, qui font quelquefois tant de peine. Vous ne craignez point la rétorsion: puisque ne soutenant rien, vous abandonnez de bon cœur à tous les sophismes et à tous les raisonnements de la terre quelque opinion que ce soit. Vous n'êtes jamais obligé d'en venir à la défense. En un mot, vous contestez et vous daubez sur toutes choses tout votre souci, sans craindre la peine du talon."—(Diss. de Bayle, IV. p. 537.)

2 The estimate formed by Warburton of Bayle's character, both intellectual and moral, is candid and temperate. "A writer whose strength and clearness of reasoning can only be equalled by the gaiety, easiness, and delicacy, of his wit; who, pervading human nature with a glance, struck into the province of paradox, as an exercise for the restless vigour of his mind: who, with a soul superior to the sharpest attacks of fortune, and a heart practised to the best philosophy, had not yet enough of real greatness, to overcome that last falible of superior geniuses, the temptation of honour, which the academic exercise of wit is supposed to bring to its professors.—("Divine Legation.

3 If there be anything objectionable in this panegyric, it is the unequal praise bestowed on Bayle's wit, which, though it seldom fails in copiousness, in piquancy, or in that grave argumentative irony, by which it is still more characteristically marked, is commonly as deficient in gaiety and delicacy as that of Warburton himself.

Leibnitz seems perfectly to have entered into the peculiar temper of his adversary Bayle, when he said of him, that "the only way to make Bayle write usefully, would be to attack him when he advances propositions that are sound and true; and to abstain from attacking him, when he says anything false or pernicious."

"Le vrai moyen de faire écrire utilement M. Bayle, ce seroit de l'attaquer, lorsqu'il écrira des bonnes choses et vraies, car ce seroit le moyen de le piquer pour continuer. Au lieu qu'il ne faudroit point l'attaquer quand il en dit de mauvaises, car cela l'engagera à en dire d'autres aussi mauvaises pour soutenir les premières."—(Tom. VI. p. 273.)

Leibnitz elsewhere says of him: Ubi bene, nemo malus.—(Tom. I. p. 267.)

4 The inequality of Bayle's voluminous works (says Gibbon) is explained by his alternately writing for himself, for the bookseller, and for posterity; and if a severe critic would reduce him to a single folio, that relic, like the books of the Sibyls, would become still more valuable."—(Gibbon's Memoirs, p. 50.)

5 Mr Gibbon observes in another place, that, "if Bayle wrote his Dictionary to empty the various collections he had made, without any particular design, he could not have chosen a better plan. It permitted him everything, and obliged him to nothing. By the double freedom of a Dictionary and of Notes, he could pitch on what articles he pleased, and say what he pleased on those articles."—(Extraits de mes Lectures, p. 64.)

6 How could such a genius as Bayle," says the same author, "employ three or four pages, and a great apparatus of learning, to examine whether Achilles was fed with marrow only; whether it was the marrow of lions and stags, or that of lions only?" &c.—(Tobb. p. 66.)

Diss. I. PART. II.
arguments, is unrivalled; but his portraits of persons commonly exhibit only the coarser lineaments which obtrude themselves on the senses of ordinary observers; and seldom, if ever, evince that discriminating and divining eye, or that sympathetic penetration into the retire-
ments of the heart, which lend to every touch of a master artist, the never-to-be-mistaken expression of truth and nature.

It furnishes some apology for the unsettled state of Bayle's opinions, that his habits of thinking were formed prior to the discoveries of the Newtonian School. Neither the vortices of Descartes, nor the monads and pre-established harmony of Leibnitz, were well calculated to inspire him with confidence in the powers of the human understanding; nor does he seem to have been led, either by taste or by genius, to the study of those exacter sciences in which Kepler, Galileo, and others, had, in the preceding age, made such splendid advances. In Geometry he never proceeded beyond a few of the elementary propositions; and it is even said (although I apprehend with little probability) that his farther progress was stopped by some defect in his intellectual powers, which disqualified him for the successful prosecution of the study.

It is not unworthy of notice, that Bayle was the son of a Calvinist minister, and was destined by his father for his own profession; that during the course of his education in a college of Jesuits he was converted to the Roman Catholic persuasion; and that finally he went to Geneva, where, if he was not recalled to the Protestant faith, he was at least most thoroughly reclaimed from the errors of Popery.

To these early fluctuations in his religious creed, may be ascribed his singularly accurate knowledge of controversial theology, and of the lives and tenets of the most distinguished divines of both churches;—a knowledge much more minute than a person of his talents could well be supposed to accumulate from the mere impulse of literary curiosity. In these respects he exhibits a striking resemblance to the historian of the Decline and Fall of the Roman Empire: Nor is the parallel between them less exact in the similar effects produced on their minds, by the polemical cast of their juvenile studies. Their common propensity to indulge in indecency is not so easily explicable. In neither does it seem to have originated in the habits of a dissolute youth; but in the wantonness of a polluted and distempered imagination. Bayle, it is well known, led the life of an anchorite; and the licentiousness of his pen is, on that very account, the more reprehensible. But, everything considered, the grossness of Gibbon is certainly the more unaccountable, and perhaps the more unpardonable of the two.

1 For the benefit of education, the Protestants were tempted to risk their children in the Catholic Universities; and in the 22d year of his age young Bayle was seduced by the arts and arguments of the Jesuits of Thoulouse. He remained about seventeen months in their hands a voluntary captive.”—(Gibbon's Misc. Works, Vol. I. p. 49.)

2 According to Gibbon, “the piety of Bayle was offended by the excessive worship of creatures; and the study of physics convinced him of the impossibility of transubstantiation, which is abundantly refuted by the testimony of our senses.”—(Ibid. p. 49.)

The same author, speaking of his own conversion from Popery, observes (after allowing to his Preceptor Mr Pavillard “a handsome share” of the honour), “that it was principally effected by his private reflections;” adding the following very curious acknowledgment: “I still remember my solitary transport at the discovery of a philosophical argument against the doctrine of Transubstantiation; that the text of Scripture, which seems to inculcate the real presence, is attested only by a single sense—our sight; while the real presence itself is disproved by three of our senses—the sight, the touch, and the taste.”—(Ibid. p. 58.) That this “philosophical argument” should have had any influence on the mind of Gibbon, even at the early period of life when he made “the discovery,” would appear highly improbable, if the fact were not attested by himself; but as for Bayle, whose logical acumen was of a far harder and keener edge, it seems quite impossible to conceive, “that the study of physics” was at all necessary to open his eyes to the absurdity of the real presence; or that he would not at once have perceived the futility of appealing to our senses or to our reason, against an article of faith which professedly disclaims the authority of both.

3 “Chaste dans ses discours, grave dans ses discours, sobre dans ses alimens, austere dans son genre de vie.”—(Portrait de Bayle par M. Saurin, dans son Sermon sur l'Accord de la Religion avec la Politique.)

4 In justice to Bayle, and also to Gibbon, it should be remembered, that over the most offensive passages in their works they have drawn the veil of the learned languages. It was reserved for the translators of the Historical and Critical Dictionary to tear this veil asunder, and to expose the indelicacy of their author to every curious eye. It is impossible to observe the patient industry and fidelity with which they have executed this part of their task without feelings of indignation and disgust. For such an outrage on taste and decorum, their tedious and feeble attacks on the Manicheism of Bayle offer but a poor compensation. Of all Bayle's suspected heresies, it was perhaps that which stood the least in need of a serious refutation; and, if the case had been otherwise, their incompetency to contend with such an adversary would have only injured the cause which they professed to defend.
On the mischievous tendency of Bayle’s work to unsettle the principles of superficial readers, and, what is worse, to damp the moral enthusiasm of youth, by shaking their faith in the reality of virtue, it would be superfluous to enlarge. The fact is indisputable, and is admitted even by his most partial admirers. It may not be equally useless to remark the benefits which (whether foreseen or not by the author, is of little consequence) have actually resulted to literature from his indefatigable labours. One thing will, I apprehend, be very generally granted in his favour; that, if he has taught men to suspend their judgment, he has taught them also to think and to reason for themselves; a lesson which appeared to a late philosophical divine of so great importance, as to suggest to him a doubt, whether it would not be better for authors to state nothing but premises, and to leave to their readers the task of forming their own conclusions. Nor can Bayle be candidly accused of often discovering a partiality for any particular sect of philosophers. He opposes Spinoza and Hobbes with the same spirit and ability, and apparently with the same good faith, with which he contovers the doctrines of Anaxagoras and of Plato. Even the ancient sceptics, for whose mode of philosophising he might be supposed to have felt some degree of tenderness, are treated with as little ceremony as the most extravagant of the dogmatists. He has been often accused of a leaning to the most absurd of all systems, that of the Manicheans; and it must be owned, that there is none in defence of which he has so often and so ably exerted his talents; but it is easy to perceive, that, when he does so, it is not from any serious faith which he attaches to it (perhaps the contrary supposition would be nearer the truth), but from the peculiarly ample field which it opened for the display of his controversial subtlety, and of his inexhaustible stores of miscellaneous information. In one passage he has pronounced with a tone of decision which he seldom assumes, that “it is absurd, indefensible, and inconsistent with the regularity and order of the universe; that the arguments in favour of it are liable to be retorted; and that, granting it to be true, it would afford no solution of the difficulties in question.” The apparent zeal with which, on various occasions, he has taken up its defence, may, I think, be reasonably accounted for, by the favourable opportunity it afforded him of measuring his logical powers with those of Leibnitz.

To these considerations it may be added, that, in consequence of the progress of the sciences since Bayle’s time, the unlimited scepticism commonly, and perhaps justly imputed to him, is much less likely to mislead than it was a century ago; while the value of his researches, and of his critical reflections, becomes every day more conspicuous, in proportion as more enlarged views of nature, and of human affairs, enable us to combine together that mass of rich but indigested materials, in the compilation of which his own opinions and principles seem to have been totally lost. Neither comprehension, indeed, nor generalisation, nor metaphysical

1 See the preface to Bishop Butler’s Sermons.
2 Particularly in the article entitled Paulicians.
3 One of the earliest as well as the ablest of those who undertook a reply to the passages in Bayle which seem to favour Manicheism, candidly acquits him of any serious design to recommend that system to his readers. “En répondant aux objections Manichéennes, je ne prétends faire aucun tort à M. Bayle ; que je ne soupçonne nullement de les favoriser. Je suis persuadé qu’il n’a pris la liberté philosophique de dire, en bien des rencontres, le pour et le contre, sans rien dissimuler, que pour donner de l’exercice à ceux qui entendent les matières qu’il traité, et non pour favoriser ceux dont il explique les raisons.” (Parrhasianus, ou Peintes Diverses, p. 30, par M. Le Clerc. Amsterdam, 1699.)
4 See the illustration upon the Sceptics at the end of the Dictionary.
5 This supposition may be thought inconsistent with the well known fact, that the Thesidicee of Leibnitz was not published till after the death of Bayle. But it must be recollected, that Bayle had previously entered the lists with Leibnitz in the article Harorius, where he had urged some very acute and forcible objections against the scheme of pre-established harmony; a scheme which leads so naturally and obviously to that of optimism, that it was not difficult to foresee what ground Leibnitz was likely to take in defending his principles. The great aim of Bayle seems to have been to provoke Leibnitz to unfold the whole of his system and of its necessary consequences; well knowing what advantages in the management of such a controversy would be on the side of the assailant.

The tribute paid by Leibnitz to the memory of his illustrious antagonist deserves to be quoted. “Sperandum est, Bileum luminibus illis nunc circumdari, quod terris negatum est: cum credibile sit, bonam voluntatem ei nequaquam defuissent.”

“Candidus insuestum miratur limen Olympi,
Sub pedibusque videt nubes et sidera Daphnis.”
depth, are to be numbered among the characteristic attributes of his genius. Far less does he ever anticipate, by the moral lights of the soul, the slow and hesitating decisions of the understanding; or touch with a privileged hand those mysterious chords to which all the social sympathies of our frame are responsive. Had his ambition, however, been more exalted, or his philanthropy more warm and diffusive, he would probably have attempted less than he actually accomplished; nor would he have stooped to enjoy that undisputed pre-eminence which the public voice has now unanimously assigned him, among those inestimable though often ill requited authors, whom Johnson has called "the pioneers of literature."

The suspense of judgment which Bayle's Dictionary inspires with respect to facts, is, perhaps, still more useful than that which it encourages in matters of abstract reasoning. Fontenelle certainly went much too far, when he said of history, that it was only a collection of Fables Conventes;—a most significant and happy phrase, to which I am sorry that I cannot do justice in an English version. But though Fontenelle pushed his maxim to an extreme, there is yet a great deal of important truth in the remark; and of this I believe every person's conviction will be stronger, in proportion as his knowledge of men and of books is profound and extensive.

Of the various lessons of historical scepticism to be learned from Bayle, there is none more practically valuable (more especially in such revolutionary times as we have witnessed) than that which relates to the biographical portraits of distinguished persons, when drawn by their theological and political opponents. In illustration of this, I have only to refer to the copious and instructive extracts which he has produced from Roman Catholic writers, concerning the lives, and still more concerning the deaths, of Luther, Knox, Buchanan, and various other leaders or partizans of the Reformation. It would be impossible for any well-informed Protestant to read these extracts, without indulging a smile at their incredible absurdity, if every feeling of levity were not lost in a sentiment of deep indignation at the effrontery and falsehood of their authors. In stating this observation, I have taken my examples from Roman Catholic libellers, without any illiberal prejudices against the members of that church. The injustice done by Protestants to some of the conscientious defenders of the old faith has been, in all probability, equally great; but this we have no opportunity of ascertaining here, by the same direct evidence to which we can fortunately appeal, in vindication of the three characters mentioned above. With the history of two of them every person in this country is fully acquainted; and I have purposely selected them in preference to others, as their names alone are sufficient to cover with disgrace the memory of their calumniators.

A few years before the death of Bayle, Fontenelle began to attract the notice of Europe. I class them together on account of the mighty influence of both on the literary taste of their contemporaries; an influence in neither case founded on any claims to original genius, or to important improvements; but on the attractions which they possessed in common, though in very different ways, as popular writers; and on the easy and agreeable access which their works opened to the opinions and speculations of the

1 I speak of that metaphysical depth which is the exclusive result of what Newton called patient thinking. In logical quickness, and metaphysical subtlety, Bayle has never been surpassed.

2 Montesquieu has expressed himself on this subject, in nearly as strong terms as Fontenelle. "Les Histoires sont des faits faux composés sur des faits vrais, ou bien à l'occasion des vrais." (Pensees Diverses de Montesquieu, Tom. V. de ses Œuvres. Ed. de Paris, 1818.)

3 See Note Q Q.

4 Of all Bayle's works, "the most useful and the least sceptical," according to Gibbon, is his Commentaire Philosophique on these words of the Gospel, "Compel them to come in."

The great object of this commentary is to establish the general principles of Toleration, and to demonstrate with the members of Protestant churches on the inconsistency of their refusing to those they esteem heretics, the same indulgence which they claim for themselves in Catholic countries. The work is diffuse and rambling, like all Bayle's compositions; but the matter is excellent, and well deserves the praise which Gibbon has bestowed on it.

5 Bayle died in 1706. Fontenelle's first work in prose (the Dialogues of the Dead) was published as early as 1683, and was quickly followed by his Conversations on the Plurality of Worlds.
learned. Nor do I depart so far as might at first be supposed, from the order of chronology, in passing from the one to the other. For though Fontenelle survived almost to our own times (having very nearly completed a century at the time of his death), the interval between his birth and that of Bayle was only ten years, and he had actually published several volumes, both in prose and verse, before the Dictionary of Bayle appeared.

But my chief reason for connecting Fontenelle rather with the contemporaries of his youth than with those of his old age is, that, during the latter part of his life, he was left far behind in his philosophical creed (for he never renounced his faith as a Cartesian) by those very pupils to whose minds he had given so powerful an impulse, and whom he had so long taught by his example, the art (still then unknown in modern times) of blending the truths of the severer sciences with the lights and graces of eloquence. Even this eloquence, once so much admired, had ceased, before his death, to be regarded as a model, and was fast giving way to the purer and more manly taste in writing, recommended by the precepts, and exemplified in the historical compositions of Voltaire.

Fontenelle was a nephew of the great Corneille; but his genius was, in many respects, very strongly contrasted with that of the author of the Cid. Of this he has himself enabled us to judge by the feeble and unsuccessful attempts in dramatic poetry, by which he was first known to the world. In these, indeed, as in all his productions, there is an abundance of ingenuity, of elegance, and of courtly refinement; but not the faintest vestige of the mens divisior, or of that sympathy with the higher and nobler passions which enabled Corneille to re-animate and to reproduce on the stage the heroes of ancient Rome. The circumstance, however, which more peculiarly marks, and distinguishes his writings, is the French mould in which education and habit seem to have recast all the original features of his mind; — identifying, at the same time, so perfectly the impressions of art with the workmanship of nature, that one would think the Parisian, as well as the Man, had started fresh and finished from her creative hand. Even in his Conversations on the Plurality of Worlds, the dry discussions with the Marchioness about the now forgotten vortices of Descartes, are enlivened throughout by a never-failing spirit of light and national gallantry, which will for ever render them an amusing picture of the manners of the times, and of the character of the author. The gallantry, it must be owned, is often strained and affected; but the affectation sits so well on Fontenelle, that he would appear less easy and graceful without it.

The only other production of Fontenelle's youth which deserves to be noticed is his History of Oracles; a work of which the aim was, to combat the popular belief that the oracles of antiquity were uttered by evil spirits, and that all these spirits became dumb at the moment of the Christian aera. To this work Fontenelle contributed little more than the agreeable and lively form in which he gave it to the world; the chief materials being derived from a dull and prolix dissertation on the same subject, by a learned Dutchman. The publication excited a keen opposition among divines, both Catholic and Protestant; and, in particular, gave occasion to a very angry, and, it is said, not contemptible criticism, from a member of the Society of Jesuits. It is mentioned by La Harpe, as an illustration of the rapid change in men's

1 Excepting on a few metaphysical points. The chief of these were, the question concerning the origin of our ideas, and that relating to the nature of the lower animals. On the former of these subjects he has said explicitly: "L'Ancienne Philosophie n'a pas toujours eu tort. Elle a soutenu que tout ce qui étoit dans l'esprit avait passé par les sens, et nous n'aurions pas mal fait de conserver cela d'elle." (Fragment of an intended Treatise on the Human Mind.) On another occasion, he states his own opinion on this point, in language coinciding exactly with that of Gassendi. "A force d'opérer sur les premières idées formées par les sens, d'y ajouter, d'en retrancher, de les rendre de particulières universelles, d'universelles plus universelles encore, l'esprit les rend si différentes de ce qu'elles étoient d'abord qu'on a quelquefois peine à reconnaître leur origine. Cependant qui voudra prendre le fil et le suivre exactement, retiendra toujours de l'idée la plus sublime et la plus élevée, à quelque idée sensible et grossière."

2 To this criticism, the only reply made by Fontenelle was a single sentence, which he addressed to a Journalist who had urged him to take up arms in his own defence. "Je laisserai mon censeur jouer en paix de son triomphe; je consens que le diable ait été prophète, puisque le Jesuite le veut, et qu'il croit cela plus orthodoxo." (D'Alembert, Éloge de la Moité.) We are told by D'Alembert, that the silence of Fontenelle, on this occasion, was owing to the advice of La
opinions which took place during Fontenelle's life, that a book which, in his youth, was censured for its impiety, was regarded before his death as a proof of his respect for religion.

The most solid basis of Fontenelle's fame is his History of the Academy of Sciences, and his Eloges of the Academicians. Both of these works, but more especially the latter, possess, in an eminent degree, all the charms of his former publications, and are written in a much simpler and better taste than any of the others. The materials, besides, are of inestimable value, as succinct and authentic records of one of the most memorable periods in the history of the human mind; and are distinguished by a rare impartiality towards the illustrious dead, of all countries, and of all persuasions. The philosophical reflections, too, which the author has most skilfully interwoven with his literary details, discover a depth and justness of understanding far beyond the promise of his juvenile Essays; and afford many proofs of the soundness of his logical views, as well as of his acute and fine discrimination of the varieties and shades of character, both intellectual and moral.

The chief and distinguishing merit of Fontenelle, as the historian of the Academy, is the happy facility with which he adapts the most abstruse and refined speculations to the comprehension of ordinary readers. Nor is this excellence purchased by any sacrifice of scientific precision. What he aims at is nothing more than an outline; but this outline is always executed with the firm and exact hand of a master. "When employed in composition (he has somewhere said) my first concern is to be certain that I myself understand what I am about to write;" and on the utility of this practice every page of his Historical Memoirs may serve as a comment.

As a writer of Eloges, he has not been equalled (if I may be allowed to hazard my own opinion) by any of his countrymen. Some of those, indeed, by D'Alembert and by Condorcet, manifest powers of a far higher order than belonged to Fontenelle; but neither of these writers possessed Fontenelle's incommunicable art of interesting the curiosity and the feelings of his readers in the fortunes of every individual whom he honoured by his notice. In this art it is not improbable that they might have succeeded better had they imitated Fontenelle's self-denial in sacrificing the fleeting praise of brilliant colouring, to the fidelity and lasting effect of their portraits; a self-denial which in him was the more meritorious, as his great ambition plainly was to unite the reputation of a bel-esprit with that of a philosopher. A justly celebrated academician of the present times (M. Cuvier), who has evidently adopted Fontenelle as his model, has accordingly given an interest and truth to his Eloges, which the public had long ceased to expect in that species of composition.

But the principal charm of Fontenelle's Eloges

Motte. "Fontenelle bien tenté de terrasser son adversaire par la facilité qu'il y trouvait, fut retenu par les avis prudents de La Motte; cet ami lui fit craindre de s'alléner par sa réponse une société qui s'appelait Légion, quand on avait affaire au dernier de ses membres." The advice merits the attention of philosophers in all countries, for the spirit of Jesuitism is not confined to the Church of Rome.

1 An instance of which happens at present to recur to my memory, may serve to illustrate and to confirm the above remark. It is unnecessary to point out its coincidence with the views which gave birth to the new nomenclature in chemistry.

2 If languages had been the work of philosophers, they might certainly be more easily learned. Philosophers would have established everywhere a systematical uniformity, which would have proved a safe and infallible guide; and the manner of forming a derivative word, would, as a necessary consequence, have suggested its signification. The uncivilised nations, who are the first authors of languages, fell naturally into that notion with respect to certain terminations, all of which have some common property or virtue; but that advantage, unknown to those who had it in their hands, was not carried to a sufficient extent.

3 From this praise, however, must be excepted, the mysterious jargon in which (after the example of some of his contemporaries) he has indulged himself in speaking of the geometry and calculus of infinites. "Nous le disons avec peine (says D'Alembert), et sans vouloir outrager les noms d'un homme célèbre qui n'est plus, il n'y a peut-être point d'ouvrage où l'on trouve des preuves plus fréquentes de l'abus de la métaphysique, que dans l'ouvrage très connu de M. Fontenelle, qu'il est éloigné de la Géométrie et de l'Infinité, ouvrage dont la lecture est d'autant plus dangereuse aux jeunes géomètres que l'auteur y présente les sofismes avec une sorte d élégance et de grâce, dont le sujet ne paraissait pas susceptible." (Mélanges, &c. Tom. V. p. 264.)

4 D'Alembert, in his ingenious parallel of Fontenelle and La Motte, has made a remark on Fontenelle's style when he aims at simplicity, of the justness of which French critics alone are competent judges. "L'un et l'autre ont écrit en prose avec beaucoup de clarté, d élégance, de simplicité même; mais La Motte avec une simplicité plus naturelle, et Fontenelle
arises from the pleasing pictures which they everywhere present of genius and learning in the scenes of domestic life. In this respect, it has been justly said of them by M. Suard,¹ that

"they form the noblest monument ever raised to the glory of the sciences and of letters." Fontenelle himself, in his _Eloge of Varignon_, after remarking, that in _him_ the simplicity of his character was only equalled by the superiority of his talents, finely adds, "I have already bestowed so often the same praise on other members of this academy, that it may be doubted whether it is not less due to the individuals, than to the sciences which they cultivated in common." What a proud reply does this reflection afford to the Machiavellian calumniators of philosophy!

The influence of these two works of Fontenelle on the studies of the rising generation all over Europe, can be conceived by those alone who have compared them with similar productions of an earlier date. Sciences which had long been immured in colleges and cloisters, began at length to breathe the ventilated and wholesome air of social life. The union of philosophy and the fine arts, so much boasted of in the schools of ancient Greece, seemed to promise a speedy and invigorated revival. Geometry, Mechanics, Physics, Metaphysics, and Morals, became objects of pursuit in courts and in camps; the accomplishments of a scholar grew more and more into repute among the other characteristics of a gentleman: and (what was of still greater importance to the world) the learned discovered the secret of cultivating the graces of writing, as a necessary passport to truth, in a refined but dissipated age.

Nor was this change of manners confined to one of the sexes. The other sex, to whom nature has entrusted the first development of our intellectual and moral powers, and who may, therefore, be regarded as the chief _medium_ through which the progress of the mind is continued from generation to generation, shared also largely in the general improvement. Fontenelle aspired above all things to be the philosopher of the Parisian circles; and certainly contributed not a little to diffuse a taste for useful knowledge among women of all conditions in France, by bringing it into vogue among the higher classes. A reformation so great and so sudden could not possibly take place, without giving birth to much affectation, extravagance, and folly; but the whole analogy of human affairs encourages us to hope, that the inconveniences and evils connected with it will be partial and temporary, and its beneficial results permanent and progressive.²

Among the various moral defects imputed to Fontenelle, that of a complete apathy and in-

¹ Notice sur la Vie et les Écris du Docteur Robertson. (Paris, 1817.)

² Among the various other respects in which Fontenelle contributed to the intellectual improvement of his countrymen, it ought to be mentioned, that he was one of the first writers in France who diverted the attention of metaphysicians from the old topics of scholastic discussion, to a philosophical investigation of the principles of the fine arts. Various original hints upon these subjects are scattered over his works: but the most favourable specimens of his talents for this very delicate species of analysis are to be found in his _Dissertation on Pastoralts_, and in his _Theory concerning the Delight we derive from Tragedy._ His speculations, indeed, are not always just and satisfactory; but they are seldom deficient in novelty or refinement. Their principal fault, perhaps, arises from the author’s disposition to carry his refinements too far; in consequence of which, his theories become chargeable with that sort of sublimated ingenuity which the French epithet _Alambiqué_ expresses more precisely and forcibly than any word in our language.

Something of the same philosophical spirit may be traced in Fenelon’s _Dialogues on Eloquence_, and in his _Letter on Rhetoric and Poetry_. The former of these treatises, besides its merits as a speculative discussion, contains various practical hints, well entitled to the attention of those who aspire to eminence as public speakers; and of which the most apparently trifling claim some regard, as the results of the author’s reflections upon an art which few ever practised with greater success.

Let me add, that both of these eminent men (who may be regarded as the fathers of philosophical criticism in France) were zealous partizans and admirers of the Cartesian metaphysics. It is this critical branch of metaphysical science which,

³ In the judgment of Mr Hume, "there is not a finer piece of criticism than Fontenelle’s _Dissertation on Pastoralts_; in which, by a number of reflections and philosophical reasonings, he endeavours to fix the just _medium_ between simplicity and refinement, which is suitable to that species of poetry."
sensibility to all concerns but his own is by far the most prominent. A letter of the Baron de Grimm, written immediately after Fontenelle's death, but not published till lately, has given a new circulation in this country to some anecdotes injurious to his memory, which had long ago fallen into oblivion or contempt in France. The authority, however, of this adventurer, who earned his subsistence by collecting and retailing, for the amusement of a German Prince, the literary scandal of Paris, is not much to be relied on in estimating a character with which he does not appear to have had any opportunity of becoming personally acquainted; more especially as, during Fontenelle's long decline, the great majority of men of letters in France were disposed to throw his merits into the shade, as an acceptable homage to the rising and more dazzling glories of Voltaire. It is in the Academical Memoirs of D'Alembert and Condorcet (neither of whom can be suspected of any unjust prejudice against Voltaire, but who were both too candid to sacrifice truth to party feelings) that we ought to search for Fontenelle's real portrait. Or rather (if it be true, as Dr. Hutcheson has somewhere remarked, that "men have commonly the good or bad qualities which they ascribe to mankind") the most faithful Eloge on Fontenelle himself is to be found in those which he has pronounced upon others.

That the character of Fontenelle would have been more amiable and interesting, had his virtues been less the result of cold and prudent calculation, it is impossible to dispute. But his conduct through life was pure and blameless; and the happy serenity of his temper, which prolonged his life till he had almost completed his hundredth year, served as the best comment on the spirit of that mild and benevolent philosophy, of which he had laboured so long to extend the empire.

It is a circumstance almost singular in his history, that since the period of his death, his reputation, both as a man and as an author, has been gradually rising. The fact has been as remarkably the reverse with most of those who have calumniated his memory.

While the circle of mental cultivation was thus rapidly widening in France, a similar progress was taking place, upon a larger scale, and under still more favourable circumstances, in England. To this progress nothing contributed in my opinion, has been most successfully cultivated by French writers; although too many of them have been infected (after the example of Fontenelle) with the disease of sickly and of hyper-physical subtlety. From this censure, however, must be excepted the Abbé Dubos, whose Critical Reflections on Poetry and Painting is one of the most agreeable and instructive works that can be put into the hands of youth. Few books are better calculated for leading their minds gradually from literature to philosophy. The author's theories, if not always profound or just, are in general marked with good sense as well as with ingenuity; and the subjects to which they relate are so peculiarly attractive, as to fix the attention even of those readers who have but little relish for speculative discussions. "Ce qui fait la bonté de cet ouvrage (says Voltaire) c'est qu'il n'y a que peu d'erreurs, et beaucoup de réflexions vraies, nouvelles, et profondes. Il manque cependant d'ordre et sur-tout de précision; il aurait pu être écrit avec plus de feu, de grâce, et d'élégance; mais l'écrivain pense et fait penser."---(Siecle de Louis XIV.)

As to Voltaire himself, it must be mentioned, to his honour, that though there seems never to have been much cordiality between him and Fontenelle, he had yet the magnanimity to give a place to this Nestor of French literature in his catalogue of the eminent persons who adorned the reign of Louis XIV: a tribute of respect the more flattering, as it is the single instance in which he has departed from his general rule of excluding from his list the names of all his living contemporaries. Even Fontenelle's most devoted admirers ought to be satisfied with the liberty of Voltaire's eulogy, in which, after pronouncing Fontenelle "the most universal genius which the age of Louis XIV. had produced," he thus sums up his merits as an author. "Enfin on l'a regardé comme le premier des hommes dans l'art nouveau de répondre de la lumière et des graces sur les sciences abstraites, et il a eu du mérite dans tous les autres genres qu'il a traités. Tant de talents ont été soutenus par la connaissance des langues et de l'histoire, et il a été sans contredit au-dessus de tous les savants qui n'ont pas eu le devoir de l'invention."---(Eloge de Fontenelle, par Condorcet.)

Many of Fontenelle's sayings, the import of which must have depended entirely on circumstances of time and place unknown to us, have been absurdly quoted to his disadvantage, in their literal and most obvious acceptance. "I hate war (said he), for it spoils conversation." Can any just inference be drawn from the levity of this convivial sally, against the humanity of the person who uttered it? Or rather, when connected with the characteristic finesse of Fontenelle's wit, does it not lead to a conclusion precisely opposite?
more powerfully than the periodical papers published under various titles by Addison¹ and his associates. The effect of these in reclaiming the public taste from the licentiousness and grossness introduced into England at the period of the Restoration; in recommending the most serious and important truths by the united attractions of wit, humour, imagination, and eloquence; and, above all, in counteracting those superstitious terrors which the weak and ignorant are so apt to mistake for religious and moral impressions—has been remarked by numberless critics, and is acknowledged even by those who felt no undue partiality in favour of the authors.² Some of the papers of Addison, however, are of an order still higher, and bear marks of a mind which, if early and steadily turned to philosophical pursuits, might have accomplished much more than it ventured to undertake. His frequent references to the Essay on Human Understanding, and the high encomiums with which they are always accompanied, show how successfully he had entered into the spirit of that work, and how completely he was aware of the importance of its object. The popular nature of his publications, indeed, which rendered it necessary for him to avoid everything that might savour of scholastic or of metaphysical discussion, has left us no means of estimating his philosophical depth, but what are afforded by the results of his thoughts on the particular topics which he has occasion to allude to, and by some of his incidental comments on the scientific merits of preceding authors. But these means are sufficiently ample to justify a very high opinion of his sound and unprejudiced judgment, as well as of the extent and correctness of his literary information. Of his powers as a logical reasoner he has not enabled us to form an estimate; but none of his contemporaries seem to have been more completely tinctured with all that is most valuable in the metaphysical and ethical systems of his time.³

But what chiefly entitles the name of Addison to a place in this Discourse, is his Essays on the Pleasures of Imagination; the first attempt in England to investigate the principles of the fine arts; and an attempt which, notwithstanding many defects in the execution, is entitled to the praise of having struck out a new avenue to the study of the human mind, more alluring than any which had been opened before. In this respect, it forms a most important supplement to Locke's Survey of the Intellectual Powers; and it has, accordingly, served as a text, on which the greater part of Locke's disciples have been eager to offer their comments and their corrections. The progress made by some of these in exploring this interesting region has been great; but let not Addison be deprived of his claims as a discoverer.

Similar remarks may be extended to the hints suggested by Addison on Wit, on Humour, and on the causes of Laughter. It cannot, indeed, be said of him, that he exhausted any one of these subjects; but he had at least the merit of starting them as problems for the consideration of philosophers; nor would it be easy to name among his successors, a single writer who has made so important a step towards their solution, as the original proposer.

The philosophy of the papers to which the foregoing observations refer, has been pronounced to be slight and superficial, by a crowd of modern metaphysicians, who were but ill entitled to erect themselves into judges on such a question.⁴ The singular simplicity and perspicuity of Addison's style have contributed much to the prevalence

¹ Born in 1672, died in 1719.
³ I quote the following passage from Addison, not as a specimen of his metaphysical acumen, but as a proof of his good sense in divining and obviating a difficulty which I believe most persons will acknowledge occurred to themselves when they first entered on metaphysical studies:

"Although we divide the soul into several powers and faculties, there is no such division in the soul itself, since it is the whole soul that remembers, understands, wills, or imagines. Our manner of considering the memory, understanding, will, imagination, and the like faculties, is for the better enabling us to express ourselves in such abstracted subjects of speculation, not that there is any such division in the soul itself." In another part of the same paper, Addison observes, that "what we call the faculties of the soul are only the different ways or modes in which the soul can exert herself." [Spectator, No. 600.]
⁴ For some important remarks on the words Powers and Faculties, as applied to the Mind, see Locke, B. II. Ch. xxi. § 20.
⁵ See Note R R.

DISSERTATION FIRST.
of this prejudice. Eager for the instruction, and unambitious of the admiration of the multitude, he everywhere studies to bring himself down to their level; and even when he thinks with the greatest originality, and writes with the most inimitable felicity, so easily do we enter into the train of his ideas, that we can hardly persuade ourselves that we could not have thought and written in the same manner. He has somewhere said of "fine writing," that it consists of sentiments which are natural, without being obvious:" and his definition has been applauded by Hume, as at once concise and just. Of the thing defined, his own periodical essays exhibit the most perfect examples.

To this simplicity and perspicuity, the wide circulation which his works have so long maintained among all classes of readers, is in a great measure to be ascribed. His periods are not constructed, like those of Johnson, to "elevate and surprise," by filling the ear and dazzling the fancy; but we close his volumes with greater reluctance, and return to the perusal of them with far greater alacrity. Franklin, whose fugitive publications on political topics have had so extraordinary an influence on public opinion, both in the Old and New Worlds, tells us that his style in writing was formed upon the model of Addison: Nor do I know anything in the history of his life which does more honour to his shrewdness and sagacity. The copyist, indeed, did not possess the gifted hand of his master,—Museo contingens cuncta lepore; but such is the effect of his plain and seemingly artless manner, that the most profound conclusions of political economy assume, in his hands, the appearance of indisputable truths; and some of them, which had been formerly confined to the speculative few, are already current in every country of Europe, as proverbial maxims. 1

To touch, however slightly, on Addison's other merits, as a critic, as a wit, as a speculative politician, and, above all, as a moralist, would lead me completely astray from my present object. It will not be equally foreign to it to quote the two following short passages, which, though not strictly metaphysical, are, both of them, the result of metaphysical habits of thinking, and bear a stronger resemblance than anything I recollect among the wits of Queen Anne's reign, to the best philosophy of the present age. They approach, indeed, very nearly to the philosophy of Turgot and of Smith.

"Among other excellent arguments for the immortality of the soul, there is one drawn from the perpetual progress of the soul to its perfection, without a possibility of ever arriving at it; which is a hint that I do not remember to have seen opened and improved by others who have written on this subject, though it seems to me to carry a great weight with it. A brute arrives at a point of perfection that he can never pass. In a few years he has all the endowments he is capable of; and were he to live ten thousand more, would be the same thing he is at present. Were a human soul thus at a stand in her accomplishments, were her faculties to be full-blown, and incapable of further enlargement, I would imagine it might fall away insensibly, and drop at once into a state of annihilation. But can we believe a thinking being, that is in a perpetual progress of improvement, and travelling on from perfection to perfection, after having just looked abroad into the works of its Creator, and made a few discoveries of his infinite goodness, wisdom, and power, must perish at her first setting out, and in the very beginning of her inquiries?"

The philosophy of the other passage is not unworthy of the author of the Wealth of Nations. The thought may be traced to earlier writers, but certainly it was never before presented with the same fulness and liveliness of illustration; nor do I know, in all Addison's works, a finer instance of his solicitude for the improvement of his fair readers, than the address with which he

1 The expressions "Laissez nous faire," and "pas trop gouverner," which comprise, in a few words, two of the most important lessons of Political Wisdom, are indebted chiefly for their extensive circulation to the short and luminous comments of Franklin.—(See his Political Fragments, § 4.)

2 This argument has been prosecuted with great ingenuity and force of reasoning (blended, however, with some of the peculiarities of his Berkeleyan metaphysics) by the late Dr James Hutton.—(See his Investigation of the Principles of Knowledge, Vol. III. p. 195, et seq. Edin. 1794.)
Dissertation First.

163

here insinuates one of the sublimest moral lessons, while apparently aiming only to amuse them with the geographical history of the muff and the tippet.

"Nature seems to have taken a particular care to disseminate her blessings among the different regions of the world, with an eye to the mutual intercourse and traffic among mankind; that the natives of the several parts of the globe might have a kind of dependence upon one another, and be united together by their common interest. Almost every degree produces something peculiar to it. The food often grows in one country, and the sauce in another. The fruits of Portugal are corrected by the products of Barbadoes; the infusion of a China plant, sweetened with the pith of an Indian cane. The Philippine Islands give a flavour to our European bowls. The single dress of a woman of quality is often the product of a hundred climates. The muff and the fan come together from the opposite ends of the earth. The scarf is sent from the torrid zone, and the tippet from beneath the pole. The brocade petticoat rises out of the mines of Peru, and the diamond necklace out of the bowels of Indostan."

But I must not dwell longer on the fascinating pages of Addison. Allow me only, before I close them, to contrast the last extract with a remark of Voltaire, which, shallow and contemptible as it is, occurs more than once, both in verse and in prose, in his voluminous writings.

Il murt, il Moka, dans le sable Arabique,
Ce Caffé nécessaire aux pays des frimas ;
Il met la Fièvre en nos climats,
Et le remède en Amerique.

(Epître au Roi du Prussie, 1750.)

And yet Voltaire is admired as a philosopher by many who will smile to hear this title bestowed upon Addison!

It is observed by Akenside, in one of the notes to the Pleasures of Imagination, that "Philosophy and the Fine Arts can hardly be conceived at a greater distance from each other than at the Revolution, when Locke stood at the head of one party, and Dryden of the other." He observes, also, that "a very great progress towards their re-union had been made within these few years." To this progress the chief impulse was undoubtedly given by Addison and Shaftesbury.

Notwithstanding, however, my strong partiality for the former of these writers, I should be truly sorry to think, with Mr Hume, that "Addison will be read with pleasure when Locke shall be entirely forgotten."--(Essay on the Different Species of Philosophy.)

A few years before the commencement of these periodical works, a memorable accession was made to metaphysical science; by the publication of Berkeley's New Theory of Vision, and of his Principles of Human Knowledge. Possessed of a mind which, however inferior to that of Locke in depth of reflection and in soundness of judgment, was fully its equal in logical acuteness and invention, and in learning, fancy, and taste, far its superior,—Berkeley was singularly fitted to promote that re-union of Philosophy and of the Fine Arts which is so essential to the prosperity of both. Locke, we are told, despised poetry; and we know from one of his own letters, that, among our English poets, his favourite author was Sir Richard Blackmore. Berkeley, on the other hand, courted the society of all, from whose conversation and manners he could hope to add to the embellishments of his genius; and although himself a decided and High Church Tory, lived in habits of friendship with Steele and Addison, as well as with Pope and Swift. Pope's admiration of him seems to have risen to a sort of enthusiasm. He yielded to Berkeley's decision on a very delicate question relating to the exordium of the Essay on Man; and on his moral qualities he has bestowed the highest and most unqualified eulogy to be found in his writings.

1. See a volume of Sermons, preached in the chapel of Trinity College, Dublin. See also a Discourse addressed to Magistrates, &c. printed in 1736. In both of these publications, the author carries his Tory principles so far, as to represent the doctrine of passive obedience and non-resistance as an essential article of the Christian faith. "The Christian religion makes every legal constitution sacred, by commanding our submission thereto. Let every soul be subject to the higher powers, saith St Paul, for the powers that be are ordained of God."
PRELIMINARY DISSERTATIONS.

“Even in a Bishop I can spy desert; Secker is decent; Rundle has a heart; Manners with candour are to Benson given; To Berkeley every virtue under Heaven.”

With these intellectual and moral endowments, admired and blazoned as they were by the most distinguished wits of his age, it is not surprising that Berkeley should have given a popularity and fashion to metaphysical pursuits, which they had never before acquired in England. Nor was this popularity diminished by the boldness of some of his paradoxes: on the contrary, it was in no small degree the effect of them; the great bulk of mankind being always prone to mistake a singularity or eccentricity of thinking, for the originality of a creative genius.

The solid additions, however, made by Berkeley to the stock of human knowledge were important and brilliant. Among these, the first place is unquestionably due to his New Theory of Vision; a work abounding with ideas so different from those commonly received, and, at the same time, so profound and refined, that it was regarded by all but a few accustomed to deep metaphysical reflection, rather in the light of a philosophical romance, than of a sober inquiry after truth. Such, however, has been since the progress and diffusion of this sort of knowledge, that the leading and most abstracted doctrines contained in it, form now an essential part of every elementary treatise of optics, and are adopted by the most superficial smatterers in science as fundamental articles of their faith.

Of a theory, the outlines of which cannot fail to be familiar to a great majority of my readers, it would be wholly superfluous to attempt any explanation here, even if it were consistent with the limits within which I am circumscribed. Suffice it to observe, that its chief aim is to distinguish the immediate and natural objects of sight from the seemingly instantaneous conclusions which experience and habit teach us to draw from them in our earliest infancy; or, in the more concise metaphysical language of a later period, to draw the line between the original and the acquired perceptions of the eye. They who wish to study it in detail, will find ample satisfaction, and, if they have any relish for such studies, an inexhaustible fund of entertainment, in Berkeley’s own short but masterly exposition of his principles, and in the excellent comments upon it by Smith of Cambridge; by Porterfield; by Reid; and, still more lately, by the author of the Wealth of Nations.

That this doctrine, with respect to the acquired perceptions of sight, was quite unknown to the best metaphysicians of antiquity, we have direct evidence in a passage of Aristotle’s Nicomachian Ethics, where he states the distinction between those endowments which are the immediate gift of nature, and those which are the fruit of custom and habit. In the former class, he ranks the perceptions of sense, mentioning particularly the senses of seeing and of hearing. The passage (which I have transcribed in a Note) is curious, and seems to me decisive on the subject.

The misapprehensions of the ancients on this very obscure question will not appear surprising, when it is considered, that forty years after the publication of Berkeley’s Theory of Vision, and sixty years after the date of Locke’s Essay, the subject was so imperfectly understood in France, that Condillac (who is, to this day, very generally regarded by his countrymen as the father of genuine logic and metaphysics) combated at great length the conclusions of the English philosophers concerning the acquired perceptions of sight; affirming that “the eye judges naturally of figures, of magnitudes, of situations, and of

1 By this excellent judge, Berkeley’s New Theory of Vision is pronounced to be “one of the finest examples of Philosophical Analysis that is to be found in our own, or any other language.”—(Essays on Philosophical Subjects. Lond. 1795, p. 215.)

2 Ου γάρ ἐν τοῦ σωλήνα μοι, ἐστὶν καὶ παντί τοι τούτου τίμησιν ἡμῶν, ἀλλ’ ἀνωτέρω, ἐκεῖνος ἐχεσάμενος, ἐπ’ ἐχεσάμενος ἐχεσάμενος. (Ethic. Nicon. Lib. ii. cap. 1.)

3 For it is not from seeing often, or from hearing often, that we get these senses; but, on the contrary, instead of getting them by using them, we use them because we have got them.”

Had Aristotle been at all aware of the distinction so finely illustrated by Berkeley, instead of appealing to the perceptions of these two senses, as instances of endowments coeval with our birth, he would have quoted them as the most striking of all examples of the effects of custom in apparently identifying our acquired powers with our original faculties.
Dissertation First.

165

without and following It a the Voltaire, on while We

It is difficult to suppose, that a person of mature years, who had read and studied Locke and Berkeley with as much care and attention as Condillac appears to have bestowed on them, should have reverted to this ancient and vulgar prejudice; without suspecting that his metaphysical depth has been somewhat overrated by the world. It is but justice, however, to Condillac to add, that, in a subsequent work, he had the candour to acknowledge and retract his error—a rare example of that disinterested love of truth, which is so becoming in a philosopher. I quote the passage (in a literal, though somewhat abridged version), not only to show, that, in the above statement, I have not misrepresented his opinion, but because I consider this remarkable circumstance in his literary history as a peculiarly amiable and honourable trait in his character.

"We cannot recall to our memory the ignorance in which we were born: It is a state which leaves no trace behind it. We only recollect our ignorance of those things, the knowledge of which we recollect to have acquired; and to remark what we acquire, some previous knowledge is necessary. That memory which now renders us so sensible of the step from one acquisition to another, cannot remount to the first steps of the progress; on the contrary, it supposes them already made; and hence the origin of our disposition to believe them connoted with ourselves. To say that we have learnt to see, to hear, to taste, to smell, to touch, appears a most extraordinary paradox. It seems to us that nature gave us the complete use of our senses the moment she formed them, and that we have always made use of them without study, because we are no longer obliged to study in order to use them. I retained these prejudices at the time I published my Essay on the Origin of Human Knowledge; the reasonings of Locke on a man born blind, to whom the sense of sight was afterwards given, did not undeceive me: and I maintained against this philosopher that the eye judges naturally of figures, of sizes, of situations, and of distances."—Nothing short of his own explicit avowal could have convinced me, that a writer of so high pretensions and of such unquestionable ingenuity as Condillac, had really commenced his metaphysical career under so gross and unaccountable a delusion.

In bestowing the praise of originality on Berkeley's Theory of Vision, I do not mean to say, that the whole merit of this Theory is exclusively his own. In this, as in most other cases, it may be presumed, that the progress of the human mind has been gradual: And, in point of fact, it will, on examination, be found, that Berkeley only took up the inquiry where Locke dropped it; following out his principles to their remoter consequences, and placing them in so great a variety of strong and happy lights, as to bring a doctrine till then understood but by a few, within the reach of every intelligent and attentive reader. For my own part, on comparing these two philosophers together, I am at a loss whether most to admire the powerful and penetrating sagacity of the one, or the fertility of invention displayed in the illustrations of the other. What can be more clear and forcible than the statement of Locke quoted in the Note below; and what an idea does it convey of his superiority to Condillac, when it is considered, that he anticipated à priori the same doctrine which was afterwards confirmed by the fine analysis of Berkeley, and demonstrated by the judicious experiments of Cheselden; while the

1 Voltaire, at an earlier period, had seized completely the scope of Berkeley's theory: and had explained it with equal brevity and precision, in the following passage of his Elements of the Newtonian Philosophy:—

4 Il faut absolument conclure, que les distances, les grandeurs, les situations ne sont pas, à proprement parler, des choses visibles, c'est à dire, ne sont pas les objets propres et immédiats de la vue. L'objet propre et immédiat de la vue n'est autre chose que la lumière colorée : tout le reste, nous le sentons qu'a la longue, et par expérience. Nous apprenons à voir, précisément comme nous apprenons à parler et à lire. La différence est, que l'art de voir est plus facile, et que la nature est également à tous notre maitre.

Les jugemens soudains, presque uniformes, que toutes nos âmes à un certain âge portent des distances, des grandeurs, des situations, nous font penser, qu'il n'y a qu'à ouvrir les yeux pour voir la manière dont nous voyons. On se trompe, il y faut le secours des autres sens. Si les hommes n'avaient que le sens de la vue, ils n'auraient aucun moyen pour connaissance l'étendue en longueur, largeur et profondeur, et un pur esprit ne la connaîtrait peut-être, à moins que Dieu ne la lui révèlit.—Phys. Newton, Chap. 2.
French, metaphysician, with all this accumulation of evidence before him, relapsed into a prejudice transmitted to modern times, from the very infancy of optical science. I believe it would be difficult to produce from any writer prior to Locke, an equal number of important facts relating to the intellectual phenomena, as well observed, and as unexceptionably described, as those which I have here brought under my reader’s eye. It must appear evident, besides, to all who have studied the subject, that Locke has, in this passage, enunciated, in terms the most precise and decided, the same general conclusion concerning the effect of constant and early habits, which it was the great object of Berkeley’s Theory of Vision to establish, and which, indeed, gives to that work its chief value, when considered in connection with the Philosophy of the Human Mind.

Berkeley himself, it is to be observed, by no means lays claim to that complete novelty in his Theory of Vision, which has been ascribed to it by many who, in all probability, derived their whole information concerning it from the traditional and inexact transcripts of book-making historians. In the introductory sentences of his Essay, he states very clearly and candidly the conclusions of his immediate predecessors on this class of our perceptions; and explains, with the greatest precision, in what particulars his own opinion differs from theirs. “It is, I think, agreed by all, that distance, of itself, cannot be seen. For distance being a line directed end-wise to the eye, it projects only one point in the fund of the eye, which point remains invariably the same, whether the distance be longer or shorter.

“I find it also acknowledged, that the estimate we make of the distance of objects considerably remote, is rather an act of judgment grounded on experience, than of sense. For example, when I perceive a great number of intermediate objects, such as houses, fields, rivers, and the like, which I have experienced to take

1 “We are farther to consider,” says Locke, “concerning perception, that the ideas we receive by sensation are often in grown people altered by the judgment, without our taking notice of it. When we set before our eyes a round globe, of any uniform colour, e.g. gold, alabaster, or jet, it is certain that the idea thereby imprinted in our mind is of a flat circle, variously shadowed, with several degrees of light and brightness coming to our eyes. But we having by use been accustomed to perceive what kind of appearance convex bodies are wont to make in us, what alterations are made in the reflections of light by the difference of the sensible figure of bodies; the judgment presently, by an habitual custom, alters the appearances into their causes, so that, from what truly is variety of shadow or colour, collecting the figure it makes it pass for a mark of figure, and frames to itself the perception of a convex figure, and an uniform colour; when the idea we receive from thence is only a plane variously coloured, as is evident in painting. * * * *

“But this is not, I think, usual in any of our ideas, but those received by sight;* because sight, the most comprehensive of all our senses, conveying to our minds the ideas of lights and colours, which are peculiar only to that sense; and also the far different ideas of space, figure, or motion, the several varieties whereof change the appearances of its proper objects, viz. light and colours, we bring ourselves by use to judge of the one by the other. This, in many cases, by a settled habit in our minds, whether we have frequent experience, is performed without notice, in thinking that we take that for the perception of our sensation, which is an idea formed by our judgment; so that one, viz. that of sensation, serves only to excite the other, and is scarce taken notice of itself: as a man who reads or hears with attention or understanding, takes little notice of the characters or sounds, but of the ideas that are excited in him by them.

“Nor need we wonder that it is done with so little notice, if we consider how very quick the actions of the mind are performed; for as it is thought to take up no space, to have no extension, so its actions seem to require no time, but many of them seem to be crowded into an instant. I speak this in comparison to the actions of the body. Any one may easily observe this in his own thoughts, who will take the pains to reflect on them. How, as it were in an instant, do our minds with one glance see all the parts of a demonstration, which may very well be called a long one, if we consider the time it will require to put it into words, and step by step show it to another? Secondly, we shall not be so much surprised that this is done in us with so little notice, if we consider how the faculty which we get of doing things by a custom of doing makes them often pass in us without our notice. HABITS, especially such as are begun very early, come at last to produce actions in us, which often escape our observations. How frequently do we in a day cover our eyes with our eye-lids, without perceiving that we are at all in the dark? Men that have by custom got the use of a by-word, do almost in every sentence pronounce sounds, which, though taken notice of by others, they themselves neither hear nor observe; and, therefore, it is not so strange, that our mind should often change the idea of its sensation into that of its judgment, and make one serve only to excite the other, without our taking notice of it.”—(Locke’s Works, Vol. I. p. 123, et seq.)

* Mr Locke might, however, have remarked something very similar to it in the perceptions of the ear; a very large proportion of its appropriate objects being ratherjudged of than actually perceived. In the rapidity (for example) of common conversation, how many syllables, and even words, escape the notice of the most attentive hearer; which syllables and words are so quickly supplied from the relation which they bear to the rest of the sentence, that it is quite impossible to distinguish between the audible and the inaudible sounds! A very palpable instance of this occurs in the difficulty experienced by the most acute ear in catching proper names or arithmetical sums, or words borrowed from unknown tongues, the first time they are pronounced.
up a considerable space; I thence form a judgment or conclusion, that the object I see beyond them is at a great distance. Again, when an object appears faint and small, which, at a near distance, I have experienced to make a vigorous and large appearance, I instantly conclude it to be far off. And this, 'tis evident, is the result of experience; without which, from the faintness and littleness, I should not have inferred anything concerning the distance of objects.

"But when an object is placed at so near a distance, as that the interval between the eyes bears any sensible proportion to it, it is the received opinion that the two optic axes, concurring at the object, do there make an angle, by means of which, according as it is greater or less, the object is perceived to be nearer or farther off."

"There is another way mentioned by the optic writers, whereby they will have us judge of those distances, in respect of which the breadth of the pupil hath any sensible bigness; and that is, the greater or less divergency of the rays, which, issuing from the visible point, do fall on the pupil; that point being judged nearest, which is seen by most diverging rays, and that remoter, which is seen by less diverging rays."

These (according to Berkeley) are the "common and current accounts" given by mathematicians of our perceiving near distances by sight. He then proceeds to show, that they are unsatisfactory; and that it is necessary, for the solution of this problem, to avail ourselves of principles borrowed from a higher philosophy: After which, he explains, in detail, his own theory concerning the ideas (sensations) which, by experience, become signs of distance; or (to use his own phraseology) "by which distance is suggested to the mind." The result of the whole is, that, "a man born blind, being made to see, would not at first have any idea of distance by sight. The sun and stars, the remotest objects as well as the nearest, would all seem to be in his Eye, or rather in his Mind."

From this quotation it appears, that, before Berkeley's time, philosophers had advanced greatly beyond the point at which Aristotle stopped, and towards which Condillac, in his first publication, made a retrograde movement. Of this progress some of the chief steps may be traced as early as the twelfth century in the Optics of Alhazen; and they may be perceived still more clearly and distinctly in various optical writers since the revival of letters; particularly in the Optica Promota of James Gregory. Father Malebranche went still farther, and even anticipated some of the metaphysical

1 For assisting persons unaccustomed to metaphysical studies to enter into the spirit and scope of Berkeley's Theory, the best illustration I know of is furnished by the phenomena of the Phantasmagoria. It is sufficient to hint at this application of these phenomena, to those who know anything of the subject.

2 The word suggest is much used by Berkeley, in this appropriate and technical sense, not only in his Theory of Vision, but in his Principles of Human Knowledge, and in his Minute Philosopher. It expresses, indeed, the cardinal principle on which his Theory of Vision hinges; and is now so incorporated with some of our best metaphysical speculations, that one cannot easily conceive how the use of it was so long dispensed with. Locke (in the passage quoted in the Note, p. 107.) uses the word excite for the same purpose; but it seems to imply an hypothesis concerning the mechanism of the mind, and by no means expresses the fact in question with the same force and precision.

3 It is remarkable, that Dr Reid should have thought it incumbent on him to apologise for introducing into philosophy a word so familiar to every person conversant with Berkeley's works. "I beg leave to make use of the word suggest, because I know not one more proper to express a power of the mind, which seems entirely to have escaped the notice of philosophers, and to which we owe many of our simple notions which are neither impressions nor ideas, as well as many original principles of belief. I shall endeavour to explain, by an example, what I understand by this word. We all know that a certain kind of sound suggests immediately to the mind a coach passing in the street; and not only produces the imagination, but the belief, that a coach is passing. Yet there is no comparing of ideas, no perception of agreements or disagreements to produce this belief; nor is there the least similitude between the sound we hear, and the coach we imagine and believe to be passing."

So far Dr Reid's use of the word coincides exactly with that of Berkeley; but the former will be found to annex to it a meaning more extensive than the latter, by employing it to comprehend not only those intimations which are the result of experience and habit, but another class of intimations (quite overlooked by Berkeley), those which result from the original frame of the human mind. "See Burn's Inquiry, chap. ii. sect. 57."

4 I request the attention of my readers to this last sentence, as I have little doubt that the fact here stated gave rise to the theory which Berkeley afterwards adopted, concerning the non-existence of the material world. It is not, indeed, surprising that a conclusion, so very curious with respect to the objects of sight, should have been, in the first ardour of discovery, too hastily extended to those qualities also which are the appropriate objects of touch.

5 See the end of Prop. 22.

reasonings of Berkeley concerning the means by which experience enables us to judge of the distances of near objects. In proof of this, it is sufficient to mention the explanation he gives of the manner in which a comparison of the perceptions of sight and of touch teaches us gradually to estimate by the eye the distances of all those objects which are within reach of our hands, or of which we are accustomed to measure the distance, by walking over the intermediate ground.

In rendering this justice to earlier writers, I have no wish to detract from the originality of Berkeley. With the single exception, indeed, of the passage in Malebranche which I have just referred to, and which it is more than probable was unknown to Berkeley when his theory first occurred to him,¹ I have ascribed to his predecessors nothing more than what he has himself explicitly acknowledged to belong to them. All that I wished to do was, to supply some links in the historical chain, which he has omitted.

The influence which this justly celebrated work has had, not only in perfecting the theory of optics, but in illustrating the astonishing effects of early habit on the mental phenomena in general, will sufficiently account to my intelligent readers for the length to which the foregoing observations upon it have extended.

Next in point of importance to Berkeley's New Theory of Vision, which I regard as by far the most solid basis of his philosophical fame, may be ranked his speculations concerning the Objects of General Terms, and his celebrated argument against the existence of the Material World. On both of these questions I have elsewhere explained my own ideas so fully, that it would be quite superfluous for me to resume the consideration of them here.² In neither instance are his reasonings so entirely original as has been commonly supposed. In the former, they coincide in substance, although with immense improvements in the form, with those of the scholastic nominalists, as revived and modified by Hobbes and Leibnitz. In the latter instance, they amount to little more than an ingenious and elegant development of some principles of Malebranche, pushed to certain paradoxical but obvious consequences, of which Malebranche, though unwilling to avow them, appears to have been fully aware. These consequences, too, had been previously pointed out by Mr Norris, a very learned divine of the church of England, whose name has unaccountably failed in obtaining that distinction to which his acuteness as a logician, and his boldness as a theorist, justly entitled him!³

The great object of Berkeley, in maintaining his system of idealism, it may be proper to remark in passing, was to cut up by the roots the scheme of materialism. " Matter (he tells us himself) being once expelled out of nature, drags with it so many sceptical and impious notions. * * * * Without it your Epicureans, Hobbists, and the like, have not even the shadow of a pretence, but become the most cheap and easy triumph in the world.”

Not satisfied with addressing these abstract speculations to the learned, Berkeley conceived them to be of such moment to human happiness, that he resolved to bring them, if possible, within the reach of a wider circle of readers, by throwing them into the more popular and amusing form of dialogues.⁴ The skill with which

¹ Berkeley's Theory was published when he was only twenty-five; an age when it can scarcely be supposed that his metaphysical reading had been very extensive.
² See Philosophical Essays.
³ Another very acute metaphysician of the same church (Arthur Collier, author of a Demonstration of the Non-existence and Impossibility of an External World) has met with still greater injustice. His name is not to be found in any of our Biographical Dictionaries. In point of date, his publication is some years posterior to that of Norris, and therefore it does not possess the same claims to originality; but it is far superior to it in logical closeness and precision, and is not obscured to the same degree with the mystical theology which Norris (after the example of Malebranche) connected with the scheme of Idealism. Indeed, when compared with the writings of Berkeley himself, it yields them less in force of argument, than in composition and variety of illustration. The title of Collier's book is "Clavis Universalis, or a New Inquiry after Truth, being a Demonstration, &c. &c. By Arthur Collier, Rector of Langford Magna, near Sarum. (Lond. printed for Robert Gosling, at the Mitre and Crown, against St Dunstan's Church, Fleet Street, 1713.)" The motto prefixed by Collier to his work is from Malebranche, and is strongly characteristic both of the English and French Inquirers after Truth. "Vulgis asseveras et approbatas circa materiae dilectionem certum argumentum falsitate istius opinionis cui assentitur." (Maleb. De Inquir. Verit. Lib. iii. p. 194.) See Note S.S.
⁴ I allude here chiefly to Aleiphron, or the Minute Philosopher; for as to the dialogues between Hylas and Philonous, they aspire to no higher merit than that of the common dialogues between A and B; being merely a compendious way of stating and of obviating the principal objections which the author anticipated to his opinions.
he has executed this very difficult and unpro-
mising task cannot be too much admired. The
characters of his speakers are strongly marked
and happily contrasted; the illustrations exhibit
a singular combination of logical subtlety and of
poetical invention; and the style, while it every-
where abounds with the rich, yet sober colour-
ings of the author's fancy, is perhaps superior,
in point of purity and of grammatical correctness, to any English composition of an earlier
date.

The impression produced in England by
Berkeley's Idealism was not so great as might
have been expected; but the novelty of his pa-
rodaxes attracted very powerfully the attention
of a set of young men who were then prose-
cuting their studies at Edinburgh, and who
formed themselves into a society for the express
purpose of soliciting from the author an expla-
nation of some parts of his theory which seemed
to them obscurely or equivocally expressed. To
this correspondence the amiable and excellent
prelate appears to have given every encourage-
ment; and I have been told by the best author-
ity, that he was accustomed to say, that his
reasonings had been nowhere better understood
than by this club of young Scotsmen.

The inge-
nuous Dr Wallace, author of the Discourse on
the Numbers of Mankind, was one of the leading
members; and with him were associated several
other individuals whose names are now well
known and honourably distinguished in the
learned world. Mr Hume's Treatise of Human
Nature, which was published in 1739, affords
sufficient evidence of the deep impression which
Berkeley's writings had left upon his mind; and
to this juvenile essay of Mr Hume's may be
traced the origin of the most important meta-
physical works which Scotland has since pro-
duced.

It is not, however, my intention to prosecute
further, at present, the history of Scottish phi-
losophy. The subject may be more convenient-
ly, and I hope advantageously resumed, after a
slight review of the speculations of some Eng-
lish and French writers, who, while they pro-
fessed a general acquiescence in the doctrines
of Locke, have attempted to modify his funda-
mental principles in a manner totally incon-
sistent with the views of their master. The re-
marks which I mean to offer on the modern
French school will afford me, at the same time,
a convenient opportunity of introducing some
strictures on the metaphysical systems which
have of late prevailed in other parts of the Con-
tinent.

SECTION V.

Harleian School.

The English writers to whom I have alluded
in the last paragraph, I shall distinguish by the
title of Dr Hartley's School; for although I by
no means consider this person as the first author
of any of the theories commonly ascribed to him
(the seeds of all of them having been previously
sown in the university where he was educated),

1 Dr Warton, after bestowing high praise on the Minute Philosopher, excepts from his encomium "those passages in the fourth dialogue, where the author has introduced his fanciful and whimsical opinions about vision."—(Essay on the Writings and Genius of Pope, Vol. II. p. 204.)—If I were called on to point out the most ingenious and original part of the whole work, it would be the argument contained in the passages here so contemptuously alluded to by this learned and (on all questions of taste) most respectable critic.

2 The authority I here allude to is that of my old friend and preceptor, Dr John Stevenson, who was himself a member of the Rankenian Club, and who was accustomed for many years to mention this fact in his Academical Prelections.
seems to have been chiefly instrumental in preparing the way for a schism among Locke’s disciples. The name of Law was first known to the public by an excellent translation, accompanied by many learned, and some very judicious, notes, of Archbishop King’s work on the Origin of Evil; a work of which the great object was to combat the Optimism of Leibnitz, and the Manicheism imputed to Bayle. In making this work more generally known, the translator certainly rendered a most acceptable and important service to the world, and, indeed, it is upon this ground that his best claim to literary distinction is still founded. In his own original speculations, he is weak, paradoxical, and oracular; affecting, on all occasions, the most profound veneration for the opinions of Locke, but much more apt to attach himself to the errors and oversights of that great man, than to enter into the general spirit of his metaphysical philosophy.

To this translation, Dr Law prefixed a Dissertation concerning the Fundamental Principle of Virtue, by the Reverend Mr. Gay: a performance of considerable ingenuity, but which would now be entitled to little notice, were it not for the influence it appears to have had in suggesting to Dr Hartley the possibility of accounting for all our intellectual pleasures and pains, by the single principle of the Association of Ideas. We are informed by Dr Hartley himself, that it was in consequence of hearing some account of the contents of this dissertation, he was first led to engage in those inquiries which produced his celebrated Theory of Human Nature.

The other principle on which this theory proceeds (that of the vibrations and vibrationes in the medullary substance of the brain) is also of Cambridge origin. It occurs in the form of a query in Sir Isaac Newton’s Optics; and a distinct allusion to it, as a principle likely to throw new light on the phenomena of mind, is to be found in the concluding sentence of Smith’s Harmonies.

Very nearly about the time when Hartley’s Theory appeared, Charles Bonnet of Geneva published some speculations of his own, proceeding almost exactly on the same assumptions. Both writers speak of vibrations (ébranlements) in the nerves; and both of them have recourse to a subtle and elastic ether, co-operating with the nerves in carrying on the communication between soul and body. This fluid Bonnet conceived to be contained in the nerves, in a manner analogous to that in which the electric fluid is contained in the solid bodies which conduct it; differing in this respect from the Cartesianians as well as from the ancient physiologists, who considered the nerves as hollow tubes or pipes, within which the animal spirits were included. It is to this elastic ether that Bonnet ascribes the vibrations of which he supposes the nerves to be susceptible; for the nerves themselves (he justly observes) have no resemblance to the stretched cords of a musical instrument.

1 King’s argument in proof of the prevalence in this world, both of Natural and Moral Good, over the corresponding Evils, has been much and deservedly admired; nor are Law’s Notes upon this head entitled to less praise. Indeed, it is in this part of the work that both the author and his commentator appear, in my opinion, to the greatest advantage.

2 As instances of this I need only refer to the first and third of his Notes on King; the former of which relates to the word substance; and the latter to the dispute between Clarke and Leibnitz concerning space. His reasonings on both subjects are obscured by an affected use of hard and unmeaning words, ill becoming so devoted an admirer of Locke. The same remark may be extended to an Inquiry into the Ideas of Space and Time, published by Dr Law in 1734.

The result of Law’s speculations on Space and Time is thus stated by himself: “That our ideas of them do not imply any external ideaus or objective reality; that these ideas (as well as those of infinity and number) are universal or abstract ideas, existing under that formally no where but in the mind; nor affording a proof of any thing, but of the power which the mind has to form them.”—(Law’s Trans. of King, p. 7. 4th edit.) This language, as we shall afterwards see, approaches very nearly to that lately introduced by Kant. Dr Law’s favourite author might have cautioned him against such jargon.

(See Essay on the Human Understanding, Book II. Chap. xiii. § 17, 18.)

The absurd application of the scholastic word substance to empty space: an absurdity in which the powerful mind of Gravesande acquiesced many years after the publication of the Essay on Human Understanding, has probably contributed not a little to force some authors into the opposite extreme of maintaining, with Leibnitz and Dr Law, that our idea of space does not imply any external ideaus or objective reality. Gravesande’s words are these: “Substantiae sunt aut cogitantes, aut non cogitantes; cogitantes duas novimus, Deum et Mentem nostram; praeter has et alias dari in dubium non revocamus. Due etiam substantiae, quae non cogitant, nobis note sunt Spatium et Corpus.”—Gravesande, Introduct. ad Philosophiam, § 19.

3 Essai Analytique de l’Amé, Chap. v. See also the additional notes on the first chapter of the seventh part of the Contemplation de la Nature.

4 Mais les ners sont mous, ils ne sont point tendus comme les cordes d’un instrument; les objets y exciteroient-ils done.
Hartley's *Theory* differs in one respect from this, as he speaks of vibrations and vibrationelles in the medullary substance of the brain and nerves. He agrees, however, with Bonnet, in thinking, that to these vibrations in the nerves the co-operation of the ether is essentially necessary; and, therefore, at bottom the two hypotheses may be regarded as in substance the same. As to the trifling shade of difference between them, the advantage seems to me to be in favour of Bonnet.

Nor was it only in their Physiological Theories concerning the nature of the union between soul and body, that these two philosophers agreed. On all the great articles of metaphysical theology, the coincidence between their conclusions is truly astonishing. Both held the doctrine of Necessity in its fullest extent; and both combined with it a vein of mystical devotion, setting at defiance the creeds of all established churches. The intentions of both are allowed, by those who best knew them, to have been eminently pure and worthy; but it cannot be said of either, that his metaphysical writings have contributed much to the instruction or to the improvement of the public. On the contrary, they have been instrumental in spreading a set of speculative tenets very nearly allied to that sentimental and fanatical modification of Spinozism, which, for many years past, has prevailed so much, and produced such mischievous effects in some parts of Germany. But it is chiefly by his application of the associating principle to account for all the mental phenomena, that Hartley is known to the world; and upon this I have nothing to add to what I have already stated in another work.—*(Phil. Essays, Essay IV.*)—His Theory seems to be already fast passing into oblivion; the temporary popularity which it enjoyed in this country having, in a great measure, ceased with the life of its zealous and indefatigable apostle Dr Priestley.*

It would be unfair, however, to the translator of Archbishop King, to identify his opinions with those of Hartley and Priestley. The zeal with which he contends for man's free agency is sufficient, of itself, to draw a strong line of distinction between his Ethical System and theirs.—*(See his Notes on King, passim.*)—But I must be allowed to say of him, that the general scope of his writings tends, in common with that of the two other metaphysicians, to depreciate the evidences of Natural Religion, and more especially to depreciate the evidences which the light of nature affords of a life to come;—

les vibrations analogiques à celle d'une corde pincée ? Ces vibrations se communiquèrent-elles à l'instant au sigle de l'âme ? La chose parut difficile à concevoir. Mais si l'on admet dans les nerfs un fluide dont la subtilité et l'élasticité approche de celle de la lumière ou de l'éther, on expliquera facilement par le secours de ce fluide, et la célérité avec laquelle les impressions se communiquent à l'âme, et celle avec laquelle l'âme exécute tant d'opérations différentes.*—*(Essai Anal. Chap. v.*)

"Au reste, les physiologistes qui avaient cru que les filets nerveux étoient solides, avoient cédé à des apparences trompeuses. Ils voulaient d'ailleurs faire osciller les nerfs pour rendre raison des sensations, et les nerfs ne peuvent osciller. Ils sont mous, et nullement diastiques. Un nerf coupé ne se retire point. C'est le fluide invisible que les nerfs renferment, qui est de cette élasticté qu'on leur attribuoit, et d'une plus grande élasticté encore."—*(Contemp. de la Nature, VII. Partie, Chap. 1. Note at the end of the chapter.)

M. Quennal, the celebrated author of the *Economical System*, has expressed himself to the same purpose concerning the supposed vibrations of the nerves: "Plusieurs physiciens ont pensé que les seuls ébranlements des nerfs, causé par les objets qui touchent les organes des corps, suffisent pour occasionner le mouvement et le sentiment dans les parties où les nerfs sont ébranlés. Ils se représentent les nerfs comme des cordes fort tendus, qu'un léger contact met en vibration dans toute leur étendue. Des philosophes, peu instruits en anatomie, ont pu se former un telle idée. . . . Mais cette tension qu'on suppose dans les nerfs, et qui les rend si susceptibles d'ébranlement et de vibration, est si grossièrement imaginaire qu'il serait ridicule de s'occuper sérieusement de la refuter." *(Essai Animale, sect. 3. c. 13.)*

As this passage from Quennal is quoted by Condillac, and sanctioned by his authority *(Traité des Animaux, Chap. iii.)*, it would appear that the hypothesis which supposes the nerves to perform their functions by means of vibrations was going fast into discredit, both among the metaphysicians and the physiologists of France, at the very time when it was beginning to attract notice in England, in consequence of the visionary speculations of Hartley.*

* In a letter which I received from Dr Parr, he mentions a treatise of Dr Hartley's which appeared about a year before the publication of his great work; to which it was meant by the author to serve as a precursor. Of this rare treatise I had never before heard. "You will be astonished to hear," says Dr Parr, "that in this book, instead of the doctrine of necessity, Hartley openly declares for the indifference of the will, as maintained by Archbishop King." We are told by Hartley himself that his notions upon necessity grew upon him while he was writing his observations upon man; but it is curious (as Dr Parr remarks), that in the course of a year, his opinions on so very essential a point should have undergone a complete change.

* Dr Priestley's opinion of the merits of Hartley's work is thus stated by himself:—"Something was done in this field of knowledge by Descartes, very much by Mr Locke, but most of all by Dr Hartley, who has thrown more useful light upon the theory of the mind, than Newton did upon the theory of the natural world."—*(Remarks on Reid, Beattie, and Oswald, p. 2. Part. ii. London, 1774.)*
"a doctrine equally necessary to comfort the weakness, and to support our lofty ideas of the grandeur of human nature;" and of which it seems hard to confine exclusively the knowledge to that portion of mankind who have been favoured with the light of Revelation. The influence of the same fundamental error, arising, too, from the same mistaken idea, of thus strengthening the cause of Christianity, may be traced in various passages of the posthumous work of the late Bishop of Llandaff. It is wonderful that the reasonings of Clarke and of Butler did not teach these eminent men a sounder and more consistent logic; or, at least, open their eyes to the inevitable consequences of the rash concessions which they made to their adversaries.

Among the disciples of Law, one illustrious exception to these remarks occurs in Dr Paley, whose treatise on Natural Theology is unquestionably the most instructive as well as interesting publication on that subject which has appeared in our times. As the book was intended for popular use, the author has wisely avoided, as much as possible, all metaphysical discussions; but I do not know that there exists any other work where the argument from final causes is placed in so great a variety of pleasing and striking points of view.

SECTION VI.

Condillac, and other French Metaphysicians of a later date.

While Hartley and Bonnet were indulging their imagination in theorising concerning the nature of the union between soul and body, Condillac was attempting to draw the attention of his countrymen to the method of studying the phenomena of Mind recommended and exemplified by Locke. Of the vanity of expecting to illustrate, by physiological conjectures,
the manner in which the intercourse between
the thinking principle and the external world is
carried on, no philosopher seems ever to have
been more completely aware; and, accordingly,
he confines himself strictly, in all his researches
concerning this intercourse, to an examination
of the general laws by which it is regulated.
There is, at the same time, a remarkable coin-
cidence between some of his views and those of
the other two writers. All of the three, while
they profess the highest veneration for Locke,
have abandoned his account of the origin of our
ideas for that of Gassendi; and, by doing so,
have, with the best intentions, furnished arms
against those principles which it was their com-
mon aim to establish in the world.1 It is much
to be regretted, that by far the greater part of
those French writers who have since speculated
about the human mind, have acquired the whole
of their knowledge of Locke's philosophy through
this mistaken comment upon its fundamental
principle. On this subject I have already ex-
hausted all that I have to offer on the effect of
Condillac's writings; and I flatter myself have
sufficiently shown how widely his commentary
differs from the text of his author. It is this
commentary, however, which is now almost
universally received on the Continent as the
doctrine of Locke, and which may justly be re-
garded as the sheet-anchor of those systems
which are commonly stigmatised in England
with the appellation of French philosophy. Had
Condillac been sufficiently aware of the con-
sequences which have been deduced (and I must
add logically deduced) from his account of the
origin of our knowledge, I am persuaded, from
his known candour and love of truth, that he
would have been eager to acknowledge and to
retract his error.

In this apparent simplification and generali-
sation of Locke's doctrine, there is, it must be
acknowledged, something, at first sight, ex-
tremely seducing. It relieves the mind from
the painful exercise of abstracted reflection, and
amuses it with analogy and metaphor when it
looked only for the severity of logical discus-
sion. The clearness and simplicity of Condil-
lac's style add to the force of this illusion, and
flatter the reader with an agreeable idea of the
powers of his own understanding, when he finds
himself so easily conducted through the darkest
labyrinths of metaphysical science. It is to this
cause I would chiefly ascribe the great popu-
lariry of his works. They may be read with as
little exertion of thought as a history or a novel;
and it is only when we shut the book, and at-
tempt to express in our own words the sub-
stance of what we have gained, that we have the
mortification to see our supposed acquisitions
vanish into air.

The philosophy of Condillac was, in a more
peculiar manner, suited to the taste of his own
country, where (according to Mad. de Stael)
"few read a book but with a view to talk of
it."2 Among such a people, speculations which
are addressed to the power of reflection can
never expect to acquire the same popularity
with theories expressed in a metaphorical lan-

1 Condillac's earliest work appeared three years before the publication of Hartley's Theory. It is entitled, "Essai sur
l'Origine des Connoissances Humaines. Ouvrage où l'on réduit à un seul principe tout ce qui concerne l'entendement humain." This
seul principe is the association of ideas. The account which both authors give of the transformation of sensations into ideas
is substantially the same.

2 "En France, on ne lit guère un ouvrage que pour en parler."—(Allemande, Tom. I. p. 292.) The same remark, I am
much afraid, is becoming daily more and more applicable to our own island.
guage, and constantly recalling to the fancy the impressions of the external senses. The state of society in France, accordingly, is singularly unfavourable to the inductive philosophy of the human mind; and of this truth no proof more decisive can be produced, than the admiration with which the metaphysical writings of Condillac have been so long regarded.

On the other hand, it cannot be denied that Condillac has, in many instances, been eminently successful, both in observing and describing the mental phenomena; but, in such cases, he commonly follows Locke as his guide; and, wherever he trusts to his own judgment, he seldom fails to wander from his way. The best part of his works relates to the action and reaction of thought and language on each other, a subject which had been previously very profoundly treated by Locke, but which Condillac has had the merit of placing in many new and happy points of view. In various cases, his conclusions are pushed too far, and in others are expressed without due precision; but, on the whole, they form a most valuable accession to this important branch of logic; and (what not a little enhances their value) they have been instrumental in recommending the subject to the attention of other inquirers, still better qualified than their author to do it justice.

In the speculation, too, concerning the origin and the theoretical history of language, Condillac was one of the first who made any considerable advances; nor does it reflect any discredit on his ingenuity, that he has left some of the principal difficulties connected with the inquiry very imperfectly explained. The same subject was soon after taken up by Mr Smith, who, I think, it must be owned, has rather slurred over these difficulties, than attempted to remove them; an omission on his part the more remarkable, as a very specious and puzzling objection had been recently stated by Rousseau, not only to the theory of Condillac, but to all speculations which have for their object the solution of the same problem. "If language" (says Rousseau) "be the result of human convention, and if words be essential to the exercise of thought, language would appear to be necessary for the invention of language." ¹—

"But" (continues the same author) "when, by means which I cannot conceive, our new grammarians began to extend their ideas, and to generalise their words, their ignorance must have confined them within very narrow bounds.

. How, for example, could they imagine or comprehend such words as matter, mind, substance, mode, figure, motion, since our philosophers, who have so long made use of them, scarcely understand them, and since the ideas attached to them, being purely metaphysical, can have no model in nature?"

"I stop at these first steps" (continues Rousseau), "and intreat my judges to pause, and consider the distance between the easiest part of language, the invention of physical substantives, and the power of expressing all the thoughts of man, so as to speak in public, and influence society. I entreat them to reflect upon the time and knowledge it must have required to discover numbers, abstract words, aorists, and all the tenses of verbs, particles, syntax, the art of connecting propositions and arguments, and how to form the whole logic of discourse. As for myself, alarmed at these multiplying difficulties, and convinced of the almost demonstrable impossibility of language having been formed and established by means merely human, I leave to others the discussion of the problem, 'Whether a society already formed was more necessary for the institution of language, or a language already invented for the establishment of society?'"

Of the various difficulties here enumerated, that mentioned by Rousseau, in the last sentence, was plainly considered by him as the greatest of all; or rather as comprehending under it all

¹ That men never could have invented an artificial language, if they had not possessed a natural language, is an observation of Dr Reid's; and it is this indisputable and self-evident truth which gives to Rousseau's remark that imposing plausibility, which, at first sight, dazzles and perplexes the judgment. I by no means say, that the former proposition affords a key to all the difficulties suggested by the latter; but it advances us at least one important step towards their solution.

² Discours sur l'Origine et les Fondements de l'Inégalité parmi les Hommes.
the rest. But this difficulty arises merely from his own peculiar and paradoxical theory about the artificial origin of society; a theory which needs no refutation, but the short and luminous aphorism of Montesquieu, that "a man is born in society, and there he remains." The other difficulties touched upon by Rousseau, in the former part of this quotation, are much more serious, and have never yet been removed in a manner completely satisfactory: And hence some very ingenious writers have been led to conclude, that language could not possibly have been the work of human invention. This argument has been lately urged with much acuteness and plausibility by Mr Magee of Dublin, and by M. de Bonald of Paris. It may, however, be reasonably questioned, if these philosophers would not have reasoned more logically, had they contented themselves with merely affirming, that the problem has not yet been solved, without going so far as to pronounce it to be absolutely insolvable. For my own part, when I consider its extreme difficulty, and the short space of time during which it has engaged the attention of the learned, I am more disposed to wonder at the steps which have been already gained in the research, than at the number of desiderata which remain to employ the ingenuity of our successors. It is justly remarked by Dr Ferguson, that, "when language has attained to that perfection to which it arrives in the progress of society, the speculative mind, in comparing the first and the last stages of the progress, feels the same sort of amazement with a traveller, who, after rising insensibly on the slope of a hill, comes to look down from a precipice, to the summit of which he scarcely believes he could have ascended without supernatural aid."

With respect to some of the difficulties pointed out by Rousseau and his commentators, it may be here remarked in passing (and the observation is equally applicable to various passages in Mr Smith's dissertation on the same subject), that the difficulty of explaining the theory of any of our intellectual operations affords no proof of any difficulty in applying that operation to its proper practical purpose; nor is the difficulty of explaining the metaphysical nature of any part of speech a proof, that, in its first origin, it implied any extraordinary effort of intellectual capacity. How many metaphysical difficulties might be raised about the mathematical notion of a line? And yet this notion is perfectly comprehended by every peasant, when he speaks of the distance between two places; or of the length, breadth, or height of his cottage. In like manner, although it may be difficult to give a satisfactory account of the origin and import of such words as of or by, we ought not to conclude, that the invention of them implied any metaphysical knowledge in

1 The same theory has been extended to the art of writing; but if this art was first taught to man by an express revelation from Heaven, what account can be given of its present state in the great empire of China? Is the mode of writing practised there of divine, or of human origin?

2 Principles of Moral and Political Science, Vol. I. p. 43. Edin. 1792. To this observation may be added, by way of comment, the following reflections of one of the most learned prelates of the English church:—"Man, we are told, had a language from the beginning; for he conversed with God, and gave to every animal its particular name. But how came man by language? He must either have had it from inspiration, ready formed from his Creator, or have derived it by the exertion of those faculties of the mind, which were implanted in him as a rational creature, from natural and external objects with which he was surrounded. Scripture is silent on the means by which it was acquired. We are not, therefore, warranted to affirm, that it was received by inspiration, and there is no internal evidence in language to lead us to such a supposition. On this side, then, of the question, we have nothing but uncertainty; but on a subject, the causes of which are so remote, nothing is more convenient than to refer them to inspiration, and to recur to that easy and comprehensive argument, that is, man enjoyed the great privilege of speech, which distinguished him at first, and still continues to distinguish him as a rational creature, so eminently from the brute creation, without exerting those reasoning faculties, by which he was in other respects enabled to raise himself so much above their level. Inspiration, then, seems to have been an argument adopted and made necessary by the difficulty of accounting for it otherwise; and the name of inspiration carries with it an awfulness, which forbids the unhallowed approach of inquisitive discussion."—(Essay on the Study of Antiquities, by Dr Burness, 2d edit. Oxford, 1783. Pp. 83, 84.)

It is farther remarked very sagaciously, and I think very decisively, by the same author, that "the supposition of man having received a language ready formed from his Creator, is actually inconsistent with the evidence of the origin of our ideas, which exists in language. For, as the origin of our ideas is to be traced in the words through which the ideas are conveyed, so the origin of language is referable to the source from whence our (first) ideas are derived, namely, natural and external objects."—(Ibid. pp. 63, 84.)
the individual who first employed them. Their import, we see, is fully understood by children of three or four years of age.

In this view of the History of Language I have been anticipated by Dr. Ferguson. "Parts of speech" (says this profound and original writer), which, in speculation, cost the grammarian so much study, are, in practice, familiar to the vulgar. The rudest tribes, even the idiot and the insane, are possessed of them. They are soonest learned in childhood, insomuch that we must suppose human nature, in its lowest state, competent to the use of them; and, without the intervention of uncommon genius, mankind, in a succession of ages, qualified to accomplish in detail this amazing fabric of language, which, when raised to its height, appears so much above what could be ascribed to any simultaneous effort of the most sublime and comprehensive abilities."

It is, however, less in tracing the first rudiments of speech, than in some collateral inquiries concerning the genius of different languages, that Condillac's ingenuity appears to advantage. Some of his observations, in particular, on the connection of natural signs with the growth of a systematical prosody, and on the imitative arts of the Greeks and Romans, as distinguished from those of the moderns, are new and curious; and are enlivened with a mixture of historical illustration, and of critical discussion, seldom to be met with among metaphysical writers.

But through all his researches, the radical error may, more or less, be traced, which lies at the bottom of his system; and hence it is,

1 In this remark I had an eye to the following passage in Mr. Smith's dissertation:—"It is worth while to observe, that those propositions, which, in modern languages, hold the place of the ancient cases, are, of all others, the most general, and abstract, and metaphysical; and, of consequence, would probably be the last invented. Ask any man of common acuteness, what relation is expressed by the proposition above? He will readily answer, that of superiority. By the proposition below: He will as quickly reply, that of inferiority. But ask him what relation is expressed by the proposition of and, if he has not beforehand employed his thoughts a good deal upon these subjects, you may safely allow him a week to consider of his answer."

2 The following judicious reflections, with which M. Raynouard concludes the introduction to his Éléments de la Langue Romane, may serve to illustrate some of the above observations. The modification of an existing language is, I acknowledge, a thing much less wonderful than the formation of a language entirely new; but the processes of thought, it is reasonable to think, are, in both cases, of the same kind; and the consideration of the one is at least a step gained towards the elucidation of the other.

"La langue Romane est peut-être la seule à la formation de laquelle il soit permis de remonter ainsi, pour découvrir et expliquer le secret de son industrieux mécanisme. . . . J'ose dire que l'esprit philosophique, consulté sur le choix des moyens qui devraient épargner à l'ignorance beaucoup d'études penibles et longues, n'eût pas été aussi heureux que l'ignorance elle-même; il est vrai qu'elle avoit deux grands maîtres; la Nécessité et le Temps.

"En considérant à quelle époque d'ignorance et de barbarie s'est formé et perfectionné ce nouvel idiomme, d'après des principes indiqués seulement par l'analogie et l'éphorine, on se dira peut-être comme je me suis dit; l'homme porte en son-même les principes d'une logique naturelle, d'un instinct régulateur, que nous admirons quelquefois dans les enfants. Ôui, la Providence nous a doté de la faculté indestroctible et des moyens ingénieux d'exprimer, de communiquer, d'éterniser par la parole, et par les signes permanens où elle se reproduit, cette pensée qui est l'un de nos plus beaux attributs, et qui nous distingue si clairement et si avantageusement dans l'ordre de la création."

In the theoretical history of language, it is more than probable, that some steps will remain to exercise the ingenuity of our latest posterity. Nor will this appear surprising, when we consider how impossible it is for us to judge, from our own experience, of the intellectual processes which pass in the minds of savages. Some instincts, we know, possessed both by them and by infants (that of imitation, for example, and the use of natural signs), disappear in by far the greater number of individuals, almost entirely in the maturity of their reason. It does not seem at all improbable, that other instincts connected with the invention of speech, may be confined to that state of the intellectual powers which requires their guidance: nor is it quite impossible, that some latent capacities of the understanding may be evolved by the pressure of necessity. The facility with which infants surround so many grammatical and metaphysical difficulties, seems to me to add much weight to these conjectures.

In tracing the first steps of the invention of language, it ought never to be forgotten, that we undertake a task more similar than might at first be supposed, to that of tracing the first operations of the infant mind. In both cases, we are apt to attempt an explanation from reason alone, of what requires the co-operation of very different principles. To trace the theoretical history of geometry, in which we know for certain, that all the transitions have depended on reasoning alone, is a problem which has not yet been completely solved. Nor has even any satisfactory account been hitherto given of the experimental steps by which men were gradually led to the use of iron. And yet how simple are these problems, when compared with that relating to the origin and progressive language?

A remarkable instance of this occurs in that part of Condillac's Cours d'Étude, where he treats of the art of writing:—"Vous savez, Monsieur, comment les mèmes noms ont été transportés des objets qui tombent sous les sens à ceux qui les échappent. Vous avez remarqué, qu'il y en a qui sont encore en usage dans l'un et l'autre acceptation, et qu'il y en a qui sont devenus les noms propres des choses, dont ils avaient d'abord été les signes figurés.

Les premiers, tel que le mouvement de l'âme, son penchant, sa réflexion, donnent un corps à des choses qui n'en ont pas. Les seconds, tels que la pensée, la volonté, le désir, ne sont plus rien, et laissent aux idées abstraites cette spiritualité qui les dérobe aux sens. Mais si le langage doit être l'image de nos pensées, on a perdu beaucoup, lorsqu'oublait la pre-
that, with all his skill as a writer, he never elevates the imagination, or touches the heart. That he wrote with the best intentions, we have satisfactory evidence; and yet hardly a philosopher can be named, whose theories have had more influence in misleading the opinions of his contemporaries. 1 In France, he very early attained to a rank and authority not inferior to those which have been so long and so deservedly assigned to Locke in England; and even in this country, his works have been more generally read and admired, than those of any foreign metaphysician of an equally recent date. The very general sketches to which I am here obliged to confine myself, do not allow me to take notice of various contributions to metaphysical science, which are to be collected from writers professedly intent upon other subjects. I must not, however, pass over in silence the name of Buffon, who, in the midst of those magnificent views of external nature, which the peculiar character of his eloquence fitted him so admirably to delineate, has frequently indulged himself in ingenious discussions concerning the faculties both of men and of brutes. His subject, indeed, led his attention chiefly to man, considered as an animal; but the peculiarities which the human race exhibit in their physical condition, and the manifest reference which these bear to their superior rank in the creation, unavoidably engaged him in speculations of a higher aim, and of a deeper interest. In prosecuting these, he has been accused (and perhaps with some justice) of ascribing too much to the effects of bodily organisation on the intellectual powers; but he leads his reader in so pleasing a manner from matter to mind, that I have no doubt he has attracted the curiosity of many to metaphysical inquiries, who would never otherwise have thought of them. In his theories concerning the nature of the brutes, he has been commonly considered as leaning to the opinion of Descartes; but I cannot help thinking, without any good reason. Some of his ideas on the complicated operations of insects appear to me just and satisfactory; and while they account for the phenomena, without ascribing to the animal any deep or comprehensive knowledge, are far from degrading him to an insentient and unconscious machine.

In his account of the process by which the use of our external senses (particularly that of sight) is acquired, Buffon has in general follow-

1 A late writer (M. de Bonald), whose philosophical opinions, in general, agree nearly with those of La Harpe, has, however, appreciated very differently, and, in my judgment, much more sagaciously, the merits of Condillac: "Condillac a eu sur l'esprit philosophique du dernier siècle, l'influence que Voltaire a prise sur l'esprit religieux, et J. J. Rousseau sur les opinions politiques. Condillac a mis de la sécheresse et de la minutie dans les esprits; Voltaire du penchant à la raillerie et à la frivolité; Rousseau les a rendus chargeurs et mécontents Condillac a encore plus faussé l'esprit de la nation, parce que sa doctrine était enseignée dans les premières études à des jeunes gens qui n'avaient encore lui ni Rousseau ni Voltaire, et que la manière de raisonner et la direction philosophique de l'esprit s'étendent à tout." (Recherches Phil. Tome I. pp. 187, 188.)
ed the principles of Berkeley; and, notwithstanding some important mistakes which have escaped him in his applications of these principles, I do not know that there is anywhere to be found so pleasing or so popular an exposition of the theory of vision. Nothing certainly was ever more finely imagined, than the recital which he puts into the mouth of our first parent, of the gradual steps by which he learned the use of his perceptive organs; and although there are various parts of it which will not bear the test of a rigorous examination, it is impossible to read it without sharing in that admiration, with which we are told the author himself always regarded this favourite effusion of his eloquence.

Nor are these the only instances in which Buffon has discovered the powers of a metaphysician. His thoughts on probabilities (a subject widely removed from his favourite studies) afford a proof how strongly some metaphysical questions had laid hold of his curiosity, and what new lights he was qualified to throw on them, if he had allowed them to occupy more of his attention. In his observations, too, on the peculiar nature of mathematical evidence, he has struck into a train of the soundest thinking, in which he has been very generally followed by our later logicians. Some particular expressions in the passage I refer to are exceptional; but his remarks on what he calls Vérités de Definition are just and important; nor do I remember any modern writer, of an earlier date, who has touched on the same argument. Plato, indeed, and after him Proclus, had called the definitions of geometry Hypotheses; an expression which may be considered as involving the doctrine which Buffon and his successors have more fully unfolded.

What the opinions of Buffon were on those essential questions, which were then in dispute among the French philosophers, his writings do not furnish the means of judging with certainty. In his theory of Organic Molecules, and of Internal Moulds, he has been accused of entertaining views not very different from those of the ancient atomists; nor would it perhaps be easy to repel the charge, if we were not able to oppose to this wild and unintelligible hypothesis the noble and elevating strain, which in general so peculiarly characterises his descriptions of nature. The eloquence of some of the finest passages in his works has manifestly been inspired by the same sentiment which dictated to one of his favourite authors the following just and pathetic reflection:—"Le spectacle de la nature, si vivant, si animé pour ceux qui reconnaissent un Dieu, est mort aux yeux de l'athée, et dans cette grande harmonie des êtes où tout parle de Dieu d'une voix si douce, il n'aperçoit qu'un silence éternel."5

I have already mentioned the strong bias towards materialism which the authors of the Encyclopédie derived from Condillac's comments upon Locke. These comments they seem to have received entirely upon credit, without ever being at pains to compare them with the original. Had D'Alembert exercised freely his own judgment, no person was more likely to have perceived their complete futility; and, in fact, he has thrown out various observations which strike at their very root. Notwithstanding, however, these occasional glimpses of light, he invariably reverts to the same error, and has once and again repeated it in terms as strong as Condillac or Gassendi.

The author who pushed this account of the origin of our knowledge to the most extraordinary and offensive consequences, was Helvetius. His book, De l'Esprit, is said to have been com-

1 See his Essai d'Aritmetique Morale.
2 See the First Discourse prefixed to his Natural History, towards the end.
3 Rousseau.—In a work by Hérald de Sechelles (entitled Voyages á Montmar, contenant des détails très intéressans sur le caractere, la personne, et les écrits de Buffon, Paris, 1801), a very different idea of his religious creed is given from that which I have ascribed to him; but, in direct opposition to this statement, we have a letter, dictated by Buffon, on his deathbed, to Madame Necker, in return for a present of her husband's book, On the Importance of Religious Opinions. The letter (we are told) is in the hand-writing of Buffon's son, who describes his father as then too weak to hold the pen.—(Mélanges extraits des Manuscrits de Madame Necker. 3 Vols. Paris, 1788.)
4 The sublime address to the Supreme Being, with which Buffon closes his reflections on the calamities of war, seems to breathe the very soul of Fenelon. "Grand Dieu! dont la seule présence soutient la nature et maintient l'harmonie des loix de l'univers," &c. &c. &c.
posed of materials collected from the conversations of the society in which he habitually lived; and it has accordingly been quoted as an authentic record of the ideas then in fashion among the wits of Paris. The unconnected and desultory composition of the work certainly furnishes some intrinsic evidence of the truth of this anecdote.

According to Helvetius, as all our ideas are derived from the external senses, the causes of the inferiority of the souls of brutes to those of men, are to be sought for in the difference between them with respect to bodily organisation. In illustration of this remark he reasons as follows:

"1. The feet of all quadrupeds terminate either in horn, as those of the ox and the deer; or in nails, as those of the dog and the wolf; or in claws, as those of the lion and the cat. This peculiar organisation of the feet of these animals deprives them not only of the sense of touch, considered as a channel of information with respect to external objects, but also of the dexterity requisite for the practice of the mechanical arts.

"2. The life of animals, in general, being of a shorter duration than that of man, does not permit them to make so many observations, or to acquire so many ideas.

"3. Animals being better armed and better clothed by nature than the human species, have fewer wants, and consequently fewer motives to stimulate or to exercise their invention. If the voracious animals are more cunning than others, it is because hunger, ever inventive, inspires them with the art of stratagems to surprise their prey.

"4. The lower animals compose a society that flies from man, who, by the assistance of weapons made by himself, is become formidable to the strongest amongst them.

"5. Man is the most prolix and versatile animal upon earth. He is born and lives in every climate; while many of the other animals, as the lion, the elephant, and the rhinoceros, are found only in a certain latitude. And the more any species of animals capable of making observations is multiplied, the more ideas and the greater ingenuity is it likely to possess.

"But some may ask (continues Helvetius), why monkeys, whose paws are nearly as dexterous as our hands, do not make a progress equal to that of man? A variety of causes (he observes) conspire to fix them in that state of inferiority in which we find them:—1. Men are more multiplied upon the earth. 2. Among the different species of monkeys, there are few whose strength can be compared with that of man; and, accordingly, they form only a fugitive society before the human race. 3. Monkeys being frugiverous, have fewer wants, and, therefore, less invention than man. 4. Their life is shorter. And, finally, the organical structure of their bodies keeping them, like children, in perpetual motion, even after their desires are satisfied, they are not susceptible of lassitude (ennui), which ought to be considered (as I shall prove afterwards) as one of the principles..."
to which the human mind owes its improvement.

"By combining (he adds) all these differences between the nature of man and of beast, we may understand why sensibility and memory, though faculties common to man and to the lower animals, are in the latter only sterile qualities."

The foregoing passage is translated literally from a note on one of the first paragraphs of the book *De l'Esprit*; and in the sentence of the text to which the note refers, the author triumphantly asks, "Who can doubt, that if the wrist of a man had been terminated by the hoof of a horse, the species would still have been wandering in the forest?"

Without attempting any examination of this shallow and miserable theory, I shall content myself with observing, that it is not peculiar to the philosophers of modern France. From the *Memorabilia* of Xenophon it appears, that it was current among the sophists of Greece; and the answer given it by Socrates is as philosophical and satisfactory as any thing that could possibly be advanced in the present state of the sciences.

"And canst thou doubt, Aristodemus, if the gods take care of man? Hath not the privilege of an erect form been bestowed on him alone? Other animals they have provided with feet, by which they may be removed from one place to another; but to man they have also given the use of the hand. A tongue hath been bestowed on every other animal; but what animal, except man, hath the power of making his thoughts intelligible to others?"

"Nor is it with respect to the body alone that the gods have shown themselves bountiful to man. Who seeth not that he is as it were a god in the midst of this visible creation? So far doth he surpass all animals whatever in the endowments of his body and his mind. For if the body of the ox had been joined to the mind of man, the invention of the latter would have been of little avail, while unable to execute his purposes with facility. Nor would the human form have been of more use to the brute, so long as he remained destitute of understanding. But in thee, Aristodemus, hast been joined to a wonderful soul, a body no less wonderful; and sayst thou, after this, the gods take no care of me? What wouldst thou then more to convince thee of their care?"

A very remarkable passage to the same purpose occurs in Galen's treatise, *De Usu Partium."

"But as of all animals man is the wisest, so hands are well fitted for the purposes of a wise animal. For it is not because he had hands that he is therefore wiser than the rest, as Anaxagoras alleged; but because he was wiser than the rest that he had therefore hands, as Aristotle has most wisely judged. Neither was it his hands, but his reason, which instructed man in the arts. The hands are only the organs by which the arts are practised."

The contrast, in point of elevation, between the tone of French philosophy, and that of the best heathen moralists, was long ago remarked by Addison; and of this contrast it would be difficult to find a better illustration than the passages which have just been quoted.

The disposition of ingenious men to pass suddenly from one extreme to another in matters of controversy, has, in no instance, been more strikingly exemplified than in the opposite theories concerning the nature of the brutes, which successively became fashionable in France during the last century. While the prevailing creed of French materialists leads to the rejection of every theory which professes to discriminate the rational mind from the animal principle of action, it is well known that, but a few years before, the disciples of Descartes allowed no one faculty to belong to man and brutes in common; and even went so far as to consider the latter in the light of mere machines. To this paradox the author was probably led, partly by his anxiety to elude the objection which the

1 It is not a little surprising that, in the above enumeration, Helvetius takes no notice of the want of *language* in the lower animals; a faculty without which, the multiplication of individuals could contribute nothing to the improvement of the species. Nor is this want of language in the brutes owing to any defect in the organs of speech; as sufficiently appears from those tribes which are possessed of the power of articulation in no inconsiderable degree. It plainly indicates, therefore, some defect in those higher principles which are connected with the use of artificial signs.

2 Mrs Sarah Fielding's Translation.

3 *Galen, De Us. Part. l. 1. c. 3.*
faculties of the lower animals have been supposed to present to the doctrine of the immortality of the soul, and partly by the difficulty of reconciling their sufferings with the Divine Goodness.

Absurd as this idea may now appear, none of the tenets of Descartes were once adopted with more implicit faith by some of the profoundest thinkers in Europe. The great Pascal admired it as the finest and most valuable article of the Cartesian system; and of the deep impression it made on the mind of Malebranche, a most decisive proof was exhibited by himself in the presence of Fontenelle. "M. de Fontenelle contoît," says one of his intimate friends, 1 "qu’un jour étant allé voir Malebranche aux P.P. de l’Oratoire de la Rue St Honore, une grosse chienne de la maison, et qui étoit pleine, entra dans la salle où ils se promenoient, vint caresser le P. Malebranche, et se rouler à ses pieds. Après quelques mouvements inutiles pour la chasser, le philosophe lui donna un grand coup de pied, qui fit jeter à la chienne un cri de douleur, et à M. de Fontenelle un cri de compassion. Eh quoi (lui dit froidement le P. Malebranche) ne châvez vous pas bien que cela ne se sent point?"

On this point Fontenelle, though a zealous Cartesian, had the good sense to dissent openly from his master, and even to express his approbation of the sarcastic remark of La Motte, que cette opinion sur les animaux étoit une débauche de raisonnement. Is not the same expression equally applicable to the opposite theory quoted from Helvetius? 2

From those representations of human nature which tend to assimilate to each other the faculties of man and of the brutes, the transition to atheism is not very wide. In the present instance, both conclusions seem to be the necessary corollaries of the same fundamental maxim. For if all the sources of our knowledge are to be found in the external senses, how is it possible for the human mind to rise to a conception of the Supreme Being, or to that of any other truth either of natural or of revealed religion?

To this question Gassendi and Condillac, it cannot be doubted, were both able to return an answer, which seemed to themselves abundantly satisfactory. But how few of the multitude are competent to enter into these refined explanations? And how much is it to be dreaded, that the majority will embrace, with the general principle, all the more obvious consequences which to their own gross conceptions it seems necessarily to involve? Something of the same sort may be remarked in the controversy about the freedom of the human will. Among the multitudes whom Leibnitz and Edwards have made converts to the scheme of necessity, how comparatively inconsiderable is the number who have acquiesced in their subtle and ingenious attempts to reconcile this scheme with man's accountability and moral agency?

Of the prevalence of atheism at Paris, among the higher classes, at the period of which we are now speaking, the Mémoires and Correspondance of the Baron de Grimm afford the most unquestionable proofs. 3 His friend Diderot seems to have been one of its most zealous abettors; who,

1 The Abbé Trublet in the Mercure de Juillet, 1757.—(See Œuvres de Fontenelle, Tome II. p. 137. Amsterdam, 1764.)
2 In La Fontaine’s Discours à Madame de la Sablière (Liv. X. Fable I.), the good sense with which he points out the extravagance of both these extremes is truly admirable. His argument (in spite of the fetters of rhyme) is stated, not only with his usual grace, but with singular clearness and precision; and considering the period when he wrote, reflects much honour on his philosophical sagacity.
3 The Système de la Nature (the boldest, if not the ablest, publication of the Parisian atheists) appeared in 1770. It bore on the title-page the name of Mirabaud, a respectable but not very eminent writer, who, after long filling the office of perpetual secretary to the French Academy, died at a very advanced age in 1760. (He was chiefly known as the author of very indifferent translations of Tasso and Ariosto.) It is now, however, universally admitted that Mirabaud had no share whatever in the composition of the Système de la Nature. It has been ascribed to various authors; nor am I quite certain, that, among those who are most competent to form a judgment upon this point, there is yet a perfect unanimity. In one of the latest works which has reached this country from France (the Correspondance inédite de Galliani, 1810), it seems to be assumed by the editors, as an acknowledged fact, that it proceeded from the pen of the Baron d’Holbach. The Abbé Galliani having remarked, in one of his letters to Madame Epinay, that it appeared to him to come from the same hand with the Christianisme Dénoué and the Militaire Philosophe, the editors remark in a note, "On peut rendre hommage à la sagacité de l’Abbé Galliani. Le Christianisme Dénoué est en effet le premier ouvrage philosophique du Baron d’Holbach. C’est en vain que la Biographie Universelle nous assure, d’après le témoignage de Voltaire, que cet ouvrage est de Damiaville."

Having mentioned the name of Damiaville, I am tempted to add, that the article relating to him in the Biographie Universelle, notwithstanding the incorrectness with which it is charged in the foregoing passage, is not unworthy of the reader’s
it appears from various accounts, contributed to render it fashionable, still more by the extraordinary powers of his conversation, than by the odd combination of eloquence and of obscurity displayed in all his metaphysical productions.

In order, however, to prevent misapprehension of my meaning, it is proper for me to caution my readers against supposing that all the eminent French philosophers of this period were of the same school with Grimm and Diderot. On this subject many of our English writers have been misled by taking for granted that to speak lightly of final causes is, of itself, sufficient proof of atheism. That this is a very rash as well as uncharitable conclusion, no other proof is necessary than the manner in which final causes are spoken of by Descartes himself, the great object of whose metaphysical writings plainly was, to establish by demonstration the existence of God. The following vindication of this part of the Cartesian philosophy has been lately offered by a French divine, and it may be extended with equal justice to Buffon and many others of Descartes's successors: "Quelques auteurs, et particulièrement Leibnitz, ont critiqué cette partie de la doctrine de Descartes; mais nous la croyons irreprochable, si on veut bien l'entendre, et remarquer que Descartes ne parle que des Fins totales de Dieu. Sans doute, le soleil par exemple, et les étoiles, ont été faits pour l'homme, dans ce sens, que Dieu, en les créant, a eu en vue l'utilité de l'homme; et cette utilité a été sa fin. Mais cette utilité à-t-elle été l'unique fin de Dieu? Croit-on qu'en lui attribuant d'autres fins, on affaiblirait la ré-

attention, as it contains some very remarkable marginal notes on the Christianisme Devillé, copied from Voltaire's own handwriting.

Since writing the above note, I have seen the Memoirs of M. Saund, by M. Ganat (Paris, 1820), in which the biographer, whose authority on this point is perfectly decisive, ascribes with confidence to Baron d'Holbach the Systeme de la Nature, and also a work entitled La Morale et La Legislation Universelle (Vol. I. pp. 210, 211.)

According to the same author, the Baron d'Holbach was one of Diderot's proselytes.—(Ibid. p. 206.) His former creed, it would appear, had been very different.

1 And yet Diderot, in some of his lucid intervals, seems to have thought and felt very differently. See Note TT.

2 See Note U U.

Of the levity and extravagance with which such charges have sometimes been brought forward, we have a remarkable instance in a tract entitled Athei Detecti, by a very learned Jesuit Father Hardwicin; (see his Opera Varia Posthuma, Amsterdam, 1733, in fol.) where, among a number of other names, are to be found those of Jansenius, Descartes, Malebranche, Arnauld, Nicole, and Pascal. Large additions on grounds equally frivolous, have been made in later times, to this list, by authors, who having themselves made profession of Atheism, were anxious, out of vanity, to swell the number of their sect. Of this kind was a book published at Paris, under some of the revolutionary governments, by Pierre Sylvain Marchal, entitled Dictionnaire des Athéens. Here we meet with the names of St Chrysostom, St Augustin, Pascal, Bossuet, Fenelon, Bellarmia, Labruyere, Leibnitz, and many others not less unexpected. This book he is said to have published at the suggestion of the celebrated astronomer Lalande, who afterwards published a supplement to the Dictionary, supplying the omissions of the author. See the Biographie Universelle, articles Marchal, Lalande.
imposed by religious principles; and the result exceeded, if possible, what could have been anticipated in theory. The lesson it has afforded has been dearly purchased; but let us indulge the hope that it will not be thrown away on the generations which are to come.

A prediction, which Bishop Butler hazarded many years before, does honour to his political sagacity, as well as to his knowledge of human nature; that the spirit of irreligion would produce, some time or other, political disorders, similar to those which arose from religious fanaticism in the seventeenth century.

Nearly about the time that the Encyclopédie was undertaken, another set of philosophers, since known by the name of Economists, formed themselves into an association for the purpose of enlightening the public on questions of political economy. The object of their studies seemed widely removed from all abstract discussion; but they had, nevertheless, a metaphysical system of their own, which, if it had been brought forward with less enthusiasm and exaggeration, might have been useful in counteracting the gloomy ideas then so generally prevalent about the order of the universe. The whole of their theory proceeds on the supposition that the arrangements of nature are wise and benevolent, and that it is the business of the legislator to study and co-operate with her plans in all his own regulations. With this principle, another was combined, that of the indefinite improvement of which the human mind and character are susceptible; an improvement which was represented as a natural and necessary consequence of wise laws, and which was pointed out to legislators as the most important advantage to be gained from their institutions.

These speculations, whatever opinion may be formed of their solidity, are certainly as remote as possible from any tendency to atheism, and still less do they partake of the spirit of that philosophy which would level man with the brute creation. With their practical tendency in a political view we are not at present concerned; but it would be an unpardonable omission, after what has been just said of the metaphysical theories of the same period, not to mention the abstract principles involved in the Economical System, as a remarkable exception to the general observation. It may be questioned, too, if the authors of this system, by incorporating their ethical views with their political dispositions, did not take a more effectual step towards discountenancing the opinions to which they were opposed, than if they had attacked them in the way of direct argument.

On the metaphysical theories which issued from the French press during the latter half of the last century, I do not think it necessary for me to enlarge, after what I have so fully stated in some of my former publications. To enter into details with respect to particular works would be superfluous, as the remarks made upon any one of them are nearly applicable to them all. The excellent writings of M. Prevost, and of M. Degerando, will, it is to be hoped, gradually introduce into France a sounder taste in this branch of philosophy. At present, so far as I am acquainted with the state of what is called

1 "Is there no danger that all this may raise somewhat like that levelling spirit, upon atheistical principles, which, in the last age, prevailed upon enthusiastic ones? Not to speak of the possibility, that different sorts of people may unite in it upon these contrary principles."—Sermon preached before the House of Lords, January 30, 1741.

2 As the fatal effects of both these extremes have, in the course of the two last centuries, been exemplified on so gigantic a scale in the two most civilised countries of Europe, it is to be hoped that mankind may in future derive some salutary admonitions from the experience of their predecessors. In the meantime, from that disposition common both to the higher and lower orders to pass suddenly from one extreme to another, it is at least possible that the strong re-action produced by the spirit of impiety during the French Revolution may, in the first instance, impel the multitude to something approaching to the puritanical fanaticism and frenzy of the Cromwellian Commonwealth.

3 For some other observations on the Ethical principles assumed in the Economical System, see Elements of the Philosophy of the Human Mind, Vol. II. Chap. iv. Sect. 6. § 1. towards the end.

4 Some symptoms of such a reformation are admitted already to exist, by an author decidedly hostile to all philosophical systems. "Bacon, Locke, Condillac, cherchent dans nos sens l'origine de nos idées; Helvetius y a trouvé nos idées elles-mêmes. Juger, selon ce philosophe, est autre chose que sentir." Aujourd'hui les bons esprits, éclairés par les événemens

* I was somewhat surprised, in looking over very lately the Principis de Descartes, to find (what had formerly escaped me), that the mode of speaking objected to in the above paragraph may plead in its favour the authority of that philosopher: "Cogitationes nominem, intelligo illa omnium, qua nobis conscis in nobis fuient, quatemus eorum in nobis conscientia est: Atque
Ideologie in that country, it does not appear to me to furnish much matter either for the instruction or amusement of my readers.

The works of Rousseau have, in general, too slight a connection with metaphysical science, to come under review in this part of my discourses. But to his Emile, which has been regarded as a supplement to Locke's Treatise on Education, some attention is justly due, on account of various original and sound suggestions on the management of the infant mind, which, among many extravagancies, savouring strongly both of intellectual and moral insanity, may be gathered by a sober and discriminating inquirer. The estimate of the merits of this work, formed by Mr Gray, appears to me so just and impartial, that I shall adopt it here without a comment.

"I doubt" (says he, in a letter to a friend) "you have not yet read Rousseau's Emile. Every body that has children should read it more than once; for though it abounds with his usual glorious absurdity, though his general scheme of education be an impracticable chimera, yet there are a thousand lights struck out, a thousand important truths better expressed than ever they were before, that may be of service to the wisest men. Particularly, I think he has observed children with more attention, knows their meaning, and the working of their little passions, better than any other writer. As to his religious discussions, which have alarmed the world, and engaged their thoughts more than any other parts of his book, I set them all at nought, and wish they had been omitted."—(Gray's Works by Mason, Letter 49.)

The most valuable additions made by French writers to the Philosophy of the Human Mind are to be found, not in their systematical treatises on metaphysics, but in those more popular compositions, which, professing to paint the prevailing manners of the times, touch occasionally on the varieties of intellectual character. In this most interesting and important study, which has been hitherto almost entirely neglected in Great Britain, France must be allowed not only to have led the way, but to remain still unrivalled. It would be endless to enumerate names; but I must not pass over those of Vauvenargues and Du...
DISSERTATION FIRST.

185

clos. Nor can I forbear to remark, in justice to an author, whom I have already very freely censured, that a variety of acute and refined observations on the different modifications of genius may be collected from the writings of Helvétius. The soundness of some of his distinctions may perhaps be questioned; but even his attempts at classification may serve as useful guides to future observers, and may supply them with a convenient nomenclature, to which it is not always easy to find corresponding terms in other languages. As examples of this, it is sufficient to mention the following phrases: Esprit juste, Esprit borné, Esprit étendu, Esprit fin, Esprit détié, Esprit de lumière. The peculiar richness of the French tongue in such appropriate expressions (a circumstance, by the way, which not unfrequently leads foreigners to overrate the depth of a talkative Frenchman) is itself a proof of the degree of attention which the ideas they are meant to convey have attracted in that country among the higher and more cultivated classes.

The influence, however, of the philosophical spirit on the general habits of thinking among men of letters in France, was in no instance displayed to greater advantage, than in the numerous examples of theoretical or conjectural history, which appeared about the middle of last century. I have already mentioned the attempts of Condillac and others, to trace upon this plan the first steps of the human mind in the invention of language. The same sort of speculation has been applied with greater success to the mechanical and other necessary arts of civilised life; and still more ingeniously and happily to the different branches of pure and mixed mathematics. To a philosophical mind, no study certainly can be more delightful than this species of history; but as an organ of instruction, I am not disposed to estimate its practical utility so highly as D’Alembert. It does not seem to me at all adapted to interest the curiosity of novices: nor is it so well calculated to engage the attention of those who wish to enlarge their scientific knowledge, as of persons accustomed to reflect on the phenomena and laws of the intellectual world.

Of the application of theoretical history, to account for the diversities of laws and modes of government among men, I shall have occasion afterwards to speak. At present I shall only remark the common relation in which all such researches stand to the Philosophy of the Human Mind, and their common tendency to expand and to liberalise the views of those who are occupied in the more confined pursuits of the subordinate sciences.

After what has been already said of the general tone of French philosophy, it will not appear surprising, that a system so mystical and spiritual as that of Leibnitz never struck its roots deeply in that country. A masterly outline of its principles was published by Madame du Chatelet, at a period of her life when she was an enthusiastic admirer of the author; and a work on such a subject, composed by a lady of her rank and genius, could not fail to produce at first a very strong sensation at Paris; but not long after, she herself abandoned the

sais si sa conversation n’avait pas même quelque chose de plus animé, de plus délicat que ses divins écrits." And, on a different occasion, he speaks of him thus: "Doux, sensible, compas...
German philosophy, and became a zealous partisan of the Newtonian school. She even translated into French, and enriched with a commentary, the Principia of Newton; and by thus renouncing her first faith, contributed more to discredit it, than she had previously done to bring it into fashion. Since that time, Leibnitz has had few, if any, disciples in France, although some of his peculiar tenets have occasionally found advocates there, among those who have rejected the great and leading doctrines, by which his system is more peculiarly characterised. His opinions and reasonings in particular, on the necessary concatenation of all events, both physical and moral (which accorded but too well with the philosophy professed by Grimm and Diderot), have been long incorporated with the doctrines of the French materialists, and they have been lately adopted and sanctioned, in all their extent, by an author, the unrivalled splendour of whose mathematical genius may be justly suspected, in the case of some of his admirers, to throw a false lustre on the dark shades of his philosophical creed.

Notwithstanding, however, this important and unfortunate coincidence, no two systems can well be imagined more strongly contrasted on the whole, than the lofty metaphysics of Leibnitz, and that degrading theory concerning the origin of our ideas, which has been fashionable in France since the time of Condillac. In proof of this, I have only to refer to the account of both, which has been already given.

The same contrast, it would appear, still continues to exist between the favourite doctrines of the German and of the French schools. "In the French empiricism (says a most impartial, as well as competent judge, M. Aneillon), the faculty of feeling, and the faculty of knowing,

1 "Les événements actuels ont avec les précédents une liaison fondée sur le principe évident, qu'une chose ne peut pas commencer d'être, sans une cause qui la produise. Cet axiome, connu sous le nom de principe de la raison suffisante, s'étend aux actions même que l'on juge indifférentes. La volonté la plus libre ne peut, sans un motif déterminant, leur donner naissance; car si, toutes les circonstances de deux positions étant exactement semblables, elle agissait dans l'une et s'abstenait d'agir dans l'autre, son choix serait un effet sans cause; elle serait alors, dit Leibnitz, le hasard aveugle des Épiciens. L'opinion contraire est une illusion de l'esprit qui perdant de vue les raisons fugitives du choix de la volonté dans les choses indifférentes, se persuade qu'elle s'est déterminée d'elle même et sans motifs."

"Nous devons donc envisager l'état présent de l'univers comme l'effet de son état antérior, et comme la cause de celui qui va suivre. Une intelligence qui pour un instant donné connoit toutes les forces dont la nature est animée, et la situation respective des êtres qui la composent, si d'ailleurs elle doit assez vaste pour soumettre ces données à l'analyse, embrasserait dans la même formule, les mouvements des plus grands corps de l'univers et ceux de plus léger atome. Rien ne serait certain pour elle, et l'avenir comme le passé, serait présent à ses yeux." (Essai Philosophique sur les Probabilités, par Laplace.)

Is not this the very spirit of the Theodicea of Leibnitz, and, when combined with the other reasonings in the Essay on Probabilities, the very essence of Spinozism?

This, indeed, is studiously kept by the author out of the reader's view; and hence the facility with which some of his propositions have been admitted by many of his mathematical disciples, who, it is highly probable, were not aware of the consequences which they necessarily involve.

I cannot conclude this note without recurring to an observation ascribed in the above quotation from Laplace to Leibnitz, "that the blind chance of the Epicureans involves the supposition of an effect taking place without a cause." This, I apprehend, is a very incorrect statement of the philosophy taught by Lucretius, which nowhere gives the slightest countenance to such a supposition. The distinguishing tenet of this sect was, that the order of the universe does not imply the existence of intelligent causes, but may be accounted for by the active powers belonging to the atoms of matter; which active powers, being exerted through an indefinitely long period of time, might produce, nay, must have produced, exactly such a combination of things, as that with which we are surrounded. This, it is evident, does not call in question the necessity of a cause to produce every effect, but, on the contrary, virtually assumes the truth of that axiom. It only excludes from these causes the attribute of intelligence. It is in the same way when I apply the words blind chance (hasard aveugle) to the throw of a die, I do not mean to deny that I am ultimately the cause of the particular event that is to take place; but only to intimate that I do not here act as a designing cause, in consequence of my ignorance of the various accidents to which the die is subjected, while shaken in the box. If I am not mistaken, this Epicurean Theory approaches very nearly to the scheme, which it is the main object of the Essay on Probabilities to inculcate; and, therefore, it was not quite fair in Laplace to object to the supposition of man's free agency, as favouring those principles which he himself was labouring indirectly to insinuate.

From a passage in Plato's Sophist, it is very justly inferred by Mr Gray, that, according to the common opinion then entertained, "the creation of things was the work of blind unintelligent matter; whereas the contrary was the result of philosophical reflection and disposition believed by a few people only." (Gray's Works by Mathias, Vol. II. p. 414.) On the same subject, see Smith's Posthumous Essays, p. 106.

* The impropriety of this language was long ago pointed out by Mr Hume. "They are still more frivolous who say, that every effect must have a cause, because it is implied in the very idea of effect. Every effect necessarily presupposes a cause; effect being a relative term, of which cause is the co-relative. The true state of the question is, whether every object, which begins to exist, must owe its existence to a cause?" (Treatise of Human Nature, Vol. I. p. 147.)
are one and the same. In the new philosophy of Germany, there is no faculty of knowing, but reason. In the former, taking our departure from individuals, we rise by degrees to ideas, to general notions, to principles. In the latter, beginning with what is most general, or rather with what is universal, we descend to individual existences, and to particular cases. In the one, what we see, what we touch, what we feel, are the only realities. In the other, nothing is real but what is invisible and purely intellectual."

"Both these systems (continues M. Ancillon) result from the exaggeration of a sound principle. They are both true and both false in part; true in what they admit, false in what they reject. All our knowledge begins, or appears to begin, in sensation; but it does not follow from this that it is all derived from sensation, or that sensation constitutes its whole amount. The proper and innate activity of the mind has a large share in the origin of our representations, our sentiments, our ideas. Reason involves principles which she does not borrow from without, with which she owes only to herself, which the impressions of the senses call forth from their obscurity, but which, far from owing their origin to sensations, serve to appreciate them, to judge of them, to employ them as instruments. It would be rash, however, to conclude from hence, that there is no certainty but in reason, that reason alone can seize the mystery of existences, and the intimate nature of beings, and that experience is nothing but a vain appearance, destitute of every species of reality."

With this short and comprehensive estimate of the new German philosophy, pronounced by one of the most distinguished members of the Berlin Academy, I might perhaps be pardoned for dismissing a subject, with which I have, in some of my former publications, acknowledged myself (from my total ignorance of the German language) to be very imperfectly acquainted; but the impression which it produced for a few years in England (more particularly while our intercourse with the Continent was interrupted), makes it proper for me to bestow on it a little more notice in this Dissertation, than I should otherwise have judged necessary or useful.

SECTION VII.

Kant and other Metaphysicians of the New German School.

The long reign of the Leibnitzian Philosophy in Germany was owing, in no inconsiderable degree, to the zeal and ability with which it was taught in that part of Europe, for nearly half a

1 Milanges de Litterature et de Philosophie, par F. Ancillon, Préface. (à Paris, 1809.) The intimacy of M. Ancillon's literary connections both with France and with Germany entitle his opinions on the respective merits of their philosophical systems to peculiar weight. If he anywhere discovers a partiality for either, the modest account which he gives of himself would lead us to expect his leaning to be in favour of his countrymen. "Placé entre la France et l'Allemagne, appartenant à la première par la langue dans laquelle je hasarde d'écrire, à la seconde par ma naissance, mes études, mes principes, mes affections, et j'ose le dire, par la couleur de ma pensée, je désirerais pouvoir servir de mediateur littéraire, ou d'interprète philosophique entre les deux nations."

In translating from M. Ancillon the passage quoted in the text, I have adhered as closely as possible to the words of the original; although I cannot help imagining that I could have rendered it still more intelligible to the English reader by laying aside some of the peculiarities of his German phraseology. My chief reason for retaining these, was to add weight to the strictures which a critical, so deeply tinctured with the German habits of thinking and of writing, has offered, on the most prominent faults of the systems in which he had been educated.

2 My ignorance of German would have prevented me from saying anything of the philosophy of Kant, if the extraordinary pretensions with which it was at first brought forward in this island, contrasted with the total oblivion into which it soon after very suddenly fell, had not seemed to demand some attention to so wonderful a phenomenon in the literary history of the eighteenth century. My readers will perceive that I have taken some pains to atone for my inability to read Kant's works in the original, not only by availing myself of the Latin version of Born, but by consulting various comments on them which have appeared in the English, French, and Latin languages. As commentators, however, and even translators, are not always to be trusted as unexceptionable interpreters of their authors' opinions, my chief reliance has been placed on one of Kant's own compositions in Latin; his Dissertation _De Mundi Sensibilis atque Intelligibilis Forma et Principiis_, which he printed as the subject of a public disputation, when he was candidate for a Professorship in the Uni-
188.

PRELIMINARY DISSERTATIONS.

century, by his disciple Wolfius, a man of little genius, originality, or taste, but whose extensive and various learning, seconded by a methodical head, and by an incredible industry and perseverance, seems to have been peculiarly fitted to command the admiration of his countrymen. Wolfius, indeed, did not profess to follow implicitly the opinions of his master, and, on some points, laid claim to peculiar ideas of his own; but the spirit of his philosophy is essentially the same with that of Leibnitz, and the particulars in which he dissented from him are too trifling to deserve any notice in the history of literature.

The high reputation so long maintained by Wolfius in Germany suggested, at different times, to the book-makers at Paris, the idea of introducing into France the philosophy which he taught. Hence a number of French abridgments of his logical and metaphysical writings. But an attempt, which had failed in the hands of Madame de Chatelat, was not likely to succeed with the admirers and abridgers of Wolfius.

versity of Koenigsberg. It is far from being improbable, after all, that I may, in some instances, have misapprehended his meaning, but I hope I shall not be accused of wilfully misrepresenting it. Where my remarks are borrowed from other writers, I have been careful in referring to my authorities, that my reader may judge for himself of the fidelity of my statements. If no other purpose, therefore, should be answered by this part of my work, it may at least be of use by calling forth some person properly qualified to correct any mistakes into which I may involuntarily have fallen; and, in the meantime, may serve to direct those who are strangers to German literature, to some of the comments on this philosophy which have appeared in languages more generally understood in this country.

1 Born 1679. Died 1754.

2 The display of method, however, so conspicuous in all the works of Wolfius, will often be found to amount to little more than an awkward affectation of the phraseology and forms of mathematics, in sciences where they contribute nothing to the clearness of our ideas, or the correctness of our reasonings. This affectation, which seems to have been well adapted to the taste of Germany at the time he wrote, is now one of the chief causes of the neglect into which his writings have fallen. Some of them may still be usefully consulted as dictionaries, but to read them is impossible. They amount to about forty quarto volumes, twenty-three of which are in Latin, the rest in German.

3 In his own country the reputation of Wolfius is not yet at an end. In the preface to Kant's Critique of Pure Reason, he is called "Summus omnium dogmatiscorum Philosophus."—(KANT: Opera ad Philosophiam Criticam, Vol. I. Pref. Auctoris Posterior, p. xxxvi. Latine Vertit. Fred. Born. Lipsiae, 1796.) And by one of Kant's best commentators his name is advantageously contrasted with that of David Hume: "Est autem scientifica methodus aut dogmatica, aut sceptica. Primus generis autem cēlēberrimum Wolfium, alterius Davidem Humium nominasse sat est." (Expositio Philos. Critic. Autore Conrado Friderico a Schmidt-Philseld. Hafnizae, 1796.)

4 To the other merits of Wolfius it may be added, that he was one of the first who contributed to diffuse among his countrymen a taste for philosophical inquiries, by writing on scientific subjects in the German language. "Were all Baron Wolf's other merits disputed, there is one (says Michaelis), which must incontestably be allowed him, his having added a new degree of perfection to the German Tongue, by applying it to philosophy."—(Dissertation on the Influence of Opinions on Language, &c. English Translation, p. 27.)

5 On the great question of Free Will, Wolfius adopted implicitly the principles of the Theodicea; considering man merely in the light of a machine; but (with the author of that work) dignifying this machine by the epithet spiritual. This language, which is still very prevalent among German philosophers, may be regarded as a relic of the doctrines of Leibnitz and of Wolfius; and affords an additional proof of the difficulty of eradicating errors sanctioned by illustrious and popular names.

When the system of Pre-established Harmony was first introduced by Wolfius into the University of Halle, it excited an alarm which had very nearly been attended with fatal consequences to the professor. The following anecdote on the subject is told by Euler: "Lorsque du temps du feu Roi de Prusse, M. Wolf enseignoit a Halle le systeme de l'Harmonie Pré-établie, le Roi s'informa de cette doctrine, qui faisait grand bruit alors; et un courisan repondit à sa Majesté, que tous les soldats, selon cette doctrine, n'étoient que des machines; que quand il en désertoit, c'étoit une suite nécessaire de leur structure, et qu'on avoit tort par consequent de les punir, comme on l'auroit si on punissoit une machine pour avoir produit tel ou tel mouvement. Le Roi se facha si fort sur ce rapport, qu'il donna ordre de chasser M. Wolf de Halle, sous peine d'être pendu s'il s'y trouvoit au bout de 24 heures. Le philosophe se refugia alors à Marbourg, où je lui ai parlé peu de temps après.—(Lettres à une Princesse d'Allemagne, Lettre 64me.)" We are informed by Condorcet, that some separation was afterwards made for this injustice by Frederick the Great.—"Le Roi de Prusse, qui ne croyoit pas pourtant à l'Harmonie Pré-établie, s'est empressé de rendre justice à Wolf dès le premier jour de son regne."

6 Among other novelties affected by Wolfius, was a modification of the Theory of the Monads. A slight outline of it, but quite sufficient, I should suppose, to gratify the curiosity of most readers, may be found in Euler's Letters to a German Princess.

7 To what was before remarked, of the opposition in matters of philosophy between the taste of the French and that of the Germans, I shall here add a short passage from an author intimately acquainted with the literature of both nations.

8 "L'école Allemande reconnoit Leibnitz pour chefe. Son fameux disciple Wolf régna dans les universités pendant près d'un demi siècle avec une autorité non contestée. On connoit en France cette philosophie par un grand nombre d'abrégés dont quelques-uns sont faits par des auteurs qui seuls auraient suffi pour lui donner de la célébrité.

9 Malgré l'appui de tous ces noms, jamais en France cette philosophie ne s'est soutenue même quelques instants. La profondeur apportée de ces idées, l'air d'ensemble et de systéme, n'ont jamais pu y suppléer à ce qui a paru lui manquer pour en faire une doctrine solide et digne d'être accueillie. Outre quelque défaut de clarté, qui probablement en a écarté des esprits pour qui cette qualité de style et de la pensée est devenue un heureux besoin, la forme sous laquelle elle se présente a rebuté bien des lecteurs. Quoi qu'il en fût pu faire les interprètes, il a toujours perçu quelque chose de l'appareil incommodé qui l'entoure à son origine. Condillac tourne plus d'une fois en ridicule ces formes et ce jargon scientifique, et il s'applique à
From the time of Wolfius till the philosophy of Kant began to attract general notice, I know of no German metaphysician whose speculations seem to have acquired much celebrity in the learned world.\(^1\) Lambert\(^2\) is perhaps the most illustrious name which occurs during this interval. As a mathematician and natural philosopher, his great merits are universally known and acknowledged, but the language in which his metaphysical and logical works were written, has confined their reputation within a comparatively narrow circle. I am sorry that I cannot speak of these from my own knowledge; but I have heard them mentioned in terms of the highest praise, by some very competent judges, to whose testimony I am disposed to give the greater credit, from the singular vein of originality which runs through all his mathematical and physical publications.\(^3\)

The Critique of Pure Reason (the most celebrated of Kant's metaphysical works) appeared in 1781.\(^4\) The idea annexed to the title by the author, is thus explained by himself: "Critica rationis purae non dieo censuram librorum et Systematum, sed facultatis rationalis in universum, respectu cognitionum omnium, ad quas, ab omni experimentia libera, possit anniti, prondae, dijudicacionem possibilitatis aut impossibilitatis metaphysices in genere, constitutionemque tum fontium, tum ambitus atque compagis, tum vero terminorum illius, sed cuneta has ex principiis." (Kantii, Opera ad Philosophiam Criticam, Vol. I. Prefatio Auctoris Prior, pp. 11, 12.) To render this somewhat more intelligible, I shall subjoin the comment of one of his intimate friends,\(^5\) whose work, we are informed by Dr Willlich, had received the sanction of Kant himself: "The aim of Kant's Critique is no less than to lead Reason to the true knowledge of itself; to examine the titles upon which it finds the supposed possession of its metaphysical knowledge; and by means of this examination, to mark the true limits, beyond which it cannot venture to speculate, without wandering into the empty region of pure fancy." The same author adds, "The whole Critique of Pure Reason is established upon this principle, that there is a free reason, independent of all experience and sensation."

\(^{1}\) Madame de Staël mentions Lessing, Hemsterhuis, and Jacobi, as precursors of Kant in his philosophical career. She adds, however, that no school, since none of them attempted to found any system; but they began the war against the doctrines of the Materialists.—(Allemagne, Tome III. p. 98.) I am not acquainted with the metaphysical works of any of the three. Those of Hemsterhuis, who wrote wholly in French, were, I understand, first published in a collected form at Paris, in 1726. He was son of the celebrated Greek scholar and critic, Theobald Hemsterhuis, Professor of Latin Literature at Leyden.

\(^{2}\) Born at Mulhausen in Alsace in 1726. Died at Berlin in 1777.

\(^{3}\) The following particulars, with respect to Lambert's literary history, are extracted from a Memoir annexed by M. Prevost to his translation of Mr Smith's Posthumous Works:—"Cet ingénieux et puissant Lambert, dont les mathématiques, qui lui devinrent bientôt, ne purent épuiser les forces, et qui ne toucha aucun sujet de physique ou de philosophie rationelle, sans le courir de lumière. Ses lettres cosmologiques, qu'il écrivit par forme de délassement, sont pleines d'idées sublimes, entées sur la philosophie la plus saine et la plus savante tout-à-la-fois. Il avait aussi dressé sous le titre d'Architecture un tableau des principes sur lesquels se fondaient les connoissances humaines. Cet ouvrage au jugement des hommes les plus versés dans l'étude de leur langue, n'est pas exempt d'obscurité. Elle peut tenir en partie à la nature du sujet. Il est à regretter que sa logique, intitulée Organon, ne soit traduite ni en Latin, ni en Français, ni je pense en aucune langue. Un extrait bien fait de cet ouvrage, duquel on écarterait ce qui répugne au goût national, exciterait l'attention des philosophes, et la porterait sur une multitude d'objets qu'ils se sont accustomed à regarder avec indifférence."—(Prevost, Tome II. pp. 267, 268.)

In the article Lambert, inserted in the twenty-third volume of the Biographie Universelle (Paris 1819), the following account is given of Lambert's logic:—"Wolf, d'après quelques indications de Leibnitz, avait retiré de l'oubli la systélogique d'Aristote, science que les scholiastes avaient tellement avilie que ni Bacon ni Locke n'avaient osé lui accorder un regard d'intérêt. Il était réservé à Lambert de la montrer sous le plus beau jour et dans la plus riche parure. C'est ce qu'il a fait dans son Novum Organon, ouvrage qui est un des principaux titres de gloire de son auteur." From the writer of this article (M. Servois) we farther learn, that the Novum Organon of Lambert was translated into Latin from the German original by a person of the name of Pfeiderer, and that this translation was in the hands of an English nobleman (the late Earl of Stanhope) as lately as 1782. I quote the words of M. Servois, in the hope that they may attract some attention to the manuscript, if it be still in existence. The publication of it would certainly be a most acceptable present to the learned world; d'après le conseil de Le Sage de Geneve, l'ouvrage fut traduit en Latin par Pfeiderer, aux frais d'un savant Italien; cette traduction passa, on ne sait comment, entre les mains de Milord Mahon, qui la possédait encore en 1782: on ignore quel est son sort ultérieur.

\(^{4}\) Kant was born at Königsberg, in Prussia, in 1724. He died in 1804.

\(^{5}\) Mr John Schulze, an eminent divine at Königsberg, author of the Synopsis of the Critical Philosophy, translated by Dr Willich, and inserted in his Elementary View of Kant's Works.—(See pp. 42, 43.)
PRELIMINARY DISSERTATIONS.

When the Critique of Pure Reason first came out, it does not seem to have attracted much notice, but such has been its subsequent success, that it may be regarded, according to Madame de Staël, "as having given the impulse to all that has been since done in Germany, both in literature and in philosophy."—(Allemagne, Vol. III. pp. 68, 69.)

"At the epoch when this work was published (continues the same writer), there existed among thinking men only two systems concerning the human understanding: The one, that of Locke, ascribed all our ideas to our sensations; the other, that of Descartes and of Leibnitz, had for its chief objects to demonstrate the spirituality and activity of the soul, the freedom of the will, and, in short, the whole doctrines of the idealists. . . . Between these extremes read-

1 Il se passa quelque temps après la première publication de la Critique de la Pure Raison, sans qu'on fit beaucoup d'attention à ce livre, et sans que la plupart des philosophes, passionnés pour l'électicisme, soupçonnissent seulement la grande révolution que cet ouvrage et les productions suivantes de son auteur devaient opérer dans la science."—(BuHLE, Hist. de la Phil. Med. Tom. VI. p. 573. Paris, 1816.)

As early, however, as the year 1783, the Philosophy of Kant appears to have been adopted in some of the German schools. The ingenious M. Trembley, in a memoir then read before the Academy of Berlin, thus speaks of it:—"La philosophie de Kant, qui, à la tête de l'esprit humain, paraît avoir acquis tant de faveur dans certaines écoles."—(Essai sur les Préjugés. Reprinted at Neufchatel in 1790.)

We are farther told by BuHle, that the attention of the public to Kant's Critique of Pure Reason was first attracted by an excellent analysis of the work, which appeared in the General Gazette of Literature, and by the Letters on Kant's Philosophy, which Reinhold inserted in the German Mercury.—(BuHLE, Tom. VI. p. 573.) Of this last philosopher, who appears, in the first instance, to have entered with enthusiasm into Kant's views, and who afterwards contributed much to open the eyes of his countrymen to the radical defects of his system, I shall have occasion to speak hereafter. Degerando, as well as BuHle, bestows high praise not only on his clearness, but on his eloquence, as a writer in his own language. "Il a traduit les oracles Kantiens dans une langue élégante, harmonieuse, et pure . . . Il a su exprimer avec un langage éloquent, des idées jusqu'alors inintelligibles," &c.—(Histoire Comparrée, &c. Tom. II. p. 271.) That this praise is not undeserved I am very ready to believe, having lately had an opportunity (through the kindness of my learned and revered friend Dr Parr) of reading, in the Latin version of Fredericus Gottolb Born, Reinhold's principal work, entitled Persuasion Nova Thesoria Facultatis Representativa Humanae. In point of periphrasis, it appears to me to be greatly superior to Kant; and of this I conceive myself to be not altogether incompetent to judge, as the Latin versions of both authors are by the same hand.

2 The following quotation, from the advertisement prefixed to Madame de Staël's posthumous work (Considerations sur la Révolution Francaise), will at once account to my readers for the confidence with which I appeal to her historical statements on the subject of German philosophy. Her own knowledge of the language was probably not so critically exact, as to enable her to enter into the more refined details of the different systems which she has described; but her extraordinary penetration, joined to the opportunities she enjoyed of conversing with all that was then most illustrious in Germany, qualified her in an eminent degree to seize and to delineate their great outlines. And if, in executing this task, any considerable mistakes could have been supposed to escape her, we may be fully assured, that the very accomplished person, to whose revision we learned that her literary labours at this period of her life were submitted, would prevent them from ever meeting the public eye. I except, of course, those mistakes into which she was betrayed by her admiration of the German school. Of some of the most important of these, I shall take notice as I proceed; a task which I feel incumbent upon me, as it is through the medium of her book that the great majority of English readers have acquired all their knowledge of the new German philosophy, and as her name and talents have given it a temporary consequence in this country which it could not otherwise have acquired.

"Le travail des éditeurs s'est borné uniquement à la révision des épreuves, et à la correction de ces légères inexactitudes de style, qui s'élèvent à la vue dans le manuscrit le plus soigné. Ce travail c'est fait sous les yeux de M. A. W. de Schel-
gel, dont la rare supériorité d'esprit et de savoir justifie la confiance avec laquelle Madame de Staël le consulta dans tous ses travaux littéraires, autant que son honorable caractère mérite l'estime et l'amitié qu'elle n'a pas cessé d'avoir pour lui pendant une liaison de treize années." If any further apology be necessary for quoting a French lady as an authority on German metaphysics, an obvious one is suggested by the extraordinary and well merited popularity of her Allemagne in this country. I do not know, if, in any part of her works, her matchless powers have been displayed to greater advantage. Of this no stronger proof can be given than the lively interest she inspires, even when discussing such systems as those of Kant and of Fichte.

3 That this is a very incorrect account of Locke's philosophy, has been already shown at great length; but in this mistake Madame de Staël has only followed Leibnitz, and a very large proportion of the German philosophers of the present day. The "philosophy of sensation," says Frederick Schelgel, "which was unconsciously bequeathed to the world by Bacon, and reduced to a methodical shape by Locke, first displayed in France the true immorality and destructive nature of which it is the parent, and assumed the appearance of a perfect system of Atheism."—(Lectures en trois Histoire des Idées, from the German of Fred. Schelgel. Edin. 1818, Vol. II. p. 22.) It is evident, that the system of Locke is here confounded with that of Condillac. May not the former be called the philosophy of reflection, with as great propriety as the philosophy of sensation? If in considering Leibnitz as a partisan of the freedom of the will, Madame de Staël has also followed the views of many German writers, who make no distinction between Materialists and Necessitarians, imagining, that to assert the spirituality of the soul, is to assert its free agency. On the inaccuracy of these conceptions it would be superfluous to enlarge, after what was formerly said in treating of the metaphysical opinions of Leibnitz.

In consequence of this misapprehension, Madame de Staël, and many other late writers on the Continent, have been led to employ, with a very exceptional latitude, the word Idealist, to comprehend not only the advocates for the immateriality of the mind, but those also who maintain the Freedom of the Human Will. Between these two opinions, there is certainly
son continued to wander, till Kant undertook to trace the limits of the two empires; of the senses and of the soul; of the external and of the internal worlds. The force of meditation and of sagacity, with which he marked these limits, had not perhaps any example among his predecessors."—(Allemagne, Vol. III. pp. 70, 72.)

The praise bestowed on this part of Kant's philosophy, by one of his own pupils, is not less warm than that of Madame de Staël. I quote the passage, as it enters into some historical details which she has omitted, and describes more explicitly than she has done one of the most important steps, which Kant is supposed by his disciples to have made beyond his predecessors. In reading it, some allowances must be made for the peculiar phraseology of the German school.

"Kant discovered that the intuitive faculty of man is a compound of very dissimilar ingredients; or, in other words, that it consists of parts very different in their nature, each of which performs functions peculiar to itself; namely, the sensitive faculty, and the understanding.... Leibnitz, indeed, had likewise remarked the distinction subsisting between the sensitive faculty and the understanding; but he entirely overlooked the essential difference between their functions, and was of opinion that the faculties differed from one another only in degree.... In the works of the English and French philosophers, we find this essential distinction between the sensitive and the intellectual faculties, and their combination towards producing one synthetical intuition, scarcely mentioned. Locke only alludes to the accidental limitations of both faculties; but to inquire into the essential difference between them does not at all occur to him.... This distinction, then, between the sensitive and the intellectual faculties, forms an essential feature in the philosophy of Kant, and is, indeed, the basis upon which most of his subsequent inquiries are established."—(Elements of the Crit. Phil. by A. F. M. Willich, M. D. pp. 68, 69, 70.)

It is a circumstance not easily explicable, that, in the foregoing historical sketch, no mention is made of the name of Cudworth, author of the treatise on Eternal and Immutable Morality; a book which could scarcely fail to be known, before the period in question, to every German scholar, by the admirable Latin version of it published by Dr Mosheim.¹ In this treatise, no necessary connection; Leibnitz, and many other German metaphysicians, denying the latter with no less confidence than that with which they assert the former. In England, the word Idealist is most commonly restricted to such as (with Berkeley) reject the existence of a material world. Of late, its meaning has been sometimes extended (particularly since the publications of Reid) to all those who retain the theory of Descartes and Locke, concerning the immediate objects of our perceptions and thoughts, whether they admit or reject the consequences deduced from this theory by the Berkeleyans. In the present state of the science, it would contribute much to the distinctness of our reasoning was it to be used in this last sense exclusively.

There is another word to which Madame de Staël and other writers on the German philosophy annex an idea peculiar to themselves; I mean the word experimental or empirical. This epithet is often used by them to distinguish what they call the philosophy of Sensations, from that of Plato and of Leibnitz. It is accordingly generally, if not always, employed by them in an unfavourable sense. In this country, on the contrary, the experimental or inductive philosophy of the human mind denotes those speculations concerning mind, which, rejecting all hypothetical theories, rest solely on phenomena for which we have the evidence of consciousness. It is applied to the philosophy of Reid, and to all that is truly valuable in the metaphysical works of Descartes, Locke, Berkeley, and Hume.

¹ The first edition of this translation was printed as early as 1792. From Buhle's History of Modern Philosophy (a work which did not fall into my hands till long after this section was written), I find that Cudworth's Treatise of Immutable Morality is now not only well known to the scholars of Germany, but that some of them have remarked the identity of the doctrines contained in it with those of Kant. "Meiners, dans son histoire générale de l'Ethique, nie que le système moral de Cudworth soit identique avec celui de Platon, et prétend au contraire, que les principes considérés comme appartenant de la manière la plus spéciale à la morale de Kant, étaient enseignés il y a déjà plusieurs générations par l'école du philosophe Anglais."—(Hist. de la Phil. Moderne, Vol. III. p. 577.) In opposition to this, Buhle states his own decided conviction, "qu'aucune des idées de Cudworth n'ee rappoche de celles de Kant."—(Ibid.) How far this conviction is well founded, the passage from Cudworth, quoted in the text, will enable my readers to judge for themselves.

This assertion of Buhle, just mentioned, is the more surprising, as he himself acknowledges that "la philosophic
Cudworth is at much pains to illustrate the Platonic doctrine concerning the difference between sensation and intellection; asserting that "some ideas of the mind proceed not from outward sensible objects, but arise from the inward activity of the mind itself," that "even simple corporeal things, passively perceived by sense, are known and understood only by the active power of the mind;" and that, besides άνθρωπου and φαντασία, there must be Νομοσ or intelligible ideas, the source of which can be traced to the understanding alone.¹

In the course of his speculations on these subjects, Cudworth has blended, with some very deep and valuable discussions, several opinions to which I cannot assent, and not a few propositions which I am unable to comprehend; but he seems to have advanced at least as far as Kant, in drawing the line between the provinces of the senses and of the understanding; and although not one of the most luminous of our English writers, he must be allowed to be far superior to the German metaphysician, both in point of perspicuity and of precision. A later writer, too, of our own country (Dr Price), a zealous follower both of Plato and of Cudworth, afterwards resumed the same argument, in a work which appeared long before the Critique of Pure Reason;² and urged it with much force against those modern metaphysicians, who consider the senses as the sources of all our knowledge. At a period somewhat earlier, many very interesting quotations of a similar import had been produced by the learned Mr Harris, from the later commentators of the Alexandrian school on the philosophy of Aristotle; and had been advantageously contrasted by him with the account given of the origin of our ideas, not only by Hobbes and Gassendi, but by many of the professed followers of Locke. If this part of the Kantian system, therefore, was new in Germany, it certainly could have no claim to the praise of originality, in the estimation of those at all acquainted with English literature.³

In order, however, to strike at the root of what the Germans call the philosophy of sensa-

¹ It is interesting to note a striking resemblance is observable between the language of Cudworth and that of Kant; both of them having followed the distinctions of the Socratic school, as explained in the Theaetetus of Plato. They who are at all acquainted with Kant's Critique, will immediately recognise his phraseology in the passage quoted above.

² I have mentioned here only those works of a modern date, which may be reasonably presumed to be still in general circulation among the learned. But many very valuable illustrations of the Platonic distinction between the senses and the understanding may be collected from the English writers of the seventeenth century. Among these it is sufficient to mention at the present the names of John Smith and Henry More of Cambridge, and of Joseph Glanville, the author of Specus Scientifica.

³ From an article in the Edinburgh Review (Vol. XXVII. p. 191), we learn, that large unpublished manuscripts of Dr Cudworth are deposited in the British Museum. It is much to be regretted (as the author of the article observes), that they should have been so long withheld from the public. The press of the two Universities (he adds) would be properly employed in works, which a commercial publisher could not prudently undertake. May we not indulge a hope, that this suggestion will, sooner or later, have its due effect?

⁴ In the preface of Mosheim to his Latin version of the Intellectual System, there is a catalogue of Cudworth's unpublished remains, communicated to Mosheim by Dr Chandler, then Bishop of Durham. Among these are two distinct works on the Controversy concerning Liberty and Necessity, of each of which works Mosheim has given us the general contents. One of the chapters is entitled, "Answer to the Objection against Liberty, made a mere notion." It is not probable that it contains any thing very new or important; but it would certainly be worth while to know the reply made by Cudworth to an objection which both Leibnitz and La Place have fixed upon as decisive of the point in dispute.
tion, it was necessary to trace, with some degree of systematical detail, the origin of our most important simple notions; and for this purpose it seemed reasonable to begin with an analytical view of those faculties and powers, to the exercise of which the development of these notions is necessarily subsequent. It is thus that the simple notions of time and motion presuppose the exercise of the faculty of memory; and that the simple notions of truth, of belief, of doubt, and many others of the same kind, necessarily presuppose the exercise of the power of reasoning. I do not know, that, in this anatomy of the mind, much progress has hitherto been made by the German metaphysicians. A great deal certainly has been accomplished by the late Dr Reid; and something, perhaps, has been added to his labours by those of his successors.

According to Kant himself, his metaphysical doctrines first occurred to him while employed in the examination of Mr Hume's Theory of Causation. The train of thought by which he was led to them will be best stated in his own words; for it is in this way alone that I can hope to escape the charge of misrepresentation from his followers. Some of his details would perhaps have been more intelligible to my readers, had my plan allowed me to prefix to them a slight outline of Hume's philosophy. But this the general arrangement of my discourse rendered impossible; nor can any material inconvenience result, in this instance, from the order which I have adopted, inasmuch as Hume's Theory of Causation, how new soever it may have appeared to Kant, is fundamentally the same with that of Malebranche, and of a variety of other old writers, both French and English.

1 "Since the Essays (says Kant) of Locke and of Leibnitz, or rather since the origin of metaphysics, as far as their history extends, no circumstance has occurred, which might have been more decisive of the fate of this science than the attack made upon it by David Hume. He proceeded upon a single but important idea in metaphysics, the connection of cause and effect, and the concomitant notions of power and action. He challenged reason to answer him what title she had to imagine, that any thing may be so constituted as that, if it be given, something else is also thereby inferred; for the idea of cause denotes this. He proved beyond contradiction, that it is impossible for reason to think of such a connection a priori, for it contains necessity; but it is not possible to perceive how, because something is, something else must necessarily be; nor how the idea of such a connection can be introduced a priori.

"Hence, he concluded, that reason entirely deceives herself with this idea, and that she erroneously considers it as her own child, when it is only the spurious offspring of imagination, impregnated by experience; a subjective necessity, arising from habit and the association of ideas, being thus substituted for an objective one derived from perception....However hasty and unwarrantable Hume's conclusion might appear, yet it was founded upon investigation; and this investigation well deserved, that some of the philosophers of his time should have united to solve, more happily if possible, the problem in the sense in which he delivered it: A complete reform of the science might have resulted from this solution. But it is a mortifying reflection, that his opponents, Reid, Beattie, Oswald, and, lastly, Priestley himself, totally misunderstood the tendency of his problem. The question was not, whether the idea of cause be in itself proper and indispensable to the illustration of all natu-

1 See the Preface of Kant to one of his Treatises, entitled Prolegomena ad Metaphysicam quamque futuram quae qua Scientia poterit prodiva. I have availed myself in the text of the English version of Dr Willich, from the German original, which I have carefully compared with the Latin version of Born. A few sentences, omitted by Willich, I have thought it worth while to quote, at the foot of the page, from the Latin translation.—(Elem. of Critical Philosophy, by A. F. M. Willich, M. D. p. 10. et seq. London, 1798.)

2 "Humanae... Qui quidem unam cognitionem partim lucem adfundit, sed tamquam excitavit scintillum, de qua sane lumen potuisse accendi, si ea incidunt in fontem, facile accipientem, cujusque scintillatio diligentia alta fuerit et aucta."

3 "Non potest sine certo quodam molestia sensu percipi, quoniam ejus adversarii, Reichius, Oswaldus, Beattius, et tandem Priestleius, a scopo questionis aberrare, et propertia quod ea vehementer accipierent pro concessis, quae ipsa in dubium vocaret, contra vero cum vehementia, et maximum partem cum ingenti immodestia ea probare gestarent, quae illi nunquam in mentem venisset dubitare, neque ejus ad emendationem ita negligenter, ut sinam in statu pristino maneret, quasi nihil quidquam factumvideretur."
eral knowledge, for this Hume had never doubted; but whether this idea be an object of thought through reasoning \textit{a priori}; and whether, in this manner, it possesses internal evidence, independently of all experience; consequently, whether its utility be not limited to objects of sense alone. It was upon this point that Hume expected an explanation.\

I freely own it was these suggestions of Hume’s which first, many years ago, roused me from my dogmatical slumber, and gave to my inquiries quite a different direction in the field of speculative philosophy. I was far from being carried away by his conclusions, the fallacy of which chiefly arose from his not forming to himself an idea of the \textit{whole} of his \textit{problem}, but merely investigating a part of it, the solution of which was impossible without a comprehensive view of the whole. When we proceed on a well founded, though not thoroughly digested thought, we may expect, by patient and continued reflection, to prosecute it farther than the acute genius had done to whom we are indebted for the first spark of this light. I first inquired, therefore, whether Hume’s objection might not be a general one, and soon found, that the idea of cause and effect is far from being the only one by which the understanding \textit{a priori} thinks of the connection of things; but rather that the science of metaphysics is altogether founded upon these connections. I endeavoured to ascertain their number; and, having succeeded in this attempt, I proceeded to the examination of those general ideas, which, I was now convinced, are not, as Hume apprehended, derived from experience, but arise out of the pure understanding. This deduction, which seemed impossible to my acute predecessor, and which nobody besides him had ever conceived, although every one makes use of these ideas, without asking himself upon what their objective validity is founded; this deduction, I say, was the most difficult which could have been undertaken for the behoof of metaphysics; and

what was still more embarrassing, metaphysics could not here offer me the smallest assistance, because that deduction ought first to establish the possibility of a system of metaphysics. As I had now succeeded in the explanation of Hume’s problem, not merely in a particular instance, but with a view of the whole power of pure reason, I could advance with sure though tedious steps, to determine completely, and upon general principles, the compass of Pure Reason, both what is the sphere of its exertion, and what are its limits; which was all that was required for erecting a system of metaphysics upon a proper and solid foundation."

It is difficult to discover any thing in the foregoing passage on which Kant could found a claim to the slightest originality. A variety of English writers had, long before this work appeared, replied to Mr Hume, by observing that the understanding is itself a source of new ideas, and that it is from this source that our notions of cause and effect are derived. "Our certainty (says Dr Price) that every new event requires some cause, depends no more on experience than our certainty of any other the most obvious subject of intuition. In the idea of every \textit{change}, is included that of its being an \textit{effect}." In the works of Dr Reid, many remarks of the same nature are to be found; but, instead of quoting any of these, I shall produce a passage from a much older author, whose mode of thinking and writing may perhaps be more agreeable to the taste of Kant’s countrymen than the simplicity and precision aimed at by the disciples of Locke.

"That there are some ideas of the mind (says Dr Cudworth), which were not stamped or imprinted upon it from the sensible objects without, and therefore must needs arise from the innate vigour and activity of the mind itself, is evident, in that there are, \textit{First}, Ideas of such things as are neither affections of bodies, nor could be imprinted or conveyed by any local motions, nor can be pictured at all by the fancy

1 Although nothing can be more unjust than these remarks, in the unqualified form in which they are stated by Kant, it must, I think, be acknowledged, that some grounds for them have been furnished by occasional passages which dropped from the pens of most of Mr Hume’s Scottish opponents.

2 \textit{Review of the Principal Questions and Difficulties in Morals}, Chap. i. sect. 2. The first edition of this book was printed in 1798.
in any sensible colours; such as are the ideas of wisdom, folly, prudence, imprudence, knowledge, ignorance, verity, falsity, virtue, vice, honesty, dishonesty, justice, injustice, volition, cogitation, nay of sense itself, which is a species of cogitation, and which is not perceptible by any sense; and many other such like notions as include something of cogitation in them, or refer to cogitative beings only; which ideas must needs spring from the active power and innate fecundity of the mind itself, because the corporeal objects of sense can imprint no such things upon it. Secondly, In that there are many relative notions and ideas, attributed as well to corporeal as incorporeal things, that proceed wholly from the activity of the mind comparing one thing with another. Such as are Cause, Effect, means, end, order, proportion, similitude, dissimilitude, equality, inequality, aptitude, inaptitude, symmetry, asymmetry, whole and part, genus and species, and the like. * Immutable Morality, pp. 148, 149.

It is not my business at present to inquire into the solidity of the doctrine here maintained. I would only wish to be informed what additions have been made by Kant to the reply given to Mr Hume by our English philosophers, and to direct the attention of my readers to the close resemblance between this part of Kant's system, and the argument which Cudworth opposed to Hobbes and Gassendi considerably more than a century ago. *

The following passage, from the writer last quoted, approaches so nearly to what Kant and other Germans have so often repeated of the distinction between subjective and objective truth, that I am tempted to connect it with the foregoing extract, as an additional proof that there are, at least, some metaphysical points, on which we need not search for instruction beyond our own island.

"If there were no other perceptive power, or faculty, distinct from external sense, all our perceptions would be merely relative, seeming, and fantastical, and not reach to the absolute and certain truth of any thing; and every one would but, as Protagoras expounds, ' think his own private and relative thoughts truths,' and all our cogitations being nothing but appearances, would be indifferently alike true phantasm, and one as another.

"But we have since also demonstrated, that there is another perceptive power in the soul superior to outward sense, and of a distinct nature from it, which is the power of knowing or understanding, that is, an active exertion from the mind itself. And, therefore, has this grand eminence above sense, that it is no idiopathy, not a mere private, relative, seeming, and fantastical thing, but the comprehension of that which absolutely is and is not." *

After enlarging on the distinction between the sensitive faculty and the understanding, Kant proceeds to investigate certain essential conditions, without which neither the sensitive faculty nor its objects are conceivable. These conditions are time and space, which, in the language of Kant, are the forms of all phenomena. What his peculiar ideas are concerning their nature and attributes, my readers will find stated in his own words at the end of this Discourse, in an extract from one of his Latin publications. * From that extract, I cannot promise them much instruction; but it will at least enable them to judge for themselves of the peculiar character of Kant's metaphysical phraseology. In the mean time, it will be sufficient to mention here, for the sake of connection, that he denies the objective reality both of time and of space. The former he considers merely as a subjective condition, inseparably connected with the frame of the human mind, in consequence of which, it arranges sensible phenomena according to a certain law, in the order of succession. As to the latter, he asserts, that it is nothing objective or real, inasmuch as it is neither

1 This is precisely the language of the German school: "Les verités nécessaires, "say Leibnitz, "sont le produit immédiat de l'activité intérieure."—(Tome I. p. 686. Tome II. pp. 42, 325. See Degerando, Hist. Comp. Tome II. p. 96.)

2 In the attempt, indeed, which Kant has made to enumerate all the general ideas which are not derived from experience, but arise out of the pure understanding, he may well lay claim to the praise of originality. On this subject I shall only refer my readers to Note X X at the end of this Dissertation.

3 Immutable Morality, p. 204, et seq.

4 See Note Y Y.
a substance, nor an accident, nor a relation; that its existence, therefore, is only subjective and ideal, depending on a fixed law, inseparable from the frame of the human mind. In consequence of this law, we are led to conceive all external things as placed in space; or, as Kant expresses it, we are led to consider space as the fundamental form of every external sensation.

In selecting Kant's speculations concerning time and space, as a specimen of his mode of writing, I was partly influenced by the consideration, that it furnishes, at the same time, a remarkable example of the concatenation which exists between the most remote and seemingly the most unconnected parts of his system. Who could suppose that his opinions on these subjects, the most abstract and the most controverted of any in the whole compass of metaphysics, bore on the great practical question of the freedom of the Human Will? The combination appears, at first sight, so very extraordinary, that I have no doubt I shall gratify the curiosity of some of my readers by mentioning a few of the intermediate steps which, in this argument, lead from the premises to the conclusion.

That Kant conceived the free agency of man to be necessarily implied in his moral nature (or, at least, that he was anxious to offer no violence to the common language of the world on this point), appears from his own explicit declarations in various parts of his works. "Volutus libera (says he in one instance) cadaem est cum voluntate legibus moralibus obnoxia." In all the accounts of Kant's philosophy, which have yet appeared from the pens of his admirers in this country, particular stress is laid on the ingenuity with which he has unloosed this knot, which had baffled the wisdom of all his predecessors. The following are the words of one of his own pupils, to whom we are indebted for the first, and, I think, not the least intelligible, view of his principles, which has been published in our language.

"Professor Kant is decidedly of opinion, that although many strong and ingenious arguments have been brought forward in favour of the freedom of the will, they are yet very far from being decisive. Nor have they refuted the arguments urged by the Necessitarians, but by an appeal to mere feeling, which, on such a question, is of no avail. For this purpose, it is indispensably necessary to call to our assistance the principles of Kant."

"In treating this subject (continues the same author), Kant begins with showing that the notion of a Free Will is not contradictory. In proof of this he observes, that, although every human action, as an event in time, must have a cause, and so on ad infinitum; yet it is certain, that the laws of cause and effect can have a place there only where time is, for the effect must be consequent on the cause. But neither time nor space are properties of things; they are only the general forms under which man is allowed to view himself and the world. It follows, therefore, that man is not in time nor in space, although the forms of his intuitive ideas are time and space. But if man exist not in time and space, he is not influenced by the laws of time and space, among which those of cause and effect hold a distinguished rank; it is, therefore, no contradiction to conceive, that, in such an order of things, man may be free."

In this manner Kant establishes the possibility of man's freedom; and, farther than this, he does not conceive himself warranted to proceed on the principles of the critical philosophy. The first impression, certainly, which his argument

1 See Born's Latin Translation of Kant's Works, relating to the Critical Philosophy, Vol. II. p. 325, et seq. See also the Preface to Vol. III.

This small performance is spoken of in terms highly favourable, by the other writers who have attempted to introduce Kant's philosophy into England. It is called by Dr Willich an excellent publication (Elements of the Critical Philosophy, etc.) and is pronounced by the author of the elaborate articles on that subject in the Encyclopaedia Londinensis to be a sterling work. "Though at present very little known, I may venture," says this writer, "to predict, that, as time rolls on, and prejudices moulder away, this work, like the Elements of Euclid, will stand forth as a lasting monument of pure truth."

---See Note Z Z.

3 Nitsch, &c. pp. 174, 175.
pures the mind is, that his own opinion was favourable to the scheme of necessity. For if the reasonings of the Necessitarians be admitted to be satisfactory, and if nothing can be opposed to them but the incomprehensible proposition, that man neither exists in space nor in time, the natural inference is, that this proposition was brought forward rather to save appearances, than as a serious objection to the universality of the conclusion.

Here, however, Kant calls to his aid the principles of what he calls practical reason. Deeply impressed with a conviction that morality is the chief concern of man, and that morality and the freedom of the human will must stand or fall together, he exerts his ingenuity to show, that the metaphysical proof already brought of the possibility of free agency, joined to our own consciousness of a liberty of choice, affords evidence of the fact fully sufficient for the practical regulation of our conduct, although not amounting to what is represented as demonstration in the Critique of Pure Reason.1

It is impossible to combine together these two parts of the Kantian system, without being struck with the resemblance they bear to the deceitful sense of liberty to which Lord Kames had recourse (in the first edition of his Essays on Morality and Natural Religion), in order to reconcile our consciousness of free agency with the conclusions of the Necessitarians. In both cases, the reader is left in a state of most uncomfortable scepticism, not confined to this particular question, but extending to every other subject which can give employment to the human faculties.2

In some respects, the functions ascribed by Kant to his practical reason are analogous to those ascribed to common sense in the writings of Beattie and Oswald. But his view of the subject is, on the whole, infinitely more exceptionable than theirs, inasmuch as it sanctions the supposition, that the conclusions of pure reason are, in certain instances, at variance with that modification of reason which was meant by our Maker to be our guide in life; whereas the constant language of the other writers is, that all the different parts of our intellectual frame are in the most perfect harmony with each other.

The motto which Beattie has prefixed to his book,

1 Nunquam aliud natura, aliud sapientia dicit,

expresses, in a few significant words, the whole substance of his philosophy.

1 The account of this part of Kant's doctrine given by M. Buhle agrees in substance with that of Mr Night: "Toute moralité des actions repose uniquement sur la disposition pratique, en tant qu'elle est déterminée par la loi morale seule. Si l'on considère cette disposition comme phénomène dans la conscience; c'est un événement naturel, elle obéit à la loi de la causalité, elle repose sur ce que l'homme a éprouvé auparavant dans le temps, et elle fait partie du caractère empirique de l'homme. Mais on peut aussi la considérer comme un acte de la liberté raisonnable: Alors elle n'est plus soumise à la loi de la causalité; elle est indépendante de la condition du temps, elle se rapporte à une cause intelligible, la liberté, et elle fait partie du caractère intelligible de l'homme. On ne peut, à la vérité, point acquérir la moindre connaissance des objets intelligibles; mais la liberté n'est pas moins un fait de la conscience: Donc les actions extérieures sont indifférentes pour la moralité de l'homme. La bonté morale de l'homme consiste uniquement dans sa volonté moralement bonne, et celle-ci consiste en ce que la volonté soit déterminée par la loi morale seule."—(Hist. de la Philosophie Moderne, par J. G. Buhle, Tom. VI. pp. 304, 306.)

2 Very nearly to the same purpose is the following statement by the ingenious author of the article Leibniz in the Biographie Universelle:—"Comment accorder le fatal et la liberté, l'imputation morale et la dépendance des êtres finis? Kant croit échapper à cet écueil en ne soumettant à la loi de causalité (au déterminisme de Leibniz) que le monde phénoménique, et en affranchissant de ce principe l'âme comme noumène ou chose en soi, envisagant ainsi chaque action comme appartenant à un double série à la fois; à l'ordre physique où elle est engendrée à ce qui précède et à ce qui suit par les liens communs de la nature, et à l'ordre moral, où une détermination produit un effet, sans que pour expliquer cette volition et son résultat, on soit renvoyé à un état antécédent."—

The author of the above passage is M. Staffier, to whom we are indebted for the article Kant in the same work. For Kant's own view of the subject consult his Critique of Pure Reason, posthum, particularly p. 90. et seq. of Born's Translation, Vol. III.

3 The idea of Kant (according to his own explicit avowal) was, that every being, which conceive itself to be free, whether it be in reality so or not, is rendered by its own belief a moral and accountable agent. "Jam equidem dico: quaeque natura, qua non potest nisi sub idea libertatis agere, propter ilium ipsum, respectu practice, reipsa libera est; hoc est, ad eam valent cuncta leges, cum libertate arcissima conjuncta perinde, ac voluntas ejus etiam per ipsum, et in philosophia theorectica probata, libera declaratur."—(Kantii Opera, Vol. II. p. 326.)

This is also the creed professed by the Abbé Galliani, a much more dangerous moralist than Kant, because he is always inojious, and often extremely lively and amusing. "L'homme est donc libre, puisqu'il est intimement persuadé de l'être, et que cela vaut tout autant que la liberté. Volonté donc le mécanisme de l'univers expliqué divin comme de l'eau de roche." The same author farther remarks, "La persuasion de la liberté constitue l'essence de l'homme. On pourrait même définir l'homme un animal qui se croit libre, et ce seroit une définition complète."—(Correspondance de l'Abbé Galliani, Tome I. pp. 339, 340. A Paris, 1816.)
It is to the same practical modification of reason that Kant appeals in favour of the existence of the Deity, and of a future state of retribution, both of which articles of belief he thinks derive the whole of their evidence from the moral nature of man. His system, therefore, as far as I am able to comprehend it, tends rather to represent these as useful credenda, than as certain or even as probable truths. Indeed, the whole of his moral superstructure will be found to rest ultimately on no better basis than the metaphysical conundrum, that the human mind (considered as a nomenon and not as a phenomenon) neither exists in space nor in time.

That it was Kant's original aim to establish a system of scepticism, I am far from being disposed to think. The probability is, that he began with a serious wish to refute the doctrines of Hume; and that, in the progress of his inquiries, he met with obstacles of which he was not aware. It was to remove these obstacles that he had recourse to practical reason; an idea which has every appearance of being an afterthought, very remote from his views when he first undertook his work. This, too, would seem, from the following passage (which I translate from Degerando), to have been the opinion of one of Kant's ablest German commentators, M. Reinhold: "Practical Reason (as Reinhold ingeniously observes) is a wing which Kant has prudently added to his edifice, from a sense of the inadequacy of the original design to answer the intended purpose. It bears a manifest resemblance to what some philosophers call an appeal to sentiment, founding belief on the necessity of acting. Whatever contempt Kant may affect for popular systems of philosophy, this manner of considering the subject is not unlike the disposition of those who, feeling their inability to obtain, by the exercise of their reason, a direct conviction of their religious creed, cling to it nevertheless with a blind eagerness, as a support essential to their morals and their happiness." (Hist. Comparée, Vol. II. pp. 243, 244.)

The extraordinary impression produced for a considerable time in Germany, by the Critique of Pure Reason, is very shrewdly, and I suspect justly, accounted for by the writer last quoted: "The system of Kant was well adapted to flatter the weaknesses of the human mind. Curiosity was excited, by seeing paths opened which had never been trodden before. The love of mystery found a secret charm in the obscurity which enveloped the doctrine. The long and troublesome period of initiation was calculated to rouse the ambition of bold and adventurous spirits. Their love of singularity was gratified by the new nomenclature; while their vanity exulted in the idea of being admitted into a privileged sect, exercising, and entitled to exercise, the supreme censorship in philosophy. Even men of the most ordinary parts, on finding themselves called to so high functions, lost sight of their real mediocrity, and conceived themselves transformed into geniuses destined to form a new era in the history of reason.

"Another inevitable effect resulted from the universal change operated by Kant in his terms, in his classifications, in his methods, and in the enunciation of his problems. The intellectual powers of the greater part of the initiated were too much exhausted in the course of their long noviciate, to be qualified to judge soundly of the doctrine itself. They felt themselves, after so many windings, lost in a labyrinth, and were unable to dispense with the assistance of the guide who had conducted them so far. Others, after so great a sacrifice, wanted the courage to confess to the world, or to themselves, the disappointment they had met with. They attached themselves to the doctrine in proportion to the sacrifice they had made, and estimated its value by the labour it had cost them. As for more superficial thinkers, they drew an inference from the novelty of the form in favour of the novelty of the matter, and from the novelty of the matter in favour of its importance.

"It is a great advantage for a sect to possess

1 On the contrary, he declares explicitly (and I give him full credit for the sincerity of his words), that he considered his Critique of Pure Reason as the only effectual antidote against the opposite extremes of scepticism and of superstition, as well as against various heretical doctrines which at present infect the schools of philosophy. "Hac igitur sola (Philosophia Critica) et materialismi, et fatalismi, et Atheismi, et diffidentiæ profane, et fanatismi, et superstitionis, quorum virus ad universos potest penetrare, tandemque etiam et idealismi et scepticismi, qui magis scholis sunt pestiferi, radices ipsae possess praeced." (Kant, Prof. Posterior, p. 85.)
a distinguishing garb and livery. It was thus that the Peripatetics extended their empire so widely, and united their subjects in one common obedience. Kant had, over and above all this, the art of insisting, that his disciples should belong exclusively to himself. He explicitly announced, that he was not going to found a school of Eclectics, but a school of his own; a school not only independent, but in some measure hostile to every other; that he could admit of no compromise with any sect whatever; that he was come to overturn every thing which existed in philosophy, and to erect a new edifice on these immense ruins. The more decided and arrogant the terms were in which he announced his design, the more likely was it to succeed; for the human mind submits more easily to an unlimited than to a partial faith, and yields itself up without reserve, rather than consent to cavil about restrictions and conditions even in favour of its own independence.

With these causes of Kant's success another seems to have powerfully conspired; the indissoluble coherence and concatenation of all the different parts of his philosophy. " It is on this concatenation (says M. Prevost) that the adoration of Kant's followers is chiefly founded." Grant only (they boast) the first principles of the Critical Philosophy, and you must grant the whole system. The passage quoted on this occasion by M. Prevost is so forcibly expressed, that I cannot do it justice in an English version: "Ab hinc enim capitis fluere nescesse est omnem philosophiae criticae rationis purae vim atque virtutem; namque in ea contextus rerum prorsus mirabilis est, ita ut extrema primis, media utrisque, omnia omnibus respondeant; si prima dederis danda sunt omnia." No worse account could well have been given of a philosophical work on such a subject; nor could any of its characteristical features have been pointed out more symptomatic of its ephemeral reputation. Supposing the praise to be just, it represented the system, however fair and imposing in its first aspect, as vitally and mortally vulnerable (if at all vulnerable) in every point; and, accordingly, it was fast approaching to its dissolution before the death of its author. In Germany, at present, we are told, that a pure Kantian is scarcely to be found. But there are many Semi-Kantians and Anti-Kantians, as well as partisans of other schemes built out of the ruins of the Kantian philosophy. "In fine (says a late author), the "Critique of Pure Reason," announced with pomp, received with fanaticism, disputed about with fury, after having accomplished the overthrow of the doctrines taught by Leibnitz and Wolff, could no longer support itself upon its own foundations, and has produced no permanent result, but divisions and enmities, and a general disgust at all systematical creeds." If this last effect has really resulted from it (of which some doubts may perhaps be entertained), it may be regarded as a favourable symptom of a sounder taste in matters of abstract science, than has ever yet prevailed in that country.

To these details, I have only to add a re-

1 See some very valuable strictures on Kant, in the learned and elegant sketch of the present state of philosophy, subjoined to M. Prevost's French translation of Mr Smith's posthumous works. The Latin panegyric on the critical philosophy is quoted from a work with which I am unacquainted, Fred. Gottlob Bornii de Scientia et Conjectura.

2 On this subject, see Degrandi and De Bonald.

3 See Degrandi and De Bonald.

4 The words in the original are, "Un dégout générale de toute doctrine." But as the same word doctrine is, in a former part of the same sentence, applied to the systems of Leibnitz and of Wolff, I have little doubt, that, in substituting for doctrine the phrase systematical creeds, I have faithfully rendered the meaning of my author.—(See Recherches Philosophiques, par M. De Bonald, Tom. I. pp. 43, 44.)

5 The passion of the Germans for systems is a striking feature in their literary taste, and is sufficient of itself to show, that they have not yet passed their noviciate in philosophy. "To all such (says Mr Maclaurin) as have just notions of the Great Author of the Universe, and of his admirable workmanship, all complete and finished systems must appear very suspicious." At the time when he wrote, such systems had not wholly lost their partisans in England; and the name of System continued to be a favourite title for a book even among writers of the highest reputation. Hence the System of Moral Philosophy by Hutcheson, and the Complete System of Optics by Smith, titles which, when compared with the subsequent progress of these two sciences, reflect some degree of ridicule upon their authors.

When this affection of systematical method began, in consequence of the more enlarged views of philosophers, to give way to that aphoristical style so strongly recommended and so happily exemplified by Lord Bacon, we find some writers of the old school complaining of the innovation, in terms not unlike those in which the philosophy of the English has been censured by some German critics. "The best way (says Dr Watts) to learn any science, is to begin with a regular sys-
mark of Degerando's, which I have found amply confirmed within the circle of my own experience. It might furnish matter for some useful reflections, but I shall leave my readers to draw their own conclusions from it. "Another remarkable circumstance is, that the defence of the Kantians turned, in general, not upon the truth of the disputed proposition, but upon the right interpretation of their master's meaning, and that their reply to all objections has constantly begun and ended with these words, You have not understood us."

Among the various schools which have emanated from that of Kant, those of Fichte and Schelling seem to have attracted among their countrymen the greatest number of proselytes. Of neither am I able to speak from my own knowledge; nor can I annex any distinct idea to the accounts which are given of their opinions by others. Of Fichte's speculations about the philosophical import of the pronoun I (Qu'est-ce que le moi? as Degerando translates the question), I cannot make any thing. In some of his remarks, he approaches to the language of those Cartesians who, in the progress of their doubts, ended in absolute egoism: but the ego of Fichte has a creative power. It creates existence, and it creates science; two things (by the way) which, according to him, are one and the same. Even my own existence, he tells me, commences only with the reflex act, by which I think of the pure and primitive ego. On this identity of the intelligent ego and the existing ego (which Fichte expresses by the formula ego = ego) all science ultimately rests.—But on this part of his metaphysics it would be idle to enlarge, as the author acknowledges, that it is not to be understood without the aid of a certain transcendental sense, the want of which is wholly irreparable; a singular admission enough (as Degerando observes), on the part of those critical philosophers who have treated with so much contempt the appeal to Common Sense in the writings of some of their predecessors.9

"In the history of beings there are (according to Fichte) three grand epochs; the first belongs to the empire of chance; the second is the reign of nature; the third will be the epoch of the existence of God. For God does not exist yet; he only manifests himself as preparing to exist. Nature tends to an apotheosis, and may be regarded as a sort of divinity in the germ."7

The account given by Madame de Staël of this part of Fichte's system is considerably different: "He was heard to say, upon one occasion, that in his next lecture he 'was going to create God,'—an expression which, not without reason, gave general offence. His meaning was, that he intended to show how the idea of God arose and unfolded itself in the mind of man."4 How far this apology is well-founded, I am not competent to judge.

The system of Schelling is, in the opinion of Degerando, but an extension of that of Fichte; connecting with it a sort of Spinozism grafted on Idealism. In considering the primitive ego

1 In order to avoid the intolerable awkwardness of such a phrase as the I, I have substituted on this occasion the Latin pronoun for the English one.
2 Hist. Comparée, &c. Tome II. p. 319. See also the article Fichte in this Encyclopædia.
3 Hist. Comparée, &c. Tome II. p. 314. The doctrine here ascribed to Fichte by Degerando, although its unparalleled absurdity might well excite some doubts about the correctness of the historian, is not altogether a novelty in the history of philosophy. It is in point of fact nothing more than a return to those gross conceptions of the mind in the infancy of human reason, which Mr Smith has so well described in the following passage:—"In the first ages of the world, the seeming incoherence of the appearances of nature so confounded mankind, that they despaired of discovering in her operations any regular system. . . . Their gods, though they were apprehended to interpose upon some particular occasions, were so far from being regarded as the creators of the world, that their origin was apprehended to be posterior to that of the world. The earth (according to Hesiod) was the first production of the chaos. The heavens arose out of the earth, and from both together, all the gods who afterwards inhabited them. Nor was this notion confined to the vulgar, and to those poets who seem to have recorded the vulgar theology. . . . The same notion of the spontaneous origin of the world was embraced (as Aristotle tells us) by the early Pythagoreans. . . Mind, and understanding, and consequently Deity, being the most perfect, they observed, always came last: As in plants and animals, it is not the seed that is most perfect, but the complete animal, with all its members in the one; and the complete plant, with all its branches, leaves, flowers, and fruits, in the other."—Smith's Post. Essays on Philosophical Subjects, pp. 106, 107.
as the source of all reality as well as of all science, and in thus transporting the mind into an intellectual region, inaccessible to men possessed only of the ordinary number of senses, both agree; and to this vein of transcendental mysticism may probably be ascribed the extraordinary enthusiasm with which their doctrines appear to have been received by the German youth. Since the time when Degerando wrote, a new and very unexpected revolution is said to have taken place among Schelling's disciples; many of them, originally educated in the Protestant faith, having thrown themselves into the bosom of the Catholic church 1…… "The union of the faithful of this school forms an invisible church, which has adopted for its symbol and watchword, the Virgin Mary; and hence rosaries are sometimes to be seen in the hands of those who reckon Spinoza among the greatest prophets." It is added, however, with respect to this invisible church, that "its members have embraced the Catholic religion, not as the true religion, but as the most poetical," a thing not improbable among a people who have so strong a disposition to mingle together poetry and metaphysics in the same compositions. 2 But it is painful to contemplate these sad aberrations of human reason; nor would I have dwelt on them so long as I have done, had I not been anxious to convey to my readers a general, but I trust not unfaithful, idea of the style and spirit of a philosophy, which, within the short period of our recollection, rose, flourished, and fell; and which, in every stage of its history, furnished employment to the talents of some of the most learned and able of our contemporaries. 3

The space which I have allotted to Kant has so far exceeded what I intended he should occupy, that I must pass over the names of many of his countrymen much more worthy of public attention. In the account given by Degerando of the opponents of the Kantian system, some remarks are quoted from different writers, which convey a very favourable idea of the works from which they are borrowed. Among these I would more particularly distinguish those ascribed to Jacobi and to Reinhold. In the Memoirs, too, of the Berlin Academy, where, as Degerando justly observes, the philosophy of Locke found an asylum, while banished from the rest of Germany, there is a considerable number of metaphysical articles of the highest merit. 4 Nor must I omit to mention the contributions to this science by the university of Goettingen; more especially on questions connected with the philosophy of language. I have great pleasure, also, in acknowledging the entertainment I have received, and the lights I have borrowed from the learned labours of Meiners and of Herder; but none of these are so closely connected with the history of metaphysics as to justify me in entering into particular details with respect to them. I am ashamed to say that, in Great Britain, the only one of these names which has been much talked of is that of Kant; a circumstance which, I trust, will apologise for the length to which the foregoing observations have extended. 5

1 See a paper by M. G. Schweighauser in the London Monthly Magazine for 1804, p. 207.
2 "Aussi les Allemands melent ils trop souvent la Metaphysique à la Poésie."—Allémagne, Vol. III. p. 133. "Nothing (says Mr Hume) is more dangerous to reason than the flights of imagination, and nothing has been the occasion of more mistakes among philosophers. Men of bright fancies may, in this respect, be compared to those angels, whom the scripture represents as covering their eyes with their wings."—(Treatise of Human Nature, Vol. I. p. 404.)
3 According to a French writer, who appears to have resided many years in Germany, and who has enlivened a short Essay on the Elements of Philosophy with many curious historical details concerning Kant and his successors, both Fichte and Schelling owed much of their reputation to the uncommon eloquence displayed in their academical lectures:—"Cette doctrine sortait de la bouche de Fichte, revêtue de ces ornemens qui donnent la jeunesse, la beauté, et la force au discours. On ne se laissait point en l'écouter." Of Schelling he expresses himself thus:—"Schelling, appelé à l'université de Wurzburg, y attira par sa réputation un concours nombreux d'auditeurs, qu'il enchâinait à ses leçons par la richesse de sa diction et par l'étendue de ses connaissances. De là, il est venu à Munich, où le revoit en 1813. On dit qu'il a embrassé la religion Catholique."—(Essai sur les Elémences de la Philosophie, par G. Gley, Principal au College d'Alençon. Paris, 1817. pp. 152, 153.)
4 In a volume of this collection (for the year 1797), which happens to be now lying before me, there are three profound and important Memoirs on Probabilities, by M. Prevost and M. l'Hayliier. Neither of these authors, I am aware, is of German origin, but as the Academy of Berlin has had the merit to bring their papers before the public, I could not omit this opportunity of recommending them to the attention of my readers. To a very important observation made by M. l'Hayliier, which has been the subject of some dispute, I am happy to avow myself of the same opportunity to express my unqualified assent.—(See pp. 15. and 31. of the memoirs belonging to the Classe de Philosophie Spéculative.)
5 See Note A A A.

Diss. I. Part II. 2 c
The only other country of Europe from which any contributions to metaphysical philosophy could be reasonably looked for, during the eighteenth century, is Italy; and to this particular branch of science I do not know that any Italian of much celebrity has, in these later times, turned his attention. The metaphysical works of Cardinal Gerdil (a native of Savoy) are extolled by some French writers; but none of them have ever happened to fall in my way. At a more recent period, Genovesi, a Neapolitan philosopher* (best known as a political economist), has attracted a good deal of notice by some metaphysical publications. Their chief object is said to be to reconcile, as far as possible, the opinions of Leibnitz with those of Locke. "Pendant que Condillac donnait inutilement des leçons à un Prince d'Italie, Genovesi en donnait avec plus de succès à ses élèves Napolitains: il combinait le mieux qu'il lui etoit possible les théories de Leibnitz, pour lequel il eut toujours une prévention favorable, avec celle de Locke, qu'il accédera le premier en Italie." Various other works of greater or less celebrity, from Italian authors, seem to announce a growing taste in that part of Europe for these abstract researches. The names of Francesco Soave, of Biagioli, and of Mariano Gigli, are advantageously mentioned by their countrymen; but none of their works, as far as I can learn, have yet reached Scotland. Indeed, with the single exception of Boscovich, I recollect no writer on the other side of the Alps, whose metaphysical speculations have been heard of in this island. This is the more to be regretted, as the specimens he has given, both of originality and soundness in some of his abstract discussions, convey a very favourable idea of the schools in which he received his education. The authority to which he seems most inclined to lean is that of Leibnitz; but, on all important questions he exercises his own judgment, and often combats Leibnitz with equal freedom and success. Remarkable instances of this occur in his strictures on the principle of the sufficient reason, and in the limitations with which he has admitted the law of continuity.

The vigour, and, at the same time, the versatility of talents, displayed in the voluminous works of this extraordinary man, reflect the highest honour on the country which gave him birth, and would almost tempt one to give credit to the theory which ascribes to the genial climates of the south a beneficial influence on the intellectual frame. Italy is certainly the only

1 His two first publications, which were directed against the philosophy of Locke (if we may judge from their titles), are not likely, in the present times, to excite any curiosity. 1. The Immortality of the Soul Demonstrated against Mr Locke, on some Principles on which this Philosopher has Demonstrated the Existence and the Immortality of God. Turin, 1747. 2. Defence of the Opinion of Malebranche, on the Nature and Origin of our Ideas, against the examination of Mr Locke. Turin, 1748. The only other works of Gerdil which I have seen referred to are, A Dissertation on the Incompatability of the Principles of Descartes with those of Spinoza; and A Refutation of some Principles maintained in the Emile de Rousseau. Of this last performance, Rousseau is reported to have said, "Voila l'unique écrit publié contre moi que j'ai trouvé digne d'être lu en entier." (Nouveau Dict. Hist. article Gerdil.) In the same article, a reference is made to a public discourse of the celebrated M. Mairan, of the Academy of Sciences, in which he pronounces the following judgment on Gerdil's metaphysical powers: "Gerdil porte avec lui dans tous ces discours un esprit géométrique, qui manque trop souvent aux géomètres même."

2 Born 1712, died 1769.

* Recue Encyclopédique, ou Analyse Raisonnée des Productions les plus Remarquables dans la Littérature, les Sciences, et les Arts. 1. Vol. 3me livraison, p. 518. Paris, Mars 1810. (The writer of the article quoted in the text is M. Sarpi, an Italian by birth, who, after having distinguished himself by various publications in his own country, has now (if I am not mistaken) fixed his residence at Paris. In his own philosophical opinions, he seems to be a follower of Condillac's school, otherwise he would scarcely have spoken so highly as he has done of the French Ideologists: "L'Ideeologie qui, d'apres sa dénomination récente pourrait être considérée comme spécialement due aux Français, mais qui est aussi ancienne que la philosophie, puisqu'elle a pour objet la génération des idées et l'analyse des facultés qui concourent a leur formation, n'est pas étrangère aux Italiens, comme on pourrait le croire.")

Genovesi is considered, by an historian of high reputation, as the reformer of Italian philosophy. If the execution of his Treatise on Logic corresponds at all to the enlightened views with which the design seems to have been conceived, it cannot fail to be a work of much practical utility. "Ma chi può veramente dirsi il riformatore dell' Italiana filosofia, chi la fece tosto conoscere, e rispettare da' più dotti filosofi delle altre nazioni, chi seppe arricchirne di nuovi pregi la logica, la metafisica, e la morale, fu il celebre Genovesi. Tuttociò molti fossero stati i filosofi che cercarono con sottili riflessioni, e giusti precetti di guider la mente a pensare ed a ragionare con esattezza e verità, e Baccone, Malebranche, Locke, Wolff, e molti altri se avessero avere avuto quanto v'era da scrivere su tale arte, seppe nondimeno il Genovesi trovare nuove osservazioni, e nuovi avvertimenti da prender, e dare una logica più piena e compiuta, e più utile non solo allo studio della filosofia, e generalmente ad ogni studio scientifico, ma esalando alla condotta morale, ed alla civile società." —(Dell' Origine, de Progressi, e dello Stato attuale d'Ogni Letteratura dell' Abate D. Giovanni Andres. Tomo XV. pp. 260. 261. Venezia, 1800.)
part of Europe where mathematicians and metaphysicians of the highest rank have produced such poetry as has proceeded from the pens of Boscovich and Stay. It is in this rare balance of imagination, and of the reasoning powers, that the perfection of the human intellect will be allowed to consist; and of this balance a far greater number of instances may be quoted from Italy (reckoning from Galileo down to), than in any other corner of the learned world.

The sciences of ethics, and of political economy, seem to be more suited to the taste of the modern Italians, than logic or metaphysics, properly so called. And in the two former branches of knowledge, they have certainly contributed much to the instruction and improvement of the eighteenth century. But on these subjects we are not yet prepared to enter.

In the New World, the state of society and of manners has not hitherto been so favourable to abstract science as to pursuits which come home directly to the business of human life. There is, however, one metaphysician of whom America has to boast, who, in logical acuteness and subtlety, does not yield to any disputant bred in the universities of Europe. I need not say, that I allude to Jonathan Edwards. But, at the time when he wrote, the state of America was more favourable than it now is, or can for a long period be expected to be, to such inquiries as those which engaged his attention; inquiries, by the way, to which his thoughts were evidently turned, less by the impulse of speculative curiosity, than by his anxiety to defend the theological system in which he had been educated, and to which he was most conscientiously and zealously attached. The effect of this anxiety in sharpening his faculties, and in keeping his polemical vigilance constantly on the alert, may be traced in every step of his argument.

In the mean time, a new and unexpected mine of intellectual wealth has been opened to the learned of Europe, in those regions of the East, which, although in all probability the cradle of civilisation and science, were, till very lately, better known in the annals of commerce than of philosophy. The metaphysical and ethical remains of the Indian sages are, in a peculiar degree, interesting and instructive; inasmuch as they seem to have furnished the germs of the chief systems taught in the Grecian schools. The favourite theories, however, of the Hindoos will, all of them, be found, more or less, tinctured with those ascetic habits of abstract and mystical meditation which seem to have been, in all ages, congenial to their constitutional temperament. Of such habits, an Idealism, approaching to that of Berkeley and Malebranche, is as natural an offspring, as Materialism is of the gay and dissipated manners, which, in great and luxurious capitals, are constantly inviting the thoughts abroad.

To these remains of ancient science in the

1 See a most interesting account of Galileo's taste for poetry and polite literature in Gingué, Histoire Littéraire d'Italie. Tome V. pp. 331, et seq. d' Paris, 1812.

2 While this Dissertation was in the press, I received a new American publication, entitled, "Transactions of the Historical and Literary Committee of the American Philosophical Society, held at Philadelphia, for Promoting Useful Knowledge," Vol. I. Philadelphia, 1819. From an advertisement prefixed to this volume, it appears that, at a meeting of this learned body in 1818, it was resolved, "That a new committee be added to those already established, to be denominated the Committee of History, Moral Science, and General Literature." It was with great pleasure I observed, that one of the first objects to which the committee had directed its attention is to investigate and ascertain, as much as possible, the structure and grammatical forms of the languages of the aboriginal nations of America. The Report of the corresponding secretary (M. Duponceau), dated January 1819, with respect to the progress then made in this investigation, is highly curious and interesting, and displays not only enlarged and philosophical views, but an intimate acquaintance with the philological researches of Adelung, Vater, Humboldt, and other German scholars. All this evinces an enlightened curiosity, and an extent of literary information, which could scarcely have been expected in these rising states for many years to come.

The rapid progress which the Americans have lately made in the art of writing has been remarked by various critics, and it is certainly a very important fact in the history of their literature. Their state papers were, indeed, always distinguished by a strain of animated and vigorous eloquence; but as most of them were composed on the spur of the occasion, their authors had little time to bestow on the niceties, or even upon the purity of diction. An attention to these is the slow offspring of learned leisure, and of the diligent study of the best models. This I presume was Gray's meaning, when he said, that "good writing not only required great parts, but the very best of those parts;"—a maxim which, if true, would point out the state of the public taste with respect to style, as the sternest test among any people of the general improvement which their intellectual powers have received; and which, when applied to our Transatlantic brethren, would justify sanguine expectations of the attainments of the rising generation.

* Note of Mason on a Letter of Gray's to Dr Wharton, on the death of Dr Middleton.
East, the attention of Europe was first called by Bernier, a most intelligent and authentic traveller, of whom I formerly took notice as a favourite pupil of Gassendi. But it is chiefly by our own countrymen that the field which he opened has been subsequently explored; and of their meritorious labours in the prosecution of this task, during the reign of our late Sovereign, it is scarcely possible to form too high an estimate.

Much more, however, may be yet expected, if such a prodigy as Sir William Jones should again appear, uniting, in as miraculous a degree, the gift of tongues with the spirit of philosophy. The structure of the Sanscrit, in itself, independently of the treasures locked up in it, affords one of the most puzzling subjects of inquiry that was ever presented to human ingenuity. The affinities and filiations of different tongues, as evinced in their corresponding roots and other coincidences, are abundantly curious, but incomparably more easy in the explanation, than the systematical analogy which is said to exist between the Sanscrit and the Greek (and also between the Sanscrit and the Latin, which is considered as the most ancient dialect of the Greek), in the conjugations and flexions of their verbs, and in many other particulars of their mechanism; an analogy which is represented as so complete, that, in the versions which have been made from the one language into the other, "Sanscrit," we are told, "answers to Greek, as face to face in a glass."71 That the Sanscrit did not grow up to the perfection which it now exhibits, from popular and casual modes of speech, the unexampled regularity of its forms seems almost to demonstrate; and yet, should this supposition be rejected, to what other hypothesis shall we have recourse, which does not involve equal, if not greater improbabilities? The problem is well worthy of the attention of philosophical grammarians; and the solution of it, whatever it may be, can scarcely fail to throw some new lights on the history of the human race, as well as on that of the human mind.

SECTION VIII.

Metaphysical Philosophy of Scotland.

It now only remains for me to take a slight survey of the rise and progress of the Metaphysical Philosophy of Scotland; and if, in treating of this, I should be somewhat more minute than in the former parts of this Historical Sketch, I flatter myself that allowances will be made for my anxiety to supply some chasms in the literary history of my country, which could not be so easily, nor perhaps so authentically, filled up by a younger hand.

The Metaphysical Philosophy of Scotland, and, indeed, the literary taste in general, which so remarkably distinguished this country during the last century, may be dated from the lectures of Dr Francis Hutcheson, in the University of Glasgow. Strong indications of the same speculative spirit may be traced in earlier writers; but it was from this period that Scotland, after a long slumber, began again to attract general notice in the republic of letters.5

The writings of Dr Hutcheson, however, are more closely connected with the history of Ethical than of Metaphysical Science; and I

1 Letter from the Reverend David Brown, Provost of the College of Fort William, about the Sanscrit Edition of the Gospels (dated Calcutta, September 1806, and published in some of the Literary Journals of the day.)
2 See Note B B.
3 An Italian writer of some note, in a work published in 1763, assigns the same date to the revival of letters in Scotland.
4 Fra i tanti, e si chiami Scrittori che fiorirono nella Gran Bretagna a' tempi della Regina Anna, non se ne conta pur uno,
shall, accordingly, delay any remarks which I have to offer upon them till I enter upon that part of my subject. There are, indeed, some very original and important metaphysical hints scattered over his works; but it is chiefly as an ethical writer that he is known to the world, and that he is entitled to a place among the philosophers of the eighteenth century.

Among the contemporaries of Dr Hutcheson, there was one Scottish metaphysician (Andrew Baxter, author of the Inquiry into the Nature of the Human Soul), whose name it would be improper to pass over without some notice, after the splendid eulogy bestowed on his work by Warburton. "He who would see the justest and precisest notions of God and the soul may read this book, one of the most finished of the kind, in my humble opinion, that the present times, greatly advanced in true philosophy, have produced."

To this unqualified praise, I must confess, I do not think Baxter's Inquiry altogether entitled, although I readily acknowledge that it displays considerable ingenuity, as well as learning. Some of the remarks on Berkeley's argument against the existence of matter are acute and just, and, at the time when they were published, had the merit of novelty.

One of his distinguishing doctrines is, that the Deity is the immediate agent in producing the phenomena of the Material World; but that, in the Moral World, the case is different,—a doctrine which, whatever may be thought of it in other respects, is undoubtedly a great improvement on that of Malebranche, which, by representing God as the only agent in the universe, was not less inconsistent than the scheme of Spinoza with the moral nature of Man. "The Deity (says Baxter) is not only at the head of Nature, but in every part of it. A chain of material causes betwixt the Deity and the effect produced, and much more a series of them, is such a supposition as would conceal the Deity from the knowledge of mortals for ever. We might search for matter above matter, till we were lost in a labyrinth out of which no philosopher ever yet found his way.—This way of bringing in second causes is borrowed from the government of the moral world, where free agents act a part; but it is very improperly ap-

che sia uscito di Scozia......Francesco Hutcheson venuto in Scozia, a professarsi la Filosofia, e gli studii di umanità, nella Universita di Glasgow, v'inseguì per tutto il paese colle istruzione a viva voce, e con egregie opere date alle stampe, un vivo genio per gli studi filosofici, e letterari, e sparse qui fecondissimi semi, d'onde vediamo nascer si felice frutti, e si copiose."—(Discorso sopra le Viee della Litteratura, del Sig. Carlo Denina, p. 224, Glasgow edit. 1763.)

I was somewhat surprised to meet with the foregoing observations in the work of a foreigner; but, wherever he acquired his information, it evinces, in those from whom it was derived, a more intimate acquaintance with the traditionary history of letters in this country than has fallen to the share of most of our own authors who have treated of that subject. I have heard it conjectured, that the materials of his section on Scottish literature had been communicated to him by Mr Hume.

Another foreign writer, much better qualified than Denina to appreciate the merits of Hutcheson, has expressed himself upon this subject with his usual precision. "L' Ecoisse a en quelque sorte pour fondateur Hutcheson, maître et prédecessor de Smith. C'est ce philosophe qui lui a imprimé son caractère, et qui a commencé à lui donner de l'oeil. In a note upon this passage, the author observes,—"C'est en ce sens qu'on peut donner un chef à une école de philosophie qui, comme on le verra, professe d'ailleurs la plus parfaite indépendance de l'autorité.—(See the excellent reflections upon the posthumous works of Adam Smith, annexed by M. Prevost to his translation of that work.)

Dr Hutcheson's first course of lectures at Glasgow was given in 1730. He was a native of Ireland, and is accordingly called by Denina "un dotto Irlandese:" but he was of Scotch extraction (his father or grandfather having been a younger son of a respectable family in Ayrshire), and he was sent over when very young to receive his education in Scotland.

4 One of the chief objects of Hutcheson's writings was to oppose the licentious system of Mandeville; a system which was the natural offspring of some of Locke's reasonings against the existence of innate practical principles.

As a moralist, Hutcheson was a warm admirer of the ancients, and seems to have been particularly smitten with that favourite doctrine of the Socratic school which identifies the good with the beautiful. Hence he was led to follow much too closely the example of Shaftesbury, in considering moral distinctions as founded more on sentiment than on reason, and to speak vaguely of virtue as a sort of noble enthusiasm; but he was led, at the same time, to connect with his ethical speculations some collateral inquiries concerning Beauty and Harmony, in which he pursued, with considerable success, the path recently struck out by Addison in his Essays on the Pleasures of the Imagination. These inquiries of Hutcheson, together with his Thoughts on Laughter, although they may not be very highly prized for their depth, bear everywhere the marks of an enlarged and cultivated mind, and, whatever may have been their effects elsewhere, certainly contributed powerfully, in our Northern seats of learning, to introduce a taste for more liberal and elegant pursuits than could have been expected so soon to succeed to the intolerance, bigotry, and barbarism of the preceding century.

plied to the material universe, where matter and motion only (or mechanism, as it is called) comes in competition with the Deity."

Notwithstanding, however, these and other merits, Baxter has contributed so little to the advancement of that philosophy which has since been cultivated in Scotland, that I am afraid the very slight notice I have now taken of him may be considered as an unseasonable digression. The great object of his studies plainly was, to strengthen the old argument for the soul's immateriality, by the new lights furnished by Newton's discoveries. To the intellectual and moral phenomena of Man, and to the laws by which they are regulated, he seems to have paid but little attention.

While Dr Hutcheson's reputation as an author, and still more as an eloquent teacher, was at its zenith in Scotland, Mr Hume began his literary career, by the publication of his Treatise of Human Nature. It appeared in 1739, but seems at that time to have attracted little or no attention from the public. According to the author himself, "never literary attempt was more unfortunate. It fell dead-born from the press, without reaching such distinction as even to excite a murmur among the zealots." It forms, however, a very important link in this Historical Sketch, as it has contributed, either directly or indirectly, more than any other single work, to the subsequent progress of the Philosophy of the Human Mind. In order to adapt his principles better to the public taste, the author afterwards threw them into the more popular form of Essays; but it is in the original work that philosophical readers will always study his system, and it is there alone that the relations and bearings of its different parts, as well as its connection with the speculations of his immediate predecessors, can be distinctly traced. It is there, too, that his metaphysical talents appear, in my opinion, to the greatest advantage; nor am I certain that he has anywhere else displayed more skill or a sounder taste in point of composition.

The great objects of Mr Hume's Treatise of

1 Appendix to the first part of the Inquiry into the Nature of the Human Soul, pp. 109, 110.
2 Baxter was born at Old Aberdeen, in 1696 or 1697, and died at Whittingham, in East Lothian, in 1750. I have not been able to discover the date of the first edition of his Inquiry into the Nature of the Human Soul; but the second edition appeared in 1737, two years before the publication of Mr Hume's Treatise of Human Nature.
3 A gentleman, who lived in habits of great intimacy with Dr Reid towards the close of his life, and on whose accuracy I can fully depend, remembers to have heard him say repeatedly, that "Mr Hume, in his Essays, appeared to have forgotten his Metaphysics." Nor will this supposition be thought improbable, if, in addition to the subtle and fugitive nature of the subjects canvassed in the Treatise of Human Nature, it be considered that long before the publication of his Essays, Mr Hume had abandoned all his metaphysical researches. In proof of this, I shall quote a passage from a letter of his to Sir Gilbert Elliot, which, though without a date, seems from its contents to have been written about 1750 or 1751. The passage is interesting on another account, as it serves to show how much Mr Hume undervalued the utility of mathematical learning, and consequently how little he was aware of its importance, as an organ of physical discovery, and as the foundation of some of the most necessary arts of civilised life. "I am sorry that our correspondence should lead us into these abstract speculations. I have thought, and read, and composed very little on such questions of late. Morals, politics, and literature, have employed all my time; but still the other topics I must think more curious, important, entertaining, and useful, than any geometry that is deeper than Euclid." I have said that it is in Mr Hume's earliest work that his metaphysical talents appear, in my opinion, to the greatest advantage. From the following advertisement, however, prefixed, in the latest editions of his works, to the second volume of his Essays and Treatise, Mr Hume himself would appear to have thought differently. "Most of the principles and reasonings contained in this volume were published in a work in three volumes, called A Treatise of Human Nature; a work which the author had projected before he left College, and which he wrote and published not long after. But not finding it successful, he was sensible of his error in going to the press too early, and he cast the whole anew in the following pieces, where some negligences in his former reasoning, and some in the expression, are, he hopes, corrected. Yet several writers, who have honoured the author's philosophy with answers, have taken care to direct all their batteries against that juvenile work, which the author never acknowledged, and have affected to triumph in any advantage which they imagined they had obtained over it; a practice very contrary to all rules of candour and fair dealing, and a strong instance of those polemical artifices which a bigoted zeal thinks itself authorised to employ. Henceforth, the author desires, that the following pieces may alone be regarded as containing his philosophical sentiments and principles."

After this declaration, it certainly would be highly uncandid to impute to Mr Hume any philosophical sentiments or principles not to be found in his Philosophical Essays, as well as in his Treatise. But where is the unfairness of replying to any plausible arguments in the latter work, even although Mr Hume may have omitted them in his subsequent publications; more especially where these arguments supply any useful lights for illustrating his more popular compositions? The Treatise of Human Nature will certainly be remembered as long as any of Mr Hume's philosophical writings; nor is any person qualified either to understand and reject his arguments, without understanding the systematical form in which they were originally cast. That Mr Hume's remonstrance may be just with respect to some of his adversaries, I believe to be true; but it is surely expressed in a tone more querulous and peevish than is justified by the occasion.

I shall take this opportunity of preserving another judgment of Mr Hume's (still more fully stated) on the merits of this
Human Nature will be best explained in his own words.

'Tis evident that all the sciences have a relation, greater or less, to human nature, and that, however wide any of them may seem to run from it, they still return back by one passage or another. Even Mathematics, Natural Philosophy, and Natural Religion, are in some measure dependent on the science of Man, since they lie under the cogniscience of men, and are judged of by their powers and faculties. If, therefore, the sciences of Mathematics, Natural Philosophy, and Natural Religion, have such a dependence on the knowledge of man, what may be expected in the other sciences, whose connection with human nature is more close and intimate? The sole end of logic is to explain the principles and operations of our reasoning faculty, and the nature of our ideas; Morals and criticism regard our tastes and sentiments, and politics consider men as united in society, and dependent on each other. Here, then, is the only expedient from which we can hope for success in our philosophical researches, to leave the tedious lingering method which we have hitherto followed, and, instead of taking now and then a castle or village on the frontier, to march up directly to the capital or centre of these sciences, to human nature itself; which, being once masters of, we may everywhere else hope for an easy victory. From this station we may extend our conquests over all those sciences which more intimately concern human life, and may afterwards proceed at leisure to discover more fully those which are the objects of pure curiosity. There is no question of importance whose decision is not comprised in the Science of Man, and there is none which can be decided with any certainty before we become acquainted with that science. In pretending, therefore, to explain the principles of Human Nature, we, in effect, propose a complete system of the sciences, built on a foundation almost entirely new, and the only one upon which they can stand with any security.

'And, as the science of man is the only solid foundation for the other sciences, so the only solid foundation we can give to this science itself must be laid on experience and observation. 'Tis no astonishing reflection to consider; that the application of experimental philosophy to moral subjects should come after that to natural, at the distance of above a whole century; since we find, in fact, that there was about the same interval betwixt the origin of these sciences; and that, reckoning from Thales to Socrates, the space of time is nearly equal to that betwixt my Lord Bacon and some late philosophers in England, who have begun to put the science of man on a new footing, and have engaged the attention, and excited the curiosity of the public.'

I am far from thinking, that the execution of Mr Hume's work corresponded with the magnificent design sketched out in these observations; nor does it appear to me that he had formed to himself a very correct idea of the manner in which the experimental mode of reasoning ought to be applied to moral subjects. He had, however, very great merit in separating entirely his speculations concerning the philosophy of the mind from all physiological hypotheses about the nature of the union between soul and body; and although, from some of his casual expressions, it may be suspected that he conceived our intellectual operations to result from bodily organisation, he had yet much too large a share of good sense and sagacity to suppose, that, by study-
ing the latter, it is possible for human ingenuity to throw any light upon the former. His works, accordingly, are perfectly free from those gratuitous and wild conjectures, which a few years afterwards were given to the world with so much confidence by Hartley and Bonnet. And in this respect his example has been of infinite use to his successors in this northern part of the island. Many absurd theories have, indeed, at different times been produced by our countrymen; but I know of no part of Europe where such systems as those of Hartley and Bonnet have been so uniformly treated with the contempt they deserve as in Scotland.¹

Nor was it in this respect alone, that Mr Hume's juvenile speculations contributed to forward the progress of our national literature. Among the many very exceptionable doctrines involved in them, there are various discussions, equally refined and solid, in which he has happily exemplified the application of metaphysical analysis to questions connected with taste, with the philosophy of jurisprudence, and with the theory of government. Of these discussions some afterwards appeared in a more popular form in his philosophical and literary Essays, and still retain a place in the latest editions of his works; but others, not less curious, have been suppressed by the author, probably from an idea, that they were too abstruse to interest the curiosity of ordinary readers. In some of these practical applications of metaphysical principles, we may perceive the germs of several inquiries which have since been successfully prosecuted by Mr Hume's countrymen; and, among others, of those which gave birth to Lord Kames's Historical Law Tracts, and to his Elements of Criticism.

The publication of Mr Hume's Treatise was attended with another important effect in Scotland. He had cultivated the art of writing with much greater success than any of his predecessors, and had formed his taste on the best models of English composition. The influence of his example appears to have been great and general; and was in no instance more remarkable than in the style of his principal antagonists, all of whom, in studying his system, have caught, in no inconsiderable degree, the purity, polish, and precision of his diction. Nobody, I believe, will deny, that Locke himself, considered as an English writer, is far surpassed, not only by Hume, but by Reid, Campbell, Gerard, and Beattie; and of this fact it will not be easy to find a more satisfactory explanation, than in the critical eye with which they were led to canvass a work, equally distinguished by the depth of its reasonings, and by the attractive form in which they are exhibited.

The fundamental principles from which Mr Hume sets out, differ more in words than in substance from those of his immediate predecessors. According to him, all the objects of our knowledge are divided into two classes, impressions and ideas: the former, comprehending our sensations, properly so called, and also our perceptions of sensible qualities (two things between which Mr Hume's system does not lead him to make any distinction); the latter, the objects of our thoughts when we remember or imagine, or in general exercise any of our intellectual powers on things which are past, absent, or future. These ideas he considers as copies of our impressions, and the words which denote them as the only signs entitled to the attention of a philosopher; every word professing to denote an idea, of which the corresponding impressions cannot be pointed out, being ipso facto unmeaning and illusory. The obvious result of these principles is, that what Mr Hume calls impressions, furnish, either immediately or mediately, the whole materials about which our thoughts can be employed; a conclusion coinciding exactly with the account of the origin of our ideas borrowed by Gassendi from the ancient Epicureans.

With this fundamental principle of the Gassendists, Mr Hume combined the logical method recommended by their great antagonists the Cartesians, and (what seemed still more remote from his Epicurean starting ground) a strong leaning to the idealism of Malebranche and of

¹ In no part of Mr Hume's metaphysical writings is there the slightest reference to either of these systems, although he survived the date of their publication little less than thirty years.
Berkeley. Like Descartes, he began with doubting of every thing, but he was too quick-sighted to be satisfied, like Descartes, with the solutions given by that philosopher of his doubts. On the contrary, he exposes the futility not only of the solutions proposed by Descartes himself, but of those suggested by Locke and others among his successors; ending at last where Descartes began, in considering no one proposition as more certain, or even as more probable than another. That the proofs alleged by Descartes of the existence of the material world are quite inconclusive, had been already remarked by many. Nay, it had been shown by Berkeley and others, that if the principles be admitted on which Descartes, in common with all philosophers, from Aristotle downwards, proceeded, the existence of the material world is impossible. A few bold thinkers, distinguished by the name of Egoists, had gone still farther than this, and had pushed their scepticism to such a length, as to doubt of everything but their own existence. According to these, the proposition, cogito, ergo sum, is the only truth which can be regarded as absolutely certain. It was reserved for Mr Hume to call in question even this proposition, and to admit only the existence of impressions and ideas. To dispute against the existence of these he conceived to be impossible, as much as they are the immediate subjects of consciousness. But to admit the existence of the thinking and perceiving I, was to admit the existence of that imaginary substance called Mind, which (according to him) is no more an object of human knowledge, than the imaginary and exploded substance called Matter.

From what has been already said, it may be seen, that we are not to look in Mr Hume's Treatise for any regular or connected system. It is neither a scheme of Materialism, nor a scheme of Spiritualism; for his reasonings strike equally at the root of both these theories. His aim is to establish a universal scepticism, and to produce in the reader a complete distrust in his own faculties. For this purpose he avails himself of the data assumed by the most opposite sects, shifting his ground skilfully from one position to another, as best suits the scope of his present argument. With the single exception of Bayle, he has carried this sceptical mode of reasoning farther than any other modern philosopher. Cicero, who himself belonged nominally to the same school, seems to have thought, that the controversial habits imposed on the Academical sect by their profession of universal doubt, required a greater versatility of talent and fertility of invention, than were necessary for defending any particular system of tenets; and it is not improbable, that Mr Hume, in the pride of youthful genius, was misled by this specious but very fallacious idea. On the other hand, Bayle has the candour to acknowledge, that nothing is so easy as to dispute after the manner of the sceptics; and to this proposition every man of reflection will find himself more and more disposed to assent, as he advances in life. It is experience alone that can convince us, how much more difficult it is to make any real progress in the search after truth, than to acquire a talent for plausible disputation.

That this spirit of sceptical argument has been
carried to a most pernicious excess in modern Europe, as well as among the ancient Academicians, will, I presume, be now very generally allowed; but in the form in which it appears in Mr Hume's Treatise, its mischievous tendency has been more than compensated by the importance of those results for which it has prepared the way. The principles which he assumes were sanctioned in common by Gassendi, by Descartes, and by Locke; and from these, in most instances, he reasons with great logical accuracy and force. The conclusions to which he is thus led are often so extravagant and dangerous, that he ought to have regarded them as a proof of the unsoundness of his data; but if he had not the merit of drawing this inference himself, he at least forced it so irresistibly on the observation of his successors, as to be entitled to share with them in the honour of their discoveries. Perhaps, indeed, it may be questioned if the errors which he adopted from his predecessors would not have kept their ground till this day, had not his sagacity displayed so clearly the consequences which they necessarily involve. It is in this sense that we must understand a compliment paid to him by the ablest of his adversaries, when he says, that "Mr Hume's premises often do more than atone for his conclusions." 1

The bias of Mr Hume's mind to scepticism seems to have been much encouraged, and the success of his sceptical theories in the same proportion promoted, by the recent attempts of Descartes and his followers to demonstrate Self-evident Truths;—attempts which Mr Hume clearly perceived to involve, in every instance, that sort of paralogism which logicians call reasoning in a circle. The weakness of these pretended demonstrations is triumphantly exposed in the Treatise of Human Nature; and it is not very wonderful that the author, in the first enthusiasm of his victory over his immediate predecessors, should have fancied that the inconclusiveness of the proofs argued some unsoundness in the propositions which they were employed to support. It would, indeed, have done still greater honour to his sagacity if he had ascribed this to its true cause—the impossibility of confirming, by a process of reasoning, the fundamental laws of human belief; but (as Bacon remarks) it does not often happen to those who labour in the field of science, that the same person who sows the seed should reap the harvest.

From that strong sceptical bias which led this most acute reasoner, on many important questions, to shift his controversial ground according to the humour of the moment, one favourable consequence has resulted—that we are indebted to him for the most powerful antidotes we possess against some of the most poisonous errors of modern philosophy. I have already made a similar remark in speaking of the elaborate refutation of Spinozism by Bayle; but the argument stated by Hume, in his Essay on the Idea of Necessary Connection (though brought forward by the author with a very different view), forms a still more valuable accession to metaphysical science, as it lays the axe to the very root from which Spinozism springs. The cardinal principle on which the whole of that system turns is, that all events, physical and moral, are necessity linked together as causes and effects; from which principle all the most alarming conclusions adopted by Spinoza follow as unavoidable and manifest corollaries. But, if it be true, as Mr Hume contends, and as most philosophers now admit, that physical causes and effects are known to us merely as antecedents and consequents; still more, if it be true that the word necessity, as employed in this discussion, is altogether unmeaning and insignificant, the whole system of Spinoza is nothing better than a rope of sand, and the very proposition which it pro-

opinions which he controverts. These opinions, at least, we may confidently conclude to be agreeable to the general belief of the country where he lives.

1 Mr Hume himself (to whom Dr Reid's Inquiry was communicated previous to its publication, by their common friend Dr Blair) seems not to have been dissatisfied with this apology for some of his speculations. "I shall only say (he observes in a letter addressed to the author), that if you have been able to clear up these abstruse and important subjects, instead of being mortified, I shall be so vain as to pretend to a share of the praise, and shall think that my errors, by having at least some coherence, had led you to make a more strict review of my principles, which were the common ones, and to perceive their futility."—(For the whole of Mr Hume's letter, see Biographical Memoirs of Smith, Robertson, and Reid, by the author of this Dissertation, p. 417.)
fesses to demonstrate is incomprehensible by our faculties. Mr Hume's doctrine, in the unqualified form in which he states it, may lead to other consequences not less dangerous: but, if he had not the good fortune to conduct metaphysicians to the truth, he may at least be allowed the merit of having shut up for ever one of the most frequented and fatal paths which led them astray.

In what I have now said, I have supposed my readers to possess that general acquaintance with Mr Hume's Theory of Causation which all well-educated persons may be presumed to have acquired. But the close connection of this part of his work with some of the historical details which are immediately to follow, makes it necessary for me, before I proceed farther, to recapitulate a little more particularly some of his most important conclusions.

It was, as far as I know, first shown in a satisfactory manner by Mr Hume, that every demonstration which has been produced for the necessity of a cause to every new existence, is fallacious and sophistical. In illustration of this assertion, he examines three different arguments which have been alleged as proofs of the proposition in question; the first by Mr Hobbes; the second by Dr Clarke; and the third by Mr Locke. And I think it will now be readily acknowledged by every competent judge, that his objections to all these pretended demonstrations are conclusive and unanswerable.

When Mr Hume, however, attempts to show that the proposition in question is not intuitively certain, his argument appears to me to amount to nothing more than a logical quibble. Of this one would almost imagine that he was not insensible himself, from the short and slight manner in which he hurries over the discussion. "All certainty (he observes) arises from the comparison of Ideas, and from the discovery of such relations as are unalterable, so long as the ideas continue the same. These relations are resemblance, proportions in quantity and number, degrees of any quality, and contrariety; none of which are implied in this proposition, whatever has a beginning has also a cause of existence. That proposition, therefore, is not intuitively certain. At least, any one who would assert it to be intuitively certain, must deny these to be the only infallible relations, and must find some other relation of that kind to be implied in it, which it will be then time enough to examine."

Upon this passage, it is sufficient for me to observe, that the whole force of the reasoning hinges on two assumptions, which are not only gratuitous, but false. 1st, That all certainty arises from the comparison of ideas. 2dly, That all the unalterable relations among our ideas are comprehended in his own arbitrary enumeration; Resemblance, proportions in quantity and number, degrees of any quality, and contrariety. When the correctness of these two premises shall be fully established, it will be time enough (to borrow Mr Hume's own words) to examine the justness of his conclusion.

From this last reasoning, however, of Mr Hume, it may be suspected, that he was aware of the vulnerable point against which his adversaries were most likely to direct their attacks. From the weakness, too, of the entrenchments which he has here thrown up for his own security, he seems to have been sensible, that it was not capable of a long or vigorous resistance. In the mean time, he betrays no want of confidence in his original position; but repeating his assertion, that "we derive the opinion of the necessity of a cause to every new production, neither from demonstration nor from intuition," he boldly concludes, that "this opinion must necessarily arise from observation and experience."—(Vol. I. p. 147.) Or, as he elsewhere expresses himself, "All our reasonings concerning causes and effects are derived from nothing but custom; and, consequently, belief is more

1 Treatise of Human Nature, Vol. I. p. 144.—Although Mr Hume, however, succeeded better than any of his predecessors, in calling the attention of philosophers to this discussion, his opinion on the subject does not possess the merit, in point of originality, which was supposed to belong to it either by himself or by his antagonists. See the passages which I have quoted in proof of this, in the first volume of the Philosophy of the Human Mind, p. 542. et seq. fourth edit. and also in the second volume of the same work, p. 556. et seq. second edit. Among these, I request the attention of my readers more particularly to a passage from a book entitled, The Procedure, Extent, and Limits of the Human Understanding, published two years before the Treatise of Human Nature, and commonly ascribed to Dr Browne, Bishop of Cork. The coincidence is truly wonderful, as it can scarcely, by any possibility, be supposed that this book was ever heard of by Mr Hume.
proportionately an act of the sensitive than of the cogitative part of our natures."—(Ibid. p. 321.)

The distinction here alluded to between the sensitive and the cogitative parts of our nature (it may be proper to remind my readers) makes a great figure in the works of Cudworth and of Kant. By the former it was avowedly borrowed from the philosophy of Plato. To the latter, it is not improbable, that it may have been suggested by this passage in Hume. Without disputing its justness or its importance, I may be permitted to express my doubts of the propriety of stating, so strongly as has frequently been done, the one of these parts of our nature in contrast with the other. Would it not be more philosophical, as well as more pleasing, to contemplate the beautiful harmony between them, and the gradual steps by which the mind is trained by the intimations of the former, for the deliberate conclusions of the latter? If, for example, our conviction of the permanence of the laws of nature be not founded on any process of reasoning (a proposition which Mr Hume seems to have established with demonstrative evidence), but be either the result of an instinctive principle of belief, or of the association of ideas, operating at a period when the light of reason has not yet dawned, what can be more delightful than to find this suggestion of our sensitive frame, verified by every step which our reason afterwards makes in the study of physical science; and confirmed with mathematical accuracy by the never-failing accordance of the phenomena of the heavens with the previous calculations of astronomers! Does not this afford a satisfaction to the mind, similar to what it experiences, when we consider the adaptation of the instinct of suction, and of the organs of respiration, to the physical properties of the atmosphere? So far from encouraging scepticism, such a view of human nature seems peculiarly calculated to silence every doubt about the veracity of our faculties.

It is not my business at present to inquire into the soundness of Mr Hume's doctrines on this subject. The rashness of some of them has, in my opinion, been sufficiently shown by more than one of his antagonists. I wish only to remark the important step which he made, in exposing the futility of the reasonings by which Hobbes, Clarke, and Locke, had attempted to demonstrate the metaphysical axiom, that "every thing which begins to exist must have a cause;" and the essential service which he rendered to true philosophy, by thus pointing out indirectly

1 Upon either of these suppositions, Mr Hume would, with equal propriety, have referred our anticipation of the future event to the sensitive part of our nature; and, in point of fact, the one supposition would have answered his purpose as well as the other.

2 It is but justice to Mr Hume to remark, that, in his later publications, he has himself suggested this very idea as the best solution he could give of his own doubts. The following passage, which appears to me to be eminently philosophical and beautiful, I beg leave to recommend to the particular attention of Kant's disciples:

"Here, then, is a kind of pre-established harmony between the course of nature and the succession of our ideas; and though the powers and forces by which the former is governed be wholly unknown to us, yet our thoughts and conceptions have still, we find, gone on in the same train with the other works of nature. Custom is that principle by which this correspondence has been effected: so necessary to the subsistence of our species, and the regulation of our conduct in every circumstance and occurrence of human life. Had not the presence of an object instantly excited the idea of those objects commonly conjoined with it, all our knowledge must have been limited to the narrow sphere of our memory and senses: and we should never have been able to adjust means to ends, or employ our natural powers, either to the producing of good, or avoiding of evil. Those who delight in the discovery and contemplation of final causes have here ample subject to employ their wonder and admiration.

3 I shall add, for a further confirmation of the foregoing theory, that, as this operation of the mind, by which we infer like effects from like causes, and vice versa, is so essential to the subsistence of all human creatures, it is not probable that it could be trusted to the fallacious deductions of our reason, which is slow in its operations, appears not in any degree during the first years of infancy, and at best is, in every age and period of human life, extremely liable to error and mistake. It is more conformable to the ordinary wisdom of nature to secure so necessary an act of the mind by some instinct or mechanical tendency which may be infallible in its operations, may discover itself at the first appearance of life and thought, and may be independent of all the laboured deductions of the understanding. As nature has taught us the use of our limbs, without giving us the knowledge of the muscles and nerves by which they are actuated, so has she implanted in us an instinct which carries forward the thoughts in a correspondent course to that which she has established among external objects; though we are ignorant of those powers and forces on which this regular course and succession of objects totally depends."—(See, in the last editions of Mr Hume's Philosophical Essays, published during his own lifetime, the two sections entitled Sceptical Doubts concerning the Operations of the Understanding; and Sceptical Solution of these Doubts. The title of the latter of these sections has, not altogether without reason, incurred the ridicule of Dr Beattie, who translates it, Doubtful Solution of Doubtful Doubts. But the essay contains much sound and important matter, and throws a strong light on some of the chief difficulties which Mr Hume himself had started. Sufficient justice has not been done to it by his antagonists.)
to his successors the only solid ground on which that principle is to be defended. It is to this argument of Hume's, according to Kant's own acknowledgment, that we owe the Critique of Pure Reason; and to this we are also indebted for the far more luminous refutations of scepticism by Mr Hume’s own countrymen. In the course of Mr Hume’s very refined discussions on this subject, he is led to apply them to one of the most important principles of the mind,—our belief of the continuance of the laws of nature; or, in other words, our belief that the future course of nature will resemble the past. And here, too (as I already hinted), it is very generally admitted, that he has succeeded completely in overturning all the theories which profess to account for this belief, by resolving it into a process of reasoning. The only difference which seems to remain among philosophers is, whether it can be explained, as Mr Hume imagined, by means of the association of ideas; or, whether it must be considered as an original and fundamental law of the human understanding:—a question, undoubtedly abundantly curious, as a problem connected with the Theory of the Mind; but to which more practical importance has sometimes been attached than I conceive to be necessary.

That Mr Hume himself conceived his refutation of the theories which profess to assign a reason for our faith in the permanence of the laws of nature, to be closely connected with his sceptical conclusions concerning causation, is quite evident from the general strain of his argument; and it is, therefore, not surprising that this refutation should have been looked on with a suspicious eye by his antagonists. Dr Reid was, I believe, the first of those who had the sagacity to perceive, not only that it is strictly and incontrovertibly logical, but that it may be safely admitted, without any injury to the doctrines which it was brought forward to subvert.

Another of Mr Hume's attacks on these doctrines was still bolder and more direct. In conducting it he took his vantage ground from his own account of the origin of our ideas. In this way he was led to expunge from his Philosophical Vocabulary every word of which the meaning cannot be explained by a reference to the impression from which the corresponding idea was originally copied. Nor was he startled in the application of this rule, by the consideration, that it would force him to condemn, as insignificant, many words which are to be found in all languages, and some of which express what are commonly regarded as the most important objects of human knowledge. Of this number are the words cause and effect; at least, in the sense in which they are commonly understood both by the vulgar and by philosophers. "One

1 The incidental reference made, by way of illustration, in the following passage, to our instinctive conviction of the permanency of the laws of Nature, encourages me to hope, that, among candid and intelligent inquirers, it is now received as an acknowledged fact in the Theory of the Human Mind.

2 The anxiety men have in all ages shown to obtain a fixed standard of value, and that remarkable agreement of nations, dissimilar in all other customs, in the use of one medium, on account of its superior fitness for that purpose, is itself a convincing proof how essential it is to our social interests. The notion of its permanency, although it be conventional and arbitrary, and liable, in reality, to many causes of variation, yet had gained so firm a hold on the minds of men, as to resemble, in its effects on their conduct, that instinctive conviction of the permanency of the laws of nature which is the foundation of all our reasoning."—(A Letter to the Right Hon. R. Peel, M. P. for the University of Oxford, by one of his Constituents. Second edition, p. 23.)

3 The difference between the two opinions amounts to nothing more than this, whether our expectation of the continuance of the laws of nature results from a principle coeval with the first exercise of the senses; or whether it arises gradually from the accommodation of the order of our thoughts to the established order of physical events. "Nature (as Mr Hume himself observes) may certainly produce whatever can arise from habit; may, habit is nothing but one of the principles of nature, and derives all its force from that origin.—(Treatise of Human Nature, Vol. I. p. 313.) Whatever ideas, therefore, and whatever principles we are unavoidably led to acquire by the circumstances in which we are placed, and by the exercise of those faculties which are essential to our preservation, are to be considered as parts of human nature, no less than those which are implanted in the mind at its first formation. Are not the acquired perceptions of sight and of hearing as much parts of human nature as the original perceptions of external objects which we obtain by the use of the hand? The passage quoted from Mr Hume, in Note 2. p. 213, if attentively considered, will be found, when combined with these remarks, to throw a strong and pleasing light on his latest views with respect to this part of his philosophy.

In denying that our expectation of the continuance of the laws of nature is founded on reasoning, as well as in asserting our ignorance of any necessary connections among physical events, Mr Hume had been completely anticipated by some of his predecessors. (See the references mentioned in the Note, p. 211.) I do not, however, think that, before his time, philosophers were at all aware of the alarming consequences which, on a superficial view, seem to follow from this part of his system. Indeed, these consequences would never have been apprehended, had it not been supposed to form an essential link in his argument against the commonly received notion of Causation.
event (says he) follows another; but we never observe any tie between them. They seem conjoined, but never connected. And as we can have no idea of any thing which never appeared to our outward sense or inward sentiment, the necessary conclusion seems to be, that we have no idea of connection or power at all; and that these words are absolutely without any meaning, when employed either in philosophical reasonings or common life."—(Hume’s Essays, Vol. II. p. 79. Ed. of Lond. 1784.)

When this doctrine was first proposed by Mr Hume, he appears to have been very strongly impressed with its repugnance to the common apprehensions of mankind. "I am sensible (he observes) that of all the paradoxes which I have had, or shall hereafter have occasion to advance in the course of this treatise, the present one is the most violent."—(Treatise of Human Nature, Vol. I. p. 291.) It was probably owing to this impression that he did not fully unfold in that work all the consequences which, in his subsequent publications, he deduced from the same paradox; nor did he even apply it to invalidate the argument which infers the existence of an intelligent cause from the order of the universe. There cannot, however, be a doubt that he was aware, at this period of his life, of the conclusions to which it unavoidably leads, and which are indeed too obvious to escape the notice of a far less acute inquirer.

In a private letter of Mr Hume’s, to one of his most intimate friends, some light is thrown on the circumstances which first led his mind into this train of sceptical speculation. As his narrative has every appearance of the most perfect truth and candour, and contains several passages which I doubt not will be very generally interesting to my readers, I shall give it a place, together with some extracts from the correspondence to which it gave rise, in the Notes at the end of this Dissertation. Every thing connected with the origin and composition of a work which has had so powerful an influence on the direction which metaphysical pursuits have since taken, both in Scotland and in Germany, will be allowed to form an important article of philosophical history; and this history I need not offer any apology for choosing to communicate to the public rather in Mr Hume’s words than in my own.

From the reply to this letter by Mr Hume’s very ingenious and accomplished correspondent, we learn that he had drawn from Mr Hume’s metaphysical discussions the only sound and philosophical inference: that the lameness of the proofs offered by Descartes and his successors, of some fundamental truths universally

1 Sir Gilbert Elliot, Bart. grandfather of the present Earl of Minto. The originals of the letters to which I refer are in Lord Minto’s possession.

2 A foreign writer, of great name (M. Frederick Schlegel), seems to think that the influence of Mr Hume’s Treatise of Human Nature on the Philosophy of England has been still more extensive than I had conceived it to be. His opinion on this point I transcribe as a sort of literary curiosity:

"Since the time of Hume, nothing more has been attempted in England, than to erect all sorts of bulwarks against the practical influence of his destructive scepticism; and to maintain, by various substitutes and aids, the pile of moral principle uncorrupted and entire. Not only with Adam Smith, but with all their late philosophers, national welfare is the ruling and central principle of thought—a principle excellent and praiseworthy in its due situation, but quite unfit for being the centre and oracle of all knowledge and science." From the connection in which this last sentence stands with the context, would not one imagine that the writer conceived the Wealth of Nations to be a new moral or metaphysical system, devised by Mr Smith, for the purpose of counteracting Mr Hume’s scepticism?

I have read this translation of Mr Schlegel’s lectures with much curiosity and interest, and flatter myself that we shall soon have English versions of the works of Kant, and of other German authors, from the pens of their English disciples. Little more, I am fully persuaded, is necessary, in this country, to bring down the philosophy of Germany to its proper level.

In treating of literary and historical subjects, Mr Schlegel seems to be more in his element, than when he ventures to pronounce on philosophical questions. But even in cases of the former description, some of his dashing judgments on English writers can be accounted for only by haste, caprice, or prejudice. "The English themselves (we are told) are now pretty well convinced, that Robertson is a careless, superficial, and blundering historian: although they study his works, and are right in doing so, as models of pure composition, extremely deserving of attention during the present declining state of English style. With all the abundance of his Italian elegance, what is the overloaded and affected Roscoe when compared with Gibbon? Coxe, although master of a good and classical style, resembles Robertson in no respect so much as in the superficiality of his researches; and the statesman Fox has nothing in common with Hume but the bigotry of his party zeal." Such criticisms may perhaps be applauded by a German auditory, but in this country they can injure the reputation of none but their author.

3 See Note C.C.C.
acknowledged by mankind, proceeded, not from any defect in the evidence of these truths, but, on the contrary, from their being self-evident, and consequently unsusceptible of demonstration. We learn, farther, that the same conclusion had been adopted, at this early period, by another of Mr Hume's friends, Mr Henry Home, who, under the name of Lord Kames, was afterwards so well known in the learned world. Those who are acquainted with the subsequent publications of this distinguished and most respectable author, will immediately recognise, in the account here given of the impression left on his mind by Mr Hume's scepticism, the rudiments of a peculiar logic, which runs more or less through all his later works; and which, it must be acknowledged, he has, in various instances, carried to an unphilosophical extreme.

The light in which Mr Hume's scepticism appears from these extracts to have struck his friends, Sir Gilbert Elliot and Lord Kames, was very nearly the same with that in which it was afterwards viewed by Reid, Oswald, and Beattie, all of whom have manifestly aimed, with greater or less precision, at the same logical doctrine which I have just alluded to. This, too, was the very ground on which Father Buffier had (even before the publication of the Treatise of Human Nature) made his stand against similar theories, built by his predecessors on the Cartesian principles. The coincidence between his train of thinking, and that into which our Scottish metaphysicians soon after fell, is so very remarkable, that it has been considered by many as amounting to a proof

that the plan of their works was, in some measure, suggested by his; but it is infinitely more probable, that the argument which runs, in common, through the speculations of all of them, was the natural result of the state of metaphysical science when they engaged in their philosophical inquiries.

The answer which Mr Hume made to this argument, when it was first proposed to him in the easy intercourse of private correspondence, seems to me an object of so much curiosity, as to justify me for bringing it under the eye of my readers in immediate connection with the foregoing details. Opinions thus communicat-

ed in the confidence of friendly discussion, possess a value which seldom belongs to propositions hazarded in those public controversies where the love of victory is apt to mingle, more or less, in the most candid minds, with the love of truth.

"Your notion of correcting subtlety by sentiment is certainly very just with regard to morals, which depend upon sentiment: And in politics and natural philosophy, whatever conclusion is contrary to certain matters of fact, must certainly be wrong, and there must some error lie somewhere in the argument, whether we be able to show it or not. But, in metaphysics or theology, I cannot see how either of these plain and obvious standards of truth can have place. Nothing there can correct bad reasoning but good reasoning; and sophistry must be opposed by syllogism. About seventy or eighty years ago, I observe a principle like that which you advance prevailed very much in France, amongst some philosophers and beaux esprits.

1 I allude particularly to the unnecessary multiplication, in his philosophical arguments, of internal senses and of instinctive principles.
2 Voltaire, in his catalogue of the illustrious writers who adorned the reign of Louis XIV, is one of the very few French authors who have spoken of Buffier with due respect: "Il y a dans ses traités de métaphysique des mœurs que Locke n'aurait pas désavoués, et c'est le seul jésuite qui ait mis une philosophie raisonnable dans ses ouvrages."—Another French philosopher, too, of a very different school, and certainly not disposed to overrate the talents of Buffier, has, in a work published as lately as 1806, candidly acknowledged the lights which he might have derived from the labours of his predecessor, if he had been acquainted with them at an earlier period of his studies. Condillac, he also observes, might have profited greatly by the same lights, if he had availed himself of their guidance, in his inquiries concerning the human understanding. "Du moins est il certain que pour ma part, je suis fort fiché de ne connaître que depuis très peu de temps ces opinions du Père Buffier; si je les avais vues plutôt énoncées quelque part, elles m'auraient épargné beaucoup de peines et d'hésitations."—"Je regrette beaucoup que Condillac, dans ses profondes et sagaces méditations sur l'intelligence humaine, n'ait pas fait plus d'attention aux idées du Père Buffier," &c. &c.—Elements d'Idiologie, par M. Destutt-Tracy, Tom. III. pp. 136, 137. (See Elements of the Philosophy of the Human Mind, Vol. II. pp. 68, 69, 2d edit.)
3 May not sophistry be also opposed, by appealing to the fundamental laws of human belief? And, in some cases, by appealing to facts for which we have the evidence of our own consciousness? The word sentiment does not express, with sufficient precision, the test which Mr Hume's correspondent had manifestly in view.
4 This letter is dated 1761.
The occasion of it was this: The famous M. Nicole of the Port Royal, in his *Perpétuité de la Foi*, pushed the Protestants very hard upon the impossibility of the people's reaching a conviction of their religion by the way of private judgment, which required so many disquisitions, reasonings, researches, erudition, impartiality, and penetration, as not one of a hundred, even among men of education, is capable of. M. Claude and the Protestants answered him, not by solving his difficulties (which seems impossible), but by retorting them (which is very easy.) They showed, that to reach the way of authority which the Catholics insist on, as long a train of acute reasoning, and as great erudition was requisite, as would be sufficient for a Protestant. We must first prove all the truths of natural religion, the foundation of morals, the divine authority of the Scripture, the deference which it commands to the church, the tradition of the church, &c. &c. The comparison of these controversial writings begat an idea in some, that it was neither by reasoning nor authority we learn our religion, but by sentiment; and this was certainly a very convenient way, and what a philosopher would be very well pleased to comply with, if he could distinguish sentiment from education. But, to all appearance, the sentiment of Stockholm, Geneva, Rome, ancient and modern Athens, and Memphis, have not the same characters; and no thinking man can implicitly assent to any of them, but from the general principle, that, as the truth on these subjects is beyond human capacity, and that, as for one's own case, he must adopt some tenets, there is more satisfaction and convenience in holding to the catechism we have been first taught. Now, this I have nothing to say against. I would only observe, that such a conduct is founded on the most universal and determined scepticism. For more curiosity and research give a direct opposite turn from the same principles."

On this careless effusion of Mr Hume's pen, it would be unpardonable to offer any critical strictures. It cannot, however, be considered as improper to hint, that there is a wide and essential difference between those articles of faith which formed the subjects of dispute between Nicole and Claude, and those laws of belief, of which it is the great object of the *Treatise of Human Nature* to undermine the authority. The reply of Mr Hume, therefore, is evasive, and although strongly marked with the writer's ingenuity, does not bear upon the point in question.

As to the distinction alleged by Mr Hume between the criteria of truth in natural philosophy and in metaphysics, I trust it will now be pretty generally granted, that however well founded it may be when confined to the metaphysics of the schoolmen, it will by no means hold when extended to the inductive philosophy of the human mind. In this last science, no less than in natural philosophy, Mr Hume's logical maxim may be laid down as a fundamental principle, that "whatever conclusion is contrary to matter of fact must be wrong, and there must some error lie somewhere in the argument, whether we be able to show it or not."

It is a remarkable circumstance in the history of Mr Hume's literary life, and a proof of the sincerity with which he was then engaged in the search of truth, that, previous to the publication of his *Treatise of Human Nature*, he discovered a strong anxiety to submit it to the examination of the celebrated Dr Butler, author of the *Analogy of Religion, Natural and Revealed, to the Constitution and Course of Nature*. For this purpose he applied to Mr Henry Home, between whom and Dr Butler some friendly letters appear to have passed before this period. "Your thoughts and mine (says Mr Hume to his correspondent) agree with respect to Dr Butler, and I would be glad to be introduced to him. I am at present castrating my work, that is, cutting off its nobler parts; that is, endeavouring it shall give as little offence as possible, before which I could not pretend to put it into the doctor's hands." In another letter, he acknowledges Mr Home's kindness in recommending him to Dr Butler's notice. "I shall not trouble

1 For the rest of the letter, see *Memoirs of the Life and Writings of Lord Home*, by Lord Woodhouselee, Vol. I. p. 84, et seq.
you with any formal compliments or thanks, which would be but an ill return for the kindness you have done me in writing in my behalf, to one you are so little acquainted with as Dr Butler; and, I am afraid, stretching the truth in favour of a friend. I have called on the doctor, with a design of delivering your letter, but find he is at present in the country. I am a little anxious to have the doctor's opinion. My own I dare not trust to; both because it concerns myself, and because it is so variable, that I know not how to fix it. Sometimes it elevates me above the clouds; at other times it depresses me with doubts and fears; so that, whatever be my success, I cannot be entirely disappointed."

Whether Mr Hume ever enjoyed the satisfaction of a personal interview with Dr Butler, I have not heard. From a letter of his to Mr Home, dated London, 1739, we learn that if any intercourse took place between them, it must have been after the publication of the Treatise of Human Nature. "I have sent the Bishop of Bristol a copy; but could not wait upon him with your letter after he had arrived at that dignity. At least, I thought it would be to no purpose after I began the printing." In a subsequent letter to the same correspondent, written in 1742, he expresses his satisfaction at the favourable opinion which he understood Dr Butler had formed of his volume of Essays, then recently published, and augurs well from this circumstance of the success of his book. "I am told that Dr Butler has everywhere recommended them, so that I hope they will have some success." These particulars, trifling as they may appear to some, seemed to me, for more reasons than one, not unworthy of notice in this sketch. Independently of the pleasing record they afford of the mutual respect entertained by the eminent men to whom they relate, for each other's philosophical talents, they have a closer connection with the history of metaphysical and moral inquiry in this island, than might be suspected by those who have not a very intimate acquaintance with the writings of both. Dr Butler was, I think, the first of Mr Locke's successors who clearly perceived the dangerous consequences likely to be deduced from his account of the origin of our ideas literally interpreted; and although he has touched on this subject but once, and that with his usual brevity, he has yet said enough to show, that his opinion with respect to it was the same with that formerly contended for by Cudworth, in opposition to Gassendi and Hobbes, and which has since been revived in different forms by the ablest of Mr Hume's antagonists. With these views, it may be reasonably supposed, that he was not displeased to see the consequences of Locke's doctrine so very logically and forcibly pushed to their utmost limits, as the most effectual means of rousing the attention of the learned to a re-examination of this fundamental principle. That he was perfectly aware, before the publication of Mr Hume's work, of the encouragement given to scepticism by the logical maxims then in vogue, is evident from the concluding paragraph of his short Essay on Personal Identity. Had it been published a few years later, nobody would have doubted, that it had been directly pointed at the general strain and spirit of Mr Hume's philosophy.

"But though we are thus certain, that we are the same agents or living beings now, which we were as far back as our remembrance reaches: yet it is asked, Whether we may not possibly be deceived in it? And this question may be asked at the end of any demonstration whatever, because it is a question concerning the truth of perception by memory. And he who can doubt, whether perception by memory can in this case be depended on, may doubt also whether perception by deduction and reasoning, which also includes memory, or indeed whether intuitive perception can. Here then we can go no far-
ther. For it is ridiculous to attempt to prove the truth of those perceptions whose truth we can no otherwise prove than by other perceptions of exactly the same kind with them, and which there is just the same ground to suspect; or to attempt to prove the truth of our faculties, which can no otherwise be proved, than by the use or means of those very suspected faculties themselves."

It is, however, less as a speculative metaphysician, than as a philosophical inquirer into the principles of morals, that I have been induced to associate the name of Butler with that of Hume. And, on this account, it may be thought that it would have been better to delay what I have now said of him till I come to trace the progress of Ethical Science during the eighteenth century. To myself it seemed more natural and interesting to connect this historical or rather biographical digression, with the earliest notice I was to take of Mr Hume as an author. The numerous and important hints on metaphysical questions which are scattered over Butler's works, are sufficient of themselves to account for the space I have allotted to him among Locke's successors; if, indeed, any apology for this be necessary, after what I have already mentioned, of Mr Hume's ambition to submit to his judgment the first fruits of his metaphysical studies.

The remarks hitherto made on the Treatise of Human Nature are confined entirely to the first volume. The speculations contained in the two others, on Morals, on the Nature and Foundations of Government, and on some other topics connected with political philosophy, will fall under our review afterwards.

Dr Reid's Inquiry into the Human Mind (published in 1764) was the first direct attack which appeared in Scotland upon the sceptical conclusions of Mr Hume's philosophy. For my own opinion of this work I must refer to one of my former publications. It is enough to remark here, that its great object is to refute the Ideal Theory which was then in complete possession of the schools, and upon which Dr Reid conceived that the whole of Mr Hume's philosophy, as well as the whole of Berkeley's reasonings against the existence of matter, was founded. According to this theory we are taught, that "nothing is perceived but what is in the mind which perceives it; that we do not really perceive things that are external, but only certain images and pictures of them imprinted upon the mind, which are called impressions and ideas." This doctrine (says Dr Reid on another occasion) I once believed so firmly, as to embrace the whole of Berkeley's system along with it; till finding other consequences to follow from it, which gave me more uneasiness than the want of a material world, it came into my mind, more than forty years ago, to put the question, What evidence have I for this doctrine, that all the objects of my knowledge are ideas in my own mind? From that time to the present, I have been candidly and impartially, as I think, seeking for the evidence of this principle; but can find none, excepting the authority of philosophers."

On the refutation of the ideal theory, contained in this and his other works, Dr Reid himself was disposed to rest his chief merit as an author. "The merit (says he in a letter to Dr James Gregory) of what you are pleased to call my Philosophy, lies, I think, chiefly in having called in question the common theory of ideas or images of things in the mind being the only objects of thought; a theory founded on natural prejudices, and so universally received as to be interwoven with the structure of language. Yet were I to give you a detail of what led me to call in question this theory, after I had long held it as self-evident and unquestionable, you would think, as I do, that there was much of chance in the matter. The discovery was the birth of time, not of genius; and Berke-

1 I must not, however, be understood as giving unqualified praise to this Essay. It is by no means free from the old scholastic jargon, and contains some reasoning which, I may confidently assert, the author would not have employed, had it been written fifty years later. Whoever takes the trouble to read the paragraph beginning with these words, "Thirdly, Every person is conscious," &c. will immediately perceive the truth of this remark. I mention it as a proof of the change to the better, which has taken place since Butler's time, in the mode of thinking and writing on Metaphysical questions.

2 See Biographical Memoirs, Edin. 1811.
ley and Hume did more to bring it to light than
the man that hit upon it. I think there is hardly any thing
that can be called mine in the philosophy of the
mind, which does not follow with ease from the detection of this
prejudice.

"I must, therefore, beg of you, most earnestly,
to make no contrast in my favour to the dis-
paragement of my predecessors in the same pur-
suits. I can truly say of them, and shall always
avow, what you are pleased to say of me,
that, but for the assistance I have received
from their writings, I never could have wrote or
thought what I have done."

When I reflect on the stress thus laid by Dr
Reid on this part of his writings, and his fre-
cquent recurrence to the same argument when-
ever his subject affords him an opportunity of
forcing it upon the attention of his readers, I
cannot help expressing my wonder, that Kant
and other German philosophers, who appear to
have so carefully studied those passages in Reid,
which relate to Hume's Theory of Causation,
should have overlooked entirely what he him-
self considered as the most original and im-
portant of all his discussions; more especially
as the conclusion to which it leads has been
long admitted, by the best judges in this island,
as one of the few propositions in metaphysical
science completely established beyond the reach
of controversy. Even those who affect to speak
the most lightly of Dr Reid's contributions to
the philosophy of the human mind, have found
nothing to object to his reasonings against the
ideal theory, but that the absurdities involved
in it are too glaring to require a serious ex-
amination. Had these reasonings been con-
dered in the same light in Germany, it is quite
impossible that the analogical language of Leib-
nitz, in which he speaks of the soul as a "living
mirror of the universe, could have been again re-
vived; a mode of speaking liable to every ob-
jection which Reid has urged against the ideal
theory. Such, however, it would appear, is the
fact. The word Representation (Vorstellung) is

1 An ingenious and profound writer, who, though intimately connected with Mr Hume in habits of friendship, was not
blind to the vulnerable parts of his Metaphysical System, has bestowed, in the latest of his publications, the following en-
closure on Dr Reid's Philosophical Works.

"The author of an Inquiry into the Mind, and of subsequent Essays on the Intellectual and Active Powers of Men, has great
merit in the effect to which he has pursued this history. But, considering the point at which the science stood when he
began his inquiries, he has, perhaps, no less merit in having removed the mist of hypothesis and metaphor, with which the
subject was enveloped; and, in having taught us to state the facts of which we are conscious, not in figurative language,
but in the terms which are proper to the subject. In this it will be our advantage to follow him; the more that, in former
theories, so much attention had been paid to the introduction of ideas or images as the elements of knowledge, that the be-
 lief of any external existence or prototype has been left to be inferred from the mere idea or image; and this inference
indeed, is so little founded, that many who have come to examine its evidence have thought themselves warranted to deny
it altogether. And hence the scepticism of ingenious men, who, not seeing a proper access to knowledge through the
medium of ideas, without considering that the road they had been directed to take was the true or a false one, denied the
possibility of arriving at the end." (Principles of Moral and Political Science, by Dr Adam Ferguson, Vol. I. pp. 75, 76.)

The work from which this passage is taken contains various important observations connected with the Philosophy of the
Human Mind; but as the taste of the author led him much more strongly to moral and political speculations, than to re-
searches concerning the intellectual powers of man, I have thought it right to reserve any remarks which I have to offer
on his philosophical merits for the last part of this Discourse.

2 I allude here more particularly to Dr Priestley, who, in a work published in 1774, alleged, that when philosophers
called ideas the images of external things, they are only to be understood as speaking figuratively; and that Dr Reid has
gravely argued against this metaphorical language, as if it were meant to convey a theory of perception. The same remark
has been repeated over and over since Priestley's time, by various writers. I have nothing to add in reply to it to what I
long ago stated in my Philosophical Essays (see Note II. at the end of that work), but the following short quotation from Mr Hume:

"It seems evident, that, when men follow this blind and powerful instinct of nature, they always suppose the very
images, presented by the senses, to be the external objects, and never entertain any suspicion, that the one are nothing but
representations of the other. * * * * But this universal and primary opinion of all men is soon destroyed by the slightest phi-
losophy, which teaches us, that nothing can ever be present to the mind but an image or perception, and that the senses are
only the inlets through which these images are conveyed, without being able to produce any immediate intercourse between
the mind and the object. The table which we see seems to diminish as we remove farther from it; but the real table,
which exists independent of us, suffers no alteration. It was, therefore, nothing but its image which was present to the
mind. These are the obvious dictates of reason." (Essay on the Academical Philosophy.)

It is not this analogical theory of perception, in which the whole of Berkeley's reasonings against the existence of
the material world, and of Hume's scepticism on the same subject, are founded?

The same analogy still continues to be sanctioned by some English philosophers of no small note. Long after the pub-
lication of Dr Reid's Inquiry, Mr Horne Tooke quoted with approbation the following words of J. C. Scaliger: "Sicut in
speculo ea quae videntur non sunt, sed eorum species; Ita quae intelligimus, ea sunt re ipsa extra nos, eorumque species in
nobis. Est enim quam rebus spectum intellectus spectus; ut, nisi per sensum represententer res, non video esse posse ad

Dissertation First.
now the German substitute for Idea; nay, one of the most able works which Germany has produced since the commencement of its new philosophical era, is entitled Nova Theoria Facultatis Representative Humana. In the same work, the author has prefixed, as a motto to the second book, in which he treats of "the Representative Faculty in general," the following sentence from Locke, which he seems to have thought himself entitled to assume as a first principle: "Since the mind, in all its thoughts and reasonings, hath no other immediate object but its own ideas (representations), which it alone does or can contemplate, it is evident that our knowledge is only conversant about them."—(Locke's Essay, B. IV. ch. 1.) In a country where this metaphysical jargon still passes current among writers of eminence, it is vain to expect that any solid progress can be made in the inductive philosophy of the human mind. A similar remark may be extended to another country, where the title of Ideologie (a word which takes for granted the truth of the hypothesis which it was Reid's great aim to explode) has been lately given to the very science in which the theory of Ideas has been so clearly shown to have been, in all ages, the most fruitful source of error and absurdity.

Of the other works by Scottish metaphysicians, which appeared soon after the Inquiry into the Human Mind, I have not left myself room to speak. I know of none of them from which something important may not be learned; while several of them (particularly those of Dr Campbell) have struck out many new and interesting views. To one encomium all of them are well entitled, that of aiming steadily at the advancement of useful knowledge and of human happiness. But the principles on which they have proceeded have so close an affinity to those of Dr Reid, that I could not, without repeating what I have already said, enter into any explanation concerning their characteristic doctrines.

On comparing the opposition which Mr Hume's scepticism encountered from his own countrymen, with the account formerly given of the attempts of some German philosophers to refute his Theory of Causation, it is impossible not to be struck with the coincidence between the leading views of his most eminent antagonists. This coincidence one would have been disposed to consider as purely accidental, if Kant, by his petulant sneers at Reid, Beattie, and Oswald, had not expressly acknowledged, that he was not unacquainted with their writings. As for the great discovery, which he seems to claim as his own,—that the ideas of Cause and Effect, as well as many others, are derived from the pure understanding without any aid from experience, it is nothing more than a repetition, in very nearly the same terms, of what was advanced a century before by Cudworth, in reply to Hobbes and Gassendi; and borrowed avowedly by Cudworth from the reasonings of Socrates, as reported by Plato, in answer to the scepticism of Protagoras. This recurrence, under different forms, of the same metaphysical controversies, which so often surprises and mortifies us in the history of literature, is an evil which will probably always continue, more or less, even in the most prosperous state of philosophy. But it affords no objection to the utility of metaphysical pursuits. While the sceptics keep the field, it must not be abandoned by the friends of sounder principles; nor ought they to be discouraged from their ungrateful task, by the reflection, that they have probably been anticipated, in everything they have to say, by more than one of their predecessors. If any thing is likely to check this periodical return of a mischief so unpropitious to the progress of useful knowledge, it seems to be the general diffusion of that historical information concerning the literature and science of former times, of which it is the aim of these Preliminary Dissertations to present an outline. Should it fail in preventing the occasional re-

1 In censuring these metaphorical terms, I am far from supposing that the learned writers who have employed them have been all misled by the theoretical opinions involved in their language. Reinhold has been more particularly careful in guarding against such a misapprehension. But it cannot, I think, be doubted that the prevalence of such a phraseology must have a tendency to divert the attention from a just view of the mental phenomena, and to infuse into the mind of the young inquirer very false conceptions of the manner in which these phenomena ought to be studied.
vival of obsolete paradoxes, it will, at least, diminish the wonder and admiration with which they are apt to be regarded by the multitude.

And here I cannot refrain from remarking the injustice with which the advocates for truth are apt to be treated; and by none more remarkably than by that class of writers who profess the greatest zeal for its triumph. The importance of their labours is discredited by those who are the loudest in their declamations and invectives against the licentious philosophy of the present age; insomuch that a careless observer would be inclined to imagine (if I may borrow Mr Hume's words on another occasion), that the battle was fought "not by the men at arms, who manage the pike and the sword; but by the trumpeters, drummers, and musicians, of the army."

These observations may serve, at the same time, to account for the slow and (according to some persons) imperceptible advances of the philosophy of the human mind, since the publication of Locke's Essay. With those who still attach themselves to that author, as an infallible guide in metaphysics, it is in vain to argue; but I would willingly appeal to any of Locke's rational and discriminating admirers, whether much has not been done by his successors, and, among others, by members of our northern universities, towards the illustration and correction of such of his principles as have furnished, both to English and French sceptics, the foundation of their theories. If this be granted, the way has, at least, been cleared and prepared for the labours of our posterity; and neither the cavils of the sceptic, nor the refutation of them by the sounder logician, can be pronounced to be useless to mankind. Nothing can be juster or more liberal than the following reflection of Reid: "I conceive the sceptical writers to be a set of men, whose business it is to pick holes in the fabric of knowledge wherever it is weak and faulty; and when those places are properly repaired, the whole building becomes more firm and solid than it was formerly." (Inquiry into the Human Mind. Dedication.)

There is, indeed, one point of view, in which it must be owned that Mr Hume's Treatise has had an unfavourable effect (and more especially in Scotland) on the progress of Metaphysical Science. Had it not been for the zeal of some of his countrymen to oppose the sceptical conclusions, which they conceived it to be his aim to establish, much of that ingenuity which has been wasted in the refutation of his sophistry (or, to speak more correctly, in combating the mistaken principles on which he proceeded) would, in all probability, have been directed to speculations more immediately applicable to the business of life, or more agreeable to the taste of the present age. What might not have been expected from Mr Hume himself, had his powerful and accomplished mind been more frequently turned to the study of some parts of our nature (of those, for example, which are connected with the principles of criticism), in examining which, the sceptical bias of his disposition would have had fewer opportunities of leading him astray! In some fragments of this sort, which enliven and adorn his collection of Essays, one is at a loss whether more to admire the subtility of his genius, or the solidity and good sense of his critical judgments.

Nor have these elegant applications of metaphysical pursuits been altogether overlooked by Mr Hume's antagonists. The active and adventurous spirit of Lord Kames, here, as in many other instances, led the way to his countrymen; and, due allowances being made for the novelty and magnitude of his undertaking, with a success far greater than could have been reasonably anticipated. The Elements of Criticism, considered as the first systematical attempt to investigate the metaphysical principles of the

1 According to Dr Priestley, the labours of these commentators on Locke have done more harm than good. "I think Mr Locke has been hasty in concluding that there is some other source of our ideas besides the external senses; but the rest of his system appears to me and others to be the corner stone of all just and rational knowledge of ourselves." (Essay of Reid, Beattie, and Oswald, p. 5.) As to Mr Hume, Dr Priestley says, "In my opinion, he has been very obly answered, again and again, upon more solid principles than those of this new common sense; and I beg leave to refer to the two first volumes of my Institutes of Natural and Revealed Religion." (Examination of Reid, q.v. Preface, p. xxvii.)
fine arts, possesses, in spite of its numerous defects both in point of taste and of philosophy, infinite merits, and will ever be regarded as a literary wonder by those who know how small a portion of his time it was possible for the author to allot to the composition of it, amidst the imperious and multifarious duties of a most active and useful life. Campbell and Gerard, with a sounder philosophy, and Beattie, with a much more lively relish for the Sublime and the Beautiful, followed afterwards in the same path; and have all contributed to create and to diffuse over this island a taste for a higher and more enlightened species of criticism than was known to our forefathers. Among the many advantageous results with which this study has been already attended, the most important, undoubtedly, is the new and pleasing avenue which it has opened to an analysis of the laws which regulate the intellectual phenomena; and the interest which it has thus lent, in the estimation of men of the world, to inquiries which, not many years before, were seldom heard of, but within the walls of an university.

Dr Reid's two volumes of Essays on the Intellectual and on the Active Powers of Man (the former of which appeared in 1785, and the latter in 1788) are the latest philosophical publications from Scotland of which I shall at present take notice. They are less highly finished, both in matter and form, than his Inquiry into the Human Mind. They contain also some repetitions, to which, I am afraid, I must add a few trifling inconsistencies of expression, for which the advanced age of the author, who was then approaching to fourscore, claims every indulgence from a candid reader. Perhaps, too, it may be questioned, whether, in one or two instances, his zeal for an important conclusion has not led him to avail himself of some dubious reasons, which might have been omitted without any prejudice to his general argument.

The value of these volumes, however (as I have elsewhere remarked), is inestimable to future adventurers in the same arduous inquiries, not only in consequence of the aids they furnish as a rough draught of the field to be examined, but by the example they exhibit of a method of investigation on such subjects, hitherto very imperfectly understood, even by those philosophers who call themselves the disciples of Locke. It is by the logical rigour of this method, so systematically pursued in all his researches, still more than by the importance of his particular conclusions, that he stands so conspicuously distinguished among those who have hitherto prosecuted analytically the study of man.

His acquaintance with the metaphysical doctrines of his predecessors does not appear to have been very extensive; with those of his own contemporaries it was remarkably deficient. I do not recollect that he has anywhere mentioned the names either of Condillac or of D'Alembert. It is impossible not to regret this, not only as it has deprived us of his critical judgments on some celebrated theories, but as it has prevented him from enlivening his works with that variety of historical discussion so peculiarly agreeable in these abstract researches.

On the other hand, Dr Reid's limited range of metaphysical reading, by forcing him to draw the materials of his philosophical speculations almost entirely from his own reflections, has given to his style, both of thinking and of writing, a characteristical unity and simplicity seldom to be met with in so voluminous an author. He sometimes, indeed, repeats, with an air of originality, what had been previously said by his predecessors; but on these, as on all other occasions, he has at least the merit of thinking for himself, and of sanctioning, by the weight of his unbiased judgment, the conclusions which he adopts. It is this uniformity of thought and design, which, according to Dr Butler, is the best test of an author's sincerity; and I am apt to regard it also, in these abstruse disquisitions, as one of the surest marks of liberal and unfettered inquiry.

In comparing Dr Reid's publications at different periods of his life, it is interesting to observe his growing partiality for the aphoristical style. Some of his Essays on the Intellectual and Active

1 Biographical Account of Reid.
Powers of Man are little more than a series of detached paragraphs, consisting of leading thoughts, of which the reader is left to trace the connection by his own sagacity. To this aphoristical style it is not improbable that he was partly led by the indolence incident to advanced years, as it relieved him from what Boileau justly considered as the most difficult task of an author, the skilful management of transitions. In consequence of this want of continuity in his compositions, a good deal of popular effect is unavoidably lost; but, on the other hand, to the few who have a taste for such inquiries, and who value books chiefly as they furnish exercise to their own thoughts (a class of readers who are alone competent to pronounce a judgment on metaphysical questions), there is a peculiar charm in a mode of writing, so admirably calculated to give relief to the author's ideas, and to awaken, at every sentence, the reflections of his readers.

When I review what I have now written on the history of Metaphysics in Scotland, since the publication of Mr Hume's Treatise, and at the same time recollect the laurels which, during the same period, have been won by Scottish authors, in every other department of literature and of science, I must acknowledge that, instead of being mortified at the slender amount of their contributions to the philosophy of the human mind, I am more disposed to wonder at their successful perseverance in cultivating a field of study, where the approbation of a few enlightened and candid judges is the only reward to which their ambition could aspire. Small as their progress may hitherto have been, it will at least not suffer by a comparison with what has been accomplished by their contemporaries in any other part of Europe.

It may not be useless to add in this place, that, if little has as yet been done, the more ample is the field left for the industry of our successors. The compilation of a Manual of Rational Logic, adapted to the present state of science and of society in Europe, is a desideratum which, it is to be hoped, will at no distant period be supplied. It is a work, certainly, of which the execution has been greatly facilitated by the philosophical labours of the last century. The varieties of intellectual character among men present another very interesting object of study, which, considering its practical utility, has not yet excited, so much as might have been expected, the curiosity of our countrymen. Much, too, is still wanting to complete the theory of evidence. Campbell has touched upon it with his usual acuteness, but he has attempted nothing more than an illustration of a very few general principles. Nor has he turned his attention to the various illusions of the imagination, and of the passions, by which the judgment is liable to be warped in the estimates it forms of moral evidence in the common affairs of life. This is a most important inquiry, considering how often the lives and fortunes of men are subjected to the decisions of illiterate persons concerning circumstantial proofs; and how much the success or failure of every individual in the conduct of his private concerns turns on the sagacity or rashness with which he anticipates future contingencies. Since the time when Campbell wrote, an attempt has been made by Condorcet and some other French writers, to apply a mathematical calculus to moral and political truths; but though much metaphysical ingenuity, as well as mathematical skill, have been displayed in carrying it into execution, it has not yet led to any useful practical results. Perhaps it may even be questioned, whether, in investigating truths of this sort, the intellectual powers can derive much aid from the employment of such an organ. To define accurately and distinctly the limits of its legitimate province, still remains a desideratum in this abstruse part of logic.

Nearly connected with this subject are the metaphysical principles assumed in the mathematical Calculation of Probabilities; in delivering which principles, some foreign mathematicians, with the illustrious La Place at their head, have blended, with many unquestionable
and highly interesting conclusions, various moral paralogisms of the most pernicious tendency. A critical examination of these paralogisms, which are apt to escape the attention of the reader amid the variety of original and luminous discussions with which they are surrounded, would, in my humble apprehension, be one of the most essential services which could at present be rendered to true philosophy. In the mind of La Place, their origin may be fairly traced to an ambition, not altogether unnatural in so transcendent a genius, to extend the empire of his favourite science over the moral as well as the material world. ¹ I have mentioned but a few out of the innumerable topics which crowd upon me as fit objects of inquiry for the rising generation. ² Nor have I been guided in my selection of these by any other consideration, than their peculiar adaptation to the actual circumstances of the philosophical world.

Should such men as Hume, Smith, and Reid again arise, their curiosity would, in all probability, be turned to some applications of metaphysical principles of a more popular and practical nature than those which chiefly engaged their curiosity. At the same time, let us not forget what a step they made beyond the scholastic philosophy of the preceding age; and how necessary this step was as a preliminary to other researches bearing more directly and palpably on human affairs.

The most popular objection hitherto made to our Scottish metaphysicians is, that, in treating of human nature, they have overlooked altogether the corporeal part of our frame. From the contempt which they have uniformly expressed for all physiological theories concerning the intellectual phenomena, it has been concluded, that they were disposed to consider the human mind as altogether independent of the influence of physical causes. Mr Belsham has carried this charge so far, as to sneer at Dr Reid’s inconsistency for having somewhere acknowledg-
ed, “in opposition to his systematical principles, that a certain constitution or state of the brain is necessary to memory.” In reply to this charge, it may be confidently asserted, that no set of philosophers, since the time of Lord Bacon, have entertained juster views on this subject than the school to which Dr Reid belonged. In proof of this, I need only appeal to the Lectures on the Duties and Qualifications of a Physician, by the late learned and ingenious Dr John Gregory. Among the different articles connected with the natural history of the human species, which he has there recommended to the examination of the medical student, he lays particular stress on “the laws of union between the mind and body, and the mutual influence they have upon one another.” “This (he observes) is one of the most important inquiries that ever engaged the attention of mankind, and almost equally necessary in the sciences of morals and of medicine.” It must be remarked, however, that it is only the laws which regulate the union between mind and body (the same class of facts which Bacon called the doctrina de fiedere), which are here pointed out as proper objects of philosophical curiosity; for as to any hypothesis concerning the manner in which the union is carried on, this most sagacious writer was well aware, that they are not more unfavourable to the improvement of logic and of ethics, than to a skilful and judicious exercise of the healing art.

I may perhaps form too high an estimate of the progress of knowledge during the last fifty years; but I think I can perceive, within the period of my own recollection, not only a change to the better in the Philosophy of the Human Mind, but in the speculations of medical inquirers. Physiological theories concerning the functions of the nerves in producing the intellectual phenomena have pretty generally fallen into contempt: and, on the other hand, a large accession has been made to our stock of well authenticated facts, both with re-

¹ The paralogisms to which I allude did not fall within the scope of the admirable criticism on this work in the Edinburgh Review.

² Among these, the most prominent is the Natural or Theoretical History of Language (including under this title written as well as oral language), a subject which will probably continue to furnish new problems to human ingenuity, in the most improved state of human knowledge. It is not surprising that an art which lays the foundation of all the others, and which is so intimately connected with the exercise of reason itself, should leave behind it such faint and obscure traces of its origin and infancy.
spect to the influence of body on mind, and of mind upon body. As examples of this, it is sufficient to mention the experimental inquiries instituted, in consequence of the pretended cures effected by means of Animal Magnetism and of Tractors; to which may be added, the philosophical spirit evinced in some late publications on Insanity.

Another objection, not so entirely groundless, which has been made to the same school, is, that their mode of philosophising has led to an unnecessary multiplication of our internal senses and instinctive determinations. For this error, I have elsewhere attempted to account and to apologise. On the present occasion I shall only remark, that it is at least a safer error than the opposite extreme, so fashionable of late among our southern neighbours, of endeavouring to explain away, without any exception, all our instinctive principles, both speculative and practical. A literal interpretation of Locke's comparison of the infant mind to a sheet of white paper (a comparison which, if I am rightly informed, has not yet wholly lost its credit in all our universities), naturally predisposed his followers to embrace this theory, and enabled them to shelter it from a free examination, under the sanction of his supposed authority. Dr Paley himself, in his earliest philosophical publication, yielded so far to the prejudices in which he had been educated, as to dispute the existence of the moral faculty; although, in his more advanced years, he amply atoned for this error of his youth, by the ingenuity and acuteness with which he combated the reasonings employed by some of his contemporaries, to invalidate the proofs afforded by the phenomena of instinct, of the existence of a designing and provident cause. In this part of his work, he has plainly in his eye the Zoonomia of Dr Darwin, where the same principles, of which Paley and others had availed themselves to disprove the existence of instinct and instinctive propensities in man, are eagerly laid hold of to disprove the existence of instinct in the brutes. Without such an extension of the argument, it was clearly perceived by Darwin, that sufficient evidences of the existence of a Designing Cause would be afforded by the phenomena of the lower animals; and, accordingly, he has employed much ingenuity to show, that all these phenomena may be accounted for by experience, or by the influence of pleasurable or painful sensations, operating at the moment on the animal frame.

In opposition to this theory, it is maintained by Paley, that it is by instinct, that is, according to his own definition, by a propensity.

1 Biographical Memoirs, p. 472.

2 After relating, in the words of Valerius Maximus, the noted story of Caius Toranius, who betrayed his affectionate and excellent father to the triumvirate, Dr Paley thus proceeds:—

Now, the question is, whether, if this story were related to a wild boy caught some years ago in the woods of Hanover, or to a savage without experience and without instruction, cut off in his infancy from all intercourse with his species, and consequently under no possible influence of example, authority, education, sympathy, or habit; whether, I say, such a one would feel, upon the relation, any degree of that sentiment of disapprobation of Toranius's conduct which we feel or not?

They who maintain the existence of a moral sense, of innate maxims, of a natural conscience—that the love of virtue and hatred of vice are instinctive, or the perception of right or wrong intuitive (all of which are only different ways of expressing the same opinion), affirm that he would.

They who deny the existence of a moral sense, &c. affirm that he would not.

3 And upon this issue is joined.—(Principles of Moral and Political Philosophy, B. I. chap. 5.)

To those who are at all acquainted with the history of this dispute, it must appear evident that the question is here completely mis-stated; and that, in the whole of Dr Paley's subsequent argument on the subject, he combats a phantom of his own imagination. The opinion which he ascribes to his antagonists has been loudly and repeatedly disapproved by all the most eminent moralists who have disputed Locke's reasonings against innate practical principles; and is, indeed, so very obviously absurd, that it never could have been for a moment entertained by any person in his senses.

Did it ever enter into the mind of the wildest theorist to imagine that the sense of seeing would enable a man brought up, from the moment of his birth, in utter darkness, to form a conception of light and colours? But would it not be equally rash to conclude from the extravagance of such a supposition, that the sense of seeing is not an original part of the human frame?

The above quotation from Paley forces me to remark, farther, that, in combating the supposition of a moral sense, he has confounded together, as only different ways of expressing the same opinion, a variety of systems, which are regarded by all our best philosophers, not only as essentially distinct, but as in some measure standing in opposition to each other. The system of Hutcheson, for example, is identified with that of Cudworth. But although, in this instance, the author's logical discrimination does not appear to much advantage, the sweeping censure thus bestowed on so many of our most celebrated ethical theories, has the merit of throwing a very strong light on that particular view of the subject which it is the aim of his reasonings to establish, in contradiction to them all.

See the section on Instinct. Sect. XVI. of that work.

DISSERTATION FIRST. 225
prior to experience, and independent of instruction," that the sexes of animals seek each other; that animals cherish their offspring; that the young quadruped is directed to the teat of its dam; that birds build their nest, and brood with so much patience upon their eggs; that insects, which do not sit upon their eggs, deposit them in these particular situations in which the young, when hatched, find their appropriate food; that it is instinct which carries the salmon, and some other fish, out of the sea into rivers, for the purpose of shedding their spawn in fresh water."

In Dr. Paley's very able and convincing reasonings on these various points, he has undoubtedly approached nearer to the spirit of what has

With this very faint outline of the speculations of Locke's chief successors in Scotland, prior to the close of Dr. Reid's literary labours, I shall for the present finish my review of the metaphysical pursuits of the eighteenth century. The long period which has since elapsed has been too much crowded with great political events to favour the growth of abstract science in any of its branches; and of the little which appears to have been done, during this interval, in other parts of Europe, towards the advancement of true philosophy, the interrupted communication between this island and the Continent left us for many years in a state of almost total ignorance. This chasm in our information concerning foreign literature, it may not be a difficult task for younger men to supply. At my time of life it would be folly to attempt it; nor, perhaps, is any author who has himself been so frequently before the public, the fittest person to form an impartial estimate of the merits of his living contemporaries. Now, however, when peace is at length restored to the world, it may reasonably be hoped that the human mind will again resume her former career with renewed energy; and that the nineteenth century will not

1 Paley's Natural Theology, p. 324.
2 May I take the liberty of requesting the reader to compare a few pages of Dr. Paley's Section on Instinct, beginning "I am not ignorant of the doctrine which resolves instinct into sensation," &c. with some remarks made by the author of this Dissertation, in an Account of the Life and Writings of Dr. Reid? See the passage in section second, beginning thus, "In a very original work, on which I have already hazarded some criticisms," &c. As both publications appeared about the same time (in the year 1802), the coincidence, in point of thought, must have been wholly accidental, and as such affords no slight presumption in favour of its soundness.
3 When Dr. Paley published his Principles of Moral and Political Philosophy, he seems to have attached himself much too slavishly to the opinions of Bishop Law, to whom that work is inscribed. Hence, probably, his anxiety to disprove the existence of the moral faculty. Of the length to which Law was disposed to carry Locke's argument against innate principles, he has enabled us to judge by his own explicit declaration: "I take implanted senses, instincts, appetites, passions, and affections, &c. to be a remnant of the old philosophy, which we used to call every thing innate that it could account for; and therefore heartily wish, that they were in one sense all eradicated, which was undoubtedly the aim of that great author last mentioned (Mr. Locke), as it was a natural consequence of his first book."—(Law's Translation of Archbishop King On the Origin of Evil, p. 79, note.)

In justice, however, to Dr. Law, it must be observed, that he appears to have been fully aware that the dispute about innate principles was in a great measure verbal. "It will readily," says he, "come to the same thing with regard to the moral attributes of God and the nature of virtue and vice, whether the Deity has implanted these instincts and affections in us, or has framed and disposed us in such a manner, has given us such powers, and placed us in such circumstances, that we must necessarily acquire them."—(Ibid.) But if Dr. Law was aware of this, why should he and his followers have attached such infinite importance to the controversy?
yield to the eighteenth in furnishing materials to those who may hereafter delight to trace the progressive improvement of their species. In the meantime, instead of indulging myself in looking forward to the future, I shall conclude this section with a few general reflections suggested by the foregoing retrospect.

Among these reflections, what chiefly strikes my own mind is the extraordinary change which has gradually and insensibly taken place since the publication of Locke's Essay, in the meaning of the word Metaphysics; a word formerly appropriated to the ontology and pneumatology of the schools, but now understood as equally applicable to all those inquiries, which have for their object to trace the various branches of human knowledge to their first principles in the constitution of our nature. This change can be accounted for only by a change in the philosophical pursuits of Locke's successors; a change from the idle abstractions and subtleties of the dark ages, to studies subservient to the culture of the understanding; to the successful exercise of its faculties and powers; and to a knowledge of the great ends and purposes of our being. It may be regarded, therefore, as a palpable and incontrovertible proof of a corresponding progress of reason in this part of the world.

On comparing together the multifarious studies now classed together under the title of Metaphysics, it will be found difficult to trace any common circumstance but this, that they all require the same sort of mental exertion for their prosecution; the exercise, I mean, of that power (called by Locke Reflection) by which the mind turns its attention inwards upon its own operations, and the subjects of its own consciousness. In researches concerning our intellectual and active powers, the mind directs its attention to the faculties which it exercises, or to the propensities which put those faculties in motion. In all the other inquiries which fall under the province of the Metaphysician, the materials of his reasoning are drawn chiefly from his own internal resources. Nor is this observation less applicable to speculations which relate to things external, than to such as are confined to the thinking and sentient principle within him. In carrying on his researches (for example) concerning hardness, softness, figure, and motion, he finds it not less necessary to retire within himself, than in studying the laws of imagination or memory. Indeed, in such cases, the whole aim of his studies is to obtain a more precise definition of his ideas, and to ascertain the occasions on which they are formed.

From this account of the nature and object of metaphysical science, it may be reasonably expected, that those with whom it is a favourite and habitual pursuit, should acquire a more than ordinary capacity of retiring, at pleasure, from the external to the internal world. They may be expected also to acquire a disposition to examine the origin of whatsoever combinations they may find established in the fancy, and a superiority to the casual associations which warp common understandings. Hence an accuracy and a subtlety in their distinctions on all subjects, and those peculiarities in their views which are characteristic of unbiased and original thinking. But, perhaps, the most valuable fruit of their researches, is that scrupulous precision in the use of language, upon which, more than upon any one circumstance whatever, the logical accuracy of our reasonings, and the justness of our conclusions, essentially depend. Accordingly it will be found, on a review of the history of the moral sciences, that the most important steps which have been made in some of those, apparently the most remote from metaphysical pursuits (in the science, for example, of political economy), have been made by men trained to the exercise of their intellectual powers by...

1 The following is the account of Metaphysics given by Hobbes:—"There is a certain Philosophia prima, on which all other Philosophy ought to depend: and consisteth principally in right limiting of the significations of such appellations, or names, as are of all others the most universal: which limitations serve to avoid ambiguity and equivocation in reasoning, and are commonly called Definitions; such as are the Definitions of Body, Time, Place, Matter, Form, Essence, Subject, Substance, Accident, Power, Act, Finite, Infinite, Quantity, Quality, Motion, Action, Passion, and divers others, necessary to the explaining of a man's conceptions concerning the nature and generation of bodies. The explication (that is, the settling of the meaning of which, and the like terms, is commonly in the schools called Metaphysics."—(Moral and Political Works. Folio Edit. London, 1750, p. 399.)
early habits of abstract meditation. To this fact Burke probably alluded, when he remarked, that "by turning the soul inward on itself, its forces are concentrated, and are fitted for stronger and bolder flights of science; and that in such pursuits, whether we take, or whether we lose the game, the chase is certainly of service." The names of Locke, of Berkeley, of Hume, of Quesnai, of Turgot, of Morellet, and above all, of Adam Smith, will at once illustrate the truth of these observations, and show, that, in combining together, in this Dissertation, the sciences of Metaphysics, of Ethics, and of Politics, I have not adopted an arrangement altogether capricious.

In farther justification of this arrangement, I might appeal to the popular prejudices so industriously fostered by many, against these three branches of knowledge, as ramifications from one common and most pernicious root. How often have Mr Smith's reasonings in favour of the freedom of trade been ridiculed as metaphysical and visionary! Nay, but a few years have elapsed, since this epithet (accompanied with the still more opprobrious terms of Atheistical and Democratical) was applied to the argument then urged against the morality and policy of the slave-trade; and, in general, to every speculation in which any appeal was made to the beneficent arrangements of nature, or to the progressive improvement of the human race. Absurd as this language was, it could not, for a moment, have obtained any currency with the multitude, had there not been an obvious connection between these liberal doctrines, and the well known habits of logical thinking, which so eminently distinguished their authors and advocates. Whatever praise, therefore, may be due to the fathers of the modern science of political economy, belongs, at least in part (according to the acknowledgment of their most decided adversaries), to those abstract studies by which they were prepared for an analytical investigation of its first and fundamental principles.

Other connections and affinities between Political Economy and the Philosophy of the Human Mind will present themselves afterwards. At present I purposely confine myself to that which is most obvious and indisputable.

The influence of metaphysical studies may be also perceived in the philosophical spirit so largely infused into the best historical compositions of the last century. This spirit has, indeed, been often perverted to pernicious purposes; but who can doubt, that, on the whole, both history and philosophy have gained infinitely by the alliance?

How far a similar alliance has been advantageous to our poetry, may be more reasonably questioned. But on the most unfavourable supposition it must be admitted, that the number of poetical readers has thereby been greatly increased, and the pleasures of imagination proportionally communicated to a wider circle. The same remark may be extended to the study of philosophical criticism. If it has not contributed to the encouragement of original genius in the fine arts, it has been followed by a much more beneficial result in diffusing a relish for the beautiful and the elegant; not to mention its influence in correcting and fixing the public taste, by the precision and steadiness of the principles to which it appeals.

Another instance, still more important, of the practical influence of metaphysical science, is the improvement which, since the time of Locke, has become general in the conduct of education.
both private and public. In the former case, the fact is universally acknowledged. But even in our universities (notwithstanding the proverbial aversion of most of them to everything which savours of innovation) what a change has been gradually accomplished since the beginning of the eighteenth century! The studies of Ontology, of Pneumatology, and of Dialectics, have been supplanted by that of the Human Mind, conducted with more or less success, on the plan of Locke's Essay; and, in a few seats of learning, by the studies of Bacon's Method of Inquiry, of the Principles of Philosophical Criticism, and of the Elements of Political Economy. In all this an approach has been made or attempted, to what Locke so earnestly recommended to parents, "that their children's time should be spent in acquiring what may be useful to them when they come to be men." Many other circumstances, no doubt, have contributed their share in producing this revolution; but what individual can be compared to Locke in giving the first impulse to that spirit of reform by which it has been established? 1

In consequence of the operation of these causes, a sensible change has taken place in the style of English composition. 2 The number of idiomatic phrases has been abridged; and the language has assumed a form more systematic, precise, and luminous. The transitions, too, in our best authors, have become more logical, and less dependent on fanciful or verbal associations. If by these means our native tongue has been rendered more unfit for some of the lighter species of writing, it has certainly gained immensely as an instrument of thought, and as a vehicle of

1 Under this head of education may also be mentioned the practical improvements which, during the course of the last century, have taken place in what Lord Bacon calls the traditio part of logic. I allude here not only to the new arrangements in the Lancastrian Schools, by which the division of the art of reading among the poorer classes of the community is so wonderfully facilitated and extended, but to those admirable elementary works which have opened a ready and speedy access to the more recondite truths of the severer sciences. How much these have contributed to promote the progress of mathematical knowledge in France may be judged of from an assertion of Condorcet, that two years spent under an able teacher now carry the student beyond the conclusions which limited the researches of Leibnitz and of Newton. The Essays lately published on this subject by M. Lacroix (Essais sur l'Enseignement en Général, et sur celui des Mathématiques en particulier. Paris, 1803.) contain many valuable suggestions; and, beside their utility to those who are concerned in the task of instruction, may justly be considered as an accession to the Philosophy of the Human Mind.

2 See some judicious remarks on this subject, in Mr Godwin's Inquirer, p. 274. In the opinion of this author, "the English language is now written with more grammatical propriety than by the best of our ancestors; and with a much higher degree of energy and vigour. The spirit of philosophy has infused itself into the structure of our sentences." He remarks further, in favour of the present style of English composition, "that it at once satisfies the understanding and the ear." The union of these two excellencies certainly constitutes the perfection of writing. Johnson boasts, and with truth, in the concluding paper of the Rambler, that he had "added something to our language in the elegance of its construction, and something in the harmony of its cadence;" but what a sacrifice did he make to these objects, of conciseness, of simplicity, and of (what he has himself called) Génuine Anglism. To accomplish the same ends, without any sacrifice of these higher merits, has been one of the chief aims of the most eminent among his successors.

As an instrument of thought and a medium of scientific communication, the English language appears to me, in its present state, to be far superior to the French. Diderot, indeed (a very high authority), has, with much confidence, asserted the contrary; and it is but fair to let him speak for himself: "J'ajouterois volontiers que la marche didactique et reglée à laquelle notre langue est assujettie la rend plus propre aux sciences; et que par les tours et les inversions que le Grec, le Latin, l'Italien, l'Anglois, se permettent, ces langues sont plus avantageuses pour les lettres: Que nous pouvons mieux qu'aucun autre peuple faire parler l'esprit; et que le bon sens choisiroit la langue Françoise; mais que l'Imagination et les passions donneroient la préférence aux langues anciennes et à celles de nos voisins: Qu'il faut parler Français dans la société et dans les écoles de Philosophie; et Grec, Latin, Anglois, dans les chaires et sur le Théâtre: Que notre langue serait celle de la vérité, si jamais elle revient sur la terre; et que la Grecque, la Latine, et les autres seroient les langues de la faible et du mensonge. Le Français est fait pour instruire, éclairer, et convaincre: le Grec, le Latin, l'Italien, l'Anglois, pour persuader, émouvoir, et tromper; parlez Grec, Latin, Italien au peuple, mais parlez Français au sage."

(Œuvres de Diderot. Tome II. pp. 70, 71. Amsterdam, 1772.)

The particular excellence of the French language are ascribed, in part, by Diderot, to the study of the Aristotelian Philosophy. (Ibid. p. 7.) I do not well see what advantage France should, in this respect, have enjoyed over England; and since that philosophy fell into disrepute, it will scarcely be alleged that the habits of thinking cultivated by Locke's disciples have been less favourable to a logical rigour of expression than those of any contemporary sect of French metaphysicians.

A later French writer has, with far greater justice, acknowledged the important services rendered to the French language, by the gentlemen of the Port Royal Society. "L'Ecole de Port Royal, féconde en penseurs, illustrée par les écrivains les plus purs, par les érudits les plus laborieux du siècle de Louis XIV. est déjà rendu parmi nous un assez grand service à la philosophie par cela seul qu'elle a puissément concouru à fixer notre langue, à lui donner ce caractére de précision, de clarté, d'exactitude, qui la rend si favorable aux opérations de l'esprit."—Hist. Comparée, &c. Tome II. p. 47.

Mr Gibbon also has remarked, how much "the learned Society of Port Royal contributed to establish in France a taste for just reasoning, simplicity of style, and philosophical method." The improvement, in all these respects, of our English writers, during the same period, is, in any opinion, much more remarkable.
knowledge. May I not also add, that the study of it has been greatly facilitated to foreigners; and that in proportion to its rejection of colloquial anomalies, more durable materials are supplied to the present generation for transmitting their intellectual acquisitions to posterity?

But granting the truth of these reflections, it may still be asked, what is the amount of the discoveries brought to light by the metaphysical speculations of the eighteenth century? Or rather, where are the principles to be found, of which it can be justly said, that they unite the suffrages, not of the whole, but even of the majority of our present philosophers? The question has been lately put and urged, with no common ability, by a foreign academian.

"The diversity of doctrines (says M. de Bonald) has increased, from age to age, with the number of masters, and with the progress of knowledge; and Europe, which at present possesses libraries filled with philosophical works, and which reckons up almost as many philosophers as writers, poor in the midst of so much riches, and uncertain, with the aid of all its guides, which road it should follow; Europe, the centre and the focus of all the lights of the world, has yet its philosophy only in expectation."

In proof of this assertion, the author appeals to the Comparative History of Philosophical Systems relative to the Principles of Human Knowledge, by M. Degerando; and after a variety of acute strictures on the contradictory systems there described, sums up his argument in the following words:

"Thus, the Comparative History of Philosophical Systems is nothing else than a History of the Variations of philosophical schools, leaving no other impression upon the reader than an insurmountable disgust at all philosophical researches; and a demonstrated conviction of the impossibility of raising an edifice on a soil so void of consistency, and so completely surrounded by the most frightful precipices. About what then are philosophers agreed? What single point have they placed beyond the reach of dispute? Plato and Aristotle inquired, What is science? What is knowledge? And we, so many ages after these fathers of philosophy; we, so proud of the progress of human reason, still continue to repeat the same questions; vainly pursuing the same phantoms which the Greeks pursued two thousand years ago."

In reply to this bold attack on the evidence of the moral sciences, it may suffice to recall to our recollection the state of physical science not more than two centuries ago. The argument of M. de Bonald against the former is, in fact, precisely the same with that ascribed by Xenophon to Socrates against those studies which have immortalised the names of Boyle and Newton; and which, in our own times, have revealed to us all the wonders of the modern chemistry. Whatever contradictions, therefore, may yet exist in our metaphysical doctrines (and of these contradictions many more than is commonly suspected will be found to be merely verbal), why should we despair of the success of future ages in tracing the laws of the intellectual world, which, though less obvious than those of the material world, are not less the natural and legitimate objects of human curiosity?

Nor is it at all wonderful that the beneficial effects of metaphysical habits of thinking should have been first perceived in political economy, and some other sciences to which, on a superficial view, they may seem to have a very remote relation; and that the rise of the sap in the tree of knowledge should be indicated by the germs at the extremities of the branches, before any

6 Ibid. pp. 58, 60.
4 On the other hand, may it not be asked, if the number of philosophical systems be greater than that of the sects which at present divide the Christian church? The allusion here made to Bossuet's celebrated History of the Variations, shows plainly that the similarity of the two cases had not been overlooked by the ingenious writer; and that the only effectual remedy which, in his opinion, can be applied to either, is to subject once more the reason, both of philosophers and of divines, to the paramount authority of an infallible guide. The conclusion is such as might have been expected from a good Catholic; but I trust that, in this country, it is not likely to mislead many of my readers. Some recent conversions to Puftey, however, which, in consequence of views similar to those of M. de Bonald, have taken place among the philosophers of Germany, afford a proof that, in the present political state of Europe, the danger of a temporary relapse into the superstitions of the Church of Rome, how slight soever, ought not to be regarded as altogether visionary.—See Lectures on the History of Literature, by Frederick Schlegel, Vol. II. pp. 65, 68, 89, 175, 187. English Translation, Edinburgh.)
visible change is discernible in the trunk. The sciences, whose improvement during the last century has been generally acknowledged, are those which are most open to common observation; while the changes which have taken place in the state of metaphysics, have attracted the notice of the few alone who take a deep interest in these abstract pursuits. The swelling of the buds, however, affords a sufficient proof that the roots are sound, and encourages the hope that the growth of the trunk, though more slow, will, in process of time, be equally conspicuous with that of the leaves and blossoms.

I shall close this part of my Dissertation with remarking, that the practical influence of such speculations as those of Locke and of Bacon is to be traced only by comparing, on a large scale, the state of the human mind at distant periods. Both these philosophers appear to have been fully aware (and I know of no philosopher before them of whom the same thing can be said), that the progressive improvement of the species is to be expected less from the culture of the reasoning powers, strictly so called, than from the prevention, in early life, of those artificial impressions and associations, by means of which, when once rivetted by habit, the strongest reason may be held in perpetual bondage. These impressions and associations may be likened to the slender threads which fastened Gulliver to the earth; and they are to be overcome, not by a sudden exertion of intellectual force, but by the gradual effect of good education, in breaking them asunder one by one. Since the revival of letters, seconded by the invention of printing, and by the Protestant Reformation, this process has been incessantly going on, all over the Christian world; but it is chiefly in the course of the last century that the result has become visible to common observers. How many are the threads which, even in Catholic countries, have been broken by the writings of Locke! How many still remain to be broken, before the mind of man can recover that moral liberty which, at some future period, it seems destined to enjoy!
NOTES AND ILLUSTRATIONS.

The chief purpose of these Notes and Illustrations, is to verify some of the more important views contained in the foregoing Historical Sketch. The errors into which I have frequently been led by trusting to the information of writers, who, in describing philosophical systems, profess to give merely the general results of their researches, unauthenticated by particular references to the original sources, have long convinced me of the propriety, on such occasions, of bringing under the eye of the reader, the specific authorities on which my statements proceed. Without such a check, the most faithful historian is perpetually liable to the suspicion of accommodating facts to his favourite theories; or of unconsciously blending with the opinions he ascribes to others, the glosses of his own imagination. The quotations in the following pages, selected principally from books not now in general circulation, may, I hope, at the same time, be useful in facilitating the labours of those who shall hereafter resume the same subject, on a scale more susceptible of the minuteness of literary detail.

For a few short biographical digressions, with which I have endeavoured to give somewhat of interest and relief to the abstract and unattractive topics which occupy so great a part of my Discourse, I flatter myself that no apology is necessary; more especially, as these digressions will in general be found to throw some additional light on the philosophical or the political principles of the individuals to whom they relate.

Note A, p. 15.

Sir Thomas More, though, towards the close of his life, he became "a persecutor even unto blood, defiling with cruelties those hands which were never polluted with bribes;" was, in his earlier and better days, eminently distinguished by the humanity of his temper, and the liberality of his opinions. Abundant proofs of this may be collected from his Letters to Erasmus; and from the sentiments, both religious and political, indirectly inculcated in his Utopia. In contempt for the ignorance and profigacy of the monks, he was not surpassed by his correspondent; and against various superstitions of the Romish church, such as the celibacy of priests, and the use of images in worship, he has expressed himself more decidedly than could well have been expected from a man placed in his circumstances. But these were not the whole of his merits. His ideas on Criminal Law are still quoted with respect by the advocates for a milder code than has yet been introduced into this country; and, on the subject of toleration, no modern politician has gone farther than his Utopian Legislators.

The disorders occasioned by the rapid progress of the Reformation, having completely shaken his faith in the sanguine speculations of his youth, seem at length, by alarming his fears as to the fate of existing establishments, to have
unhinged his understanding, and perverted his moral feelings. The case was somewhat the same with his friend Erasmus, who, as Jortin remarks, "began in his old days to act the zealot and the missionary with an ill grace, and to maintain, that there were certain heretics who might be put to death as blasphemers and rioters" (pp. 428, 481). In the mind of Erasmus, other motives, it is not improbable, concurred; his biographer and apologist being forced to acknowledge, that "he was afraid lest Francis, and Charles, and Ferdinand, and George, and Henry VIII., and other persecuting princes, should suspect that he condemned their cruel conduct."—(Ibid. p. 481.)

Something, it must at the same time be observed, may be alleged in behalf of these two illustrious persons: not, indeed, in extenuation of their unpardonable defection from the cause of religious liberty, but of their estrangement from some of their old friends, who scrupled not to consider as apostates and traitors, all those who, while they acknowledged the expediency of ecclesiastical reform, did not approve of the violent measures employed for the accomplishment of that object. A very able and candid argument on this point may be found in Bayle, Article Castellan, Note Q.

NOTE B, p. 16.

The following short extract will serve to convey a general idea of Calvin's argument upon the subject of usury.

"Pecunia non parit pecuniam. Quid mare? quid domus, ex ejus locatone pensionem pecuniae? an ex tecest et parietibus argentum proprium nascitur? Sed et terra product, et mari adventitur quod peccuniam deinde producit, et habitationis commoditas cum certa pecunia parari commutativa solet. Quod siigitur plus ex negotiatione luci perci pi, quam ex fundi ejusvis proventu: an feretur qui fundum sterilem fortasse colono locaverit ex quo mercedem vel proventum recipiat sibi, qui ex pecunia fructum aliquem perceperit, non feretur? et qui pecunia fundum acquirit, annon pecunia illa ge-

nerat alteram annuum pecuniam? Unde vero merceatoris lucrum? Ex ipius, inquiet, dili gentia atque industria. Quis dubitat pecuniam vacuam inutilem omnino esse? neque qui a me mutuam rogat, vacuam apud se habere a me acceptam cogitat. Non ergo ex pecunia illa lucrum accedit, sed ex proventu. Illae igitur rationes subtiles quidem sunt, et speciem quandam habent, sed ubi proprius expenduntur, seipsa concidunt. Nune igitur concluso, judicandum de usuris esse, non ex particulari aliquo Scripturae loco, sed tantum ex aequitatis regulâ."—(Calvini Epistolae.)

NOTE C, p. 22.

The prevailing idea among Machiavel's contemporaries and immediate successors certainly was, that the design of the Prince was hostile to the rights of mankind; and that the author was either entirely unprincipled, or adapted his professed opinions to the varying circumstances of his own eventful life. The following are the words of Bodinus, born in 1530, the very year when Machiavel died; an author whose judgment will have no small weight with those who are acquainted with his political writings: "Machiavel s'est bien fort méscété, de dire que l'éstat populaire est le meilleur: 1 et néanmoins ayant oublié sa première opinion, il a tenu en un autre lieu, que pour restituer l'Italie en sa liberté, il faut qu'il n'y ait qu'un Prince; et de fait, il s'est efforcé de former un éstat le plus tyrannique du monde; et en autre lieu il confesse, que l'éstat de Venice est le plus beau de tous, lequel est une pure Aristocratie, s'il en fut onques: tellement qu'il ne sait á quoi se tenir." —(De la République, Liv. vi. chap. iv. Paris, 1576). In the Latin version of the above passage, the author applies to Machiavel the phrase, Homo levissimus ac nequissimus.

One of the earliest apologists for Machiavel was Albericus Gentilis, an Italian author of whom some account will be given afterwards. His words are these: "Machiavel, a warm pangenyst and keen asserter of democracy; born, educated, promoted under a republican govern-

1 Discourses upon Lévy.

2 Prince, Book i. c. ix.

3 Discourses upon Lévy.
ment, was in the highest possible degree hostile to tyranny. The scope of his work, accordingly, is not to instruct tyrants; but, on the contrary, by disclosing their secrets to their oppressed subjects, to expose them to public view, stripped of all their trappings.” He afterwards adds, that “Machiavel’s real design was, under the mask of giving lessons to sovereigns, to open the eyes of the people; and that he assumed this mask in the hope of thereby securing a freer circulation to his doctrines.”—(De Legationibus, Lib. iii. c. ix. Lond. 1585). The same idea was afterwards adopted and zealously contended for by Wiequefort, the author of a noted book entitled the Ambassador; and by many other writers of a later date. Bayle, in his Dictionary, has stated ably and impartially the arguments on both sides of the question: evidently leaning, however, very decidedly, in his own opinion, to that of Machiavel’s apologists.

The following passage from the excellent work of M. Simonde de Sismondi on the Literature of the South, appears to me to approach very near to the truth in the estimate it contains both of the spirit of the Prince, and of the character of the author. “The real object of Machiavel cannot have been to confirm upon the throne a tyrant whom he detested, and against whom he had already conspired; nor is it more probable that he had a design to expose to the people the maxims of tyranny, in order to render them odious. Universal experience made them at that time sufficiently known to all Italy; and that infernal policy which Machiavel reduced to principles, was, in the sixteenth century, practised by every government. There is rather, in his manner of treating it, a universal bitterness against mankind; a contempt of the whole human race; which makes him address them in the language to which they had debased themselves. He speaks to the interests of men, and to their selfish calculations, as if he thought it useless to appeal to their enthusiasm or to their moral feelings.”

I agree perfectly with M. de Sismondi in considering the two opposite hypotheses referred to in the above extract, as alike untenable; and have only to add to his remarks, that, in writing the Prince, the author seems to have been more under the influence of spleen, of ill-humour, and of blasted hopes, than of any deliberate or systematic purpose, either favourable or adverse to human happiness. The prevailing sentiment in his mind probably was, Si populus vult decipi, decipiatur.

According to this view of the subject, Machiavel’s Prince, instead of being considered as a new system of political morality, invented by himself, ought to be regarded merely as a digest of the maxims of state policy then universally acted upon in the Italian courts. If I be not mistaken, it was in this light that the book was regarded by Lord Bacon, whose opinion concerning it being, in one instance, somewhat ambiguously expressed, has been supposed by several writers of note (particularly Bayle and Mr Roscoe) to have coincided with that quoted above from Albericus Gentilis. To me it appears, that the very turn of the sentence appealed to on this occasion is rather disrespectful than otherwise to Machiavel’s character. “Est itaque quod gratias agamus Machiavellio et hu- jusmodi scriptoribus, qui aperte et indissimulanter proferunt, quid homines facere soleant, non quid debeant.”—(De Aug. Scient. Lib. vii. cap. ii.) The best comment, however, on these words, is to be found in another passage of Bacon, where he has expressed his opinion of Machiavel’s moral demerits in terms as strong and unequivocal as language can furnish. “Quod enim ad ma- las artes attinet; si quis Machiavellio se dederit in disciplinam; qui praecipit, &c. &c. &c. See the rest of the paragraph (De Aug. Scient. Lib. viii. cap. ii.) See also a passage in Book vii. chap. viii. beginning thus: “An non et hoc verum est, juvenes multo minus Politica quam Ethica: auditores idoneos esse, antequam religio et doctrina de moribus et officiis plane imbuantur; ne forte judicio depravati et corrupti, in eam opinionem veniant, non esse rerum dif-
ferentiae morales veras et solidas, sed omnia ex utillitate.—Si eum Machiavellio dicere placeat, Quod si contiqisset Cesarem bello superatum fuisse, Catilina ipso fuisse odiosior," &c. &c. After these explicit and repeated declarations of his sentiments on this point, it is hard that Bacon should have been numbered among the apologists of Machiavel, by such high authorities as Bayle, and the excellent biographer of Lorenzo de Medicis.

It has been objected to me, that in the foregoing observations on the design of the Prince, I have taken no notice of the author's vindication of himself and his writings, in his letter to Zenobius Buonelmontius, annexed to the old English translation of Machiavel, printed at London in 1675 and 1680. In the preface to this translation, we are told, that the letter in question "had never before been published in any language, but lurked for above eighty years in the private cabinets of his own kindred, or the descendants of his admirers in Florence, till, in the Pontificate of Urban VIII., it was procured by the Jesuits and other busy bodies, and brought to Rome with an intention to divert that wise Pope from his design of making one of Nicholas Machiavel's name and family cardinal, as (notwithstanding all their opposition) he did, not long after. When it was gotten into that city, it wanted not those who had the judgment and curiosity to copy it, and so at length came to enjoy that privilege which all rare pieces (even the sharpest libels and pasquins) challenge at that court, which is to be sold to strangers, one of which, being a gentleman of this country, brought it over with him at his return from thence in 1645, and having translated it into English, did communicate it to divers of his friends; and by means of some of them, it hath been my good fortune to be capable of making thee a present of it; and let it serve as an apology for our author and his writings, if thou thinkest he need any."

As the translation of Machiavel, from which this advertisement is copied, is still in the hands of many readers in this country, it may not be improper to mention here, that the letter in question is altogether of English fabrication; and (as far as I can learn) is quite unknown on the Continent. It is reprinted at the end of the second volume of Farnworth's Translation of Machiavel's works, 1762, with the following statement prefixed to it. 1

"The following letter having been printed in all the editions of the old translation, it is here given to the reader, though it certainly was not written by Machiavel. It bears date in 1537, and his death is placed by all the best historians in 1530. There are, besides, in it many internal marks, which to the judicious will clearly prove it to be the work of some other writer, vainly endeavouring at the style and manner of our excellent author. The letter is indeed a spirited and judicious defence of Machiavel and his writings; but it is written in a style too inflated, and is utterly void of that elegance and precision which so much distinguish the works of the Florentine secretary."

To the author of this last translation we are farther indebted for a very curious letter of Dr Warburton's, which renders it probable that the forgery was contrived and carried into execution by the Marquis of Wharton. I shall transcribe the letter in Warburton's words.

"There is at the end of the English translation of Machiavel's works, printed in folio, 1680, a translation of a pretended letter of Machiavel to Zenobius Buonelmontius, in vindication of himself and his writings. I believe it has been generally understood to be a feigned thing, and has by some been given to Nevil, who wrote, if I do not mistake, the Plato Redivivus. But many years ago, a number of the famous Marquis of Wharton's papers (the father of the Duke) were put into my hands. Amongst these was the press copy (as appeared by the printer's marks, where any page of the printed letter began and ended) of this remarkable letter in the Marquis's hand-writing, as I took it to be, compared with

1 In a book published 1816, this letter is referred to without any expression of doubt as to its authenticity. See Miller's Lectures on the Philosophy of Modern History, Dublin, 1816, p. 17.
other papers of his. The person who intrusted me with these papers, and who I understood had given them to me, called them back out of my hands. This anecdote I communicated to the late Speaker; and, at his desire, wrote down the substance of what I have told you, in his book of the above edition.—W. Gloucester.”

From a memoir read before the French Institute in July 1814, by M. Daunou, it appears that some new light has been lately thrown on the writings and life of Machiavel by the discovery of some of his unpublished papers. The following particulars cannot fail to be gratifying to many of my readers.

“M. Ginguene continue son Histoire de la Littérature Italienne, et vient de communiquer à la classe l'un des articles qui vont composer le septième tome de cette histoire. C'est un tableau de la vie et des écrits de Nicolas Machiavel. La vie de cet écrivain célèbre est le véritable commentaire de ses livres; et jusqu'ici ce commentaire était resté fort incomplet. Par exemple, on se bornait à dire, que la république de Florence, dont il eût été secrétaire, l'avait chargé de diverses missions politiques à la cour de France, à la cour de Rome, auprès du Duc de Valentinois, auprès de l'Empereur, au camp de Pise, &c. &c. M. Ginguene le suit année par année dans toutes ses legations, il en fait connoître l'objet et les principales circonstances. Cette vie devient ainsi une partie essentielle de l'histoire de Florence, et tient mème à celle des puissances qui étaient alors en liaison avec cette république. On lit peu dans la collection des Œuvres de Machiavel, ses correspondances politiques, qui ne manquent offrent tous ces détails et jettent un grand jour sur son caractère et sur ses intentions. Malheureusement, ce jour lui est peu favorable, et nous éclaire que trop sur le véritable sens dans lequel doit être pris son Traité du Prince si d'abord jugé. L'une des pièces les plus curieuses et les plus décisives est une lettre qu'il écrivit de la campagne où il s'était retiré après la rentrée des Médicis à Florence. Il venoit d'être destitué de ses emplois; impliqué dans une conspiration contre ces princes, il avait été incarcéré, mis à la torture, et jugé innocent, soit qu'il le fut en effet, soit que les tournirs n'eussent pu lui arracher l'aveu de sa faute. Il trace dans ce lettre le tableau de ses occupations et de ses projets, des travaux et des distractions qui remplissent ses journées. Pour sortir d'une position voisine de la misère, il sent la nécessité de rentrer en grâce avec les Médicis, et n'en trouve pas de meilleur moyen que de dédier le Traité du Prince qu'il vient d'achever à Julien le Jeune, frère du Leon X., et à qui ce Pape avait confié le gouvernement de Florence. Machiavel croit que son Traité ne peut manquer d'être agréable et utile à un prince, et surtout à un nouveau prince. Quelques temps après, il fit en effet hommage de ce livre, non à Julien, mais à Laurent II. Cette lettre, qui n'est connue en Italie, que depuis peu d'années, est encore ignorée en France. M. Ginguene l'a traduite; il pense qu'elle ne laisse aucune incertitude sur le but et les intentions de l'auteur du Traité du Prince.”—Some farther details on this subject are to be found in a subsequent memoir by the same author, read before the French Institute in July 1815.

Soon after reading the above passage in M. Daunou’s Report, I received nearly the same information from the north of Italy. It cannot be so well expressed as in the words of the writer:

“Pray tell Mr Stewart that there is a very remarkable letter of Machiavel’s lately published, written to a private friend at the very time he was engaged in the composition of the Prince, and not only fixing the date of that work, but explaining in a manner disgraceful to the author, the use he made of it, in putting it into the hands of the Medicis family. The letter is besides full of character, and describes

1 In a letter from Warburton to the Reverend Mr Birch, there is the following passage:—“I told you, I think, I had several of old Lord Wharton’s papers. amongst the rest is a manuscript in his own handwriting, a pretended translation of a manuscript apologetical epistle of Machiavel’s, to his friend Zenobio. It is a wonderful fine thing. There are the printer’s marks on the manuscript, which makes me think it is printed. There is a postscript of Lord Wharton’s to it, by which it appears this pretended translation was designed to prefix to an English edition of his works. As I know nothing of the English edition of Machiavel, I wish you would make this out, and let me know.”—(Illustrations of the Literary History of the 18th century, intended as a sequel to the Literary Anecdotes by John Nichols. Vol. II. p. 88.)

2 Rapport sur les Travaux de la Classe d'Histoire, &c. 1 Juillet, 1814.
in a very lively manner, the life he was leading when driven away from Florence. This particular letter may be read at the end of the last volume of Pignotti's Storia della Toscana; a book published here, but which was in all the London shops before I came away. It is to be found also with several others, which are entertaining and curious, in a new collection published at Florence in 1814, of Machiavel's public dispatches and familiar letters. By the way, I must likewise tell Mr Stewart that my late reading has suggested a slight criticism upon one expression of his with regard to Machiavel's Prince, where he calls it one of the "latest of his publications." The fact is, that the three great works were none of them published in his lifetime, nor for four years after his death. They appear to have been all written at the same period of his life, during the eight or ten years of leisure that were forced upon him; and I believe it may be made out from the works themselves, that the Prince was composed and finished first of the three, then the Discourses, and last of all the History. This and the first having been written for the Medicis family, the MSS. were in their hands, and they published them; the Discourses were printed by the care of some of his personal friends. If Mr Stewart wishes to have the proof of all this in detail, I can draw it out without any trouble."

The foregoing passage will be read by many with no common interest, when it is known that it formed part of a letter from the late Francis Horner, written a very few weeks before his death. Independently of the satisfaction I feel in preserving a memorial of his kind attention to his friends, at a period when he was himself an object of such anxious solicitude to his country, I was eager to record the opinion of so perfect and accomplished a judge on a question which, for more than two centuries, has divided the learned world; and which, his profound admiration of Machiavel's genius, combined with the most unqualified detestation of Machiavel's principles, had led him to study with peculiar care. The letter is dated Pisa, December 17. 1816.

The united tribute of respect already paid by Mr Horner's political friends and his political opponents, to his short but brilliant and spotless career in public life, renders all additional eulogies on his merits as a statesman, equally feeble and superfluous. Of the extent and variety of his learning, the depth and accuracy of his scientific attainments, the classical (perhaps somewhat severe) purity of his taste, and the truly philosophical cast of his whole mind, none had better opportunities than myself to form a judgment, in the course of a friendship which commenced before he left the University, and which grew till the moment of his death. But on these rare endowments of his understanding, or the still rarer combination of virtues which shed over all his mental gifts a characteristic grace and a moral harmony, this is not the proper place to enlarge. Never certainly was more completely realized the ideal portrait so nobly imagined by the Roman poet: "A calm devotion to reason and justice, the sanctity of the heart undefiled, and a breast glowing with inborn honour."

Composite jus fasque animo, sanctosque recessus
Mentis, et incestum generoso pectus honesto.

Note D, p. 27.

The charge of plagiarism from Bodin has been urged somewhat indelicately against Montesquieu, by a very respectable writer, the Chevalier de Filangieri. "On a cru; et l'on croit peut-être encore, que Montesquieu a parlé le premier de l'influence du climat. Cette opinion est une erreur. Avant lui, le délicat et ingénieux Fontenelle s'ettoit exercé sur cet objet. Machiavel, en plusieurs endroits de ses ouvrages, parle aussi de cette influence du climat sur le physique et sur le moral des peuples. Chardin, un de ces voyageurs qui savent observer, a fait beaucoup de réflexions sur l'influence physique et moral des climats. L'Abe Dubos a soutenu et développé les pensées de Chardin; et Bodin, qui peut-être avoir lu dans Polybe que le climat détermine les formes, la couleur, et les mœurs des peuples, en ait deja fait, cent cinquante ans auparavant, la base de son système, dans son livre de la République, et dans sa Méthode de l'Histoire. Avant tous ces écrivains, l'immortal Hippocrate ait traité fort au long cette

The enumeration here given of writers whose works are in every body's hands, might have satisfied Filangieri, that, in giving his sanction to this old theory, Montesquieu had no wish to claim to himself the praise of originality. It is surprising, that, in the foregoing list, the name of Plato should have been omitted, who concludes his fifth book, De Legibus, with remarking, that "all countries are not equally susceptible of the same sort of discipline; and that a wise legislator will pay a due regard to the diversity of national character, arising from the influence of climate and of soil." It is not less surprising, that the name of Charron should have been overlooked, whose observations on the moral influence of physical causes discover as much originality of thought as those of any of his successors.—See De la Sagesse, Livre i. chap. xxxvii.

Note E, p. 29.

Innumerable instances of Luther's credulity and superstition are to be found in a book entitled Martinii Lutheri Colloquia Mensalium, &c. first published, according to Bayle, in 1571. The only copy of it which I have seen, is a translation from the German into the English tongue by Captain Henrie Bell. (London 1652.) This work, in which are "gathered up the fragments of the divine discourses which Luther held at his table with Philip Melanchthon, and divers other learned men," bears to have been originally collected "out of his holy mouth" by Dr Anthony Lauterbach, and to have been afterwards "digested into common-places" by Dr Aurifaber. Although not sanctioned with Luther's name, I do not know that the slightest doubts of its details have been suggested, even by such of his followers as have regretted the indiscreet communication to the public, of his unreserved table-talk with his confidential companions. The very accurate Seckendorff has not called in question its authenticity; but on the contrary, gives it his indirect sanction, by remarking, that it was collected with little prudence, and not less imprudently printed: "Libro Colloquiorum Mensalium minus quidem cautæ composito et vulgato." (Bayle, article Luther, Note L.) It is very often quoted as an authority by the candid and judicious Dr Jortin.

In confirmation of what I have said of Luther's credulity, I shall transcribe, in the words of the English translator, the substance of one of Luther's Divine Discourses, "concerning the devil and his works." "The devil (said Luther) can transform himself into the shape of a man or a woman, and so deceive people; insomuch that one thinketh he lieth by a right woman, and yet is no such matter; for, as St Paul saith, the devil is strong by the child of unbelief. But inasmuch as children or devils are conceived in such sort, the same are very horrible and fearful examples. Like unto this it is also with what they call the Niz in the water, who draweth people unto him as maids and virgins, of whom he begetteth devils' children. The devil can also steal children away; as sometimes children within the space of six weeks after their birth are lost, and other children, called supposititi, or changelings, laid in their places. Of the Saxons they were called Killcrops.

"Eight years since," said Luther, "at Dessau, I did see and touch such a changed child, which was twelve years of age; he had his eyes, and all members, like another child; he did nothing but feed, and would eat as much as two clowns were able to eat. I told the Prince of Anhalt, if I were prince of that country, I would venture homicidium thereon, and would throw it into the river Moldaw. I admonished the people dwelling in that place devoutly to pray to God to take away the devil. The same was done accordingly, and the second year after the changeling died.

"In Saxony, near unto Halberstad, was a man that also had a killcrop, who sucked the
mother and five other women dry, and besides
devoured very much. This man was advised
that he should, in his pilgrimage at Halberstad,
make a promise of the killcrop to the Virgin
Marie, and should cause him there to be rocked.
This advice the man followed, and carried the
changeling thither in a basket. But going over
a river, being upon the bridge, another devil
that was below in the river, called and said,
Killcrop! killcrop! Then the child in the bask-
et (which never before spoke one word), an-
swered, Ho, ho. The devil in the water asked
further, Whither art thou going? The child in
the basket said, I am going towards Hocklestad
to our loving mother, to be rocked. The man
being much affrighted thereat, threw the child,
with the basket, over the bridge into the water.
Whereupon the two devils flew away together,
and cried Ho, ho, ha, tumbling themselves over
another, and so vanished."—(pp. 386, 387.)
With respect to Luther's Theological Disputes
with the Devil, see the passages quoted by Bayle,
Art. Luther, Note U.

Facts of this sort, so recent in their date, and
connected with the history of so great a charac-
ter, are consolatory to those who, amid the fol-
lies and extravagancies of their contemporaries,
are sometimes tempted to despair of the cause
of truth, and of the gradual progress of human
reason.

Note F, p. 38.

Ben Jonson is one of the few contemporary
writers by whom the transcendent genius of Ba-
con appears to have been justly appreciated;
and the only one I know of, who has transmit-
ted any idea of his forensic eloquence; a sub-
ject on which, from his own professional pursuits,
combined with the reflecting and philosophi-
cal cast of his mind, Jonson was peculiarly quaf-
ted to form a competent judgment. "There hap-
pened," says he, "in my time, one noble speak-
er, who was full of gravity in his speaking. No
man ever spoke more neatly, more pressly, more
weightily, or suffered less emptiness, lest idle-
ness in what he uttered. No member of his
speech but consisted of its own graces. His
hearers could not cough, or look aside from him,
without loss. He commanded where he spoke,
and had his judges angry and pleased at his de-
voion. The fear of every man that heard him
was, that he should make an end." No finer
description of the perfection of this art is to be
found in any author, ancient or modern.

The admiration of Jonson for Bacon (whom
he appears to have known intimately 1) seems
almost to have blinded him to those indelible
shades in his fame, to which, even at this dis-
tance of time, it is impossible to turn the eye
without feelings of sorrow and humiliation.
Yet it is but candid to conclude, from the post-
humous praise lavished on him by Jonson and
by Sir Kenelm Digby, 2 that the servility of the
courtier, and the laxity of the judge, were, in
the relations of private life, redeemed by many
estimable and amiable qualities. That man
must surely have been marked by some rare fea-
tures of moral as well as of intellectual great-
ness, of whom, long after his death, Jonson
could write in the following words:

"My conceit of his person was never increas-
ed toward him by his place or honours; but I
have and do reverence him, for the greatness
that was only proper to himself, in that he
seemed to me ever, by his works, one of the
greatest men, and most worthy of admiration,
that had been in many ages. In his adversity,
I ever prayed that God would give him strength,
for greatness he could not want. Neither could
I condole in a word or syllable for him, as know-
ing no accident could do harm to virtue, but
rather help to make it manifest."

In Aubrey's anecdotes of Bacon, 3 there are
several particulars not unworthy of the atten-
tion of his future biographers. One expres-
sion of this writer is more peculiarly striking:
"In short, all that were great and good loved and

1 Jonson is said to have translated into Latin great part
of the books De Augmentis Scientiarum. Dr. Warton states
this (I do not know on what authority) as an undoubted fact.

2 See his letters to M. de Fermat, printed at the end of Fer-
mat's Opera Mathematica, Toulouse, 1679.

3 Lately published in the extracts from the Bodleian library.
honoured him.” When it is considered, that Aubrey’s knowledge of Bacon was derived chiefly through the medium of Hobbes, who had lived in habits of the most intimate friendship with both, and whose writings shew that he was far from being an idolatrous admirer of Bacon’s philosophy, it seems impossible for a candid mind, after reading the foregoing short but comprehensive eulogy, not to feel a strong inclination to dwell rather on the fair than on the dark side of the Chancellor’s character, and, before pronouncing an unqualified condemnation, carefully to separate the faults of the age from those of the individual.

An affecting allusion of his own, in one of his greatest works, to the errors and misfortunes of his public life, if it does not atone for his faults, may, at least, have some effect in softening the asperity of our censures. “Ad literas potius quam ad aliud quicquam natus, et ad res gerendas nescio quo fato contra genium suum abreptus.” — De Aug. Scient. L. viii. c. iii.

Even in Bacon’s professional line, it is now admitted, by the best judges, that he was greatly underrated by his contemporaries. “The Queen did acknowledge,” says the Earl of Essex, in a letter to Bacon himself, “you had a great wit, and an excellent gift of speech, and much other good learning. But in law, she rather thought you could make shew, to the utmost of your knowledge, than that you were deep.”

“If it be asked,” says Dr Hurd, “how the Queen came to form this conclusion, the answer is plain. It was from Mr Bacon’s having a great wit, an excellent gift of speech, and much other good learning.” — (Hurd’s Dialogues.)

The following testimony to Bacon’s legal knowledge (pointed out to me by a learned friend) is of somewhat more weight than Queen Elizabeth’s judgment against it: “What might we not have expected,” says Mr Hargrave, after a high encomium on the powers displayed by Bacon in his ‘Reading on the Statute of Uses;’ “what might we not have expected from the hands of such a master, if his vast mind had not so embraced within its compass the whole field of science, as very much to detach him from professional studies!”

It was probably owing in part to his court-disgrace, that so little notice was taken of Bacon, for some time after his death, by those English writers who availed themselves, without any scruple, of the lights struck out in his works. A very remarkable example of this occurs in a curious, though now almost forgotten book (published in 1627), entitled, An Apology or Declaration of the Power and Providence of God in the Government of the World, by George Hakewill, D. D. Archdeacon of Surrey. It is plainly the production of an uncommonly liberal and enlightened mind; well stored with various and choice learning, collected both from ancient and modern authors. Its general aim may be guessed at from the text of Scripture prefixed to it as a motto, “Say not thou, what is the cause that the former days are better than these, for thou dost not inquire wisely concerning this;” and from the words of Ovid, so happily applied by Hakewill to the “common error touching the golden age,”

Priscus juventus eis, ego me nunc denique natum
Gratulator.

That the general design of the book, as well as many incidental observations contained in it, was borrowed from Bacon, there cannot, I apprehend, be a doubt; and yet I do not recollect more than one or two references (and these very slight ones) to his writings, through the whole volume. One would naturally have expected, that, in the following passage of the epistle dedicatory, the name of the late unfortunate Chancellor of England, who had died in the course of the preceding year, might have found a place along with the other great clerks there enumerated: “I do not believe that all regions of the world, or all ages in the same region, afford wits always alike; but this I think (neither is it my opinion alone, but of Scaliger, Vives, Budæus, Bodin, and other great clerks), that the wits of these latter ages, being manured by industry, directed by precepts, and regulated by method, may be as capable of deep speculations, and produce as masculine and lasting births, as any of the ancientser times have done. But if we conceive them to be giants, and ourselves dwarfs; if we imagine all sciences already to have received their utmost perfection, so as we need not but translate and comment on what
they have done, surely there is little hope that we should ever come near them, much less match them. The first step to enable a man to the achieving of great designs, is to be persuaded that he is able to achieve them; the next not to be persuaded, that whatsoever hath not yet been done, cannot therefore be done. Not any one man, or nation, or age, but rather mankind is it, which, in latitude of capacity, answers to the universality of things to be known. In another passage, Hakewill observes, that, "if we will speak properly and punctually, antiquity rather consists in old age, than in the infancy or youth of the world." I need scarcely add, that some of the foregoing sentences are almost literal transcripts of Bacon's words.

The philosophical fame of Bacon in his own country may be dated from the establishment of the Royal Society of London; by the founders of which, as appears from their colleague, Dr Sprat, he was held in so high estimation, that it was once proposed to prefix to the history of their labours some of Bacon's writings, as the best comment on the views with which they were undertaken. Sprat himself, and his illustrious friend Cowley, were among the number of Bacon's earliest eulogists; the latter in an Ode to the Royal Society, too well known to require any notice here; the former in a very splendid passage of his History, from which I shall borrow a few sentences, as a conclusion and ornament to this note.

"For, is it not wonderful, that he who had run through all the degrees of that profession, which usually takes up men's whole time; who had studied, and practised, and governed the common law; who had always lived in the crowd, and borne the greatest burden of civil business; should yet find leisure enough for these retired studies, to excel all those men, who separate themselves for this very purpose? He was a man of strong, clear, and powerful imaginations; his genius was searching and imitable; and of this I need give no other proof than his style itself; which as, for the most part, it describes men's minds, as well as pictures do their bodies, so it did his above all men living. The course of it vigorous and majestic; the wit bold and familiar; the comparisons fetched out of the way, and yet the more easy: 1 In all expressing a soul equally skilled in men and nature."

NOTE G, p. 40.

The paradoxical bias of Hobbes's understanding is never so conspicuous as when he engages in physical or in mathematical discussions. On such occasions, he expresses himself with even more than his usual confidence and arrogance. Of the Royal Society (the Virtuosi, as he calls them, that meet at Gresham College) he writes thus: "Convenient, studia conferent, experimenta faciant quantum volunt, nisi et principis utuntur meis, nihil proficiunt." And elsewhere: "Ad causas autem propter quas proficerne paullum quidem potissimus nec poteritis, accedunt etiam alia, ut odium Hobbii, quia nimium libere scripserat de academiis veritatem: Nam ex eo tempore irati physici et mathematici veritatem ab eo venientem non recepturos se palam professi sunt." In his English publications, he indulges in a vein of coarse scurrility, of which his own words alone can convey any idea. "So go your ways," says he, addressing himself to Dr Wallis and Dr Seth Ward, two of the most eminent mathematicians then in England, "you uncivil ecclesiastics, inhuman divines, de-doctors of morality, unasinous colleagues, egregious pair of Issachars, most wretched indices and vindices academiarum; and remember Vespasian's law, that it is unlawful to give ill language first, but civil and lawful to return it."

NOTE H, p. 42.

With respect to the Leviathan, a very curious anecdote is mentioned by Lord Clarendon. "When I returned," says he, "from Spain by Paris, Mr Hobbes frequently came to me, and

1 By the word easy, I presume Sprat here means the native and spontaneous growth of Bacon's own fancy, in opposition to the traditionary similes borrowed by common-place writers from their predecessors.
told me that his book, which he would call *Leviathan,* was then printing in England, and that he received every week a sheet to correct; and thought it would be finished within a little more than a month. He added, that he knew when I read the book I would not like it; and thereupon mentioned some conclusions; upon which I asked him why he would publish such doctrines; to which, after a discourse between jest and earnest, he said, 'The truth is, I have a mind to go home.' In another passage, the same writer expresses himself thus:—"The review and conclusion of the *Leviathan* is, in truth, a sly address to Cromwell, that, being out of the kingdom, and so being neither conquered nor his subject, he might, by his return, submit to his government, and be bound to obey it. This review and conclusion he made short enough to hope that Cromwell might read it; where he should not only receive the pawn of his new subject's allegiance, by declaring his own obligations and obedience; but by publishing such doctrines as, being diligently infused by such a master in the art of government, might secure the people of the kingdom (over whom he had no right to command) to acquiesce and submit to his brutal power."

That there is no exaggeration or misrepresentation of facts in these passages, with the view of injuring the character of Hobbes, may be confidently presumed from the very honourable testimony which Clarendon bears, in another part of the same work, to his moral as well as intellectual merits. 'Mr Hobbes,' he observes, 'is a man of excellent parts; of great wit; of some reading; and of somewhat more thinking; one who has spent many years in foreign parts and observations; understands the learned as well as modern languages; hath long had the reputation of a great philosopher and mathematician; and in his age hath had conversation with many worthy and extraordinary men. In a word, he is one of the most ancient acquain-
tance I have in the world, and of whom I have always had a great esteem, as a man, who, besides his eminent learning and knowledge, hath been always looked upon as a man of probity, and of a life free from scandal.'

Note I, p. 58.

It is not easy to conceive how Descartes reconciled, to his own satisfaction, his frequent use of the word *substance,* as applied to the mind, with his favourite doctrine, that the *essence* of the mind consists in *thought.* Nothing can be well imagined more unphilosophical than this last doctrine, in whatever terms it is expressed; but to designate by the name of *substance,* what is also called *thought,* in the course of the same argument, renders the absurdity still more glaring than it would otherwise have been.

I have alluded, in the text, to the difference between the popular and the scholastic notion of *substance.* According to the latter, the word *substance* corresponds to the Greek word *eidos,* as employed by Aristotle to denote the first of the predicaments; in which technical sense it is said, in the language of the schools, to signify *that* which supports attributes, or which is *subject* to *accidents.* At a period when every person liberally educated was accustomed to this barbarous jargon, it might not appear altogether absurd to apply the term *substance* to the human soul, or even to the Deity. But, in the present times, a writer who so employs it may be assured, that, to a great majority of his readers, it will be no less puzzling than it was to Crambe, in *Martinus Scriblerus,* when he first heard it thus defined by his master Cornelius. How extraordinary does the following sentence now sound even to a philosophical ear? and yet it is copied from a work published little more than seventy years ago, by the learned and judicious Gravesande: "Substantiae sunt aut cogitantes, aut non cogitantes; cogitantes duas novimus,

1 "When he was told, a *substance* was that which was *subject* to *accidents,* then soldiers, quoth Crambe, are the most *substantial* people in the world." Let me add, that, in the list of philosophical reformers, the authors of *Martinus Scriblerus* ought not to be overlooked. Their happy ridicule of the scholastic *Logic* and *Metaphysics* is universally known; but few are aware of the acuteness and sagacity displayed in their allusions to some of the most vulnerable passages in Locke's *Essay.* In this part of the work it is commonly understood that Arbuthnot had the principal share.
Deum et mentem nostram. Duae etiam substantiae, que non cogitant, nobis note sunt, spatiun et corpus.”—Introd. ad Phil. § 19.

The Greek word ὅνα (derived from the participle of ὅνα) is not liable to these objections. It obtrudes no sensible image on the fancy; and, in this respect, has a great advantage over the Latin word substantia. The former, in its logical acception, is an extension to Matter, of an idea originally derived from Mind. The latter is an extension to Mind of an idea originally derived from Matter.

Instead of defining mind to be a thinking substance, it seems much more logically correct to define it a thinking being. Perhaps it would be better still, to avoid, by the use of the pronoun that, any substantive whatever, “Mind is that which thinks, wills,” &c.

The foregoing remarks afford me an opportunity of exemplifying what I have elsewhere observed concerning the effects which the scholastic philosophy has left on the present habits of thinking, even of those who never cultivated that branch of learning. In consequence of the stress laid on the predicaments, men became accustomed in their youth to imagine, that in order to know the nature of any thing, it was sufficient to know under what predicament or category it ought to be arranged; and that, till this was done, it remained to our faculties a subject merely of ignorant wonder. Hence the impotent attempt to comprehend under some common name (such as that of substance) the heterogeneous existence of matter, of mind, and even of empty space; and hence the endless disputes to which the last of these words has given rise in the Schools.

In our own times, Kant and his followers seem to have thought, that they had thrown a new and strong light on the nature of space and also of time, when they introduced the word form (forms of the intellect) as a common term applicable to both. Is not this to revert to the scholastic folly of verbal generalization? And is it not evident, that of things which are unique (such as matter, mind, space, time) no classification is practicable? Indeed to speak of classifying what has nothing in common with any thing else, is a contradiction in terms. It was thus that St Augustine felt, when he said, “Quid sit tempus, si nemo quierat a me, scio; si quis interroget, nescio.” His idea evidently was, that, although he annexed as clear and precise a notion to the word time, as he could do to any object of human thought, he was unable to find any term more general, under which it could be comprehended; and, consequently, unable to give any definition, by which it might be explained.

Note K, p. 58.

“Les Méditations de Descartes parurent en 1641. C’était, de tous ses ouvrages, celui qu’il estimoit le plus. Ce qui caractérise sur tout cet ouvrage, c’est qu’il contient sa fameuse démonstration de Dieu par l’idée, démonstration si répétée depuis, adoptée par les unes, et rejetée par les autres; et qu’il est le premier où la distinction de l’esprit et de la matière soit parfaitement développée, car avant Descartes on n’avait encore bien approfondi les preuves philosophiques de la spiritualité de l’âme.”—Éloge de Descartes, par M. Thomas. Note 20.

If the remarks in the text be correct, the characteristic merits of Descartes’ Méditations do not consist in the novelty of the proofs contained in them of the spirituality of the soul (on which point Descartes has added little or nothing to what had been advanced by his predecessors), but in the clear and decisive arguments by which they expose the absurdity of attempting to explain the mental phenomena, by analogies borrowed from those of matter. Of this distinction, neither Thomas, nor Turgot, nor D’Alembert, nor Condorcet, seem to have been at all aware.

I quote from the last of these writers an additional proof of the confusion of ideas upon this point, still prevalent among the most acute logicians. “Ainsi la spiritualité de l’âme, n’est pas une opinion qui ait besoin de preuves, mais le résultat simple et naturel d’un analyse exacte de nos idées, et de nos facultés.”—(Vie de M. Turgot.) Substitute for spirituality the word immateriality, and the observation becomes equally just and important.
The following extract from Descartes might be easily mistaken for a passage in the *Novum Organon*.

"Quoniam infantes nati sumus, et varia de rebus sensibilibus judicia prius tulimus, quam integrum nostrae rationis usum haberemus, multis praehiudiciis a veri cognitione avertimur, quibus non aliter videmur posse liberari, quam si semel in vita, de ipsis omnibus studeamus dubitare, in quibus vel minimam incertitudinis suspicionem reperiemus.

"Quin et illa etiam, de quibus dubitabimus, utile erit habere pro falsis, ut tanto clarius, quidnam certissimum et cognitum facillimum sit, inveniamus."

Notwithstanding these and various other similar coincidences, it has been asserted with some confidence, that Descartes had never read the works of Bacon. "Quelques auteurs assurent que Descartes n'avroit point lu les ouvrages de Bacon ; et il nous dit lui-mêmes dans une de ses lettres, qu'il ne luit que fort tard les principaux ouvrages de Galilée."—(Éloge de Descartes, par Thomas.) Of the veracity of Descartes I have not the slightest doubt; and therefore I consider this last fact (however extraordinary) as completely established by his own testimony. But it would require more evidence than the assertions of those nameless writers alluded to by Thomas, to convince me that he had never looked into an author, so highly extolled as Bacon is, in the letters addressed to himself by his illustrious antagonist, Gassendi. At any rate, if this was actually the case, I cannot subscribe to the reflection subjoined to the foregoing quotation by his eloquent eulogist: "Si cela est, il faut convenir, que la gloire de Descartes en est bien plus grande."

From the indissoluble union between the notions of colour and extension, Dr Berkeley has drawn a curious, and, in my opinion, most illogical argument in favour of his scheme of idealism;—which, as it may throw some additional light on the phenomena in question, I shall transcribe in his own words.

"Perhaps, upon a strict inquiry, we shall not find, that even those who, from their birth, have grown up in a continued habit of seeing, are still irrevocably prejudiced on the other side, to wit, in thinking what they see to be at a distance from them. For, at this time, it seems agreed on all hands, that colours, which are the proper and immediate objects of sight, are not without the mind. But then, it will be said, by sight we have also the ideas of extension, and figure, and motion; all which may well be thought without, and at some distance from the mind, though colour should not. In answer to this, I appeal to any man's experience, whether the visible extension of any object doth not appear as near to him as the colour of that object; nay, whether they do not both seem to be in the same place. Is not the extension we see coloured; and is it possible for us, so much as in thought, to separate and abstract colour from extension? Now, where the extension is, there surely is the figure, and there the motion too. I speak of those which are perceived by sight."

Among the multitude of arguments advanced by Berkeley, in support of his favourite theory, I do not recollect any that strikes me more with the appearance of a wilful sophism than the foregoing. It is difficult to conceive how so very acute a reasoner should not have perceived that his premises, in this instance, lead to a conclusion directly opposite to what he has drawn from them. Supposing all mankind to have an irresistible conviction of the *outness* and distance of extension and figure, it is very easy to explain, from the association of ideas, and from our early habits of inattention to the phenomena of consciousness, how the sensations of colour should appear to the imagination to be transported..."
Dissertation First.

out of the mind. But if, according to Berkeley's doctrines, the constitution of human nature leads men to believe that extension and figure, and every other quality of the material universe, exists only within itself, whence the ideas of external and of internal; of remote or of near? When Berkeley says, "I appeal to any man's experience, whether the visible extension of any object doth not appear as near to him as the colour of that object?" how much more reasonable would it have been to have stated the indisputable fact, that the colour of the object appears as remote as its extension and figure? Nothing, in my opinion, can afford a more conclusive proof, that the natural judgment of the mind is against the inference just quoted from Berkeley, than the problem of D'Alembert, which has given occasion to this discussion.

Note N, p. 68.

It is observed by Dr Reid, that "the system which is now generally received with regard to the mind and its operations, derives not only its spirit from Descartes, but its fundamental principles; and that, after all the improvements made by Malebranche, Locke, Berkeley, and Hume, it may still be called the Cartesian system." —Conclusion of the Inquiry into the Human Mind.

The part of the Cartesian system here alluded to is the hypothesis, that the communication between the mind and external objects is carried on by means of ideas or images; not, indeed, transmitted from without (as the Aristotelians supposed) through the channel of the senses, but nevertheless bearing a relation to the qualities perceived, analogous to that of an impression on wax to the seal by which it was stamped. In this last assumption, Aristotle and Descartes agreed perfectly; and the chief difference between them was, that Descartes palliated, or rather kept out of view, the more obvious absurdities of the old theory, by rejecting the unintelligible supposition of intentional species, and by substituting, instead of the word image, the more indefinite and ambiguous word idea.

But, there was another and very important step made by Descartes, in restricting the ideal Theory to the primary qualities of matter; its secondary qualities (of colour, sound, smell, taste, heat, and cold) having, according to him, no more resemblance to the sensations by means of which they are perceived, than arbitrary sounds have to the things they denote, or the edge of a sword to the pain it may occasion. (Princ. Pars iv. §§ 197, 198.) To this doctrine he frequently recurs in other parts of his works.

In these modifications of the Aristotelian Theory of Perception, Locke acquiesced entirely; explicitly asserting, that "the ideas of primary qualities are resemblances of them, but that the ideas of secondary qualities have no resemblance to them at all." —Essay, B. ii. c. viii. § 15.

When pressed by Gassendi to explain how images of extension and figure can exist in an unextended mind, Descartes expresses himself thus: "Quæris quomodo existinimum in me subjecto inextenso recipi posse speciem ideamque corporis quod extensum est. Respondeo nullum speciem corporam in mente recipi, sed puram intellectionem tam rei corporeae quam incorporeae fieri absque utra specie corporae; ad imaginationem vero, quæ non nisi de rebus corporeis esse potest, opus quidem esse specie quæ sit verum corpus, et ad quam mens se applicet, sed non quæ in mente recipiat." Responsum de iis quæa sextam Meditationem objecta sunt, § 4.

In this reply it is manifestly assumed as an indisputable principle, that the immediate objects of our thoughts, when we imagine or conceive the primary qualities of extension and figure, are ideas or species of these qualities; and, of consequence, are themselves extended and figured. Had it only occurred to him to apply (mutatis mutandis) to the perception of primary qualities, his own account of the perception of secondary qualities (that it is obtained, to wit, by the media of sensations more analogous to arbitrary signs, than to stamps or pictures), he might have eluded the difficulty started by Gassendi, without being reduced to the disagreeable necessity of supposing his ideas or images to exist in the brain, and not in the mind. The language of Mr Locke, it is ob-
servable, sometimes implies the one of these hypotheses, and sometimes the other.

It was plainly with the view of escaping from the dilemma proposed by Gassendi to Descartes, that Newton and Clarke were led to adopt a mode of speaking concerning perception, approaching very nearly to the language of Descartes. “Is not,” says Newton, “the sensorium of animals the place where the sentient substance is present; and to which the sensible species of things are brought, through the nerves and brain, that there they may be perceived by the mind present in that place?” And still more confidently Dr Clarke: “Without being present to the images of the things perceived, the soul could not possibly perceive them. A living substance can only there perceive where it is present. Nothing can any more act or be acted upon where it is not present, than it can when it is not.” The distinction between primary and secondary qualities was afterwards rejected by Berkeley, in the course of his argument against the existence of matter; but he continued to retain the language of Descartes concerning ideas, and to consider them as the immediate, or rather as the only objects of our thoughts, wherever the external senses are concerned. Mr Hume’s notions and expressions on the subject are very nearly the same.

I thought it necessary to enter into these details, in order to show with what limitations the remark quoted from Dr Reid in the beginning of this note ought to be received. It is certainly true, that the Cartesian system may be said to form the groundwork of Locke’s Theory of Perception, as well as of the sceptical conclusions deduced from it by Berkeley and Hume; but it is not the less true, that it forms also the groundwork of all that has since been done towards the substitution, in place of this scepticism, of a more solid fabric of metaphysical science.

Note O, p. 69.

After the pains taken by Descartes to ascertain the seat of the soul, it is surprising to find one of the most learned English divines of the seventeenth century (Dr Henry More) accusing him as an abettor of the dangerous heresy of nullibism. Of this heresy Dr More represents Descartes as the chief author; and, at the same time, speaks of it as so completely extravagant, that he is at a loss whether to treat it as the serious opinion of the philosopher, or as the jest of a buffoon. “The chief author and leader of the Nullibists,” he tells us, “seems to have been that pleasant wit, Renatus Descartes, who, by his jocular metaphysical meditations, has laxed and distorted the rational faculties of some otherwise sober and quick-witted persons.” To those who are at all acquainted with the philosophy of Descartes, it is unnecessary to observe, that, so far from being a Nullist, he valued himself not a little on having fixed the precise ubi of the soul, with a degree of accuracy unthought of by any of his predecessors. As he held, however, that the soul was unextended, and as More happened to conceive that nothing which was unextended could have any reference to place, he seems to have thought himself entitled to impute to Descartes, in direct opposition to his own words, the latter of these opinions as well as the former. “The true notion of a spirit,” according to More, “is that of an extended penetrable substance, logically and intellectually divisible, but not physically discernible into parts.”

Whoever has the curiosity to look into the works of this once admired, and, in truth, very able logician, will easily discover that his alarm at the philosophy of Descartes was really occasioned, not by the scheme of nullibism, but by the Cartesian doctrine of the non-extension of mind, which More thought inconsistent with a fundamental article in his own creed—the existence of witches and apparitions. To hint at any doubt about either, or even to hold any opinion that seemed to weaken their credibility, appeared to this excellent person quite a sufficient proof of complete atheism.

The observations of More on “the true notion of a spirit” (extracted from his *Enchiridion Ethicum*) were afterwards republished in Glenville’s book upon witchcraft;—a work (as I before mentioned) proceeding from the same pen.
Dissertation First.

with the Scepsis Scientifica, one of the most acute and original productions of which English philosophy had then to boast.

If some of the foregoing particulars should, at first sight, appear unworthy of attention in a historical sketch of the progress of science, I must beg leave to remind my readers, that they belong to a history of still higher importance and dignity—that of the progress of Reason, and of the Human Mind.

Note P, p. 70.

For an interesting sketch of the chief events in the life of Descartes, see the Notes annexed to his Eloge by Thomas; where also is to be found a very pleasing and lively portrait of his moral qualities. As for the distinguishing merits of the Cartesian philosophy, and more particularly of the Cartesian metaphysics, it was a subject peculiarly ill adapted to the pen of this amiable and eloquent, but verbose and declamatory academician.

I am doubtful, too, if Thomas has not gone too far, in the following passage, on a subject of which he was much more competent to judge than of some others which he has ventured to discuss. "L'imagination brillante de Descartes se dècèle partout dans ses ouvrages; et s'il n'avoit voulu être ni géomètre ni philosophe, il n'auroit tenu qu'à lui d'être le plus bel esprit de son temps." Whatever opinion may be formed on this last assertion, it will not be disputed by those who have studied Descartes, that his philosophical style is remarkably dry, concise, and severe. Its great merit lies in its singular precision and perspicuity;—a perspicuity, however, which does not dispense with a moment's relaxation in the reader's attention; the author seldom repeating his remarks, and hardly ever attempting to illustrate or to enforce them either by reasoning or by examples. In all these respects, his style forms a complete contrast to that of Bacon's.

In Descartes' epistolary compositions, indeed, ample evidences are to be found of his vivacity and fancy, as well as of his classical taste. One of the most remarkable is a letter addressed to Balzac, in which he gives his reasons for preferring Holland to all other countries, not only as a tranquil, but as an agreeable residence for a philosopher; and enters into some very engaging details concerning his own petty habits. The praise bestowed on this letter by Thomas is by no means extravagant, when he compares it to the best of Balzac's. "Je ne sçais s'il y a rien dans tout Balzac où il y ait autant d'esprit et d'agrément."

Note Q, p. 73.

It is an error common to by far the greater number of modern metaphysicians, to suppose that there is no medium between the innate ideas of Descartes, and the opposite theory of Gassendi. In a very ingenious and learned essay on Philosophical Prejudices, by M. Trembley,¹ I find the following sentence:—"Mais l'expérience dément ce système des idées innées, puisque la privation d'un sens emporte avec elle la privation des idées attachées à ce sens, comme l'a remarqué l'illustre auteur de l'Essai Analytique sur les Facultés de l'Ame."

What are we to understand by the remark here ascribed to Mr Bonnet? Does it mean nothing more than this, that to a person born blind, no instruction can convey an idea of colours, nor to a person born deaf, of sounds? A remark of this sort surely did not need to be sanctioned by the united names of Bonnet and of Trembley: Nor, indeed, does it bear in the slightest degree on the point in dispute. The question is not about our ideas of the material world, but about those ideas on metaphysical and moral subjects, which may be equally imparted to the blind and to the deaf; enabling them to arrive at the knowledge of the same truths, and exciting in their minds the same moral emotions. The signs employed in the reasonings of these two classes of persons will of course excite by association, in their respective fancies, very different material images; but whence the origin of the phy-

¹ Essai sur les Présupposés, &c. Neuchatel, 1790.
sical and moral notions of which these signs are the vehicle, and for suggesting which, all sets of signs seem to be equally fitted? The astonishing scientific attainments of many persons, blind from their birth, and the progress lately made in the instruction of the deaf, furnish palpable and incontestible proofs of the flimsiness of this article of the Epicurean philosophy;—so completely verified is now the original and profound conclusion long ago formed by Dalgarno, "That the soul can exert her powers by the ministry of any of the senses: And, therefore, when she is deprived of her principal secretaries, the eye and the ear, then she must be contented with the service of her lackeys and scullions, the other senses; which are no less true and faithful to their mistress than the eye and the ear; but not so quick for dispatch."—(Didascalocophus, &c. Oxford, 1680.)

I was once in hopes of being able to throw a still stronger light on the subject of this note, by attempting to ascertain experimentally the possibility of awakening and cultivating the dormant powers of a boy destitute of the organs both of sight and of hearing; but unexpected occurrences have disappointed my expectations.

I have just learned, that a case somewhat similar, though not quite so favourable in all its circumstances, has recently occurred in the state of Connecticut in New England; and I have the satisfaction to add, there is some probability that so rare an opportunity for philosophical observations and experiments will not be overlooked in that quarter of the world.

Note R, p. 74.

Of Gassendi's orthodoxy as a Roman Catholic divine, he has left a very curious memorial, in an inaugural discourse pronounced in 1648, before Cardinal Richelieu, when he entered on the duties of his office as Regius Professor of Mathematics at Paris. The great object of the oration is to apologise to his auditors for his having abandoned his ecclesiastical functions, to teach and cultivate the profane science of geometry. With this view, he proposes to explain and illustrate the saying of Plato, who, being questioned about the employment of the Supreme Being, answered ἄριστε ἡ διός. In the prosecution of this argument, he expresses himself thus on the doctrine of the Trinity.

"Anne proinde hoc adorandum Trinitatis mysterium habebimus rursus ut sphæram, cujus quasi centrum sit Pater Eternus, qui totius divinitatis fons, origo, principium accommodate dicitur; circunferentia Filii, in quo legitur habitare plenitudo Divinitatis; et radii centro circumferentiae intercedentes Spiritus Sanctus, qui est Patris et Filii nexus, vinculumque mutuum? Anne potius dicendum est eminere in hoc mysterio quicquid sublimis magnisimique humana geometria etiamnum requirit? Percelebre est latere eam adhuc, quam quadraturam circuli vocant; atque ideique in eo esse, ut describat triangulum, cujus si basin ostenderint circuli ambitui æquali, tum demum esse circulo triangulum æquale demonstrat. At in hoc mysterio angustissimo gloriosissima Personarum Trias ita infinitæ essentiae, ipsiusque fecunditati, tanquam circulo exæquatur, seu, ut sic loquar, et verius quidem, penitus identificaret: ut cum sit omnium, et cujusque una, atque eadem essentia, una proinde ac eadem sit imaginatis; aternitas, et perfectionum plenitudo.

"Sic, cum nondum notit humana geometria trisecare angulum, dividereve, et citra accommodatio mechanicae, ostendere divisum esse in tria æqualia: habemus in hocce mysterio unam essentiam non tam trisectam, quam integrum communicatam in tria æqualia supposita, quæ cumbi simul, sigillatimque totam individuamque possideant, sint inter se tamen realiter distincta."

The rest of the oration is composed in exactly the same taste.

The following interesting particulars of Gassendi's death are recorded by Sorbière.

"Extremum tamen horam imminenter sentiens, quod reliquum erat virium impendendum existimavit præparando ad mortem animo. Itaque significavit, ut quamprimum vocaretur Sacerdos, in cujus aurem, dum fari poterat, peccata sua effunderet. Dein, ut nihil perfecte Christiani militis armature dessest, sacro inungi oleo efluxagitavit. Ad quam ceremoniam animo attendens, cum sacerdos aures inungens pronuntiatur verba solennia, et lapsu quodam memoriae dixisset, Indulgeat tibi Dominus"
Having mentioned in the text the avowed partiality of Gassendi for the Epicurean ethics, it is but justice to his memory to add, that his own habits were, in every respect, the reverse of those commonly imputed to this school. "Ad privatam Gassendi vitam sæpius attendens," says Sorbierre, "anaehoretam aliquem cernere mihi videor, qui media in urbe vitam instituit plane ad monachi severioris normam; adeo paupertatem, castitatem et obedientiam coluit; quanquam sine ullo voto tria ista vota solviesse videatur.—Abstemius erat sponte sua, ptisanam tepidam bibens pulmoni refrigerando humectandoque. Carne raro, herbis sæpius, ac macerata offa mane et vespere utebatur."—Ibid.

NOTE 3, p. 105.

It deserves to be remarked, as a circumstance which throws considerable light on the literary history of Scotland during the latter half of the eighteenth century, that, from time immemorial, a continued intercourse had been kept up between Scotland and the Continent. To all who were destined for the profession of law, an education either at a Dutch or French university was considered as almost essential. The case was nearly the same in the profession of physic; and, even among the Scottish clergy, I have conversed, in my youth, with some old men who had studied theology in Holland or in Germany. Of our smaller country gentlemen, resident on their own estates (an order of men which, from various causes, has now, alas! totally vanished), there was scarcely one who had not enjoyed the benefit of a university education; and very few of those who could afford the expense of foreign travel, who had not visited France and Italy. Lord Monboddo somewhere mentions, to the honour of his father, that he sold part of his estate to enable himself (his eldest son) to pursue his studies at the University of Groningen. The constant influx of information and of liberality from abroad, which was thus kept up in Scotland in consequence of the ancient habits and manners of the people, may help to account for the sudden burst of genius, which to a foreigner must seem to have sprung up in this country by a sort of enchantment, soon after the Rebellion of 1745. The great step then made was in the art of English composition. In the mathematical sciences, where the graces of writing have no place, Scotland, in proportion to the number of its inhabitants, was never, from the time of Neper, left behind by any country in Europe; nor ought it to be forgotten, that the philosophy of Newton was publicly taught by David Gregory at Edinburgh, and by his brother James Gregory at St Andrew's, before it was able to supplant the vortices of Descartes in that very university of which Newton was a member.

The case was similar in every other liberal pursuit, where an ignorance of the delicacies of the English tongue was not an insuperable bar to distinction. Even in the study of eloquence, as far as it was attainable in their own vernacular idiom, some of the Scottish pleaders, about the era when the two kingdoms were united, seem ambitiously, and not altogether unsuccessfully, to have formed themselves upon models, which, in modern times, it has been commonly supposed to be more safe to admire than to imitate. Of the progress made in this part of the island...

1 For this we have the authority of Whiston, the immediate successor of Sir Isaac Newton in the Lucasian Professorship at Cambridge; and of Dr Reid, who was a nephew of the two Gregorys. "Mr Gregory had already caused several of his scholars to keep Acts, as we call them, upon several branches of the Newtonian Philosophy; while we at Cambridge, poor wretches, were ignoramuses studying the fictitious hypotheses of the Cartesian."—(Whiston's Memoirs of his own Life.)

2 I have by me," says Dr Reid, "a Thesis printed at Edinburgh, 1690, by James Gregory, who was at that time Professor of Philosophy at St Andrew's, containing twenty-five positions; the first three relating to logic, and the abuse of it in the Aristotelian and Cartesian philosophy. The remaining twenty-two positions are a compend of Newton's Principia. This Thesis, as was the custom at that time in the Scottish Universities, was to be defended in a public disputation, by the candidates, previous to their taking their degree."—(Hutton's Mathematical Dictionary.—Supplement by Dr Reid to the article Gregory.)

3 See a splendid eulogium in the Latin language, by Sir George Mackenzie, on the most distinguished pleaders of his time at the Scottish bar. Every allowance being made for the flattering touches of a friendly hand, his portraits can scarcely be supposed not to have borne a strong and characteristic resemblance to the originals from which they were copied.
in Metaphysical and Ethical Studies, at a period long prior to that which is commonly considered as the commencement of our literary history, I shall afterwards have occasion to speak. At present, I shall only observe, that it was in the Scottish universities that the philosophy of Locke, as well as that of Newton, was first adopted as a branch of academical education.

Note T, p. 107.

Extract of a letter from M. Allamand to Mr Gibbon.—(See Gibbon's Miscellaneous Works.)

"Vous avez sans doute raison de dire que les propositions évidentes dont il s'agit, ne sont pas de simples idées, mais des jugements. Mais ayez aussi la complaisance de reconnaître que M. Locke les allégant en exemple d'idées qui passent pour innées, et qui ne le sont pas selon lui, s'il y a ici de la méprise, c'est lui qu'il faut relever la-dessus, et non pas moi, qui n'avoir autre chose à faire qu'à refuter sa manière de raisonner contre l'innéité de ces idées ou jugemens là. D'ailleurs, Monsieur, vous remarquerez, s'il vous plaît, que dans cette dispute il s'agit en effet, de savoir si certaines vérités évidentes et communes, et non pas seulement certaines idées simples, sont innées ou non. Ceux qui affirment, ne donnent guère pour exemple d'idées simples qui le soient, que celles de Dieu, de l'unité, et de l'existence ; les autres exemples sont pris de propositions completes, que vous appellez jugemens.

"Mais, dites vous, y aura-t-il donc des jugements innés? Le jugement est il autre chose qu'un acte de nos facultés intellectuelles dans la comparison des idées? Le jugement sur les vérités évidentes, n'est il pas une simple vue de ces vérités là, un simple coup d'oeil que l'esprit jette sur elles? J'accorde tout cela. Et de grace, qu'est ce qu'idée? N'est ce pas vue, ou coup d'œil, si vous voulez? Ceux qui définissent l'idée autrement, ne s'eloignent-ils pas visiblement du sens et de l'intention du mot? Dire que les idées sont les espèces des choses imprimées dans l'esprit, comme l'image de l'objet sensible est tracée dans l'œil, n'est ce pas jargonner plutôt que définir?"

Or c'est la faute, qu'ont fait tous les metaphysiciens, et quoique M. Locke l'ait bien senti, il a mieux aimé se facher contre eux, et tirer contre les girouettes de la place, que s'appliquer à démêler ce galimatias. Que n'a-t-il dit, non seulement il n'y a point d'idées innées dans le sens de ces Messieurs; mais il n'y a point d'idée du tout dans ce sens là; toute idée est un acte, une vue, un coup d'œil de l'esprit. Dès lors demander s'il y a des idées innées, c'est demander s'il y a certaines vérités si évidentes et si communes que tout esprit non stupidpe puisse naturellement, sans culture et sans maître, sans discussion, sans raisonnement, les reconnaître d'un coup d'œil, et souvent même sans s'appercevoir qu'on jette ce coup d'œil. L'affirmative me paraît incontestable, et selon moi, la question est vuidée par là.

"Maintenant prenez garde, Monsieur, que cette manière d'entendre l'affaire, va au but des partisans des idées innées, tout comme la leur; et par la même contredit M. Locke dans le sien. Car pourquoi voudroit on qu'il y eu des idées innées? C'est pour en opposer la certitude et l'évidence au doute universel des sceptiques, qui est ruiné d'un seul coup, s'il y a des vérités dont la vue soit nécessaire et naturelle à l'homme. Or vous sentez, Monsieur, que je puis leur dire cela dans ma façon d'expliquer la chose, tout aussi bien que les partisans ordinaires des idées innées dans la leur. Et voilà ce que semble incommoder un peu M. Locke, qui, sans se declarer Pyrrhonien, laisse appercervoir un peu trop de foible pour le Pyrrhonisme, et a beaucoup contribué à le nourrir dans ce siècle. A force de vouloir marquer les bornes de nos connaissances, ce qui etoit fort necessaire, il a quelquefois tout mis en bornes."

Note U, p. 108.

"A decisive proof of this is afforded by the allusions to Locke's doctrines in the dramatic pieces then in possession of the French stage," &c.

In a comedy of Destouches (entitled La Fausse Agnes), which must have been written long before the period in question,¹ the heroine, a lively and accomplished girl, supposed to be just

¹ This little piece was first published in 1757, three years after the author's death, which took place in 1754, in the seventy-fourth year of his age. But we are told by D'Alembert, that from the age of sixty, he had renounced, from senti-
arrived from Paris at her father’s house in Poi-
tou, is introduced as first assuming the appear-
ance of imbecility, in order to get rid of a dis-
agreeable lover; and, afterwards, as pleading
her own cause in a mock trial before an absurd
old president and two provincial ladies, to convince
them that she is in reality not out of her senses.
In the course of her argument on this subject,
she endeavours to astonish her judges by an
ironical display of her philosophical knowledge;
warning them of the extreme difficulty and nicety
of the question upon which they were about to
pronounce. “Vous voulez juger de moi! mais,
pour juger sainement, il faut une grande étendue
de connaissances; encore est il bien dou-
tieux qu’il y en ait de certaines
Avant donc que vous entrepreniez de prononcer sur mon
sujet, je demande préalablement que vous exa-
minez avec moi nos connaissances en général,
les degrés de ces connaissances, leur étendue,
leur réalité; que nous convenions de ce que c’est
que la vérité, et si la vérité se trouve effective-
ment. Après quoi nous traiterons des proposi-
tions universelles, des maximes, des proposi-
tions frivoles, et de la foolishness, ou de la solidité
de nos lumières Quelques personnes
tiennent pour vérité, que l’homme nait avec cer-
tains principes inées, certaines notions primitives,
certains caractères qui sont comme gravés dans
son esprit, dès le premier instant de son exist-
ence. Pour moi, j’ai longtemps examiné ce
sentiment, et j’entreprenais de la combattre, de
le refuter, de l’anéantir, si vous avez la patience
de m’écouter.” I have transcribed but a part
of this curious pleading; but, I presume, more
than enough to show, that every sentence, and
almost every word of it, refers to Locke’s doc-
trines. In the second and third sentences, the
titles of the principal chapters in the fourth book
of his Essay are exactly copied. It was impos-
sible that such a scene should have produced the
slightest comic effect, unless the book alluded
to had been in very general circulation among
the higher orders; I might perhaps add, in much
more general circulation than it ever obtained
among that class of readers in England. At no
period, certainly, since it was first published
(such is the difference of national manners),
could similar allusions have been made to it, or
to any other work on so abstract a subject, with
the slightest hope of success on the London stage.
And yet D’Alembert pronounces La Fausse
Agnes to be a piece, pleine de mouvement et de gaité.

NOTE X, p. 110.

“Descartes asserted,” says a very zealous
Lockist, M. de Voltaire, “that the soul, at its
coming into the body, is informed with the
whole series of metaphysical notions; knowing
God, infinite space, possessing all abstract ideas;
in a word, completely endued with the most su-
blime lights, which it unhappily forgets at its
issuing from the womb.

“With regard to myself,” continues the same
writer, “I am as little inclined as Locke could be,
to fancy that, some weeks after I was conceived,
I was a very learned soul; knowing at that time
a thousand things which I forgot at my birth;
and possessing, when in the womb (though to no
manner of purpose), knowledge which I lost the
instant I had occasion for it; and which I have
never since been able to recover perfectly.”—
Whatever inferences may be deducible from
some of Descartes’s expressions, or from the
comments on these expressions by some who as-
sumed the title of Cartesians, I never can per-
suade myself, that the system of innate ideas,
as conceived and adopted by him, was meant to
give any sanction to the absurdities here treated
by Voltaire with such just contempt. In no
part of Descartes’s works, as far as I have been
able to discover, is the slightest ground given
for this extraordinary account of his opinions.
Nor was Descartes the first person who intro-
duced this language. Long before the date of
his works, it was in common use in England;
and is to be found in a Poem of Sir John Davis,
published four years before Descartes was born.

ments of piety, all thoughts of writing for the stage.—(Éloge de Destouches.) This carries the date of all his dramatic
works, at least as far back as 1740. As for Destouches’s own familiarity with the writings of Locke, it is easily accounted
for by his residence in England from 1717 to 1723, where he remained, for some time after the departure of Cardinal Du-
bois, as Chargé d’Affaires. Voltaire did not visit England till 1727.
The title of this Section expressly asserts, That there are innate ideas in the soul.

In one of Descartes's letters, he enters into some explanations with respect to this part of his philosophy, which he complains had been very grossly misunderstood or misrepresented. To the following passage I have no doubt that Locke himself would have subscribed. It strikes myself as so very remarkable, that, in order to attract it to the attention of my readers, I shall submit it to their consideration in an English translation.

"When I said that the idea of God is innate in us, I never meant more than this, that Nature has endowed us with a faculty by which we may know God; but I have never either said or thought, that such ideas had an actual existence, or even that they were species distinct from the faculty of thinking. I will even go farther, and assert that nobody has kept at a greater distance than myself from all this trash of scholastic entities, insomuch that I could not help smiling when I read the numerous arguments which Regius has so indifferently collected to show that infants have no actual knowledge of God while they remain in the womb. Although the idea of God is so imprinted on our minds, that every person has within himself the faculty of knowing him, it does not follow that there may not have been various individuals who have passed through life without ever making this idea a distinct object of apprehension; and, in truth, they who think they have an idea of a plurality of Gods, have no idea of God whatsoever."—(Cartesii, Epist. Pars I. Epist. xcix.)

After reading this passage from Descartes, may I request of my readers to look back to the extracts in the beginning of this note, from Voltaire's letters? A remark of Montesquieu, occasioned by some strictures hazarded by this lively but very superficial philosopher on the Spirit of Laws, is more peculiarly applicable to him when he ventures to pronounce judgment on metaphysical writers: "Quant à Voltaire, il a trop d'esprit pour m'entendre; tous les livres qu'il lit, il les fait, après quoi il approuve ou critique ce qu'il a fait."—(Lettre à M. l'Abbé de GuaSCO.) The remark is applicable to other critics as well as to Voltaire.

The prevailing misapprehensions with respect to this, and some other principles of the Cartesian metaphysics, can only be accounted for by supposing, that the opinions of Descartes have been more frequently judged of from the glosses of his followers, than from his own works. It seems to have never been sufficiently known to his adversaries, either in France or in England, that, after his philosophy had become fashionable in Holland, a number of Dutch divines, whose opinions differed very widely from his, found it convenient to shelter their own errors under his established name; and that some of them went so far as to avail themselves of his authority in propagating tenets directly opposite to his declared sentiments. Hence a distinction of the Cartesians into the genuine and the pseudo-Cartesians; and hence an inconsistency in their representations of the metaphysical ideas of their master, which can only be cleared up by a reference (seldom thought of) to his own very concise and perspicuous text. (FABRICHIB. Gr. lib. iii. cap. vi. p. 183. HEINECC. El. Hist. Phil. § ex.)

Many of the objections commonly urged against the innate ideas of Descartes are much more applicable to the innate ideas of Leibnitz, whose language concerning them is infinitely more hypothetical and unphilosophical; and sometimes approaches nearly to the enthusiastic theology of Plato and of Cudworth. Nothing in the works of Descartes bears any resemblance, in point of extravagance, to what follows: "Pulcherrima multa sunt Platonis dogmata......esse in divina mente mundum intelligibilem, quem ego quoque vocare soleo regionem idearum; objectum sapientiae esse τὰ ὄντα ἄνευ, substantias nempe simplices, quae a me monades appellantur, et semel existentis semper perstant, περὶ τινὰς ἀληθίνας, id est, Deum et Animas, et harum potissimas mentes, producta a Deo simulacra divinitatis......Porro quaevis mens, ut recte Plotinus, quendam in se mundum intelligibilem continet, imo mea sententia et hunc ipsum sensibilem sibi representat......Sunt in nobis semina eorum, quae discimus, ideae nempe, et qualunque nascuntur, æternæ veritates......Longe ergo preferenda.
sunt Platonis notitiae innate, quas reminiscientiae nomine velavit, tabule rase Aristotelis et Lockii, aliorumque recentiorum, qui electos philosopha

Wild and visionary, however, as the foregoing propositions are, if the names of Gassendi and of Hobbes had been substituted instead of those of Aristotle and of Locke, I should have been disposed to subscribe implicitly to the judgment pronounced in the concluding sentence. The metaphysics of Plato, along with a considerable alloy of poetical fiction, has at least the merit of containing a large admixture of important and of ennobling truth; while that of Gassendi and of Hobbes, besides its inconsistency with facts attested, every moment, by our own consciousness, tends directly to level the rational faculties of man with the instincts of the brutes.

In the Acta Eruditorum for the year 1684, Leibnitz observes, that "in the case of things which we have never thought of, the innate ideas in our minds may be compared to the figure of Hercules in a block of marble." This seems to me to prove, that the difference between him and Locke was rather in appearance than in reality; and that, although he called those ideas innate which Locke was at pains to trace to sensation or to reflection, he would have readily granted, that our first knowledge of their existence was coeval with the first impressions made on our senses by external objects. That this was also the opinion of Descartes is still more evident, notwithstanding the ludicrous point of view in which Voltaire has attempted to exhibit this part of his system.

NOTE Y, p. 111.

Mr Locke seems to have considered this use of the word reflection as peculiar to himself; but it is perfectly analogous to the εικόνας νυκτικος of the Greek philosophers, and to various expressions which occur in the works of John Smith of Cambridge, and of Dr Cudworth. We find it in a Poem on the Immortality of the Soul, by Sir John Davis, Attorney-General to Queen Elizabeth; and probably it is to be met with in English publications of a still earlier date.

All things without which round about we see,
We seek to know, and have wherewith to do;
But that whereby we reason, live, and be,
Within ourselves, we strangers are thereto.

Is it because the mind is like the eye,
Through which it gathers knowledge by degrees;
Whose rays reflect not, but spread outwardly;
Not seeing itself, when other things it sees?

No, doubtless; for the mind can backward cast
Upon herself her understanding light;
But she is so corrupt, and so defac'd,
As her own image doth herself affright.

As is the fable of the Lady fair,
Which for her lust was turned into a cow;
When thirsty, to a stream she did repair,
And saw herself transform'd, she wist not how:

At first she startles, then she stands amazed;
At last with terror she from hence doth fly,
And leathes the wat'ry glass wherein she gaz'd,
And shuns it still, although for thirst she die.

For even at first reflection she expires
Such strange chimeras, and such monsters there;
Such toys, such antics, and such vanities,
As she retires and shrinks for shame and fear.

I have quoted these verses, chiefly because I think it not improbable that they may have suggested to Gray the following very happy allusion in his fine Fragment De Principiis Cogitandi:

Qualis Hamadyradum quondam si forte sororum
Una, novos peregrans saltus, et devia rura
(Atque illam in viridi suadet procumbere ripa
Fontis pura quies, et opaci frigoris umbra);
Dum prosa in latice speculii de margine pendet,
Mirata est subitem venienti occurrere Nympham
Mox eosdem, quos ipsa, artus, cadem ora gerentem
Una inferre gradus, una succedere sylva
Aspicit aludens; sesseque aegrotit in undis
Sic sensu interno rerum simulacra suarum
Mens ciet, et propios observat conscia vultus.

NOTE Z, p. 122.

The chief attacks made in England on Locke's Essay, during his own lifetime, were by Edward Stillingfleet, Bishop of Worcester; John Norris,¹ Rector of Bemerton; Henry Lee, B. D.;

¹ Of this person, who was a most ingenious and original thinker, I shall have occasion afterwards to speak.
and the Reverend Mr Lowde (author of a Discourse concerning the Nature of Man). Of these four writers, the first is the only one whose objections to Locke are now at all remembered in the learned world; and for this distinction, Stillingfleet is solely indebted (I speak of him here merely as a metaphysician, for in some other departments of study, his merits are universally admitted) to the particular notice which Locke has condescended to take of him, in the Notes incorporated with the later editions of his Essay. The only circumstance which renders these Notes worthy of preservation, is the record they furnish of Locke's forbearance and courtesy, in managing a controversy carried on, upon the other side, with so much captiousness and asperity. An Irish bishop, in a letter on this subject to Mr Molyneux, writes thus: "I read Mr Locke's letter to the Bishop of Worcester with great satisfaction, and am wholly of your opinion, that he has fairly laid the great bishop on his back, but it is with so much gentleness, as if he were afraid not only of hurting him, but even of spoiling or tumbling his clothes."

The work of Lee is entitled "Anti-scepticism, or Notes upon each chapter of Mr Locke's Essay concerning Human Understanding, with an explanation of all the particulars of which he treats, and in the same order. By Henry Lee, B. D. formerly Fellow of Emanuel College in Cambridge, now Rector of Tichmarsh in Northamptonshire."—London, 1702, in folio.

The strictures of this author, which are often acute and sometimes just, are marked throughout with a fairness and candour rarely to be met with in controversial writers. It will appear remarkable to modern critics that he lays particular stress upon the charms of Locke's style, among the other excellencies which had conspired to recommend his work to public favour.

"The celebrated author of the Essay on Human Understanding has all the advantages desirable to recommend it to the inquisitive genius of this age; an avowed pretence to new methods of discovering truth and improving learning; an unusual coherence in the several parts of his scheme; a singular clearness in his reasonings; and above all, a natural elegancy of style; an unaffected beauty in his expressions; a just proportion and tunable cadence in all his periods."—(See the Epistle Dedicatory.)

Note AA, p. 125.

For the information of some of my readers, it may be proper to observe, that the word influex came to be employed to denote the action of body and soul on each other, in consequence of a prevailing theory which supposed that this action was carried on by something intermediate (whether material or immaterial was not positively decided) flowing from the one substance to the other. It is in this sense that the word is understood by Leibnitz, when he states as an insurmountable objection to the theory of influex, that "it is impossible to conceive either material particles or immaterial qualities to pass from body to mind, or from mind to body."

Instead of the term influex, that of influence came gradually to be substituted by our English writers; but the two words were originally synonymous, and were used indiscriminately as late as the time of Sir Matthew Hale.—(See his Primitive Origination of Mankind.)

In Johnson's Dictionary, the primitive and radical meaning assigned to the word influence (which he considers as of French extraction) is "the power of the celestial aspects operating upon terrestrial bodies and affairs;" and in the Encyclopaedia of Chambers, it is defined to be "a quality supposed to flow from the bodies of the stars, either with their heat or light, to which astrologers vainly attribute all the events which happen on the earth." To this astrological use of the word Milton had plainly a reference in that fine expression of his L'Allegro,

"Store of ladies whose bright eyes
"Rain influence."

It is a circumstance worthy of notice, that a word thus originating in the dreams of astro-
Dissertation First.

Logers and schoolmen, should now, in our language, be appropriated almost exclusively to politics. "Thus," says Blackstone, "are the electors of one branch of the legislature secured from any undue influence from either of the other two, and from all external violence and compulsion; but the greatest danger is that in which themselves co-operate by the infamous practice of bribery and corruption." And again, "The crown has gradually and imperceptibly gained almost as much in influence as it has lost in prerogative."

In all these cases, there will be found at bottom one common idea, the existence of some secret and mysterious connection between two things, of which connection it is conceived to be impossible or unwise to trace what Bacon calls the latens processus.

Note BB, p. 126.

After these quotations from Locke, added to those which I have already produced from the same work, the reader may judge of the injustice done to him by Leibnitz, in the first sentence of his correspondence with Clarke.

"Il semble que la religion naturelle même s'affoiblit extrêmement. Plusieurs font les âmes corporelles; d'autres font Dieu lui-même corporel.

"M. Locke et ses sectateurs, doutent au moins, si les âmes ne sont matérielles, et naturellement perissables."

Dr Clarke, in his reply to this charge, admits that "some parts of Locke's writings may justly be suspected as intimating his doubts whether the soul be immaterial or no; but herein (he adds) he has been followed only by some Materialists, enemies to the mathematical principles of philosophy, and who approve little or nothing in Mr Locke's writings, but his errors."

To those who have studied with care the whole writings of Locke, the errors here alluded to will appear in a very venial light when compared with the general spirit of his philosophy. Nor can I forbear to remark farther on this occasion, that supposing Locke's doubts concerning the immateriality of the soul to have been as real as Clarke seems to have suspected, this very circumstance would only reflect the greater lustre on the soundness of his logical views concerning the proper method of studying the mind;—in the prosecution of which study, he has adhered much more systematically than either Descartes or Leibnitz to the exercise of reflection, as the sole medium for ascertaining the internal phenomena; describing, at the same time, these phenomena in the simplest and most rigorous terms which our language affords, and avoiding, in a far greater degree than any of his predecessors, any attempt to explain them by analogies borrowed from the perceptions of the external senses.

I before observed, that Leibnitz greatly underrated Locke as a metaphysician. It is with regret I have now to mention, that Locke has by no means done justice to the splendid talents and matchless erudition of Leibnitz. In a letter to his friend Mr Molyneux, dated in 1697, he expresses himself thus: "I see you and I agree pretty well concerning Mr Leibnitz; and this sort of fiddling makes me hardly avoid thinking that he is not that very great man as has been talked of him." And in another letter, written in the same year to the same correspondent, after referring to one of Leibnitz's Memoirs in the Acta Eruditorum (De Primæ Philosophiae Emendatione), he adds, "From whence I only draw this inference, that even great parts will not master any subject without great thinking, and that even the largest minds have but narrow swallows."

Let me add, that in my quotations from English writers, I adhere scrupulously to their own phraseology, in order to bring under the eye of my readers, specimens of English composition at different periods of our history. I must request their attention to this circumstance, as some expressions in the former part of this Dissertation, which have been censured as Scoticism, occur in extracts from authors who, in all probability, never visited this side of the Tweed.

Note CC, p. 131.

After studying, with all possible diligence, what Leibnitz has said of his monads in different parts of his works, I find myself quite incom-
petent to annex any precise idea to the word as he has employed it. I shall, therefore, aim at nothing more in this note, but to collect, into as small a compass as I can, some of his most intelligible attempts to explain its meaning.

"A substance is a thing capable of action. It is simple or compounded. A simple substance is that which has no parts. A compound substance is an aggregate of simple substances or of monads.

"Compounded substances, or bodies, are multitudes. Simple substances, lives, souls, spirits, are units. Such simple substances must exist everywhere; for without simple substances there could be no compounded ones. All nature therefore is full of life."—(Tom. II. p. 32.)

"Monads, having no parts, are neither extended, figured, nor divisible. They are the real atoms of nature, or, in other words, the elements of things."—(Tom. II. p. 20.)

(It must not, however, be imagined, that the monads of Leibnitz have any resemblance to what are commonly called atoms by philosophers. On the contrary, he says expressly, that "monads are not atoms of matter, but atoms of substances;—real units, which are the first principles in the composition of things, and the last elements in the analysis of substances;—of which principles or elements, what we call bodies are only the phenomena."—(Tom. II. pp. 53, 325.)

In another passage we are told, that "a monad is not a material but a formal atom, it being impossible for a thing to be at once material, and possessed of a real unity and indivisibility. It is necessary, therefore," says Leibnitz, "to revive the obsolete doctrines of substantial forms (the essence of which consists in force), separating it, however, from the various abuses to which it is liable."—(Ibid. p. 50.)

"Every monad is a living mirror, representing the universe, according to its particular point of view, and subject to as regular laws as the universe itself."

"Every monad, with a particular body, makes a living substance."

"The knowledge of every soul (âme) extends to infinity, and to all things; but this knowledge is confused. As a person walking on the margin of the sea, and listening to its roar, hears the noise of each individual wave of which the whole noise is made up, but without being able to distinguish one sound from another, in like manner, our confused perceptions are the result of the impressions made upon us by the whole universe. The case (he adds) is the same with each monad."

"As for the reasonable soul or mind (l'esprit), there is something in it more than in the monads, or even than in those souls which are simple. It is not only a mirror of the universe of created things, but an image of the Deity. Such minds are capable of reflected acts, and of conceiving what is meant by the words I, substance, monad, soul, mind; in a word, of conceiving things and truths unconnected with matter; and it is this which renders us capable of science and of demonstrative reasoning.

"What becomes of these souls, or forms, on the death of the animal? There is no alternative (replies Leibnitz) but to conclude, that not only the soul is preserved, but that the animal also with its organical machine continues to exist, although the destruction of its grosser parts has reduced it to a smallness as invisible to our eyes as it was before the moment of conception. Thus neither animals nor souls perish at death; nor is there such a thing as death, if that word be understood with rigorous and metaphysical accuracy. The soul never quits completely the body with which it is united, nor does it pass from one body into another with which it had no connection before; a metamorphosis takes place, but there is no metempsychosis.—(Tom. II. pp. 51, 52.)

On this part of the Leibnitzian system, D'Alembert remarks, that it proves nothing more than that the author had perceived better than any of his predecessors, the impossibility of forming a distinct idea of the nature of matter; a subject, however (D'Alembert adds), on which the theory of the monads does not seem calcu-
latted to throw much light. I would rather say (without altogether denying the justness of
D'Alembert's criticism), that this theory took its
rise from the author's vain desire to explain the
nature of forces; in consequence of which he
suffers himself perpetually to be led astray from
those sensible effects which are exclusively the
proper objects of physics, into conjectures con-
cerning their efficient causes, which are alto-
gether placed beyond the reach of our research.

Note D D, p. 134.

The metaphysical argument advanced by the
Leibnitzians in proof of the law of continuity has
never appeared to me to be satisfactory. "If a
body at rest (it has been said) begins, per saltum,
to move with any finite velocity, then this body
must be at the same indivisible instant in two
different states, that of rest and of motion, which
is impossible." 1

As this reasoning, though it relates to a phys-
ical fact, is itself wholly of a metaphysical na-
ture; and as the inference deduced from it has
been generalised into a law, supposed to extend
to all the various branches of human knowledge,
it is not altogether foreign to our present sub-
ject briefly to consider how far it is demonstra-
tively conclusive, in this simplest of all its pos-
sible applications.

On the above argument, then, I would re-
mark, 1. That the ideas both of rest and of mo-
tion, as well as the more general idea conveyed
by the word state, all of them necessarily involve
the idea of time or duration; and, consequently,
a body cannot be said to be in a state either of
rest or of motion, at an indivisible instant. Whe-
ther the body be supposed (as in the case of mo-
tion) to change its place from one instant to an-
other; or to continue (as in that of rest) for an
instant in the same place, the idea of some finite
portion of time will, on the slightest reflection,
be found to enter as an essential element into
our conception of the physical fact.

2. Although it certainly would imply a con-
tradiction to suppose a body to be in two dif-
ferent states at the same instant, there does not
appear to be any inconsistency in asserting that
an indivisible instant may form the limit between
a state of rest and a state of motion. Suppose
one half of this page to be painted white, and the
other black, it might, I apprehend, be said with
the most rigorous propriety, that the transition
from the one colour to the other was made per
saltum; nor do I think it would be regarded as
a valid objection to this phraseology, to repre-
sent it as one of its implied consequences, that
the mathematical line which forms their common
limit, must at once be both black and white.
It seems to me quite impossible to elude the
force of this reasoning, without having recourse
to the existence of something intermediate be-
tween rest and motion, which does not partake of
the nature of either.

Is it conceivable that a body can exist in any
state which does not fall under one or other of
the two predicaments, rest or motion? If this
question should be answered in the negative,
will it not follow that the transition from one of
these states to the other must, of necessity, be made per saltum, and must consequently vi-
olate the supposed law of continuity? Indeed,
if such a law existed, how could a body at rest
begin to move, or a body in motion come to a
state of rest?

But farther, when it is said that "it is im-
possible for a body to have its state changed
from motion to rest, or from rest to motion,
without passing through all the intermediate de-
grees of velocity," what are we to understand by

1 "Si toto tempore," says Father Boscochir, speaking of the Law of Continuity in the Collision of Bodies, "ante con-
tactum subsequentis corporis superficies antecedens habuit 12 gradus velocitatis, et sequenti 9, saltu facto momentaneo ipso
initio contactus ; in ipso momento et tempora dirimente debissent habere et 12 et 9 simul, quod est absurdum. Duas
viam velocitates simul habere corpus non potest."—Theor. Phil. Nat. &c.

Boscovich, however, it is to be observed, admits the existence of the Law of Continuity in the phenomena of Motion
alone (§ 143), and rejects it altogether in things co-existent with each other (§ 142). In other cases, he says, Nature does
not observe the Law of Continuity with mathematical accuracy, but only affects it; by which expression he seems to mean,
that, where she is guilty of a saltus, she aims at making it as moderate as possible. The expression is certainly deficient in
metaphysical precision; but it is not unworthy of attention, insomuch as it affords a proof, that Boscochir did not (with
the Leibnitzians) conceive Nature, or the Author of Nature, as obeying an irresistible necessity in observing or not observing
the Law of Continuity.

Diss. I. Part II.
the intermediate degrees of velocity between rest and motion? Is not every velocity, how small soever, a finite velocity; and does it not differ as essentially from a state of rest, as the velocity of light?

It is observed by Mr Playfair (Dissertation on the Progress of Mathematical and Physical Science, Part I. Sect. ii.), that Galileo was the first who maintained the existence of the law of continuity, and who made use of it as a principle in his reasonings on the phenomena of motion. Mr Playfair, however, with his usual discrimination and correctness, ranks this among the mechanical discoveries of Galileo. Indeed, it does not appear that it was at all regarded by Galileo (as it avowedly was by Leibnitz) in the light of a metaphysical and necessary law, which could not by any possibility be violated in any of the phenomena of motion. It was probably first suggested to him by the diagram which he employed to demonstrate, or rather to illustrate, the uniformly accelerated motion of falling bodies;¹ and the numberless and beautiful exemplifications of the same law which occur in pure geometry, sufficiently account for the disposition which so many Mathematicians have shown to extend it to all those branches of physics which admit of a mathematical consideration.

My late illustrious friend, who, to his many other great and amiable qualities, added the most perfect fairness and candour in his inquiries after truth, has (in the Second Part of his Dissertation) expressed himself with considerably greater scepticism concerning the law of continuity, than in his Outlines of Natural Philosophy. In that work he pronounced the metaphysical argument, employed by Leibnitz to prove its necessity, "to be conclusive." (Sect. VI. § 99, b.) In the Second Part of his Dissertation (Sect. ii.), he writes thus on the same subject:

"Leibnitz considered this principle as known a priori, because, if any saltus were to take place, that is, if any change were to happen without the intervention of time, the thing changed must be in two different conditions at the same individual instant, which is obviously impossible. Whether this reasoning be quite satisfactory or no, the conformity of the law to the facts generally observed cannot but entitle it to great authority in judging of the explanations and theories of natural phenomena."

The phrase, Law of Continuity, occurs repeatedly in the course of the correspondence between Leibnitz and John Bernouilli, and appears to have been first used by Leibnitz himself. The following passage contains some interesting particulars concerning the history of this law: "Lux Continuitatis, cum usque adeo sit rationi et nature consentanea, et usum habeat tam late patentem, mirum tamen est eam a nmine (quantum recorder) antea adhibitam fuisse. Mentionem ejus aliquid feceram olim in Novellis Reipublicae Literarum [Juillet, 1687, p. 744], occasione collatiunculae cum Malebranchio, qui ideo meis considerationibus persuasus, suam de legibus motus in Inquisitione Veritatis expositionem doctrinam postea mutavit; quod brevi libello edito testatus est, in quo ingenue occasionem mutationis exposit. Sed tamen paulo promptior, quam par erat, fuit in novis legibus constitutandis in eodem libello, antequam mecum communicasset; nee tantum in veritate, sed etiam in illam ipsum Legem Continuitatis, etiam minus aperte, denuo tamen impedit; quod nolui viro optimo officere, ne viderer ejus existimationem detrahere velle."—Epist. Leibnit. ad Joh. Bernouilli, 1697.

From one of John Bernouilli's letters to Leibnitz, it would appear that he had himself a conviction of the truth of this law, before he had any communication with Leibnitz upon the subject.

"Placet tium criterium pro examinandis re-

¹ Descartes seems, from his correspondence with Mersenne, to have been much puzzled with Galileo's reasonings concerning the descent of falling bodies; and in alluding to it, has, on different occasions, expressed himself with an indecision and inconsistency of which few instances occur in his works. (Vide Cartesii Epist. Pars II. Epist. xxxiv. xxxv. xxxvii. xci.) His doubts on this point will appear less surprising, if compared with a passage in the article Mécanique in D'Alembert's Éléments de Philosophie. "Tous les philosophes paraissent convenir, que la vitesse avec laquelle les corps qui tombent commencent à se mouvoir est absolument nulle," &c. &c.—(See his Mélanges, Tom. IV. p. 219, 220.)
DÉSERTATION FIRST.

... Et puisqu'aussi il n'y a point de première naissance ni de génération entièrement nouvelle de l'animal, il s'ensuit qu'il n'y en aura point d'extinction finale, ni de mort entière prise à la rigueur métaphysique; et que, par conséquent, au lieu de la transmigration des âmes, il n'y a qu'une transformation d'un même animal; selon que les organes sont pliés différemment, et plus ou moins développés.—(Ibid. p. 52.)

Quant à la Métémpsychose, je crois que l'ordre ne l'admet point; il veut que tout soit explique distinctement, et que rien ne se fasse par saut. Mais le passage de l'âme d'un corps dans l'autre sera un saut étrange et inexplicable. Il se fait toujours dans l'animal ce qui se fait présentement: C'est que le corps est dans un changement continu, comme un fleuve, et que nous appelons génération ou mort, n'est qu'un changement plus grand et plus prompt qu'à l'ordinaire, tel que seroit le saut ou la catastrophe d'une rivière. Mais ces sauts ne sont pas absolus et tels que je désaprouve; comme seroit celui d'un corps qui iroit d'un lieu à un autre sans passer par le milieu. Et de tels sauts ne sont pas seulement défendus dans les mouvemens, mais encore dans tout ordre des choses ou des vérités.—The sentences which follow afford a proof of what I have elsewhere remarked, how much the mind of Leibniz was misled, in the whole of this metaphysical theory, by habits of thinking formed in early life, amidst the hypothetical abstractions of pure geometry; a prejudice (or idol of the mathematical den) to which the most important errors of his philosophy might, without much difficulty, be traced.—Or comme dans une ligne de géométrie il y a certains points distingués, qu'on appelle sommets, points d'inflexion, points de rebroussement, ou autrement; et comme il y en a des lignes qui en ont une infinité, c'est ainsi qu'il faut concevoir dans la vie d'un animal ou d'une personne les temps d'un changement extraordinaire, qui ne laissent pas d'être dans la règle générale; de même que les points distingués dans la courbe se peuvent determiner par sa nature générale ou son équation. On peut toujours dire d'un animal c'est

1 The experiments here referred to are the observations of Swammerdam, Malpighi, and Lewenhoek.
The praise which I have bestowed on this Memoir renders it necessary for me to take some notice of a very exceptionable proposition which is laid down in the first paragraph, as a fundamental maxim,—that "all proper names were at first appellatives;" a proposition so completely at variance with the commonly received opinions among later philosophers, that it seems an object of some curiosity to inquire, how far it is entitled to plead in its favour the authority of Leibnitz. Since the writings of Condillac and of Smith, it has, so far as I know, been universally acknowledged, that, if there be any one truth in the Theoretical History of Language, which we are entitled to assume as an incontrovertible fact, it is the direct contrary of the above proposition. Indeed, to assert that all proper names were at first appellatives, would appear to be nearly an absurdity of the same kind as to maintain, that classes of objects existed before individual objects had been brought into being.

When Leibnitz, however, comes to explain his idea more fully, we find it to be something very different from what his words literally imply; and to amount only to the trite and indisputable observation, that, in simple and primitive languages, all proper names (such as the names of persons, mountains, places of residence, &c.) are descriptive or significant of certain prominent and characteristic features, distinguishing them from other objects of the same class;—a fact, of which a large proportion of the surnames still in use, all over Europe, as well as the names of mountains, villages, and rivers, when traced to their primitive roots, afford numerous and well known exemplifications.

Not that the proposition, even when thus explained, can be assumed as a general maxim. It holds, indeed, in many cases, as the Celtic and the Saxon languages abundantly testify in our own island; but it is true only under certain limitations, and it is perfectly consistent with the doctrine delivered on this subject by the greater part of philologers for the last fifty years.

In the history of language, nothing is more remarkable, than the aversion of men to coin words out of unmeaning and arbitrary sounds; and their eagerness to avail themselves of the stores already in their possession, in order to give utterance to their thoughts on the new topics which the gradual extension of their experience is continually bringing within the circle of their knowledge. Hence metaphors, and other figures of speech; and hence the various changes which words undergo, in the way of amplification, diminution, composition, and the other transformations of elementary terms which fall under the notice of the etymologist. Were it not, indeed, for this strong and universal bias of our nature, the vocabulary of every language would, in process of time, become so extensive and unwieldy, as to render the acquisition of one's mother tongue a task of immense difficulty, and the acquisition of a dead or foreign tongue next to impossible. It is needless to observe, how immensely these tasks are facilitated by that etymological system which runs, more or less, through every language; and which everywhere proceeds on certain analogical principles, which it is the business of the practical grammarian to reduce to general rules, for the sake of those who wish to speak or to write it with correctness.

In attempting thus to trace backwards the steps of the mind towards the commencement of its progress, it is evident, that we must at last arrive at a set of elementary and primitive roots, of which no account can be given, but the arbitrary choice of those who first happened to employ them. It is to this first stage in the infancy of language that Mr Smith's remarks obviously relate; whereas the proposition of Leibnitz, which gave occasion to this note, as obviously relates to its subsequent stages, when the language is beginning to assume somewhat of a regular form, by compositions and other modifications of the materials previously collected.

From these slight hints it may be inferred, 1st, That the proposition of Leibnitz, although
it may seem, from the very inaccurate and equivocal terms in which it is expressed, to stand in direct opposition to the doctrine of Smith, was really meant by the author to state a fact totally unconnected with the question under Smith's consideration. 2dly, That even in the sense in which it was understood by the author, it fails entirely, when extended to that first stage in the infancy of language, to which the introductory paragraphs in Mr Smith's discourse are exclusively confined.

NOTE G66, p. 138.

"Je viens de recevoir une lettre d'un Prince Regnant de l'Empire, où S. A. me marque avoir vu deux fois ce printemps à la dernière foire de Leipzig, et examiné avec soin un chien qui parle. Ce chien a prononcé distinctement plus de trente mots, répondant même assez à propos à son maître: il a aussi prononcé tout l'alphabet excepté les lettres m, n, x."—(Leib. Opera, Tom. V. p. 72.)

Thus far the fact rests upon the authority of the German prince alone. But from a passage in the History of the Academy of Sciences, for the year 1706, it appears that Leibnitz had himself seen and heard the dog. What follows is transcribed from a report of the Academy upon a letter from Leibnitz to the Abbé de St Pierre, giving the details of this extraordinary occurrence.

"Sans un garant tel que M. Leibnitz, témoin oculaire, nous n'aurions pas la hardiesse de rapporter, qu'auprès de Zeitz dans la Misnie, il y a un chien qui parle. C'est un chien de Paisan, d'une figure des plus communes, et de grandeur mediocre. Un jeune enfant lui-entendit pousser quelques sons qu'il crut ressembler à des mots Allemands, et sur cela se mit en tête de lui apprendre à parler. Le maître, qui n'avait rien de mieux à faire, n'y épargna pas le temps ni ses peines, et heureusement le disciple avait des dispositions qu'il eut été difficile de trouver dans un autre. Enfin, au bout de quelques années, le chien sut prononcer environ une trentaine de mots: de ce nombre sont Thé, Café, Chocolat, Assemblée, mots Français, qui ont passé dans l'Allemand tels qu'ils sont. Il est à remarquer,
superstitieux, et qu'il croyoit aux predictions des astrologues et autres sottises de cet espèce. Je l'ai vu refusant à Versailles d'aller faire sa cour au fils aîné de Louis XVI. en disant sérieusement, qu'il savoit que cet enfant n'etoit point destiné au trône. Cette crédulité superstitieuse, générale pendant la ligue, étoit encore très commune sous la régence lorsque le Due de Richelieu entra dans le monde; par la plus bizarre des inconséquences, elle s'allioit très bien avec la plus grande impiété, et la plupart des matérialistes croyoient aux esprits; aujourd'hui, ce genre de folie est très rare; mais beaucoup de gens, qui se moquent des astrologues, croient à des prédicitions d'une autre espèce.”—(Bailly, Eloge de Leibnitz.)

Some extraordinary facts of the same kind are mentioned in the Memoirs of the Marquis de Bouillé. According to him, Frederick the Great himself was not free from this sort of superstition.

A similar remark is made by an ancient historian, with respect to the manners of Rome at the period of the Gothic invasion. “There are many who do not presume either to bathe, or to dine, or to appear in public, till they have diligently consulted, according to the rules of astrology, the situation of Mercury, and the aspect of the Moon. It is singular enough that this vain credulity may often be discovered among the prophane sceptics, who impiously doubt or deny the existence of a Celestial Power.”—(Gibbon, from Ammianus Marcellinus, Decline and Fall of the Roman Empire, Vol. V. p. 278.)

Note II, p. 139.

The following estimate of Leibnitz, considered in comparison with his most distinguished contemporaries, approaches, on the whole, very nearly to the truth; although some doubts may be entertained about the justness of the decision in the last clause of the sentence. “Leibnitz, aussi hardi que Descartes, aussi subtil que Bayle, peut-être moins profond que Newton, et moins sage que Locke, mais seul universel entre tous ces grand hommes, paroit avoir embrassé le domaine de la raison dans toute son étendue, et avoir contribué le plus a répandre cet esprit philosophique que fait aujourd'hui la gloire de notre siècle.”—(Bailly, Eloge de Leibnitz.)

I have mentioned in the text only a part of the learned labours of Leibnitz. It remains to be added, that he wrote also on various subjects connected with chemistry, medicine, botany, and natural history; on the philosophy and language of the Chinese; and on numberless other topics of subordinate importance. The philological discussions and etymological collections, which occupy so large a space among his works, would (even if he had produced nothing else) have been no inconsiderable memorials of the activity and industry of his mind.

Manifold and heterogeneous as these pursuits may at first appear, it is not difficult to trace the thread by which his curiosity was led from one of them to another. I have already remarked a connection of the same sort between his different metaphysical and theological researches; and it may not be altogether uninteresting to extend the observation to some of the subjects enumerated in the foregoing paragraph.

The studies by which he first distinguished himself in the learned world (I pass over that of jurisprudence, 1 which was imposed on him by the profession for which he was destined) were directed to the antiquities of his own country; and more particularly to those connected with the history of the house of Brunswick. With this view he ransacked, with an unexampled industry, the libraries, monasteries, and other archives, both of Germany and of Italy; employing in this ungrateful drudgery several of the best and most precious years of his life. Mortified, however, to find how narrow the limits are, within which the range of written records is confined, he struck out for himself and

1 Bailly, in his Eloge on Leibnitz, speaks of him in terms of the most enthusiastic praise, as a philosophical jurist, and as a man fitted to become the legislator of the human race. To me, I must own, it appears, that there is no part of his writings in which he discovers less of his characteristic originality, than where he professes to treat of the law of nature. On these occasions, how inferior does he appear to Grotius, not to speak of Montesquieu and his disciples!
his successors a new and unexpected light, to guide them through the seemingly hopeless darkness of remote ages. This light was the study of etymology, and of the affinities of different tongues in their primitive roots; a light at first faint and glimmering, but which, since his time, has continued to increase in brightness, and is likely to do so more and more as the world grows older. It is pleasing to see his curiosity on this subject expand, from the names of the towns and rivers and mountains in his neighbourhood, till it reached to China and other regions in the east; leading him, in the last result, to some general conclusions concerning the origin of the different tribes of our species, approximating very nearly to those which have been since drawn from a much more extensive range of date by Sir William Jones, and other philologers of the same school.

As an additional light for illustrating the antiquities of Germany, he had recourse to natural history; examining, with a scientific eye, the shells and other marine bodies everywhere to be found in Europe, and the impressions of plants and fishes (some of them unknown in this part of the world) which are distinctly legible, even by the unlettered observer, on many of our fossils. In entering upon this research, as well as on the former, he seems to have had a view to Germany alone; on the state of which (he tells us), prior to all historical documents, it was his purpose to prefix a discourse to his History of the House of Brunswick. But his imagination soon took a bolder flight, and gave birth to his Protogaea; a dissertation which (to use his own words) had for its object "to ascertain the original face of the earth, and to collect the vestiges of its earliest history from the monuments which nature herself has left of her successive operations on its surface." It is a work which, wild and extravagant as it may now be regarded, is spoken of by Buffon with much respect; and is considered by Cuvier as the ground-work of Buffon's own system on the same subject.

In the connection which I have now pointed out between the Historical, the Philological, and the Geological speculations of Leibnitz, Helvetius might have fancied that he saw a new exemplification of the law of continuity; but the true light in which it ought to be viewed, is as a faithful picture of a philosophical mind emancipating itself from the trammels of local and conventional details, and gradually rising from subject to subject, till it embraces in its survey those nobler inquiries which, sooner or later, will be equally interesting to every portion of the human race.

NOTE K K, p. 143.

Of Locke's affectionate regard for Collins, notwithstanding the contrariety of their opinions on some questions of the highest moment, there exist many proofs in his letters, published by M. Des Maizeaux. In one of these, the following passage is remarkable. It is dated from Oates in Essex, 1703, about a year before Locke's death.

"You complain of a great many defects; and that very complaint is the highest recommendation I could desire to make you love and esteem you, and desire your friendship. And if I were now setting out in the world, I should think it my great happiness to have such a companion as you, who had a true relish for truth; would in earnest seek it with me; from whom I might receive it undisguised; and to whom I might communicate what I thought true freely. Believe it, my good friend, to love truth for truth's sake, is the principal part of human perfection.

1 In the above note, I have said nothing of Leibnitz's project of a philosophical language, founded on an alphabet of Human Thoughts, as he has nowhere given us any hint of the principles on which he intended to proceed in its formation, although he has frequently alluded to the practicability of such an invention in terms of extraordinary confidence. (For some remarks on these passages in his works, see Philosophy of the Human Mind, Vol. II. pp. 145, et seq.) In some of Leibnitz's expressions on this subject, there is a striking resemblance to those of Descartes in one of his letters.—(See the preliminary discourse prefixed to the Abbé Emery's Pensées de Descartes, p. xii. et seq.)

In the ingenious essay of Michaelis On the Influence of Opinions on Language, and of Language on Opinions (which obtained the prize from the Royal Society of Berlin in 1709, there are some very acute and judicious reflections on the impossiility of carrying into effect, with any advantage, such a project as these philosophers had in view. The author's argument on this point seems to me decisive, in the present state of human knowledge; but who can pretend to fix a limit to the possible attainments of our posterity!
in this world, and the seed-plot of all other virtues; and, if I mistake not, you have as much of it as ever I met with in any body. What, then, is there wanting to make you equal to the best; a friend for any one to, be proud of?"

The whole of Locke’s letters to Collins are highly interesting and curious; more particularly that which he desired to be delivered to him after his own death. From the general tenor of these letters, it may be inferred, that Collins had never let Locke fully into the secret of those pernicious opinions which he was afterwards at so much pains to disseminate.

Note L L, p. 144.

In addition to the account of Spinoza given in Bayle, some interesting particulars of his history may be learnt from a small volume, entitled, La Vie de B. de Spinoza, ‘érite des écrits de ce fameux Philosophe, et du témoignage de plusieurs personnes dignes de foi, qui l’ont connu particulièrement: par Jean Colerus, Ministre de l’Eglise Lutherienne de la Haye. 1706. The book is evidently written by a man altogether unfit to appreciate the merits or demerits of Spinoza as an author; but it is not without some value to those who delight in the study of human character, as it supplies some chasms in the narrative of Bayle, and has every appearance of the most perfect impartiality and candour.

According to this account, Spinoza was a person of the most quiet and inoffensive manners; of singular temperance and moderation in his passions; contented and happy with an income which barely supplied him with the necessaries of life; and of too independent a spirit to accept of any addition to it, either from the favour of princes, or the liberality of his friends. In conformity to the law, and to the customs of his ancestors (which he adhered to, when he thought them not unreasonable, even when under the sentence of excommunication), he resolved to learn some mechanical trade; and fortunately selected that of grinding optical glasses, in which he acquired so much dexterity, that it furnished him with what he conceived to be a sufficient maintenance. He acquired also enough of the art of designing, to produce good portraits in chalk and china-ink, of some distinguished persons.

For the last five years of his life he lodged in the house of a respectable and religious family, who were tenderly attached to him, and from whom his biographer collected various interesting anecdotes. All of them are very creditable to his private character, and more particularly show how courteous and amiable he must have been in his intercourse with his inferiors. In a bill presented for payment after his death, he is styled by Abraham Keveling, his barber-surgeon, Benedict Spinoza, of blessed memory; and the same compliment is paid to him by the tradesman who furnished gloves to the mourners at his funeral.

These particulars are the more deserving of notice, as they rest on the authority of a very zealous, member of the Lutheran communion, and coincide exactly with the account given of Spinoza by the learned and candid Mosheim. "This man (says he) observed, in his conduct, the rules of wisdom and probity much better than many who profess themselves Christians; nor did he ever endeavour to pervert the sentiments or to corrupt the morals of those with whom he lived; or to inspire, in his discourse, a contempt of religion or virtue."(Eccles. History, translated by Dr Maclaine, Vol. IV. p. 252.)

Among the various circumstances connected with Spinoza’s domestic habits, Colerus mentions one very trifling singularity, which appears to me to throw a strong light on his general character, and to furnish some apology for his eccentricities as an author. The extreme feebleness of his constitution (for he was consumptive from the age of 20) having unfitted him for the enjoyment of convivial pleasures, he spent the greater part of the day in his chamber alone; but when tired with study, he would sometimes join the family party below,

1 The Life of Spinoza by Colerus, with some other curious pieces on the same subject, is reprinted in the complete edition of Spinoza’s Works, published at Jena, in 1802.
and take a part in their conversation, however insignificant its subject might be. One of the amusements with which he was accustomed to unbend his mind, was that of entangling flies in a spider’s web, or of setting spiders a-fighting with each other; on which occasions (it is added) he would observe their combats with so much interest, that it was not unusual for him to be seized with immoderate fits of laughter. Does not this slight trait indicate very decidedly a tendency to insanity; a supposition by no means incompatible (as will be readily admitted by all who have paid any attention to the phenomena of madness) with that logical *aequamen* which is so conspicuous in some of his writings?

His irreligious principles he is supposed to have adopted, in the first instance, from his Latin preceptor Vander Ende, a physician and classical scholar of some eminence; but it is much more probable, that his chief school of atheism was the synagogue of Amsterdam; where, without any breach of charity, a large proportion of the more opulent class of the assembly may be reasonably presumed to belong to the ancient sect of Sadducees. (This is, I presume, the idea of Heineccius in the following passage: *Quamvis Spinoza Cartesii principia methodo mathematica demonstrata dederit; Pantheismum tamen ille non ex Cartesio didicit, sed domi habuit, quos sequeretur.* In proof of this, he refers to a book entitled *Spinozismus in Judaismo,* by Waechterus.) The blasphemous curses pronounced upon him in the sentence of excommunication were not well calculated to recall him to the faith of his ancestors; and when combined with his early and hereditary prejudices against Christianity, may go far to account for the indiscriminate war which he afterwards waged against priests of all denominations.

The ruling passion of Spinoza seems to have been the love of fame. "It is owned (says Bayle) that he had an extreme desire to immortalise his name, and would have sacrificed his life to that glory, though he should have been torn to pieces by the mob." (Art. *Spinoza*)

Note M.M., p. 148.

In proof of the impossibility of Liberty, Collins argues thus:

"A second reason to prove man a necessary agent is, because all his actions have a beginning. For whatever has a beginning must have a cause; and every cause is a necessary cause.

"If anything can have a beginning, which has no cause, then nothing can produce something. And if nothing can produce something, then the world might have had a beginning without a cause; which is an absurdity not only charged on atheists, but is a real absurdity in itself. *Liberty, therefore, or a power to act or not to act, to do this or another thing under the same causes, is an impossibility and atheistical.*

"And as Liberty stands, and can only be grounded on the absurd principles of Epicurean atheism; so the Epicurean atheists, who were the most popular and most numerous sect of the atheists of antiquity, were the great assertors of liberty; as, on the other side, the Stoics, who were the most popular and numerous sect among the religionaries of antiquity, were the great assertors of fate and necessity." (Collins, p. 54.)

As to the above reasoning of Collins, it cannot be expected that I should, in the compass of a Note, "boulit this matter to the bran." It is sufficient here to remark, that it derives all its plausibility from the unqualified terms in which the maxim (μηδε αναρρητη) has frequently been stated. "In the idea of every change (says Dr Price, a zealous advocate for the freedom of the will) is included that of its being an effect." (Review, §c. p. 30, 3d edition.) If this maxim be literally admitted without any explanation or restriction, it seems difficult to resist the conclusions of the Necessitarians. The proper statement of Price’s maxim evidently is, that

1 To the same purpose Edwards attempts to show, that "the scheme of free-will (by affording an exception to that dictate of common sense which refers every event to a cause) would destroy the proof a *posterius* for the being of God."
"in every change we perceive in inanimate matter, the idea of its being an effect is necessarily involved;" and that he himself understood it under this limitation appears clearly from the application he makes of it to the point in dispute. As to intelligent and active beings, to affirm that they possess the power of self-determination, seems to me to be little more than an identical proposition. Upon an accurate analysis of the meaning of words, it will be found that the idea of an efficient cause implies the idea of Mind; and, consequently, that it is absurd to ascribe the volitions of mind to the efficiency of causes foreign to itself. To do so must unavoidably involve us in the inconsistencies of Spinozism; by forcing us to conclude that everything is passive, and nothing active in the universe; and, consequently, that the idea of a First Cause involves an impossibility.—But upon these hints I must not enlarge at present; and shall, therefore, confine myself to what falls more immediately within the scope of this Discourse, Collins's Historical Statement with respect to the tenets of the Epicureans and the Stoics.

In confirmation of his assertion concerning the former, he refers to the following well known lines of Lucretius:

Denique si semper motus connectitur omnia,
&c. &c.

(Lucret. Lib. 2. v. 251.)

On the obscuredness of this passage, and the inconsistencies involved in it, much might be said; but it is of more importance, on the present occasion, to remark its complete repugnance to the whole strain and spirit of the Epicurean Philosophy. This repugnance did not escape the notice of Cicero, who justly considers Epicurus as having contributed more to establish, by this puerile subterfuge, the authority of Fatalism, than if he had left the argument altogether untouched. "Nec vero quisquam magis confirmande mihi videtur non modo fatum, verum etiam necessitatem et vim omnium rerum, sustulisse motus animi voluntarios, quam hic qui alter obsistere fato fatetur se non potuisse nisi ad has commenticias declinationes confugisset."—(Liber de Fato, cap. 20.)

On the noted expression of Lucretius ("fatis avolso voluntas") some acute remarks are made in a note on the French translation by M. de la Grange. They are not improbably from the pen of the Baron d'Holbach, who is said to have contributed many notes to this translation. Whoever the author was, he was evidently strongly struck with the inconsistency of this particular tenet with the general principles of the Epicurean system.

"On est surpris qu'Epicure fonde la liberté humaine sur la déclinaison des atomes. On demande si cette déclinaison est nécessaire, ou si elle est simplement accidentelle. Nécessaire, comment la liberté peut elle en être le résultat? Accidentelle, par quoi est elle déterminée? Mais on devrait bien plutôt être surpris, qu'il lui soit venu en idée de rendre l'homme libre dans un système qui suppose un enchainement nécessaire de causes et d'effets. C'etait une recherche curieuse, que la raison qui a pu faire d'Epicure l'Apostre de la Liberté?" For the theory which follows on this point, I must refer to the work in question.—(See Traduction Nouvelle de Lucrece, avec des Notes, par M. de la Grange, Vol. I. pp. 218, 219, 220, à Paris, 1768.)

But whatever may have been the doctrines of some of the ancient Atheists about man's free-agency, it will not be denied, that in the History of Modern Philosophy, the schemes of Atheism and of Necessity have been hitherto always connected together. Not that I would by any means be understood to say, that every Necessitarian must ipso facto be an Atheist, or even that any presumption is afforded by a man's attachment to the former sect, of his having the slightest bias in favour of the latter; but only that every modern Atheist I have heard of has been a Necessitarian. I cannot help adding, that the most consistent Necessitarians who have yet appeared, have been those who followed out their principles till they ended in Spinozism, a doctrine which differs from atheism more in words than in reality.

In what Collins says of the Stoics in the above quotation, he plainly proceeds on the supposition that all Fatalists are of course Necessita-
and I agree with him in thinking, that this would be the case, if they reasoned logically. It is certain, however, that a great proportion of those who have belonged to the first sect have disclaimed all connection with the second. The Stoics themselves furnish one very remarkable instance. I do not know any author by whom the liberty of the will is stated in stronger and more explicit terms, than it is by Epictetus in the very first sentence of the Enchiridion. Indeed the Stoics seem, with their usual passion for exaggeration, to have carried their ideas about the freedom of the will to an unphilosophical extreme.

If the belief of man's free-agency has thus maintained its ground among professed Fatalists, it need not appear surprising, that it should have withstood the strong arguments against it, which the doctrine of the eternal decrees of God, and even that of the Divine prescience, appear at first sight to furnish. A remarkable instance of this occurs in St Augustine (distinguished in ecclesiastical history by the title of the Doctor of Grace), who has asserted the liberty of the will in terms as explicit as those in which he has announced the theological dogmas with which it is most difficult to reconcile it. Nay, he has gone so far as to acknowledge the essential importance of this belief, as a motive to virtuous conduct. "Quocirca nullo modo cogimur, aut retenta praesencia Dei, tollere voluntatis arbitrium, aut retento voluntatis arbitrio, Deum, quod nefas est, negare praesens futurorum, sed utrumque ampleximur, utrumque fideliter et veraciter confitemur: illud, ut bene credamus; hoc ut bene vivamus."

Descartes has expressed himself on this point nearly to the same purpose with St Augustine. In one passage he asserts, in the most unqualified terms, that God is the cause of all the actions which depend on the Free-will of Man; and yet, that the Will is really free, he considers as a fact perfectly established by the evidence of consciousness. "Sed quemadmodum existentiae divinae cognitio non debet liberi nostri arbitrii certitudinem tollere, quia illud in nobismet ipsis experimur et sentimus; ita neque liberi nostri arbitrii cognitio existentiam Dei apud nos dubium facere debet. Independentia enim illa quam experimur, atque in nobis per sentiscimus, et qua actionibus nostris laude vel vituperio dignis efficieendi sufficit, non pugnat cum dependentia alterius generis, secundum quam omnia Deo subjiciuntur."—(Cartesii Epistola, Epist. VIII. IX. Pars i.)

These letters form part of his correspondence with the Princess Elizabeth, daughter of Frederick, King of Bohemia, and Elector Palatine.

We are told, by Dr Priestley, in the very interesting Memoirs of his own Life, that he was educated in the strict principles of Calvinism; and yet it would appear, that while he remained a Calvinist, he entertained no doubt of his being a free-agent. "The doctrine of Necessity," he also tells us, "he first learned from Collins; and was established in the belief of it by Hartley's Observations on Man."—(Ibid. p. 19.) He farther mentions in another work, that "he was not a ready convert to the doctrine of Necessity, and that, like Dr Hartley himself, he gave up his liberty with great reluctance."—(Preface to the Doctrine of Philosophical Necessity Illustrated, 2d edit. Birmingham, 1782, p. xxvii.)

These instances afford a proof, I do not say of the compatibility of man's free-agency with those schemes with which it seems most at variance, but of this compatibility in the opinion of some of the profoundest thinkers who have turned their attention to the argument. No conclusion, therefore, can be drawn against a man's belief in his own free-agency, from his embracing other metaphysical or theological tenets, with which

1 Collins states this more strongly in what he says of the Pharisees. "The Pharisees, who were a religious sect, ascribed all things to fate or to God's appointment, and it was the first article of their creed, that Fate and God do all, and, consequently, they could not assert a true liberty when they asserted a liberty together with this fatality and necessity of all things."—(Collins, p. 64.)

2 We are elsewhere informed by Priestley, that "it was in consequence of reading and studying the Inquiry of Collins, he was first convinced of the truth of the doctrine of Necessity, and was enabled to see the fallacy of most of the arguments in favour of Philosophical Liberty; though (he adds) I was much more confirmed in this principle by my acquaintance with Hartley's Theory of the Human Mind: a work to which I owe much more than I am able to express."—(Preface, &c. p. xxvii.)
it may appear to ourselves impossible to reconcile it.

As for the notion of liberty, for which Collins professes himself an advocate, it is precisely that of his predecessor Hobbes, who defines a free-agent to be, "he that can do if he will, and forbear if he will."—(Hobbes's Works, p. 484, fol. ed.) The same definition has been adopted by Leibnitz, by Gravesande, by Edwards, by Bonnet, and by all our later necessitarians. It cannot be better expressed than in the words of Gravesande: "Facultas faciendi quod libuerit, quaecunque fuerit voluntatis determinatio."—(Intro. ad Philosoph. § 115.)

Dr Priestley ascribes this peculiar notion of free-will to Hobbes as its author;¹ but it is, in fact, of much older date even among modern metaphysicians; coinciding exactly with the doctrine of those scholastic divines who contended for the Liberty of Spontaneity, in opposition to the Liberty of Indifference. It is, however, to Hobbes that the partizans of this opinion are indebted for the happiest and most popular illustration of it that has yet been given. "I conceive," says he, "liberty to be rightly defined, the absence of all the impediments to action that are not contained in the nature and intrinsical quality of the agent. As, for example, the water is said to descend freely, or to have liberty to descend by the channel of the river, because there is no impediment that way: but not across, because the banks are impediments. And, though water cannot ascend, yet men never say, it wants the liberty to ascend, but the faculty or power, because the impediment is in the nature of the water, and intrinsical. So also we say, he that is tied wants the liberty to go, because the impediment is not in him, but in his hands; whereas we say not so of him who is sick or lame, because the impediment is in himself."—(Treatise of Liberty and Necessity.)

According to Bonnet, "moral liberty is the power of the mind to obey without constraint the impulse of the motives which act upon it." This definition, which is obviously the same in substance with that of Hobbes, is thus very justly, as well as acutely, animadverted on by Cuvier. "N'admettant aucune action sans motif, comme dit-il, il n'y a aucun effet sans cause, Bonnet définit la liberté morale le pouvoir de l'âme de suivre sans contrainte les motifs dont elle éprouve l'impulsion; et résout ainsi les objections que l'on tire de la prévision de Dieu; mais peut-être aussi détournent-t-il l'idée qu'on se fait d'ordinaire de la liberté. Malgré ces opinions que touchent au Matérialisme et au Fatalisme, Bonnet fut très religieux."—(Biographie Universelle, à Paris, 1812. Art. Bonnet.)

From this passage it appears, that the very ingenious writer was as completely aware as Clarke or Reid, of the unsoundness of the definition of moral liberty given by Hobbes and his followers; and that the ultimate tendency of the doctrine which limits the free-agency of man to (what has been called) the liberty of spontaneity, was the same, though in a more disguised form, with that of fatalism.

For a complete exposure of the futility of this definition of liberty, as the word is employed in the controversy about man's free-agency, I have only to refer to Clarke's remarks on Collins, and to Dr Reid's Essays on the Active Powers of Man. In this last work, the various meanings of this very ambiguous word are explained with great accuracy and clearness.

The only two opinions which, in the actual state of metaphysical science, ought to be stated in contrast, are that of Liberty (or free-will) on the one side, and that of Necessity on the other.

As to the Liberty of Spontaneity (which expresses a fact altogether foreign to the point in question), I can conceive no motive for inventing such a phrase, but a desire in some writers to veil the scheme of necessity from their readers, under a language less revolting to the sentiments of mankind; and, in others, an anxiety to banish

¹ "The doctrine of philosophical necessity," says Priestley, "is in reality a modern thing, not older, I believe, than Mr Hobbes. Of the Calvinists, I believe Mr Jonathan Edwards to be the first."—(Illustrations of Philosophical Necessity, p. 195.)

Supposing this statement to be correct, does not the very modern date of Hobbes's alleged discovery furnish a very strong presumption against it?
it as far as possible from their own thoughts, by substituting instead of the terms in which it is commonly expressed, a circumlocution which seems, on a superficial view, to concede something to the advocates for liberty.

If this phrase (the Liberty of Spontaneity) should fall into disuse, the other phrase (the Liberty of Indifference), which is commonly stated in opposition to it, would become completely useless; nor would there be occasion for qualifying with any epithet, the older, simpler, and much more intelligible word, Free-will.

The distinction between physical and moral necessity I conceive to be not less frivolous than those to which the foregoing animadversions relate. On this point I agree with Diderot, that the word necessity (as it ought to be understood in this dispute) admits but of one interpretation.

Note N N, p. 148.

To the arguments of Collins, against man’s free-agency, some of his successors have added, the inconsistency of this doctrine with the known effects of education (under which phrase they comprehend the moral effects of all the external circumstances in which men are involuntarily placed) in forming the characters of individuals.

The plausibility of this argument (on which much stress has been laid by Priestley and others) arises entirely from the mixture of truth which it involves; or, to express myself more correctly, from the evidence and importance of the fact on which it proceeds, when that fact is stated with due limitations.

That the influence of education, in this comprehensive sense of the word, was greatly underrated by our ancestors, is now universally acknowledged; and it is to Locke’s writings, more than to any other single cause, that the change in public opinion on this head is to be ascribed. On various occasions, he has expressed himself very strongly with respect to the extent of this influence; and has more than once intimated his belief, that the great majority of men continue through life what early education had made them. In making use, however, of this strong language, his object (as is evident from the opinions which he has avowed in other parts of his works) was only to arrest the attention of his readers to the practical lessons he was anxious to inculcate; and not to state a metaphysical fact which was to be literally and rigorously interpreted in the controversy about liberty and necessity. The only sound and useful moral to be drawn from the spirit of his observations, is the duty of gratitude to Heaven for all the blessings, in respect of education and of external situation, which have fallen to our own lot; the impossibility of ascertaining the involuntary misfortunes by which the seeming demerits of others may have been in part occasioned, and in the same proportion diminished; and the consequent obligation upon ourselves, to think as charitably as possible of their conduct, under the most unfavourable appearances. The truth of all this I conceive to be implied in these words of Scripture, “To whom much is given, of him much will be required;” and, if possible, still more explicitly and impressively, in the parable of the Talents.

Is not the use which has been made by Necessitarians of Locke’s Treatise on Education, and other books of a similar tendency, only one instance more of that disposition, so common among metaphysical Scientists, to appropriate to themselves the conclusions of their wiser and more sober predecessors, under the startling and imposing disguise of universal maxims, admitting neither of exception nor restriction? It is thus that Locke’s judicious and refined remarks on the Association of Ideas have been exaggerated to such an extreme in the coarse caricatures of Hartley and of Priestley, as to bring, among cautious inquirers, some degree of discredit on one of the most important doctrines of modern philosophy. Or, to take another case still more in point; it is thus that Locke’s reflections on the effects of education in modifying the intellectual faculties, and (where skillfully conducted) in supplying their original

1 Both phrases are favourite expressions with Lord Kames in his discussions on this subject. See in particular the Appendix to his Essay on Liberty and Necessity, in the last edition of his Essays on Morality and Natural Religion.
defects, have been distorted into the puerile
paradox of Helvetius, that the mental capacities
of the whole human race are the same at the
moment of birth. It is sufficient for me here
to throw out these hints, which will be found
to apply equally to a large proportion of other
theories started by modern metaphysicians.

Before I finish this note, I cannot refrain
from remarking, with respect to the argument
for Necessity drawn from the Divine prescience,
that, if it be conclusive, it only affords an addi-
tional confirmation of what Clarke has said
concerning the identity of the creed of the Ne-
cessitarians with that of the Spinozists. For, if
God certainly foresees all the future volitions
of his creatures, he must, for the same reason,
foresee all his own future volitions; and if this
knowledge infers a necessity of volition in the
one case, how is it possible to avoid the same
inference in the other?

Note OO, p. 149.

A similar application of St Paul's comparison
of the potter is to be found both in Hobbes and
in Collins. Also, in a note annexed by Cowley
to his ode entitled Destiny; an ode written (as
we are informed by the author) "upon an ex-
travagant supposition of two angels playing a
game at chess; which, if they did, the spec-
tators would have reason as much to believe that
the pieces moved themselves, as we have for
thinking the same of mankind, when we see
them exercise so many and so different actions.
It was of old said by Plautus, Dili nos quasi pilas
hominis habent, "We are but tennis-balls for
the gods to play withal," which they strike
away at last, and still call for new ones; and
St Paul says, "We are but the clay in the hand
of the potter."

For the comparison of the potter, alluded to,
by these different writers, see the epistle to the
Romans, chap. ix. verses 18, 19, 20, 21. Upon
these verses the only comment which I have to
offer is a remark of the apostle Peter, that "In
the epistles of our beloved brother Paul are
some things hard to be understood, which they
that are unlearned and unstable wrest unto their
own destruction."

The same similitude of the potter makes a con-
spicuous figure in the writings of Hobbes, who
has availed himself of this, as of many other in-
sulated passages of Holy Writ, in support of
principles which are now universally allowed
to strike at the very root of religion and mor-
ality. The veneration of Cowley for Hobbes is
well known, and is recorded by himself in the
ode which immediately precedes that on Dest-
iny. It cannot, however, be candidly supposed,
that Cowley understood the whole drift of
Hobbes' doctrines. The contrary, indeed, in
the present instance, is obvious from the ode
before us; for while Cowley supposed the angels
to move, like chess-men, the inhabitants of this
globe, Hobbes (along with Spinoza) plainly
conceived that the angels themselves, and even
that Being to which he impiously gave the name
of God, were all of them moved, like knights
and pawns, by the invisible hand of fate or ne-
necessity.

Were it not for the serious and pensive cast
of Cowley's mind, and his solemn appeal to the
authority of the apostle, in support of the doc-
trine of destiny, one would be tempted to con-
sider the first stanzas of this ode in the light of
a jeu d'esprit, introductory to the very charac-
teristical and interesting picture of himself,
with which the poem concludes.

Note PP, p. 150.

"Tout ce qui est doit être, par cela même
que cela est. Voilà la seule bonne philosophie.
Aussi longtemps que nous ne connaîtrons pas
cet univers, comme on dit dans l'école, a priori,
tout est nécessité. La liberté est un mot vide
de sens, comme vous allez voir dans la lettre de
M. Diderot."—(Lettre de Grimm au Duc de
Saxe-Gotha.)

"C'est ici, mon cher, que je vais quitter le
ton de prédicateur pour prendre, si je peux,
ceuille de philosophe. Regardez-vous de près, et
vous verrez que le mot liberté est un mot vide
de sens; qu'il n'y a point, et qu'il ne peut y
avoir d'être libres; que nous ne sommes que
ce qu'on convient à l'ordre général, à l'organisa-
tion, à l'éducation, et à la châine des événemens.
Voilà ce qui dispose de nous invinciblement.
On ne conçoit non plus qu’un être agisse sans motif, qu’un des bras d’une balance agisse sans l’action d’un poids, et le motif nous est toujours extérieur, étranger, attaché par une nature ou par une cause quelconque, qui n’est pas nous. Ce qui nous trompe, c’est la prodigieuse variété de nos actions, jointe à l’habitude que nous avons prise tout en naissant, de confondre le volontaire avec le libre. Nous avons tant loué, tant repris, nous l’avons été tant de fois, que c’est un préjugé bien vieux que celui de croire que nous et les autres voulons, agissions librement. Mais s’il n’y a point de liberté, il n’y a point d’action qui mérite la louange ou le blâme; il n’y a ni vice, ni vertu, rien dont il faille récompenser ou châtier. Qu’est-ce qui distingue donc les hommes? La bienfaisance ou la malfaisance. Le malfaisant est un homme qu’il faut détruire et non punir; la bienfaisance est une bonne fortune, et non une vertu. Mais quoique l’homme bien ou malfaisant ne soit pas libre, l’homme n’en est pas moins un être qu’on modifie; c’est par cette raison qu’il faut détruire le malfaisant sur une place publique. De là les bons effets de l’exemple, des discours, de l’éducation, du plaisir, de la douleur, des grandeurs, de la misère, &c.; de là un sort de philosophie pleine de commisération, qui attache fortement aux bons, qui n’irrite non plus contre le méchant, que contre un ouragan qui nous remplit les yeux de poussière. Il n’y a qu’une sorte de causes à proprement parler; ce sont les causes physiques. Il n’y a qu’une sorte de nécessité, c’est la même pour tous les êtres. Voilà ce qui me réconcilie avec le genre humain; c’est pour cette raison que je vous exhorte à la philanthropie. Adop- tez ces principes si vous les trouvez bons, ou montrerez-moi qu’ils sont mauvais. Si vous les adoptez, ils vous réconcilieront aussi avec les autres et avée vous-même; vous ne vous saurez ni bon ni mauvais gré d’être ce qui vous êtes. Ne rien reprocher aux autres, ne se repentir de rien; voilà les premiers pas vers la sagesse. Ce qui est hors de là est préjugé, fausse philosophie.”—(Correspondance Littéraire, Philosophique, et Critique, adressée au Duc de Saxe-

Note Q Q, p. 156.

See in Bayle the three articles Luther, Knox, and Buchanan. The following passage concerning Knox may serve as a specimen of the others. It is quoted by Bayle from the Cosmographie Universelle of Thevet, a writer who has long sunk into the contempt he merited, but whose zeal for legitimacy and the Catholic faith raised him to the dignity of almoner to Catherine de Medicis, and of historiographer to the King of France. I borrow the translation from the English Historical Dictionary.

"During that time the Scots never left England in peace; it was when Henry VIII. played his pranks with the chalices, relics, and other ornaments of the English churches; which tragedies and plays have been acted in our time in the kingdom of Scotland, by the exhortations of Noptz, the first Scots minister of the bloody Gospel. This firebrand of sedition could not be content with barely following the steps of Luther, or of his master, Calvin, who had not long before delivered him from the gallies of the Prior of Capua, where he had had three years for his crimes, unlawful amours, and abominable fornications; for he used to lead a dissolute life, in shameful and odious places, and had been also found guilty of the parricide and murder committed on the body of the Archbishop of St. Andrew, by the contrivances of the Earl of Rophol, of James Lescle, John Lescle, their uncle, and William du Coy. This simonist, who had been a priest of our church, being fattened by the benefits he had enjoyed, sold them for ready money; and finding that he could not make his cause good, he gave himself up to the most terrible blasphemies. He persuaded also several devout wives and religious virgins to abandon themselves to wicked adulterers. Nor was this all. During two whole years, he never ceased to rouse the people, encouraging them to

1 Thus Thevet (says Bayle) writes the name of Knox.
take up arms against the Queen, and to drive
her out of the kingdom, which he said was
elective, as it had been formerly in the time of
heathenism. The Lutherans have
churches and oratories. Their ministers sing
psalms, and say mass; and though it be different
from ours, yet they add to it the Creed, and
other prayers, as we do. And when their mi-
nisters officiate, they wear the cope, the chas-
uble, and the surplice, as ours do, being con-
cerned for their salvation, and careful of what
relates to the public worship. Whereas the
Scots have lived these twelve years past without
laws, without religion, without ceremonies, con-
stantly refusing to own a King or a Queen, as
so many brutes, suffering themselves to be im-
posed upon by the stories told them by this
arch-hypocrite Noptz, a traitor to God and to
his country, rather than to follow the pure Gosp-
ell, the councils, and the doctrine of so many
holy doctors, both Greek and Latin, of the Cath-
olic church."

If any of my readers be yet unacquainted with
the real character and history of this distin-
guished person, it may amuse them to compare
the above passage with the very able, authentic,
and animated account of his life, lately pub-
lished by the reverend and learned Dr M'Crie.

Note R R, p. 161.

Dr Blair, whose estimate of the distinguishing
beauties and imperfections of Addison's style
reflects honour on the justness and discernment
of his taste, has allowed himself to be carried
along much too easily, by the vulgar sneers at
Addison's want of philosophical depth. In one
of his lectures on rhetoric he has even gone so
far as to accuse Addison of misapprehending,
or, at least, of mis-stating, Locke's doctrine con-
cerning secondary qualities. But a comparison
of Dr Blair's own statement with that which he
censures, will not turn out to the advantage of
the learned critic; and I willingly lay hold of
this example, as the point at issue turns on one
of the most refined questions of metaphysics.
The words of Addison are these:

"Things would make but a poor appearance
to the eye, if we saw them only in their proper
figures and motions. And what reason can we
assign for their exciting in us many of those
ideas which are different from anything that ex-
ists in the objects themselves (for such are light
and colours), were it not to add supernumerary
ornaments to the universe, and make it more
agreeable to the imagination?"

After quoting this sentence, Dr Blair proceeds
thus:—

"Our author is now entering on a theory,
which he is about to illustrate, if not with much
philosophical accuracy, yet with great beauty of
fancy and glow of expression. A strong in-
stance of his want of accuracy appears in the
manner in which he opens the subject. For
what meaning is there in things exciting in us
many of those ideas which are different from any-
thing that exists in the objects? No one, sure,
ever imagined that our ideas exist in the objects.
Ideas, it is agreed on all hands, can exist now-
where but in the mind. What Mr Locke's phi-
losophy teaches, and what our author should
have said, is, exciting in us many ideas of qualities
which are different from anything that exists in the
objects?"

Let us now attend to Locke's theory, as
stated by himself:

"From whence I think it is easy to draw
this observation. That the ideas of primary quali-
ties of bodies are resemblances of them, and
their patterns do really exist in the bodies them-
selves, but the ideas produced in us by these
secondary qualities have no resemblance of them
at all. There is nothing like our ideas existing in
the bodies themselves. They are in the
bodies we denominate from them, only a power
to produce these sensations in us. And what
is sweet, blue, or warm in idea, is but the cer-
tain bulk, figure, and motion of the insensible
parts in the bodies themselves, which we call
so."

The inaccuracy of Locke in conceiving that
our ideas of primary qualities are resemblances
of these qualities, and that the patterns of such
ideas exist in the bodies themselves, has been
fully exposed by Dr Reid. But the repetition
of Locke's inaccuracy (supposing Addison to have
been really guilty of it) should not be charged
upon him as a deviation from his master's doc-
trine. To all, however, who understand the subject, it must appear evident, that Addison has, in this instance, improved greatly on Locke, by keeping out of view what is most exceptionable in his language, while he has retained all that is solid in his doctrine. For my own part, I do not see how Addison’s expressions could be altered to the better, except, perhaps, by substituting the words unlike to, instead of different from. But in this last phrase, Addison has been implicitly followed by Dr Blair, and certainly would not have been disavowed as an interpreter by Locke himself. Let me add, that Dr Blair’s proposed emendation ("exciting in us many ideas of qualities, which are different from anything that exists in the objects"), if not wholly unintelligible, deviates much farther from Locke’s meaning than the correspondent clause in its original state. The additional words of qualities throw an obscurity over the whole proposition, which was before sufficiently precise and perspicuous.¹

My principal reason for offering these remarks in vindication of Addison’s account of secondary qualities was, to prepare the way for the sequel of the passage animadverted on by Dr Blair.

"We are everywhere entertained with pleasing shows and apparitions. We discover imaginary glories in the heavens and in the earth, and see some of this visionary beauty poured out upon the whole creation. But what a rough unsightly sketch of nature should we be entertained with, did all her colouring disappear, and the several distinctions of light and shade vanish?² In short, our souls are delightfully lost and bewildered in a pleasing delusion, and we walk about like the enchanted hero of a

romance, who sees beautiful castles, woods, and meadows, and, at the same time, hears the warbling of birds and the purling of streams; but, upon the finishing of some secret spell, the fantastic scene breaks up, and the disconsolate knight finds himself on a barren heath, or in a solitary desert."

In this passage one is at a loss whether most to admire the author’s depth and refinement of thought, or the singular felicity of fancy displayed in its illustration. The image of the enchanted hero is so unexpected, and, at the same time, so exquisitely appropriate, that it seems itself to have been conjured up by an enchanter’s wand. Though introduced with the unpretending simplicity of a poetical simile, it has the effect of shedding the light of day on one of the darkest corners of metaphysics. Nor is the language in which it is conveyed unworthy of the attention of the critic; abounding throughout with those natural and happy graces, which appear artless and easy to all but to those who have attempted to copy them.

The praise which I have bestowed on Addison as a commentator on this part of Locke’s Essay will not appear extravagant to those who may take the trouble to compare the conciseness and elegance of the foregoing extracts with the prolixity and homeliness of the author’s text. (See Locke’s Essay, Book II. chap. viii. §§ 17, 18.) It is sufficient to mention here, that his chief illustration is taken from "the effects of manna on the stomach and guts."

Note S S, p. 168.

For the following note I am indebted to my

¹ Another passage, afterwards quoted by Dr Blair, might have satisfied him of the clearness and accuracy of Addison’s ideas on the subject.

² I have here supposed that my reader is acquainted with that great modern discovery, which is, at present, universally acknowledged by all the inquirers into Natural Philosophy: namely, that light and colours, as apprehended by the imagination, are only ideas in the mind, and not qualities that have any existence in matter. As this is a truth which has been proved incontrovertibly by many modern philosophers, if the English reader would see the notion explained at large, he may find it in the eighth book of Mr Locke’s Essay on Human Understanding." I have already taken notice (Elements of the Philosophy of the Human Mind, Vol. I. Note P.) of the extraordinary precision of the above statement, arising from the clause printed in Italics. By a strange slip of memory I ascribed the merit of this very judicious qualification, not to Addison, but to Dr Akenside, who transcribed it from the Spectator.

The last quotation affords me also an opportunity of remarking the correctness of Addison’s information about the history of this doctrine, which most English writers have conceived to be an original speculation of Locke’s. From some of Addison’s expressions, it is more than probable, that he had derived his first knowledge of it from Malebranche.

² On the supposition made in this sentence, the face of Nature, instead of presenting a "rough unsightly sketch," would, it is evident, become wholly invisible. But I need scarcely say, this does not render Mr Addison’s allusion less pertinent.
learned friend Sir William Hamilton, Professor of Universal History in the University of Edin-

burgh.

"The Clavis Universalis of Arthur Collier, though little known in England, has been trans-

lated into German. It is published in a work entitled "Samlung," &c. &c. literally, "A Col-

lection of the most distinguished Authors who deny the existence of their own bodies, and of the

whole material world,—containing the dialogues of Berkeley, between Hylas and Philo-

nous, and Collier's Universal Key translated, with Illustrative Observations, and an Appendix,

wherein the existence of Body is demonstrated, by John Christopher Eschenbach, Professor of

Philosophy in Rostock." (Rostock, 1756, 8vo.)

The remarks are numerous, and show much reading. The Appendix contains, 1. An ex-

position of the opinion of the Idealists, with its grounds and arguments. 2. A proof of the

external existence of body. The argument on which he chiefly dwells to show the existence of

matter is the same with that of Dr Reid; in so far as he says, "a direct proof must not here be

expected; in regard to the fundamental principles of human nature, this is seldom possible, or

rather is absolutely impossible." He argues at length, that the Idealist has no better proof of the

existence of his soul than of the existence of his body; "when an Idealist says, I am a thinking

being; of this I am certain from internal conviction;—I would ask from whence he derives this certainty,

and why he excludes from this conviction the possibility of deception? He has no other answer than

this, I feel it. It is impossible that I can have any representation of self without the consciousness of

being a thinking being. In the same manner, Eschenbach argues that the feeling applies to the

existence of body, and that the ground of belief is equally strong and conclusive, in respect to the

reality of the objective, as of the subjective, in perception."

Note Tt, p. 182.

"And yet Diderot, in some of his lucid intervals, seems to have thought and felt very differently."

The following passage (extracted from his Pensées Philosophiques) is pronounced by La

Harpe to be not only one of the most eloquent which Diderot has written, but to be one of the

best comments which is any where to be found on the Cartesian argument for the existence of

God. It has certainly great merit in point of reasoning; but I cannot see with what propriety

it can be considered as a comment upon the argument of Descartes; nor am I sure if, in point of

eloquence, it be as well suited to the English as to the French taste.

"Convenez qu'il y aurait de la folie à refuser à vos semblables la faculté de penser. Sans
doute, mais que s'ensuit-il de là? Il s'ensuit, que si l'univers, que dis-je l'univers, si l'aile
d'un papillon m'offre des traces mille fois plus distinctes d'une intelligence que vous n'avez

d'indices que votre semblable a la faculté de penser, il est mille fois plus fou de nier qu'il

existe un Dieu, que de nier que votre semblable pense. Or, que cela soit ainsi, c'est à vos lu-
mières, c'est à votre conscience que j'en appelle. Avez-vous jamais remarqué dans les raisonne-
mens, les actions, et la conduite de quelque homme que ce soit, plus d'intelligence, d'ordre,
de sagacité, de conséquence, que dans le mécanisme d'un insecte? La divinité n'est elle pas
celairement empreinte dans l'oeil d'un ciron, que la faculté de penser dans les écrits du grand

Newton? Quoi! le monde formé prouverait moins d'intelligence, que le monde expliqué? Quelle

assertion! l'intelligence d'un premier être ne m'est pas mieux démontrée par ses ou-

vrages, que la faculté de penser dans un philoso-

père par ses écrits? Songez donc que je ne vous objecte que l'aile d'un papillon, quand je

pourrais vous écraser du poids de l'universe."

This, however, was certainly not the creed which Diderot professed in his more advanced

years. The article, on the contrary, which im-

mediately follows the foregoing quotation, there

is every reason to think, expresses his real sen-
timents on the subject. I transcribe it at length, as it states clearly and explicitly the same argu-

ment which is indirectly hinted at in a late pub-

lication by a far more illustrious author.

"J'ouvre les cahiers d'un philosophe célèbre, et je lis : 'Athées, je vous accorde que le mouve-

ment est essentiel à la matière; qu'en concluez-vous? que le monde résulte du jet fortuit d'
Dissertation First.

J’aimerois autant que vous mo disiez que l’Iliade d’Homère ou la Henriade de Voltaire est un resultat de jets fortuits de caracteres ? Je me garderai bien de faire ce raisonnement à un athée. Cette comparaison lui donnerait beau jeu. Selon les lois de l’analyse des sorts, je dirai, je ne doit être surpris qu’une chose arrive, lorsqu’elle est possible, et que la difficulté de l’événement est compensée par la quantité des jets. Il y a tels nombre de coups dans lesquels je gagerois avec avantage d’amener cent mille six à la fois avec cent mille des. Quelle que fut la somme finie de caractères avec laquelle on me proposeroit d’engendrer fortuitement l’Iliade, il y a telle somme finie de jets qui me rendroit la proposition avantagéuse ; mon avantage seroit même infini, si la quantité de jets accordée étoit infinie,” &c. &c. (Pensées Philosophiques, par Diderot, XXL)

My chief reason for considering this as the genuine exposition of Diderot’s own creed is, that he omits no opportunity of suggesting the same train of thinking in his other works. It may be distinctly traced in the following passage of his Traité du Beau, the substance of which he has also introduced in the article Beau of the Encyclopédie.

“Le beau n’est pas toujours l’ouvrage d’une cause intelligente; le mouvement estil-souvent, soit dans un être considéré solitairement, soit entre plusieurs êtres comparés entre eux, une multitude prodigieuse de rapports surprenans. Les cabinets d’histoire naturelle en offrent un grand nombre d’exemples. Les rapports sont alors des résultats de combinaisons fortuites, du moins par rapport à nous. La nature imite en jouant, dans cent occasions, les productions d’art; et l’on pourrait demander, je ne dis pas si ce philosophe qui fit jeté par une tempête sur les bords d’une ile inconnue, ait raison de se crier, à la vue de quelque figures de géométrie ; ‘Courage, mes amis, voici des pas d’hommes!’ mais combien il faudroit remarquer de rapports dans un être, pour avoir une certitude complète qu’il est l’ouvrage d’un artiste? (en quelle occasion, un seul de ses symétrie prouveroit plus que toute somme donnée de rapports); comment sont entre’eux le temps de l’action de la cause fortuite, et les rapports observés dans les effets produits; et si (à l’exception des œuvres du Tout-Puissant) il y a des cas où le nombre des rapports ne puisse jamais être compensé par celui des jets?”

With respect to the passages here extracted from Diderot, it is worthy of observation, that if the atheistical argument from chances be conclusive in its application to that order of things which we behold, it is not less conclusive when applied to every other possible combination of atoms which imagination can conceive, and affords a mathematical proof, that the fables of Grecian mythology, the tales of the genii, and the dreams of the Rosicrucians, may, or rather must, all of them, be somewhere or other realized in the infinite extent of the universe : a proposition which, if true, would destroy every argument for or against any given system of opinions founded on the reasonableness or the unreasonableness of the tenets involved in it; and would, of consequence, lead to the subversion of the whole frame of the human understanding.

1 Is not this precisely the sophistical mode of questioning known among Logicians by the name of Sorites or Aecaeus? 2 Vitiusum sane,” says Cicero, “et captiosum genus.” — (Acad. Quest. Lib. IV. xvi.) 3 To those who enter fully into the spirit of the foregoing reasoning, it is unnecessary to observe, that this parenthetical clause is nothing better than an ironical salvo. If the argument proves any thing, it leads to this general conclusion, that the apparent order of the universe affords no evidence whatever of the existence of a designing cause. 4 The atheistical argument here quoted from Diderot is, at least, as old as the time of Epictetus.

Num certe neque consilio primordia rerum
Ordine se quaque, atque agacis mente locarunt
Nec quos quaque darent motus pepigere profecto;
Sed quia multimoda, multis, mutata, per omne
Ex infinito vexantur percha plagis,
Omne genus mutato, et cunctus experunduo,
Tandem deveniant in taleis disposituris,
Qualibus hic rebus consitit summ a creata.—(LUCRETI. Lib. I. l. 1020).

And still more explicitly in the following lines:

Nam cum respicius immensi temporis omne
Præteritur spatium ; tum motus materialis
Multimodi quam sint; facile hoc aderere possis,
Semina sepe in eodem, ut nunc sunt, ordine póstas.—(Ibid. Lib. III. l. 867.)
Mr Hume, in his Natural History of Religion (Sect. XL.), has drawn an inference from the internal evidence of the Heathen Mythology, in favour of the supposition that it may not be altogether so fabulous as is commonly supposed. "The whole mythological system is so natural, that in the vast variety of planets and worlds contained in this universe, it seems more than probable, that somewhere or other it is really carried into execution." The argument of Diderot goes much farther, and leads to an extension of Mr Hume's conclusion to all conceivable systems, whether natural or not.

But further, since the human mind, and all the numberless displays of wisdom and of power which it has exhibited, are ultimately to be referred to a fortuitous concourse of atoms, why might not the Supreme Being, such as we are commonly taught to regard him, have been Himself (as well as the Gods of Epicurus)¹ the result of the continued operation of the same blind causes? or rather, must not such a Being have necessarily resulted from these causes operating from all eternity, through the immensity of space?—a conclusion, by the way, which, according to Diderot's own principles, would lead us to refer the era of his origin to a period indefinitely more remote than any given point of time which imagination can assign; or, in other words, to a period to which the epithet eternal may with perfect propriety be applied. The amount, therefore, of the whole matter is this, that the atheistical reasoning, as stated by Diderot, leaves the subject of natural, and, I may add, of revealed religion, precisely on the same footing as before, without invalidating, in the very smallest degree, the evidence for any one of the doctrines connected with either; nay more, superadding to this evidence, a mathematical demonstration of the possible truth of all these articles of belief which it was the object of Diderot to subvert from their foundation.

It might be easily shown, that these principles, if pushed to their legitimate consequences, instead of establishing the just authority of reason in our constitution, would lead to the most unlimited credulity on all subjects whatever; or (what is only another name for the same thing) to that state of mind, which, in the words of Mr Hume, "does not consider any one proposition as more certain, or even as more probable, than another."

The following curious and (in my opinion) instructive anecdote has a sufficient connection with the subject of this note, to justify me in subjoining it to the foregoing observations. I transcribe it from the Notes annexed to the Abbé de Lille's poem entitled La Conversation. (A Paris, 1812.)

"Dans la société du Baron d'Holbach, Diderot proposa un jour de nommer un avocat de Dieu, et on choisit l'Abbé Galiani. Il s'assit et débuta ainsi:

"Un jour à Naples, un homme de la Basilicate prit devant nous, six dés dans un cornet, et paria d'amener rafle de six. Je dis cette chance étoit possible. Il l'amena sur le champ une seconde fois ; je dis la même chose. Il remit les dés dans le cornet trois, quatre, cinq fois, et toujours rafle de six. Sangue di Bacco, m'ecrò-je, les dés sont pipés ; et ils l'étoient.

"Philosophes, quand je considère l'ordre toujours renaissant de la nature, ses lois immuables, ses révolutions toujours constantes dans une variété infinie ; cette chance unique et conservatrice d'un univers tel que nous le voyons, qui revient sans cesse, malgré cent autres millions de chances de perturbation et de destruction possibles, je m'écrie : certes la nature est pipée!"

The argument here stated strikes me as irresistible; nor ought it at all to weaken its effect, that it was spoken by the mouth of the Abbé Galiani.

Whatever his own professed principles may have been, this theory of the loaded die appears evidently, from the repeated allusions to it in his familiar correspondence, to have produced a very deep impression on his mind.—(See Correspondance inédite de l'Abbé Galiani, &c. Vol. I. pp. 18, 42, 141, 142; à Paris, 1818.)

¹ Ctc. de Nat. Doct. Lib. I. XXIV.
As the old argument of the atomical atheists is plainly that on which the school of Diderot are still disposed to rest the strength of their cause, I shall make no apology for the length of this note. The sceptical suggestions on the same subject which occur in Mr Hume's Essay on the Idea of Necessary Connection, and which have given occasion to so much discussion in this country, do not seem to me to have ever produced any considerable impression on the French philosophers.

NOTE U U, p. 182.

Among the contemporaries of Diderot, the author of the Spirit of Laws is entitled to particular notice, for the respect with which he always speaks of natural religion. A remarkable instance of this occurs in a letter to Dr Warburton, occasioned by the publication of his View of Bolingbrooke's Philosophy. The letter, it must be owned, savours somewhat of the political religionist; but how fortunate would it have been for France, if, during its late revolutionary governments, such sentiments as those here expressed by Montesquieu had been more generally prevalent among his countrymen! "Celui qui attaque la religion révélée n'attaque que la religion naturelle; mais celui qui attaque la religion naturelle attaque toutes les religions du monde.... Il n'est pas impossible d'attacker une religion révélée, parce qu'elle existe par des faits particuliers, et que les faits par leur nature peuvent être une matière de dispute; mais il n'en est pas de même de la religion naturelle; elle est tirée de la nature de l'homme, dont on ne peut pas disputer encore. J'ajoute à ceci, quel peut être le motif d'attaque la religion révélée en Angleterre? On l'y a tellement purgé de tout préjugé destructeur qu'elle n'y peut faire de mal et qu'elle y peut faire, au contraire, une infinité de biens. Je sais, qu'un homme en Espagne ou en Portugal que l'on va bruler, ou qui craint d'être brulé, parce qu'il ne croit point de certains articles dépendans ou non de la religion révélée, a un juste sujet de l'attaquer, parce qu'il peut avoir quelque espérance de pourvoir à sa défense naturelle: mais il n'en est pas de même en Angleterre, où tout homme qui attaque la religion révélée l'attaque sans intérêt, et où cet homme, quand il réussiroit, quand même il aurroit raison dans le fond, ne feroit que détruire une infinité de biens pratiques, pour établir une vérité purement speculative."—(For the whole letter, see the 4to edit. of Montesquieu's Works. Paris, 1788. Tome V. p. 391. Also Warburton's Works by Hurd, Vol. VII. p. 553. London, 1758.)

In the foregoing passage, Montesquieu hints more explicitly than could well have been expected from a French magistrate, at a consideration which ought always to be taken into the account, in judging of the works of his countrymen, when they touch on the subject of religion; I mean, the corrupted and intolerant spirit of that system of faith which is immediately before their eyes. The eulogy bestowed on the church of England is particularly deserving of notice, and should serve as a caution to Protestant writers against making common cause with the defenders of the church of Rome.

With respect to Voltaire, who, amidst all his extravagancies and impetities, is well known to have declared open war against the principles maintained in the Système de la Nature, it is remarked by Madame de Staël, that two different epochs may be distinguished in his literary life; the one, while his mind was warm from the philosophical lessons he had imbibed in England; the other, after it became infected with those extravagant principles which, soon after his death, brought a temporary reproach on the name of Philosophy. As the observation is extended by the very ingenious writer to the French nation in general, and draws a line between two classes of authors who are frequently confounded together in this country, I shall transcribe it in her own words.

"Il me semble qu'on pourrait marquer dans le dix-huitième siècle, en France, deux époques parfaitement distinctes, celle dans laquelle l'influence de l'Angleterre s'est fait sentir, et celle où les esprits se sont précipités dans la destruction: Alors les lumières se sont changées en incendie, et la philosophie, magicienne irritée, a consumé le palais où elle avait été l'égal ses prodiges.

"En politique, Montesquin appartiennent à la
première époque, Raynal à la seconde; en religion, les écrits de Voltaire, qui avait la tolérance pour but, sont inspirés par l'esprit de la première moitié du siècle; mais sa miserable et vaniteuse irréligion a flétri la seconde."—(De l'Allemagne, Tome III. pp. 37, 38.)

Nothing, in truth, can be more striking than the contrast between the spirit of Voltaire's earlier and of his later productions. From the former may be quoted some of the sublimest sentiments anywhere to be found, both of religion and of morality. In some of the latter, he appears irrecoverably sunk in the abyss of fatalism. Examples of both are so numerous, than one is at a loss in the selection. In making choice of the following, I am guided chiefly by the comparative shortness of the passages.

"Consulte Zoroastre et Minos, et Solon,
Et le sage Socrate, et le grand Cicéron:
Ils ont adoré tous un maître, un juge, un père;—
Ce système sublime à l'homme est nécessaire.
C'est le sacré lieu de la société,
Le premier fonde ment de la sainte équité;
Le frein du sacréf, l'espérance du juste.
Si les cieux, dépouillés de leur empreinte auguste,
Pouvoient cesser jamais de le manifester,
Si Dieu n'existait pas, il faudroit l'inventer."

Nor is it only on this fundamental principle of religion that Voltaire, in his better days, delighted to enlarge. The existence of a natural law engraved on the human heart, and the liberty of the human will, are subjects which he has repeatedly enforced and adorned with all his philosophical and poetical powers. What can be more explicit, or more forcible, than the following exposition of the inconsistencies of fatalism?

"Vois de la liberté cet ennemi mutin,
Aveugle partisan d'un aveugle destin;
Entends comme il consulte, approuve, ou délibère,
Entends de quel reproche il couvre un adversaire,
Vois comment d'un rival il cherche à se venger,
Comme il punit son fils, et le veut corriger.
Il le croyait donc libre?—Oui sans doute, et lui-même
Dément à chaque pas son funeste système.
Il mentoit à son cœur, en voulant expliquer
Ce dogme absurde à croire, absurde à pratiquer.
Il reconnaît en lui le sentiment qu'il brave,
Il agit comme libre et parle comme esclave."

This very system, however, which Voltaire has here so severely reprobated, he lived to avow as the creed of his more advanced years. The words, indeed, are put into the mouth of a fictitious personage; but it is plain, that the writer meant to be understood as speaking his own sentiments. "Je vois une chaine immense, dont tout estchainon; elle embrasse, elle serre aujourd'hui la nature," &c. &c.

"Je suis donc rameau malgré moi à cette ancienne idée, que je vois être la base de tous les systèmes, dans laquelle tous les philosophes retombent après mille détours, et qui m'est démontré par toutes les actions des hommes, par les miennes, par tous les événemens que j'ai vus, que j'ai vus, et aux-quelles j'ai eu part; c'est le Fatalisme, c'est la Nécessité dont je vous ai déjà parlé."—(Lettres de Meninmus à Cicéron. See Œuvres de Voltaire, Mélanges, Tome IV. p. 358. 4to. Edit. Geneve, 1771.)

"En effet" (says Voltaire, in another of his pieces), "il serait bien singulier que toute la nature, tous les astres, obéissent à des lois éternelles, et qu'il y eût un petit animal haut de cinq pieds, qui au mépris de ces lois pût agir toujours comme il lui plairoit au seul gré de son caprice."

.... To this passage Voltaire adds the following acknowledgment:—"L'ignorant qui pense ainsi n'a pas toujours pensé de même, mais il est enfin contraint de se rendre."—(Le Philosophe Ignorant.)

Notwithstanding, however, this change in

1. A thought approaching very nearly to this occurs in one of Tillotson's Sermons. "The being of God is so comfortable, so convenient, so necessary to the felicity of mankind, that (as Tully admirably says) Dil immortales ad usum hominum fabricati pene videtur.—If God were not a necessary being of himself, he might almost be said to be made for the use and benefit of Man." For some ingenious remarks on this quotation from Cicero, see Jortin's Treats, Vol. I. p. 571.

2. These verses form a part of a Discourse on the Liberty of Man; and the rest of the poem is in the same strain. Yet so very imperfectly did Voltaire even then understand the metaphysical argument; on this subject, that he prefixed to his Discourse the following advertisement. "On entend par ce mot liberté, le pouvoir de faire ce qu'on veut. Il n'y a, et ne peut y avoir d'autre liberté." It appears, therefore, that in maintaining the liberty of spontaneity, Voltaire conceived himself to be combating the scheme of Necessity; whereas this sort of liberty, no Necessitarian or Fatalist was ever hardy enough to dispute.

3. In proof of this he refers to his Treatise of Metaphysics, written forty years before, for the use of Madame du Châtelet.
Voltaire's philosophical opinions, he continued to the last his zealous opposition to atheism. But in what respects it is more pernicious than fatalism, it is not easy to discover.

A reflection of La Harpe's, occasioned by some strictures of Voltaire's upon Montesquieu, applies with equal force to the numberless inconsistencies which occur in his metaphysical speculations: "Les objets de méditation étaient trop étrangers à l'excessive vivacité de son esprit. Saisir fortement, par l'imagination, les objets qu'elle ne doit montrer que d'un côté, c'est ce qui est du Poète; les embrasser sous toutes les faces, c'est ce qui est du Philosophe, et Voltaire était trop exclusivement l'un pour être l'autre."—(Cours de Litterat. Tome XV. pp. 46, 47.)

A late author* has very justly reproved that *spiritual deification of nature* which has been long fashionable among the French, and which, according to his own account, is at present not unfashionable in Germany. It is proper, however, to observe, that this mode of speaking has been used by two very different classes of writers, by the one with an intention to keep as much as possible the Deity out of their view, while studying his works; by the other, as a convenient and well understood metaphor, by means of which the frequent and irreverent mention of the name of God is avoided in philosophical arguments. It was with this last view, undoubtedly, that it was so often employed by Newton, and other English philosophers of the same school. In general, when we find a writer speaking of the *wise* or of the *benevolent intentions of nature* we should be slow in imputing to him any leaning towards atheism. Many of the finest instances of Final Causes, it is certain, which the eighteenth century has brought to light, have been first remarked by inquirers who seem to have been fond of this phraseology; and of these inquirers, it is possible that some would have been less forward in bearing testimony to the truth, had they been forced to avail themselves of the style of theologians. These speculations, therefore, concerning the *intentions or designs of Nature*, how reprehensible soever and even absurd in point of strict logic the language may be in which they are expressed, may often be, nay, have often been, a step towards something higher and better; and, at any rate, are of a character totally different from the blind chance of the Epicureans, or the conflicting principles of the Manicheans.

NOTE X X, p. 195.

"In the attempt, indeed, which Kant has made to enumerate the general ideas which are not derived from experience, but arise out of the pure understanding, Kant may well lay claim to the praise of originality." The object of this problem is thus stated by his friend, Mr Schulze, the author of the Synopsis formerly quoted. (The following translation is by Dr Willich, Elements, &c. p. 45.)

"To investigate the whole store of original notions discoverable in our understanding, and which lie at the foundation of all our knowledge, and at the same time to authenticate their true descent, by showing that they are not derived from experience, but are pure productions of the understanding.

1. The perceptions of objects contain, indeed, the matter of knowledge, but are in themselves blind and dead, and not knowledge; and our soul is merely passive in regard to them.

2. If these perceptions are to furnish knowledge, the understanding must think of them, and this is possible only through notions (conceptions), which are the peculiar form of our understanding, in the same manner as space and time are the form of our sensitive faculty.

3. These notions are active representations of our understanding-faculty; and as they regard immediately the perceptions of objects, they refer to the objects themselves only medially.

4. They lie in our understanding as pure notions *a priori*, at the foundation of all our knowledge. They are necessary forms, radical

* See the Dict. Philosophique, Art. Athéisme. See also the Strictures on the Système de la Nature in the Questions sur l'Encyclopédie: the very work from which the above quotation is taken.

notions, categories (predicaments), of which all our knowledge of them must be compounded: And the table of them follows.

"Quantity"; unity, plurality, totality.
"Quality"; reality, negation, limitation.
"Relation"; substance, cause, reciprocation.
"Modality"; possibility, existence, necessity.

5. Now, to think and to judge is the same thing; consequently, every notion contains a particular form of judgment concerning objects. There are four principal genera of judgments: They are derived from the above four possible functions of the understanding, each of which contains under it three species; namely, with respect to

"Quantity," they are universal, particular, singular judgments.
"Quality," they are affirmative, negative, infinite judgments.
"Relation," they are categorical, hypothetical, disjunctive judgments.
"Modality," they are problematical, assertory, apodictical judgments.

These tables speak for themselves without any comment.

Note Y Y, p. 195.

Kant’s notions of Time are contained in the following seven propositions: 1. Idea temporis non oritur sed supponitur a sensibus. 2. Idea temporis est singularis, non generalis. Tempus enim quoddam non cogitatur, nisi manet pars unius ejusdem temporis immersi. 3. Idea itaque temporis est intuitus, et quoniam ante omnem sensationem concipitur, tanquam conditio respectuum in sensibilibus obviorum, est intuitus, non sensualis, sed purus. 4. Tempus est quantum continuum et legum continui in mutationibus universi principium. 5. Tempus non est objective aliud etereale, nec substantia, nec accidentia, nec relatio, sed subjectiva conditio, per naturam mentis humanae necessaria, quaelibet sensibilis, certa lege sibi co-ordinandi, et intuitus purus. 6. Tempus est conceptus verissimus, et, per omnia possibilium sensuum objecta, in infinitum patens, intuitiva representationis conditio. 7. Tempus itaque est principium formale mundi sensibilis absolute primum.

With respect to Space, Kant states a series of similar propositions, ascribing to it very nearly the same metaphysical attributes as to Time, and running as far as possible a sort of parallel between them. “A. Conceptus spatii non abstrahitur a sensationibus externis. B. Conceptus spatii est singularis representatio omnia in se comprehensu, non sub se continens notio abstracta et communis. C. Conceptus spatii itaque est intuitus purus; cum sit conceptus singularis; sensationibus non confactus, sed omnis sensationis externae forma fundamentalis. D. Spatium non est aliquid objectivi et reals, nec substantia, nec accidentia, nec relatio; sed subjectivum et ideale, e natura mentis stabilis legi proficiscens, veluti schema, omnia omnino externa sensa sibi co-ordinandi. E. Quanquam conceptus spatii, ut objectivi alicujus et realis entis vel affectionis, sit imaginarius, nihil tamen secundum respective ad sensibiliam quacunque, non solum est verissimus, sed et omnis veritatis in sensualitate externa fundamentum.”

These propositions are extracted from a Dissertation written by Kant himself in the Latin language. Their obscurity, therefore, cannot be ascribed to any misapprehension on the part of a translator. It was on this account that I thought it better to quote them in his own unaltered words, than to avail myself of the corresponding passage in Born’s Latin version of the Critique of Pure Reason.

To each of Kant’s propositions concerning Time and Space I shall subjoin a short comment, following the same order in which these propositions are arranged above.

I. That the idea of Time has no resemblance to any of our sensations, and that it is, therefore, not derived from sensation immediately and directly, has been very often observed; and if nobody had ever observed it, the fact is so very obvious, that the enunciation of it could not entitle the author to the praise of much ingenuity. Whether “this idea be supposed in all our sen-

7. The conclusion of the whole matter is, that Time is "absolutely the first formal principle of the sensible world." I can annex no meaning to this; but I have translated the original, word for word, and shall leave my readers to their own conjectures.

A. It appears from this, that, in the opinion of Kant, the idea of Space is connoted with the mind, or at least, that it is prior to any information received from the senses. But this doctrine seems to me not a little doubtful. Indeed, I rather lean to the common theory, which supposes our first ideas of Space or Extension to be formed by abstracting this attribute from the other qualities of matter. The idea of Space, however, in whatever manner formed, is manifestly accompanied with an irresistible conviction, that Space is necessarily existent, and that its annihilation is impossible; nay, it appears to me to be also accompanied with an irresistible conviction, that Space cannot possibly be extended in more than three dimensions. Call either of these propositions in question, and you open a door to universal scepticism.

B. I can extract no meaning from this, but the nugatory proposition, that our conception of Space leads us to consider it as the place in which all things are comprehended.

C. "The conception of Space, therefore, is a pure intuition." This follows as a necessary corollary (according to Kant's own definition) from Prop. A. What is to be understood by the clause which asserts, that Space is the fundamental form of every external sensation, it is not easy to conjecture. Does it imply merely that the conception of Space is necessarily involved in all our notions of things external? In this case, it only repeats over, in different and most inaccurate terms, the last clause of Prop. B. What can be more loose and illogical than the phrase external sensation?

D. That Space is neither a substance, nor an accident, nor a relation, may be safely granted; but does it follow from this that it is nothing objective, or, in other words, that it is a mere creature of the imagination? This, however, would seem to be the idea of Kant; and yet I
cannot reconcile it with what he says in Prop. E., that the conception of Space is the foundation of all the truth we ascribe to our perceptions of external objects. (The author's own words are—"omnis veritatis in sensualitate externa fundamentum!")¹

Upon the whole, it appears to me, that, among these various propositions, there are some which are quite unintelligible; that others assume, as first principles, doctrines which have been disputed by many of our most eminent philosophers; that others, again, seem to aim at involving plain and obvious truths in darkness and mystery; and that not one is expressed with simplicity and precision, which are the natural results of clear and accurate thinking. In considering time and space as the forms of all sensible phenomena, does Kant mean any thing more but this,—that we necessarily refer every sensible phenomenon to some point of space, or to some instant of time? If this was really his meaning, he has only repeated over, in obscurer language, the following propositions of Newton; "Ut ordo partium temporis est inmutabilis, sic etiam ordo partium spatii. Moveantur hec de locis suis, et movebuntur (ut ita dicam) de seipsis. Nam tempora et spatia sunt suipserum et rerum omnium quasi loca. In tempore, quod ordinem successionis; in spatio, quod ordinem situs locantur universa. De illorum essentia est ut sint loca: et loca primaria moveri absurdum est."²

I have quoted this passage, not from any desire of displaying the superiority of Newton over Kant, but chiefly to show how very nearly the powers of the former sink to the same level with those of the latter, when directed to inquiries unfathomable by the human faculties. What abuse of words can be greater than to say, That neither the parts of time nor the parts of space can be moved from their places? In the Principia of Newton, however, this incidental discussion is but a spot on the sun. In the Critique of Pure Reason, it is a fair specimen of the rest of the work, and forms one of the chief pillars of the whole system, both metaphysical and moral.

Note ZZ, p. 196.

The following quotation will account for the references which I have made to Mr Nitsch among the expounders of Kant's Philosophy. It will also serve to show that the Critique of Pure Reason has still some admirers in England, not less enthusiastic than those it had formerly in Germany.

"In submitting this fourth Treatise on the Philosophy of Kant to the reader" (says the author of these articles in the Encyclopaedia Londinensis), "I cannot deny myself the satisfaction of publicly acknowledging the great assistance which I have derived in my literary pursuits, from my excellent and highly valued friend Mr Henry Richter. To him I am indebted for the clearness and perspicuity with which the thoughts of the immortal Kant have been conveyed to the public. Indeed, his comprehensive knowledge of the system, as well as his enthusiastic admiration of its general truth, render him a most able and desirable co-operator. Should, therefore, any good result, to mankind from our joint labours in the display of this vast and profound system, he is justly entitled to his share of the praise. It is with sincere pleasure that I reflect upon that period, now two and twenty years ago, when we first studied together under the same master, Frederic Augustus Nitsch, who

¹ Mr Nitsch has remarked this difficulty, and has attempted to remove it. "The most essential objection (he observes) to Kant's system is, that it leads to scepticism; because it maintains, that the figures in which we see the external objects clothed are not inherent in those objects, and that consequently space is something within, and not without the mind." (pp. 144, 145.) "It may be further objected (he adds), that, if there be no external space, there is also no external world. But this is concluding by far too much from these premises. If there be no external space, it will follow, that we are not authorised to assign extension to external things, but there will follow no more." (p. 149.) Mr Nitsch then proceeds to obviate these objections; but his reply is far from satisfactory, and is indeed not less applicable to the doctrine of Berkeley than to that of Kant. This point, however, I do not mean to argue here. The concessions which Nitsch has made are quite sufficient for my present purpose. They serve at least to satisfy my own mind, that I have not misrepresented Kant's meaning.

² Was it not to avoid the palpable incongruity of this language that Kant was led to substitute the word forms instead of places; the former word not seeming to be so obviously inapplicable as the latter to time and space in common; or, to speak more correctly, being, from its extreme vagueness, equally unmeaning when applied to both?
originally imported the seeds of Transcendental Philosophy from its native country, to plant them in our soil; and though, as is usually the case, many of those seeds were scattered by the wind, I trust that a sufficient number have taken root to maintain the growth of this vigorous and flourishing plant, till the time shall come, when, by its general cultivation, England may be enabled to enrich other nations with the most perfect specimens of its produce. Professor Nitsch, who thus bestowed upon our country her first attainments in the department of Pure Science, has paid the debt of nature. I confess it is some reflection upon England, that she did not foster and protect this immediate disciple of the father of philosophy; but the necessities of this learned and illustrious man unfortunately compelled him to seek that subsistence elsewhere, which was withheld from him here. At Rostock, about the year 1813, this valuable member of society, and perfect master of the philosophy he undertook to teach, entered upon his immortal career as a reward for his earthly services. It is with the most heartfelt satisfaction that I add my mite of praise to his revered memory. But for him, I might ever have remained in the dark regions of sophistry and uncertainty."

NOTE A A A, p. 201.

Among the secondary mischiefs resulting from the temporary popularity of Kant, none is more to be regretted than the influence of his works on the habits, both of thinking and of writing, of some very eminent men, who have since given to the world histories of philosophy. That of Tenneman in particular (a work said to possess great merit) would appear to have been vitiated by this unfortunate bias in the views of its author. A very competent judge has said of it, that "it affords, as far as it is completed, the most accurate, the most minute, and the most rational view we yet possess of the different systems of philosophy; but that the critical philosophy being chosen as the vantage ground from whence the survey of former systems is taken, the continual reference in Kant's own language to his peculiar doctrines, renders it frequently impossible for those who have not studied the dark works of this modern Heraclitus to understand the strictures of the historian on the systems even of Aristotle or Plato."

(See the article Brucker in the Encyclopaedia Britannica, 7th Ed.) We are told by the same writer, that among the learned of Germany, Brucker has never enjoyed a very distinguished reputation. This I can very easily credit; but I am more inclined to interpret it to the disadvantage of the German taste, than to that of the historian. Brucker is indeed not distinguished by any extraordinary measure of depth or of acuteness; but in industry, fidelity, and sound judgment, he has few superiors; qualities of infinitely greater value in the undertaker of a historical work, than that passion for systematical refinement, which is so apt to betray the best-intentioned writers into false glosses on the opinions they record.

When the above passage was written, I had not seen the work of Bahle. I have since had an opportunity of looking into the French translation of it, published at Paris in 1816; and I must frankly acknowledge, that I have seldom met with a greater disappointment. The account there given of the Kantian system, to which I turned with peculiar eagerness, has, if possible, involved to my apprehension, in additional obscurity, that mysterious doctrine. From this, however, I did not feel myself entitled to form an estimate of the author's merits as a philosophical historian, till I had read some other articles of which I considered myself better qualified to judge. The following short extract will, without the aid of any comment, enable such of my readers as know anything of the literary history of Scotland, to form an opinion upon this point for themselves.

"Reid n'attaqua les systèmes de ses prédécesseurs et notamment celui de Hume, que parce qu'il se croyait convaincu de leur défaut de fondement. Mais un autre antagoniste, non moins célèbre, du scepticisme de Hume, fut, en outre, guidé par la haine qu'il avait vouée à son illustre compatriote, lequel lui répondit avec beaucoup d'aigreur et d'animosité. James Beattie,
professeur de morale à Edimbourg, puis ensuite, de logique et de morale à l'Université d'Aberdeen, obtint la préférence sur Hume lorsqu'il fut question de remplir la chaire vacante à Edimbourg. Cette circonstance devint sans doute la principale source de l'inimitié que les deux savants concurent l'un pour l'autre, et qui influa même sur le ton qu'ils employèrent dans les raisonnemens par lesquels ils se combattirent."—(Tome V. p. 225.)

To this quotation may I be pardoned for adding a few sentences relative to myself?: "L'ouvrage de Dugald Stewart, intitulé, _Elements of the Philosophy of the Human Mind_, est un syncretisme des opinions de Hartley et de Reid. Stewart borne absolument la connaissance, tant de l'âme que des choses extérieures, à ce que le sens commun nous en apprend, et croit pouvoir ainsi mettre l'étude de la méta-physique à l'abri du reproche de rouler sur des choses qui dépassent la sphère de notre intelligence, ou qui sont tout-a-fait inutiles dans la pratique de la vie......Les chapitres suivants renferment le développement du principe de l'association des idées. Ils sont presqu'entièrement écrits d'après Hartley. Stewart fait dériver de ce principe toutes les facultés intellectuelles et pratiques de l'homme."—(Tom. V. pp. 330, 331.)

Of the discrimination displayed by Buhle in the classification of systems and of authors, the title prefixed to his 19th chapter may serve as a specimen: "_Philosophy of Condillac, of Helvetius, of Baron d'Holbach, of Robinet, of Bonnet, of Montesquieu, of Burlemaqu, of Vattel, and of Reid._"

But the radical defect of Buhle's work is, the almost total want of references to original authors. We are presented only with the general results of the author's reading, without any guide to assist us in confirming his conclusions when right, or in correcting them when wrong. This circumstance is of itself sufficient to annihilate the value of any historical composition.

Sismondi, in mentioning the history of modern literature by Bouterwek, takes occasion to pay a compliment (and, I have no doubt, a very deserved one) to German scholars in general; observing, that he has executed his task—"_avec une étendue d'érudition, et une loyauté dans la manièréd'en faire profiter ses lecteurs, qui semblent propres aux savans Allemands._"—(De la Litt. du Midi de l'Europe, Tom. I. p. 13, à Paris, 1813.) I regret that my ignorance of the German language has prevented me from profiting by a work of which Sismondi has expressed so favourable an opinion; and still more, that the only history of philosophy from the pen of a contemporary German scholar, which I have had access to consult, should form so remarkable an exception to Sismondi's observation.

The contents of the preceding note lay me under the necessity, in justice to myself, of taking some notice of the following remark, by an anonymous critic, on the first part of this _Dissertation_, published in 1815.—(See Quarterly Review, Vol. XVII. p. 42.)

"In the plan which Mr Stewart has adopted, if he has not consulted his strength, he has at least consulted his ease; for, supposing a person to have the requisite talent and information, the task which our author has performed, is one which, with the historical abstracts of Buhle or Tenneman, cannot be supposed to have required any very laborious meditation."

On the insinuation contained in the foregoing passage, I abstain from offering any comment. I have only to say, that it was not till the summer of 1820 that I saw the work of Buhle; and that I have never yet had an opportunity of seeing that of Tenneman. From what I have found in the one, and from what I have heard of the other, I am strongly inclined to suspect, that when the anonymous critic wrote the above sentence, he was not less ignorant than myself of the works of these two historians. Nor can I refrain from adding (which I do with perfect confidence), that no person competent to judge on such a subject can read with attention this Historical Sketch, without perceiving that its merits and defects, whatever they may be, are at least all my own."

{Note B B B, p. 204.}

Of the Scottish authors who turned their attention to metaphysical studies, prior to the
union of the two Kingdoms, I know of none so eminent as George Dalgarno of Aberdeen, author of two works, both of them strongly marked with sound philosophy, as well as with original genius. The one published at London, 1690, is entitled, "Ars signorum, vulgo character universalis et lingua philosophica, qua poterunt homines diversissinorum idiomatum, spatio duarum septimanarum, omnia animi sui sensa (in rebus familiaribus) non minus intelligibiliter, sive scribendo, sive loquendo, mutuo communicare, quam linguis propriis vernaculis." Pratea, hic etiam poterunt juvenes, philosophia principia, et veram logice praxin, citius et facilius multo imbibere, quam ex vulgaribus philosophorum scriptis." The other work of Dalgarno is entitled, "Didascocolophus, or the Deaf and Dumb Man's Tutor." Printed at Oxford, 1690. I have given some account of the former in the notes at the end of the first volume of the Philosophy of the Human Mind; and of the latter, in a Memoir, published in Vol. VII. of the Transactions of the Royal Society of Edinburgh. As they are now become extremely rare, and would together form a very small octavo volume, I cannot help thinking that a bookseller, who should reprint them, would be fully indemnified by the sale. The fate of Dalgarno will be hard indeed, if, in addition to the unjust neglect he experienced from his contemporaries, the proofs he has left of his philosophical talents shall be suffered to sink into total oblivion.

Lord Stair's Physiologia Nova Experimentalis (published at Leyden in 1686) is also worthy of notice in the literary history of Scotland. Although it bears few marks of the eminent talents which distinguished the author, both as a lawyer and as a statesman, it discovers a very extensive acquaintance with the metaphysical as well as with the physical doctrines, which were chiefly in vogue at that period; more particularly with the leading doctrines of Gassendi, Descartes, and Malebranche. Many acute and some important strictures are made on the errors of all the three, and at the same time complete justice is done to their merits; the writer every where manifesting an independence of opinion and a spirit of free inquiry, very uncommon among the philosophers of the seventeenth century. The work is dedicated to the Royal Society of London, of the utility of which institution, in promoting experimental knowledge, he appears to have been fully aware.

The limits of a note will not permit me to enter into farther details concerning the state of philosophy in Scotland, during the interval between the union of the Crowns and that of the Kingdoms. The circumstances of the country were indeed peculiarly unfavourable to it. But memorials still exist of a few individuals, sufficient to show, that the philosophical taste, which has so remarkably distinguished our countrymen during the eighteenth century, was in some measure an inheritance from their immediate predecessors. Leibnitz, I think, somewhere mentions the number of learned Scotchmen by whom he was visited in the course of their travels. To one of them (Mr Burnet of Kemney) he has addressed a most interesting letter, dated in 1697, on the general state of learning and science in Europe; opening his mind on the various topics which he introduces, with a freedom and confidence highly honourable to the attainments and character of his correspondent. Dr Arbuthnot, who was born about the time of the Restoration, may serve as a fair specimen of the very liberal education which was then to be had in some of the Scottish Universities. The large share which he is allowed to have contributed to the Memoirs of Martinus Scriblerus abundantly attests the variety of his learning, and the just estimate he had formed of the philosophy of the schools; and in one or two passages, where he glances at the errors of his contemporaries, an attentive and intelligent reader will trace, amid all his pleasantry, a metaphysical depth and soundness which seem to belong to a later period.—Is there no Arbuthnot now, to chastise the follies of our eranicians?

Note C C C, p. 214.

The letter which gives occasion to this note was written twenty years after the publication of the Treatise of Human Nature. As it relates, however, to the history of Mr Hume's studies...
previous to that publication, I consider this as the proper place for introducing it. The Dialogue to which the letter refers was plainly that which appeared after Mr Hume's death, under the title of Dialogues on Natural Religion.

"Ninewells, March 19, 1751.

Dear Sir—You would perceive by the sample I have given you, that I make Cleanthes the hero of the dialogue. Whatever you can think of to strengthen that side of the argument will be most acceptable to me. Any propensity you imagine I have to the other side crept in upon me against my will; and it is not long ago that I burned an old manuscript book, wrote before I was twenty, which contained, page after page, the gradual progress of my thoughts on that head. It begun with an anxious search after arguments to confirm the common opinion; doubts stole in, dissipated, returned, were again dissipated, returned again, and it was a perpetual struggle of a restless imagination against inclination, perhaps against reason.

I have often thought that the best way of composing a dialogue would be for two persons that are of different opinions about any question of importance, to write alternately the different parts of the discourse, and reply to each other. By this means that vulgar error would be avoided of putting nothing but nonsense into the mouth of the adversary; and, at the same time, a variety of character and genius being upheld, would make the whole look more natural and unaffected. Had it been my good fortune to live near you, I should have taken on me the character of Philo in the dialogue, which you'll own I could have supported naturally enough; and you would not have been averse to that of Cleanthes. I believe, too, we could both of us have kept our tempers very well; only you have not reached an absolute philosophical indifference on these points. What danger can ever come from ingenious reasoning and inquiry? The worst speculative sceptic ever I knew was a much better man than the best superstitious devotee and bigot. I must inform you too, that this was the way of thinking of the ancients on this subject. If a man made profession of philosophy, whatever his sect was, they always expected to find more regularity in his life and manners than in those of the ignorant and illiterate. There is a remarkable passage of Appian to this purpose. That historian observes, that, notwithstanding the established prepossession in favour of learning, yet some philosophers who have been trusted with absolute power have very much abused it; and he instances in Critias, the most violent of the Thirty, and Aristion, who governed Athens in the time of Sylla. But I find, upon inquiry, that Critias was a professed Atheist, and Aristion an Epicurean, which is little or nothing different; and yet Appian wonders at their corruption as much as if they had been Stoics or Platonists. A modern zealot would have thought that corruption unavoidable.

I could wish that Cleanthes's argument could be so analysed as to be rendered quite formal and regular. The propensity of the mind towards it, unless that propensity were as strong and universal as that to believe in our senses and experience, will still, I am afraid, be esteemed a suspicious foundation. 'Tis here I wish for your assistance. We must endeavour to prove that this propensity is somewhat different from our inclination to find our own figures in the clouds, our face in the moon, our passions and sentiments even in inanimate matter. Such an inclination may and ought to be controlled, and can never be a legitimate ground of assent.

The instances I have chosen for Cleanthes are, I hope, tolerably happy; and the confusion in which I represent the sceptic seems natural. But, si quid novisti rectius, &c.

If you ask me, if the idea of cause and effect is nothing but vicininity? (you should have said constant vicinility or regular conjunction)—I would gladly know whence is that further idea of causation against which you argue? The question is pertinent; but I hope I have answered it. We feel, after the constant conjunction, an easy transition from one idea to the other, or a connection in the imagination; and, as it is usual for us to transfer our own feelings to the objects on which they are dependent, we attach the internal sentiment to the external objects. If no single instances of cause and effect appear to have any connection, but only repeated simi-
lar ones, you will find yourself obliged to have recourse to this theory.

"I am sorry our correspondence should lead us into these abstract speculations. I have thought, and read, and composed very little on such questions of late. Morals, politics, and literature, have employed all my time; but still the other topics I must think more curious, important, entertaining, and useful, than any geometry that is deeper than Euclid. If, in order to answer the doubts started, new principles of philosophy must be laid, are not these doubts themselves very useful? Are they not preferable to blind and ignorant assent? I hope I can answer my own doubts; but, if I could not, is it to be wondered at? To give myself airs and speak magnificently; might I not observe that Columbus did not conquer empires and plant colonies?

"If I have not unravelled the knot so well in these last papers I sent you, as perhaps I did in the former, it has not, I assure you, proceeded from want of good will. But some subjects are easier than others; and sometimes one is happier in one's researches and inquiries than at other times. Still I have recourse to the si quid noristi rectius; not in order to pay you a compliment, but from a real philosophical doubt and curiosity." 1

An unfinished draught of the letter to which the foregoing seems to have been the reply, has been preserved among Sir Gilbert Elliot's papers. This careless fragment is in his own handwriting, and exhibits an interesting specimen of the progress made in Scotland among the higher classes, seventy years ago, not only in sound philosophy, but in purity of English style.

"Dear Sir—Inclosed I return your papers, which, since my coming to town, I have again read over with the greatest care. The thoughts which this last perusal of them has suggested I shall set down, merely in compliance with your desire, for I pretend not to say anything new upon a question which has already been examined so often and so accurately. I must freely own to you, that to me it appears extremely doubtful, if the position which Cleanthes undertakes to maintain can be supported, at least in any satisfactory manner, upon the principles he establishes and the concessions he makes. If it be only from effects exactly similar that experience warrants us to infer a similar cause, then I am afraid it must be granted, that the works of Nature resemble not so nearly the productions of man as to support the conclusion which Cleanthes admits can be built only on that resemblance. The two instances he brings to illustrate his argument are indeed ingenious and elegant; the first, especially, which seemingly carries great weight along with it: the other, I mean that of the Vegetating Library, as it is of more difficult apprehension, so I think it is not easy for the mind either to retain or to apply it. But, if I mistake not, this strong objection strikes equally against them both. Cleanthes does no more than substitute two artificial instances in the place of natural ones; but if these bear no nearer a resemblance than natural ones to the effects which we have experienced to proceed from men, then nothing can justly be inferred from them; and if this resemblance be greater, then nothing farther ought to be inferred from them. In one respect, however, Cleanthes seems to limit his reasonings more than is necessary even upon his own principles. Admitting, for once, that experience is the only source of our knowledge, I cannot see how it follows, that, to enable us to infer a similar cause, the effects must not only be similar, but exactly and precisely so. Will not experience authorise me to conclude, that a machine or piece of mechanism was produced by human art, unless I have happened previously to see a machine or piece of mechanism exactly of the same sort? Point out, for instance, the contrivance and end of a watch to a peasant, who had never before seen anything more curious than the coarsest instruments of husbandry, will he not immediately conclude, that this watch is an effect produced by human art and design? And

1 The original is in the possession of the Earl of Minto.
I would still farther ask, does a spade or a plough much more resemble a watch than a watch does an organised animal? The result of our whole experience, if experience indeed be the only principle, seems rather to amount to this: There are but two ways in which we have ever observed the different parcels of matter to be thrown together; either at random, or with design and purpose. By the first we have never seen produced a regular complicated effect, corresponding to a certain end; by the second, we uniformly have. If, then, the works of nature, and the productions of man, resemble each other in this one general characteristic, will not even experience sufficiently warrant us to ascribe to both a similar though proportionable cause? If you answer, that abstracting from the experience we acquire in this world, order and adjustment of parts is no proof of design, my reply is, that no conclusions, drawn from the nature of so chimerical a being as man, considered abstracted from experience, can at all be listened to. The principles of the human mind are clearly so contrived as not to unfold themselves till the proper objects and proper opportunity and occasion be presented. There is no arguing upon the nature of man but by considering him as grown to maturity, placed in society, and become acquainted with surrounding objects. But if you should still farther urge, that, with regard to instances of which we have no experience, for aught we know, matter may contain the principles of order, arrangement, and the adjustment of final causes, I should only answer, that whoever can conceive this proposition to be true, has exactly the same idea of matter that I have of mind. I know not if I have reasoned justly upon Cleanthes's principles, nor is it indeed very material. The purpose of my letter is barely to point out what to me appears the fair and philosophical method of proceeding in this inquiry. That this universe is the effect of an intelligent designing cause, is a principle which has been most universally received in all ages and in all nations; the proof uniformly appealed to is, the admirable order and adjustment of the works of nature. To proceed, then, experimentally and philosophically, the first question in point of order seems to be, what is the effect which the contemplation of the universe, and the several parts of it, produces upon a considering mind? This is a question of fact; a popular question, the discussion of which depends not upon refinements and subtlety, but merely upon impartiality and attention. I ask, then, what is the sentiment which prevails in one's mind, after having considered not only the more familiar objects that surround him, but also all the discoveries of Natural Philosophy and Natural History; after having considered not only the general economy of the universe, but also the most minute parts of it, and the amazing adjustment of means to ends with a precision unknown to human art, and in instances innumerable? Tell me (to use the words of Cleanthes), does not the idea of a contriver flow in upon you with a force like that of sensation? Expressions how just! (yet in the mouth of Cleanthes you must allow me to doubt of their propriety.) Nor does this conviction only arise from the consideration of the inanimate parts of the creation, but still more strongly from the contemplation of the faculties of the understanding, the affections of the heart, and the various instincts discoverable both in men and brutes; all so properly adapted to the circumstances and situation both of the species and the individual. Yet this last observation, whatever may be in it, derives no force from experience. For who ever saw a mind produced? If we are desirous to push our experiments still farther, and inquire, whether the survey of the universe has regularly and uniformly led to the belief of an intelligent cause? Shall we not find, that, from the author of the book of Job to the preachers at Boyle's Lecture, the same language has been universally held? No writer, who has ever treated this subject, but has either applied himself to describe, in the most emphatical language, the beauty and order of the universe, or else to collect together and place in the most striking light, the many instances of contrivance and design which have been discovered by observation and experiment. And when they have done this, they seem to have imagined that their task was finished, and their demonstration complete; and indeed no wonder,—for it seems to me, that we are scarce more assured of our own existence, than that.
this well-ordered universe is the effect of an intelligent cause.

"This first question, then, which is indeed a question of fact, being thus settled upon observations which are obvious and unrefined, but not on that account the less satisfactory, it becomes the business of the philosopher to inquire, whether the conviction arising from these observations be founded on the conclusions of reason, the reports of experience, or the dictates of feeling, or possibly upon all these together; but if his principles shall not be laid so wide as to account for the fact already established upon prior evidence, we may, I think, safely conclude, that his principles are erroneous. Should a philosopher pretend to demonstrate to me, by a system of optics, that I can only discern an object when placed directly opposite to my eye, I should certainly answer, your system must be defective, for it is contradicted by matter of fact."—
DISSESSATION SECOND;

EXHIBITING A GENERAL VIEW

OF THE

PROGRESS OF ETHICAL PHILOSOPHY,

CHIEFLY

DURING THE SEVENTEENTH AND EIGHTEENTH CENTURIES.

BY THE RIGHT HONOURABLE

SIR JAMES MACKINTOSH, LL.D. F.R.S. M.P.
Dissertation Second

Examining a General View of the Progress of Ethical Philosophy during the Seventeenth and Eighteenth Centuries

By the Right Honourable Sir James Mackintosh LL.D. F.R.S. M.P.
DISSERTATION SECOND.

INTRODUCTION.

The inadequacy of the words of ordinary language for the purposes of Philosophy, is an ancient and frequent complaint; of which the justness will be felt by all who consider the state to which some of the most important arts would be reduced, if the coarse tools of the common labourer were the only instruments to be employed in the most delicate operations of manual expertness. The watchmaker, the optician, and the surgeon, are provided with instruments which are fitted, by careful ingenuity, to second their skill; the philosopher alone is doomed to use the rudest tools for the most refined purposes. He must reason in words of which the looseness and vagueness are suitable, and even agreeable, in the usual intercourse of life, but which are almost as remote from the extreme exactness and precision required, not only in the conveyance, but in the search of truth, as the hammer and the axe would be unfit for the finest exertions of skilful handiwork; for it is not to be forgotten, that he must himself think in these gross words as unavoidably as he uses them in speaking to others. He is in this respect in a worse condition than an astronomer who looked at the heavens only with the naked eye, whose limited and partial observation, however it might lead to error, might not directly, and would not necessarily deceive. He might be more justly compared to an arithmetician compelled to employ numerals not only cumbrons, but used so irregularly to denote different quantities, that they not only often deceived others, but himself.

The Natural Philosopher and Mathematician have in some degree the privilege of framing their own terms of art; though that liberty is daily narrowed by the happy diffusion of these great branches of knowledge, which daily mixes their language with the general vocabulary of educated men. The cultivator of Mental and Moral Philosophy can seldom do more than mend the faults of his words by definition; a necessary but very inadequate expedient, in a great measure defeated in practice by the unavoidably more frequent recurrence of the terms in their vague than in their definite acceptation; in consequence of which the mind, to which the
definition is faintly and but occasionally present, naturally suffers, in the ordinary state of attention, the scientific meaning to disappear from remembrance, and insensibly ascribes to the word a great part, if not the whole, of that popular sense which is so very much more familiar, even to the most veteran speculator. The obstacles which stood in the way of Lucretius and Cicero, when they began to translate the sublime philosophy of Greece into their narrow and barren tongue, are always felt by the philosopher when he struggles to express, with the necessary discrimination, his abstruse reasonings in words which, though those of his own language, he must take from the mouths of those to whom his distinctions would be without meaning.

The Moral Philosopher is in this respect subject to peculiar difficulties. His statements and reasonings often call for nicer discriminations of language than those which are necessary in describing or discussing the purely intellectual part of human nature; but his freedom in the choice of words is more circumscribed. As he treats of matters on which all men are disposed to form a judgment, he can as rarely hazard glaring innovations in diction, at least in an adult and mature language like ours, as the orator or the poet. If he deviates from common use, he must atone for his deviation by hiding it, and can only give a new sense to an old word by so skilful a position of it as to render the new meaning so quickly understood that its novelty is scarcely perceived. Add to this, that in those most difficult inquiries for which the utmost coolness is not more than sufficient, he is often forced to use terms commonly connected with warm feeling, with high praise, with severe reproach; which excite the passions of his readers when he most needs their calm attention and the undisturbed exercise of their impartial judgment. There is scarcely a neutral term left in Ethics; so quickly are such expressions enlisted on the side of Praise or Blame, by the address of contending passions. A true philosopher must not even desire that men should less love virtue or hate vice, in order to fit them for a more unprejudiced judgment on his speculations.

There are perhaps not many occasions where the penury and laxity of language are more felt than in entering on the history of sciences where the first measure must be to mark out the boundary of the whole subject with some distinctness. But no exactness in these important operations can be approached without a new division of human knowledge, adapted to the present stage of its progress, and a reformation of all those barbarous, pedantic, unmeaning, and (what is worse) wrong-meaning names which continue to be applied to the greater part of its branches. Instances are needless where nearly all the appellations are faulty. The term Metaphysics affords a specimen of all the faults which the name of a science can combine. To those who know only their own language, it must, at their entrance on the study, convey no meaning. It points their attention to nothing. If they examine the language in which its parts are significant, they will be misled into the pernicious error of believing that it seeks something more than the interpretation of nature. It is only by examining the history of ancient Philosophy that the probable origin of this name will be found, in the application of it, as the running title of several essays of Aristotle, which were placed in a collection of the manuscripts of that great philosopher, after his treatise on Physics. It has the greater fault of an unsteady and fluctuating signification; denoting one class of objects in the seventeenth century, and another in the eighteenth—even in the nineteenth not quite of the same import in the mouth of a German, as in that of a French or English philosopher; to say nothing of the farther objection that it continues to be a badge of undue pretension among some of the followers of the science, while it has become a name of reproach and derision among those who altogether decry it.

The modern name of the very modern science called Political Economy, though deliberately bestowed on it by its most eminent teachers, is perhaps a still more notable sample of the like faults. It might lead the ignorant to confine it to retrenchment in national expenditure; and a consideration of its etymology alone would lead into the more mischievous error of believing it to teach, that national wealth is best promoted by
the contrivance and interference of lawgivers, in opposition to its surest doctrine, which it most justly boasts of having discovered and enforced.

It is easy to conceive an exhaustive analysis of Human Knowledge, and a consequent division of it into parts corresponding to all the classes of objects to which it relates: a representation of that vast edifice, containing a picture of what is finished, a sketch of what is building, and even a conjectural outline of what, though required by completeness and convenience, as well as symmetry, is yet altogether untouched. A system of names might also be imagined derived from a few roots, indicating the objects of each part, and showing the relation of the parts to each other. An order and a language somewhat resembling those by which the objects of the sciences of Botany and Chemistry have, in the eighteenth century, been arranged and denoted, are doubtless capable of application to the sciences generally, when considered as parts of the system of knowledge. The attempts, however, which have hitherto been made to accomplish the analytical division of knowledge which must necessarily precede a new nomenclature of the sciences, have required so prodigious a superiority of genius in the single instance of approach to success by Bacon, as to discourage rivalry nearly as much as the frequent examples of failure in subsequent times. The nomenclature itself is attended with great difficulties, not indeed in its conception, but in its adoption and usefulness. In the Continental languages to the south of the Rhine, the practice of deriving the names of science from Greek must be continued; which would render the new names for a while unintelligible to the majority of men. Even in Germany, where a flexible and fertile language affords unbounded liberty of derivation and composition from native roots or elements, and where the newly derived and compounded words would thus be as clear to the mind, and almost as little startling to the ear of every man, as the oldest terms in the language, yet the whole nomenclature would be unintelligible to other nations. The intercommunity of the technical terms of science in Europe has been so far broken down by the Germans, and the influence of their literature and philosophy is so rapidly increasing in the greater part of the Continent, that though a revolution in scientific nomenclature be probably yet far distant, the foundation of it may be considered as already prepared.

But although so great an undertaking must be reserved for a second Bacon and a future generation, it is necessary for the historian of any branch of knowledge to introduce his work by some account of the limits and contents of the sciences of which he is about to trace the progress; and though it will be found impossible to trace throughout the treatise a distinct line of demarcation, yet a general and imperfect sketch of the boundaries of the whole, and of the parts of our present subject, may be a considerable help to the reader, as it has been a useful guide to the writer.

There is no distribution of the parts of knowledge more ancient than that of the Physical and Moral Sciences, which seems liable to no other objection, than that it does not exhaust the subject. Even this division, however, cannot be safely employed, without warning the reader, that no science is entirely insulated, and that the principles of one are often only the conclusions and results of another. Every branch of knowledge has its root in the theory of the Understanding, from which even the mathematician must learn what can be known of his magnitude and his numbers; and Moral Science is founded on that other hitherto unnamed part of the philosophy of human nature (to be constantly and vigilantly distinguished from Intellectual Philosophy), which contemplates the laws of sensibility, of emotion, of desire and aversion, of pleasure and pain, of happiness and misery; and on which arise the august and sacred landmarks that stand conspicuous along the frontier between Right and Wrong.

But however multiplied the connections of the Moral and Physical Sciences are, it is not difficult to draw a general distinction between them. The purpose of the Physical Sciences throughout all their provinces, is to answer the question What is? They consist only of facts arranged according to their likeness, and expressed by general names given to every class
of similar facts. The purpose of the Moral Sciences is to answer the question What ought to be? They aim at ascertaining the rules which ought to govern voluntary action, and to which those habitual dispositions of mind which are the source of voluntary actions ought to be adapted.

It is obvious that Will, Action, Habit, Disposition, are terms denoting facts in human nature, and that an explanation of them must be sought in Mental Philosophy; which, if knowledge be divided into Physical and Moral, must be placed among physical sciences; though it essentially differs from them all in having for its chief object those laws of thought which alone render any other sort of knowledge possible. But it is equally certain that the word Ought introduces the mind into a new region, to which nothing physical corresponds. However philosophers may deal with this most important of words, it is instantly understood by all who do not attempt to define it. No civilized speech, perhaps no human language, is without correspondent terms. It would be as reasonable to deny that Space and Greenness are significant words, as to affirm that Ought, Right, Duty, Virtue, are sounds without meaning. It would be fatal to an Ethical Theory that it did not explain them, and that it did not comprehend all the conceptions and emotions which they call up. There never yet was a theory which did not attempt such an explanation.

SECTION I.

Preliminary Observations.

There is no man who, in a case where he was a calm by-stander, would not look with more satisfaction on acts of kindness than on acts of cruelty. No man, after the first excitement of his mind has subsided, ever whispered to himself with self-approbation and secret joy that he had been guilty of cruelty or baseness. Every criminal is strongly impelled to hide these qualities of his actions from himself, as he would do from others, by clothing his conduct in some disguise of duty or of necessity. There is no tribe so rude as to be without a faint perception of a difference between right and wrong. There is no subject on which men of all ages and nations coincide in so many points as in the general rules of conduct, and in the qualities of the human character which deserve esteem. Even the grossest deviations from the general consent will appear, on close examination, to be not so much corruptions of moral feeling, as either ignorance of facts; or errors with respect to the consequences of action; or cases in which the dissentient party is inconsistent with other parts of his own principles, which destroys the value of his dissent; or where each dissident is condemned by all the other dissidents, which immeasurably augments the majority against him. In the first three cases he may be convinced by argument, that his moral judgment should be changed on principles which he recognises as just; and he can seldom, if ever, be condemned at the same time by the body of mankind who agree in their moral systems, and by those who on some other points dissent from that general code, without being also convicted of error by inconsistency with himself. The tribes who expose new-born infants, condemn those who abandon their decrepit parents to destruction. Those who betray and murder strangers, are condemned by the rules of faith and humanity which they acknowledge in their intercourse with their countrymen. Mr Hume, in a dialogue in which he ingeniously magnifies the moral heresies of two nations so polished as the Athenians and the French, has very satisfactorily resolved his own difficulties. "In how many circumstances would an Athenian and a Frenchman of merit certainly resemble eachother?—Human-
Dissertation Second.

It is very remarkable, however, that though all men agree that there are acts which ought to be done, and acts which ought not to be done; though the far greater part of mankind agree in their list of virtues and duties, of vices and crimes; and though the whole race, as it advances in other improvements, is as evidently tending towards the moral system of the most civilized nations, as children in their growth tend to the opinions as much as to the experience and strength of adults; yet there are no questions in the circle of inquiry to which answers more various have been given than—How men have thus come to agree in the rule of life; Whence arises their general reverence for it; and What is meant by affirming that it ought to be inviolably observed? It is singular, that where we are most nearly agreed respecting rules, we should perhaps most differ as to the causes of our agreement, and as to the reasons which justify us for adhering to it. The discussion of these subjects composes what is usually called the Theory of Morals; in a sense not in all respects coincident with what is usually considered as Theory in other sciences. When we investigate the causes of our moral agreement, the term Theory retains its ordinary scientific sense; but when we endeavour to ascertain the reasons of it, we rather employ the term as importing the theory of the rules of an art. In the first case, Theory denotes, as usual, the most general laws to which certain facts can be reduced; whereas in the second, it points out the efficacy of the observance, in practice, of certain rules, for producing the effects intended to be produced in the art. These reasons also may be reduced under the general sense by stating the question relating to them thus:—What are the causes, why the observance of certain rules enables us to execute certain purposes? An account of the various answers attempted to be made to these inquiries, properly forms the History of Ethics.

The attentive reader may already perceive, that these momentous inquiries relate to at least two perfectly distinct subjects: 1. The nature of the distinction between right and wrong in human conduct, and 2. The nature of those feelings with which right and wrong are contemplated by human beings. The latter constitutes what has been called the Theory of Moral Sentiments; the former consists in an investigation into the Criterion of Morality in action. Other most important questions arise in this province. But the two problems which have been just stated, and the essential distinction between them, must be clearly apprehended.

2 "On convient le plus souvent de ces instincts de la conscience. La plus grande et la plus saine partie du genre humain leur rend témoignage. Les Orientaux, et les Grecs, et les Romains conviennent en cela; et il faudroit être aussi abrité que les sauvages Américains pour approuver leurs coutumes, pleines d'une cruauté qui passe même celle des bêtes. Cependant ces mêmes sauvages savent bien ce que c'est que la justice en d'autres occasions; et quoique il y ait point de mauvaise pratique peut-être qui ne soit autorisée quelque part, il y en a peu pourtant qui ne soient condamnées le plus souvent, et par la plus grande partie des hommes." (Leibnitz, Oeuvres Philosophiques, p. 49. Amst. et Leips. 1765, 4to.)

There are some admirable observations on this subject in Hartley, especially in the development of the 49th Proposition. "The rule of life drawn from the practice and opinions of mankind corrects and improves itself perpetually, till at last it determines entirely for virtue, and excludes all kinds and degrees of vice." (Observations on Man, I. 207.)
by all who are desirous of understanding the controversies which have prevailed on ethical subjects. The discrimination has seldom been made by Moral Philosophers; the difference between the two problems has never been uniformly observed by any of them: and it will appear, in the sequel, that they have been not rarely altogether confounded by very eminent men, to the destruction of all just conception and of all correct reasoning in this most important, and perhaps most difficult of sciences.

It may therefore be allowable to deviate so far from historical order, as to illustrate the nature and to prove the importance of the distinction, by an example of the effects of neglecting it, taken from the recent works of justly celebrated writers; in which they discuss questions much agitated in the present age, and therefore probably now familiar to most readers of this Dissertation.

Dr Paley represents the principle of a moral sense as being opposed to that of utility. Now, it is evident that this representation is founded on a confusion of the two questions which have been stated above. That we are endued with a moral sense, or, in other words, a faculty which immediately approves what is right and condemns what is wrong, is only a statement of the feelings with which we contemplate actions. But to affirm that right actions are those which conduce to the wellbeing of mankind, is a proposition concerning the outward effects by which right actions themselves may be recognised. As these affirmations relate to different subjects, they cannot be opposed to each other, any more than the solidity of earth is inconsistent with the fluidity of water; and a very little reflection will show it to be easily conceivable that they may be both true. Man may be so constituted as instantaneously to approve certain actions without any reference to their consequences; and yet reason may nevertheless discover, that a tendency to produce general happiness is the essential characteristic of such actions. Mr Bentham also contrasts the principle of utility with that of sympathy, of which he considers the moral sense as being one of the forms. It is needless to repeat, that propositions which affirm or deny anything of different subjects, cannot contradict each other. As these celebrated persons have thus inferred or implied the non-existence of a moral sense, from their opinion that the morality of actions depends upon their usefulness, so other philosophers of equal name have concluded, that the utility of actions cannot be the criterion of their morality, because a perception of that utility appears to them to form a faint and inconsiderable part of our moral sentiments, if indeed it be at all discoverable in them. These errors are the more remarkable, because the like confusion of perceptions with their objects, of emotions with their causes, or even the omission to mark the distinctions, would, in every other subject, be felt to be a most serious fault in philosophizing. If, for instance, an element were discovered to be common to all bodies which our taste perceives to be sweet, and to be found in no other bodies, it is apparent that this discovery, perhaps important in other respects, would neither affect our perception of sweetness, nor the pleasure which attends it. Both would continue to be what they have been since the existence of mankind. Every proposition concerning that element would relate to sweet bodies, and belong to the science of Chemistry; while every proposition respecting the perception or pleasure of sweetness would relate either to the body or mind of man, and accordingly belong either to the science of Physiology, or to that of Mental Philosophy. During the many ages which passed before the analysis of the sun’s beams had proved them to be compounded of different colours, white objects were seen, and their whiteness was sometimes felt to be beautiful, in the very same manner as since that discovery. The qualities of light are the object of Optics; the nature of beauty can be as-

2 Introduction to the Principles of Morality and Legislation, chap. ii.
3 Smith’s Theory of Moral Sentiments, Part iv. Even Hume, in the third book of his Treatise of Human Nature, the most precise, perhaps, of his philosophical writings, uses the following as the title of one of the sections: “Moral Distinctions derived from a Moral Sense.”
certained only by each man's observation of his own mind; the changes in the living frame which succeed the refraction of light in the eye, and precede mental operation, will, if they are ever to be known by man, constitute a part of Physiology. But no proposition relating to one of these orders of phenomena can contradict or support a proposition concerning another order.

The analogy of this latter case will justify another preliminary observation. In the case of the pleasure derived from beauty, the question whether that pleasure be original or derived is of secondary importance. It has been often observed that the same properties which are admired as beautiful in the horse, contribute also to his safety and speed; and they who infer that the admiration of beauty was originally founded on the convenience of fleetness and firmness, if they at the same time hold that the usefulness is gradually effaced, and that the admiration of a certain shape at length rises instantly without reference to any purpose, may, with perfect consistency, regard a sense of beauty as an independent and universal principle of human nature. The laws of such a feeling of beauty are discoverable only by self-observation. Those of the qualities which call it forth are ascertained by examination of the outward things which are called beautiful. But it is of the utmost importance to bear in mind, that he who contemplates the beautiful proportions of a horse, as the signs and proofs of security or quickness, and has in view these convenient qualities, is properly said to prefer the horse for his usefulness, not for his beauty; though he may choose him from the same outward appearance which pleases the admirer of the beautiful animal. He alone who derives immediate pleasure from the appearance itself, without reflection on any advantages which it may promise, is truly said to feel the beauty. The distinction, however, manifestly depends, not on the origin of the emotion, but on its object and nature when completely formed. Many of our most important perceptions through the eye are universally acknowledged to be acquired. But they are as general as the original perceptions of that organ; they arise as independently of our will, and human nature would be quite as imperfect without them. An adult who did not immediately see the different distances of objects from his eye, would be thought by every one to be as great a deviation from the ordinary state of man as if he were incapable of distinguishing the brightest sunshine from the darkest midnight. Acquired perceptions and sentiments may therefore be termed natural, as much as those which are more commonly so called, if they be as rarely found wanting. Ethical theories can never be satisfactorily discussed by those who do not constantly bear in mind, that the question concerning the existence of a moral faculty in man which immediately approves or disapproves without reference to any further object, is perfectly distinct, on the one hand, from that which inquires into the qualities thus approved or disapproved; and on the other, from an inquiry whether that faculty be derived from other parts of our mental frame, or be itself one of the ultimate constituent principles of human nature.

SECTION II.

Retrospect of Ancient Ethics.

Inquiries concerning the nature of mind, the first principles of knowledge, the origin and government of the world, appear to have been among the earliest objects which employed the understanding of civilized men. Fragments of such speculation are handed down from the legendary age of Greek philosophy. In the remaining monuments of that more an-
cient form of civilisation which sprung up in Asia, we see clearly that the Braminical philosophers, in times perhaps before the dawn of western history, had run round that dark and little circle of systems which an unquenchable thirst of knowledge has since urged both the speculators of ancient Greece and those of Christendom to retrace. The wall of adamant which bounds human inquiry has scarcely ever been discovered by any adventurer, until he was roused by the shock which drove him back. It is otherwise with the theory of morals. No controversy seems to have arisen regarding it in Greece, till the rise and conflict of the Stoical and Epicurean schools; and the ethical disputes of the modern world originated with the writings of Hobbes about the middle of the seventeenth century. Perhaps the longer abstinence from debate on this subject may have sprung from reverence for morality. Perhaps also, where the world were unanimous in their practical opinions, little need was felt of exact theory. The teachers of morals were content with partial or secondary principles, with the combination of principles not always reconcilable, even with vague but specious phrases which in any degree explained or seemed to explain the rules of the art of life—which seemed at once too evident to need investigation, and too venerable to be approached by controversy.

Perhaps the subtle genius of Greece was in part withheld from indulging itself in ethical controversy by the influence of Socrates, who was much more a teacher of virtue than even a searcher after truth—

Whom, well inspired, the oracle pronounced
Wisest of men.

It was doubtless because he chose that better part that he was thus spoken of by the man whose commendation is glory, and who, from the loftiest eminence of moral genius ever reached by a mortal, was perhaps alone worthy to place a new crown on the brow of the martyr of virtue.

Aristippus indeed, a wit and a worldling, bore
rowed nothing from the conversations of Socrates but a few maxims for husbanding the enjoyments of sense. Antisthenes also, a hearer but not a follower, founded a school of parade and exaggeration, which caused his master to disown him by the ingenious rebuke, "I see your vanity through your threadbare cloak." The modest doubts of the most sober of moralists, and his indisposition to fruitless abstractions, were in process of time employed as the foundation of systematic scepticism; the most presumptuous, inapplicable, and inconsistent of all the results of human meditation. But though his lessons were thus distorted by the perverse ingenuity of some who heard him, the authority of his practical sense may be traced in the moral writings of those most celebrated philosophers who were directly or indirectly his disciples. Plato, the most famous of his scholars, the most eloquent of Grecian writers, and the earliest moral philosopher whose writings have come down to us, employed his genius in the composition of dialogues, in which his master performed the principal part. These beautiful conversations would have lost their charm of verisimilitude, of dramatic vivacity, of picturesque representation of character, if they had been subjected to the constraint of method. They necessarily presuppose much oral instruction. They frequently quote, and doubtless oftener allude to the opinions of predecessors and contemporaries whose works have perished, and of whose doctrines only some fragments are preserved.

In these circumstances, it must be difficult for the most learned and philosophical of his commentators to give a just representation of his doctrines, if he really framed or adopted a system. The moral part of his works is more accessible. The vein of thought which runs through them is always visible. The object is to inspire the love of truth, of wisdom, of beauty, especially of goodness the highest beauty, and of that supreme and eternal mind, which contains all truth and wisdom, all beauty and good-
ness. By the love or delightful contemplation and pursuit of these transcendent aims for their own sake only, he represented the mind of man as raised from low and perishable objects, and prepared for those high destinies which are appointed for all those who are capable of them.

The application to moral qualities of terms which denote outward beauty, though by him perhaps carried to excess, is an illustrative metaphor, as well warranted by the poverty of language as any other employed to signify the attributes of mind. The beautiful in his language denoted all that of which the mere contemplation is in itself delightful, without any admixture of organic pleasure, and without being regarded as the means of attaining any farther end. The feeling which belongs to it he called love; a word which, as comprehending complacency, benevolence, and affection, and reaching from the neighbourhood of the senses to the most sublime of human thoughts, is foreign from the colder and more exact language of our philosophy; but which perhaps then happily served to lure both the lovers of poetry and the votaries of superstition to the school of truth and goodness in the groves of the Academy. He enforced these lessons by an inexhaustible variety of just and beautiful illustrations,—sometimes striking from their familiarity, sometimes subduing by their grandeur; and his works are the storehouse from which moralists have from age to age borrowed the means of rendering moral instruction easier and more delightful. Virtue he represented as the harmony of the whole soul;—as a peace between all its principles and desires, assigning to each as much space as they can occupy, without encroaching on each other;—as a state of perfect health, in which every function was performed with ease, pleasure, and vigour;—as a well-ordered commonwealth, where the obedient passions executed with energy the laws and commands of reason. The vicious mind presented the odious character, sometimes of discord, of war;—sometimes of disease;—always of passions warring with each other in eternal anarchy. Consistent with himself, and at peace with his fellows, the good man felt in the quiet of his conscience a foretaste of the approbation of God. “Oh what ardent love would virtue inspire if she could be seen.” “If the heart of a tyrant could be laid bare, we should see how it was cut, and torn by its own evil passions and by an avenging conscience.”

Perhaps in every one of these illustrations, an eye trained in the history of Ethics may discover the germ of the whole or of a part of some subsequent theory. But to examine it thus would not be to look at it with the eye of Plato. His aim was as practical as that of Socrates. He employed every topic, without regard to its place in a system, or even always to its force as argument, which could attract the small portion of the community then accessible to cultivation; who, it should not be forgotten, had no moral instructor but the philosopher, unaided, if not thwarted, by the reigning superstition; for religion had not then, besides her own discoveries, brought down the most awful and the most beautiful forms of moral truth to the humblest station in human society.

Ethics retained her sober spirit in the hands of his great scholar and rival Aristotle, who,

1 The most probable etymology of παθητικος seems to be from παθειν to burn. What burns commonly shines. Schiiss, in German, which means beautiful, is derived from schielien, to shine. The word παθητικος was used for right, so early as the Homeric Poems. II. xvii. 19. In the philosophical age it became a technical term, with little other remains of the metaphorical sense than what the genius and art of a fine writer might sometimes rekindle. Homoeotum, the term by which Cicero translates the παθητικος, being derived from outward honours, is a less happy metaphor. In our language, the terms being from foreign roots, contribute nothing to illustrate the progress of thought.

2 Let it not be forgotten, that for this terrible description, Socrates, to whom it is ascribed by Plato (De Rep. ix.) is called “Praestantissimus superstitionem,” by a writer of the most masculine understanding, the least subject to be transported by enthusiasm. (Tact. Ann. vi. 6.) “Qua vulnere!” says Cicero, in alluding to the same passage. (De Offic. ii. 21.)

3 There can hardly be a finer example of Plato’s practical morals than his observations on the treatment of slaves. Genuine humanity and real probity, says he, are brought to the test, by the behaviour of a man to slaves, whom he may wrong with impunity. Δια των εκ τουτουκ με ιππαχυν ουν την λοικ, μεν αι εντολοις της αρχοντευς ης αντιτριγυρον ης ευ τροφον εκλογην. (Plato de Legibus. Lib. vi. edit. Bipont. VIII. 308.)

That Plato was considered as the fountain of ancient morals, would be sufficiently evident from Cicero alone. “Ex hoc ignoto Platoni, quasi quodam sancto augustoque fonte, nostra omnis manus initio orto.” (Tusc. Quest. v. 13.) Perhaps the sober Quintilian meant to mingle some censure with the highest praise: “Plato, qui eloquenti facultate divina quadam et Homericæ, multum supra prosam orationem surgit.” (Inst. Orat. x. 1.)
though he certainly surpassed all men in acute distinction, in subtle argument, in severe method, in the power of analyzing what is most compounded, and of reducing to simple principles the most various and unlike appearances, yet appears to be still more raised above his fellows by the prodigious faculty of laying aside these extraordinary endowments whenever his present purpose required it; as in his History of Animals, in his Treatises on Philosophical Criticism, and in his Practical Writings, political as well as moral. Contrasted as his genius was to that of Plato, not only by its logical and metaphysical attributes, but by the regard to experience and observation of nature which, in him perhaps alone, accompanied them;—though they may be considered as the original representatives of the two antagonist tendencies of Philosophy—that which would ennoble man, and that which seeks rather to explain nature; yet opposite as they are in other respects, the master and the scholar combine to guard the Rule of Life against the licentious irruptions of the Sophists.

In Ethics alone their systems differed more in words than in things. That happiness consisted in virtuous pleasure, chiefly dependent on the state of mind, but not unaffected by outward agents, was the doctrine of both. Both would with Socrates have called Happiness “unrepented Pleasure.” Neither distinguished the two elements which they represented as constituting the supreme good from each other; partly, perhaps, from a fear of appearing to separate them. Plato more habitually considered happiness as the natural fruit of virtue; Aristotle oftener viewed virtue as the means of attaining happiness. The celebrated doctrine of the Peripatetics, which placed all virtues in a medium between opposite vices, was probably suggested by the Platonic representation of its necessity to keep up harmony between the different parts of our nature. The perfection of a compound machine is attained where all its parts have the fullest scope for action. Where one is so far exerted as to repress others, there is a vice of excess. When any one has less activity than it might exert without disturbing others, there is a vice of defect. The point which all reach without collision against each other, is the mediocrity in which the Peripatetics placed virtue.

It was not till near a century after the death of Plato that Ethics became the scene of philosophical contest between the adverse schools of Epicurus and Zeno; whose errors afford an instructive example, that in the formation of theory, partial truth is equivalent to absolute falsehood. As the astronomer who left either the centripetal or the centrifugal force of the planets out of his view, would err as completely as he who excluded both, so the Epicureans and Stoics, who each confined themselves to real but not exclusive principles in morals, departed as widely from the truth as if they had adopted no part of it. Every partial theory is indeed directly false, inasmuch as it ascribes to one or few causes what is produced by more. As the extreme opinions of one if not both of these schools have been often revived with variations and refinements in modern times, and are still not without influence on ethical systems, it may be allowable to make some observations on this earliest of moral controversies.

“All other virtues,” said Epicurus, “grow from prudence, which teaches that we cannot live pleasurably without living justly and virtuously, nor live justly and virtuously without living pleasurably.” The illustration of this sentence formed the whole moral discipline of Epicurus. To him we owe the general concurrence of reflecting men in succeeding times, in the important truth, that men cannot be happy without a virtuous frame of mind and course of life; a truth of inestimable value, not peculiar to the Epicureans, but placed by their exaggerations in a stronger light,—a truth, it must be added, of

1 “Una et consentiens duobus vocabulis philosophiae forma instituta est, Academicorum et Peripateticorum; qui rebus congruentes, nominibus differentient.” (Cic. Acad. Qvest. i. 4.)

less importance as a motive to right conduct than to the completeness of Moral Theory, which, however, it is very far from solely constituting. With that truth the Epicureans blended another position, which indeed is contained in the first words of the above statement; namely, that because virtue promotes happiness, every act of virtue must be done in order to promote the happiness of the agent. They and their modern followers tacitly assume, that the latter position is the consequence of the former; as if it were an inference from the necessity of food to life, that the fear of death should be substituted for the appetite of hunger as a motive for eating. "Friendship," says Epicurus, "is to be pursued by the wise man only for its usefulness, but he will begin as he sows the field in order to reap."1 It is obvious, that if these words be confined to outward benefits, they may be sometimes true, but never can be pertinent; for outward acts sometimes show kindness, but never compose it. If they be applied to kind feeling they would indeed be pertinent, but they would be evidently and totally false; for it is most certain that no man acquires an affection merely from his belief that it would be agreeable or advantageous to feel it. Kindness cannot indeed be pursued on account of the pleasure which belongs to it; for man can no more know the pleasure till he has felt the affection, than he can form an idea of colour without the sense of sight. The moral character of Epicurus was excellent; no man more enjoyed the pleasure or better performed the duties of friendship. The letter of his system was no more indulgent to vice than that of any other moralist.2 Although, therefore, he has the merit of having more strongly inculcated the connection of virtue with happiness, perhaps by the faulty excess of treating it as an exclusive principle; yet his doctrine was justly charged with indisposing the mind to those exalted and generous sentiments, without which no pure, elevated, bold, generous, or tender virtues can exist.3

As Epicurus represented the tendency of virtue, which is a most important truth in ethical theory, as the sole inducement to virtuous practice; so Zeno, in his disposition towards the opposite extreme, was inclined to consider the moral sentiments which are the motives of right conduct, as being the sole principles of moral science. The confusion was equally great in a philosophical view; but that of Epicurus was more fatal to interests of higher importance than those of philosophy. Had the Stoics been content with affixing that virtue is the source of all that part of our happiness which depends on ourselves, they would have taken a position from which it would have been impossible to drive them; they would have laid down a principle as of great comprehension in practice as their wider pretensions; a simple and incontrovertible truth, beyond which every thing is an object of mere curiosity to man. Our information, however, about the opinions of the more celebrated Stoics is very scanty. None of their own writings are preserved. We know little of them but from Cicero, the translator of Grecian philosophy, and from the Greek compilers of a later age; authorities which would be imperfect in the history of facts, but which are of far less value in the history of opinions, where a right conception often depends upon the minutest distinctions between words. We know that Zeno was more simple, and that Chrysippus, who was accounted the prop of the Stoic Porch, abounded more in subtle distinction and systematic spirit.4 His power was attested as much by the antagonists whom he called forth, as by the scholars whom he formed. "Had there been no Chrysippus, there would

1 "Hic est locus," Gassendi confesses, "ob quern Epicurus non parum vexatur, quando nemo non reprehendit, parari amicitiam non sui, sed utilitatis gratia." (Diog. Laert. I.16.)

2 "It is due to him to observe, that he treated humanity towards slaves, as one of the characteristics of a wise man. (Diog. Laert. I.16. 665.) It is not unworthy of remark, that neither Plato nor Epicurus thought it necessary to abstain from these topics in a city full of slaves, many of whom were men not destitute of knowledge.

3 "Nil generosum, null magnificum sitis," Cicero.

4 "Chrysippus, qui fulcire putatur porticum Stoicorum." Cicero. Elsewhere, "Acutissimus, sed in scribendo excitus et jejunus, scripsit rhetoricae seu potius obnudescendi artem;" nearly as we should speak of a Schoolman.
have been no Carneades," was the saying of the latter philosopher himself; as it might have been said in the eighteenth century, "Had there been no Hume, there would have been no Kant and no Reid." Cleanthes, when one of his followers would pay court to him by laying vices to the charge of his most formidable opponent, Arcesilaus the academic, answered with a justice and candour unhappily too rare, "Silence,—do not malign him;—though he attacks virtue by his arguments, he confirms its authority by his life." Arcesilaus, whether modestly or churlishly, replied, "I do not choose to be flattered." Cleanthes, with a superiority of repartee, as well as charity, replied, "Is it flattery to say that you speak one thing and do another?" It would be vain to expect that the fragments of the Professors who lectured in the Stoic School for five hundred years, should be capable of being moulded into one consistent system; and we see that in Epicurus at least, the exaggeration of the sect was lowered to the level of reason, by confining the sufficiency of virtue to those cases only where happiness is attainable by our voluntary acts. It ought to be added, in extenuation of a noble error, that the power of habit and character to struggle against outward evils has been proved by experience to be in some instances so prodigious, that no man can presume to fix the utmost limit of its possible increase.

The attempt, however, of the Stoics to stretch the bounds of their system beyond the limits of nature, produced the inevitable inconvenience of dooming them to fluctuate between a wild fanaticism on the one hand, and, on the other, concessions which left their differences from other philosophers purely verbal. Many of their doctrines appear to be modifications of their original opinions, introduced as opposition became more formidable. In this manner they were driven to the necessity of admitting that the objects of our desires and appetites are worthy of preference, though they are denied to be constituents of happiness. It was thus that they were obliged to invent a double morality; one for mankind at large, from whom was expected no more than the

1 "Patience, sovereign o'er transmuted ill." But as soon as the ill was really "transmuted" into good, it is evident that there was no longer any scope left for the exercise of patience.
and, if humanity and justice could for a moment be silenced, one of the most illustrious of men. There is no scene in history so memorable as that in which Caesar mastered a nobility of which Lucullus and Hortensius, Sulpicius and Catulus, Pompey, Pompey, Brutus and Cato, were members. This renowned body had from the time of Scipio sought the Greek philosophy as an amusement or an ornament. Some few, "in thought more elevate," caught the love of truth, and were ambitious of discovering a solid foundation for the Rule of Life. The influence of the Grecian systems was tried by their effect on a body of men of the utmost originality, energy, and variety of character, during the five centuries between Carneades and Constantine, in their successive positions of rulers of the world, and of slaves under the best and under the worst of uncontrolled masters. If we had found this influence perfectly uniform, we should have justly suspected our own love of system of having in part bestowed that appearance on it. Had there been no trace of such an influence discoverable in so great an experiment, we must have acquiesced in the paradox, that opinion does not at all affect conduct. The result is the more satisfactory, because it appears to illustrate general tendency without excluding very remarkable exceptions.

Though Cassius was an Epicurean, the true representative of that school was the accomplished, prudent, friendly, good-natured timeserver Atticus, the pliant slave of every tyrant, who could kiss the hand of Antony, imbrued as it was in the blood of Cicero. The pure school of Plato sent forth Marcus Brutus, the signal humanity of whose life was both necessary and sufficient to prove that his daring breach of venerable rules flowed only from that dire necessity which left no other means of upholding the most sacred principles. The Roman orator, though in speculative questions he embraced that mitigated doubt which allowed most ease and freedom to his genius, yet in those moral writings where his heart was most deeply interested, followed the severest sect of philosophy, and became almost a Stoic. If any conclusion may be hazarded from this trial of systems, the greatest which history has recorded, we must not refuse our decided though not undistinguishing preference to that noble school which preserved great souls untainted at the court of dissolute and ferocious tyrants; which exalted the slave of one of Nero's courtiers to be a moral teacher of aftertimes; which for the first, and hitherto for the only time, breathed philosophy and justice into those rules of law which govern the ordinary concerns of every man; and which, above all, has contributed, by the examples of Marcus Porcius Cato and of Marcus Aurelius Antoninus, to raise the dignity of our species, to keep alive a more ardent love of virtue, and a more awful sense of duty, throughout all generations.

The result of this short review of the practical philosophy of Greece seems to be, that though it was rich in rules for the conduct of life, and in exhibitions of the beauty of virtue, and though it contains glimpses of just theory and fragments of perhaps every moral truth, yet it did not leave behind any precise and coherent system; unless we except that of Epicurus, who purchased consistency, method, and perspicuity too dearly by the sacrifice of truth, and by narrowing and lowering his views of human nature, so as to enfeeble, if not extinguish, all the vigorous motives to arduous virtue. It is remarkable, that while of the eight Professors who taught in the Porch, from Zeno to Posidonius, everyone either softened or exaggerated the doctrines of his predecessor; and while the beautiful and reverend philosophy of Plato had, in his own Academy, degenerated into a scepticism which did not spare morality itself, the system of Epicurus remained without change; and his disciples continued for ages to show personal honours to his memory, in a manner which may seem accountable among those who were taught to measure propriety by a calculation of palpable

1 Of all testimonies to the character of the Stoics, perhaps the most decisive is the speech of the vile sycophant Cato, in the mock impeachment of Thrasius Pictus, before a senate of slaves: "Ut quondam C. Caesar et M. Catonem, tua quae te, Nero, et Thraseum, avibus discordarum civitatis loquitur...Ista secta Tuberonum et Favenos, veteri quoque religione ingrata nomina, genuit." (Tacit. Ann. xvi. 22.)

See Notes and Illustrations, note A.
and outward usefulness. This steady adherence is in part doubtless attributable to the portion of truth which the doctrine contains; in some degree perhaps to the amiable and unboastful character of Epicurus; not a little, it may be, to the dishonour of deserting an unpopular cause; but probably most of all to that mental indolence which disposes the mind to rest in a simple system, comprehended at a glance, and easily falling in, both with ordinary maxims of discretion, and with the vulgar commonplaces of satire on human nature.\footnote{The progress of commonplace satire on sexes or professions, and (he might have added) on nations, has been exquisitely touched by Gray in his Remarks on Lydgate; a fragment containing passages as finely thought and written as any in English prose. (\textit{Gray's Works}, Matthais's edition, vol. I. p. 55.) General satire on mankind is still more absurd; for no invective can be so unreasonable as that which is founded on falling short of an ideal standard.} When all instruction was conveyed by lectures, and when one master taught the whole circle of the sciences in one school, it was natural that the attachment of pupils to a Professor should be more devoted than when, as in our times, he can teach only a small portion of a knowledge spreading towards infinity, and even in his own little province finds a rival in every good writer who has treated the same subject. The superior attachment of the Epicureans to their master is not without some parallel among the followers of similar principles in our own age, who have also revived some part of that indifference to eloquence and poetry which may be imputed to the habit of contemplating all things in relation to happiness, and to (what seems its uniform effect) the egregious miscalculation which leaves a multitude of mental pleasures out of the account. It may be said, indeed, that the Epicurean doctrine has continued with little change to the present day; at least it is certain that no other ancient doctrine has proved so capable of being restored in the same form among the moderns; and it may be added, that Hobbes and Gassendi, as well as some of our own contemporaries, are as confident in their opinions, and as intolerant of scepticism, as the old Epicureans. The resemblance of modern to ancient opinions, concerning some of those questions upon which ethical controversy must always hinge, may be a sufficient excuse for a retrospect of the Greek morals; which it is hoped will simplify and shorten subsequent observation on those more recent disputes which form the proper subject of this discourse.

The genius of Greece fell with liberty. The Grecian philosophy received its mortal wound in the contests between scepticism and dogmatism which occupied the schools in the age of Cicero. The Sceptics could only perplex, and confute, and destroy. Their occupation was gone as soon as they succeeded. They had nothing to substitute for what they overthrew; and they rendered their own art of no further use. They were no more than venomous animals, who stung their victims to death, but also breathed their last into the wound. A third age of Grecian literature indeed arose at Alexandria, under the Macedonian kings of Egypt; laudably distinguished by exposition, criticism, and imitation, sometimes abused for the purposes of literary forgery, still more honoured by some learned and highly-cultivated poets, as well as by diligent cultivators of history and science; among whom some began about the first preaching of Christianity to turn their minds once more to that high philosophy which seeks for the fundamental principles of human knowledge. Philo, a learned and philosophical Hebrew, one of the flourishing colony of his nation established in that city, endeavoured to reconcile the Platonic Philosophy with the Mosaic Law and the Sacred Books of the Old Testament. About the end of the second century, when the Christians, Hebrews, Pagans, and various other sects of semi or Pseudo-Christian Gnostics appear to have studied in the same schools, the almost inevitable tendency of doctrines, however discordant, in such circumstances to amalgamate, produced its full effect under Ammonius Saccas; a celebrated Professor, who, by selection from the Greek systems, the Hebrew books, the oriental religions, and by some of that concession to the rising spirit of Christianity, of which the Gnostics had set the example, composed a very mixed system, commonly de-
signated as the Eclectic Philosophy. The controversies between his contemporaries and followers, especially those of Clement and Origen, the victorious champions of Christianity, with Plotinus and Porphyry, who endeavoured to preserve Paganism by clothing it in a disguise of philosophical Theism, are, from the effects towards which they contributed, the most memorable in the history of human opinion.

But their connection with modern ethics is too faint to warrant any observation in this place; on the imperfect and partial memorials of them which have reached us. The death of Boethius in the west, and the closing of the Athenian schools by Justinian, may be considered as the last events in the history of ancient philosophy.

SECTION III.

Retrospect of Scholastic Ethics.

An interval of a thousand years elapsed between the close of ancient and the rise of modern philosophy; the most unexplored, yet not the least instructive portion of the history of European opinion. In that period the sources of the institutions, the manners, the characteristic distinctions of modern nations, have been traced by a series of philosophical inquirers from Montesquieu to Hallam; and there also, it may be added, more than among the ancients, are the wellsprings of our speculative doctrines and controversies. Far from being inactive, the human mind, during that period of exaggerated darkness, produced discoveries in science, inventions in art, and contrivances in government, some of which, perhaps, were rather favoured than hindered by the disorders of society, and by the twilight in which men and things were seen. Had Boethius, the last of the ancients, foreseen, that within two centuries of his death, in the province of Britain, then a prey to all the horrors of barbaric invasion, a chief of one of the fiercest tribes of barbarians should translate into the jargon of his freebooters the work on *The Consolations of Philosophy,* of which the composition had soothed the cruel imprisonment of the philosophic Roman himself, he must, even amidst his sufferings, have derived some gratification from such an assurance of the recovery of mankind from ferocity and ignorance. But had he been allowed to revisit the earth in the middle of the sixteenth century, with what wonder and delight might he have contemplated the new and fairer order which was beginning to disclose its beauty, and to promise more than it revealed. He would have seen personal slavery nearly extinguished, and women, first released from oriental imprisonment by the Greeks, and raised to a higher dignity among the Romans, at length fast approaching to due equality; two revolutions the most signal and beneficial since the dawn of civilisation. He
would have seen the discovery of gunpowder, which for ever guarded civilized society against barbarians, while it transferred military strength from the few to the many; of paper and printing, which rendered a second destruction of the repositories of knowledge impossible, as well as opened a way by which it was to be finally accessible to all mankind; of the compass, by means of which navigation had ascertained the form of the planet, and laid open a new continent more extensive than his world. If he had turned to civil institutions, he might have learned that some nations had preserved an ancient, simple, and seemingly rude mode of legal proceeding, which threw into the hands of the majority of men a far larger share of judicial power than was enjoyed by them in any ancient democracy. He would have seen everywhere the remains of that principle of representation, the glory of the Teutonic race, by which popular government, anciently imprisoned in cities, became capable of being strengthened by its extension over vast countries, to which experience cannot even now assign any limits; and which, in times still distant, was to exhibit, in the newly-discovered continent, a republican confederacy, likely to surpass the Macedonian and Roman empires in extent, greatness, and duration, but gloriously founded on the equal rights, not like them on the universal subjection, of mankind. In one respect, indeed, he might have lamented that the race of man had made a really retrograde movement; that they had lost the liberty of philosophizing; that the open exercise of their highest faculties was interdicted. But he might also have perceived that this giant evil had received a mortal wound from Luther, who in his warfare against Rome had struck a blow against all human authority, and unconsciously disclosed to mankind that they were entitled, or rather bound, to form and utter their own opinions, and most of all on the most deeply interesting subjects: for although this most fruitful of moral truths was not yet so released from its combination with the wars and passions of the age as to assume a distinct and visible form, its action was already discoverable in the divisions among the Reformers, and in the fears and struggles of civil and ecclesiastical oppressors. The Council of Trent, and the Courts of Paris, Madrid, and Rome, had before that time foreboded the emancipation of reason.

Though the middle age be chiefly memorable as that in which the foundations of a new order of society were laid, uniting the stability of the oriental system, without its inflexibility, to the activity of the Hellenic civilisation, without its disorder and inconstancy, yet it is not unworthy of notice, on account of the subterranean current which flows through it, from the speculations of ancient to those of modern times. That dark stream must be uncovered before the history of the European understanding can be thoroughly comprehended. It was lawful for the emancipators of reason in their first struggles to carry on mortal war against the Schoolmen. The necessity has long ceased; they are no longer dangerous; and it is now felt by philosophers that it is time to explore and estimate that vast portion of the history of philosophy, from which we have scornfully turned our eyes. A few sentences only can be allotted to the subject in this place. In the first moiety of the middle age, the darkness of Christendom was faintly broken by a few thinly-scattered lights. Even then, Moses Ben Maimon taught philosophy among the persecuted Hebrews, whose ancient schools had never perhaps been wholly interrupted; and a series of distinguished Mahometans, among whom two are known to us by the names of Avicenna and Averroes, translated the Peripatetic writings into their own language, expounded their doctrines in no servile spirit to their followers, and

1 TENNEMAN, Geschichte der Philosophie, VIII. Band. 1811. COUSIN, Cours de l'Histoire de la Philos. p. 20. Paris, 1828. My esteem for this admirable writer encourages me to say, that the beauty of his diction has sometimes the same effect on his thoughts that a sunny baze produces on outward objects; and to submit to his serious consideration, whether the allurements of Schelling's system have not betrayed him into a too frequent forgetfulness that principles, equally adapted to all phenomena, furnish in speculation no possible test of their truth, and lead, in practice, to total indifference and inactivity respecting human affairs. I quote with pleasure an excellent observation from this work. "Le moyen âge n'est pas autre chose que la formation pénible, lente et sanglante, de tous les éléments de la civilisation moderne; je dis la formation, et non leur développement." (P. 27)
enabled the European Christians to make those versions of them from Arabic into Latin, which in the eleventh and twelfth centuries gave birth to the scholastic philosophy.

The schoolmen were properly theologians, who employed philosophy only to define and support that system of Christian belief which they and their contemporaries had embraced. The founder of that theological system was Aurelius Augustinus, (called by us Augustin) bishop of Hippo, in the province of Africa; a man of great genius and ardent character, who adopted at different periods of his life the most various, but at all times the most decisive and systematic, as well as daring and extreme opinions. This extraordinary man became, after some struggles, the chief Doctor, and for ages almost the sole oracle of the Latin church. It happened by a singular accident, that the schoolmen of the twelfth century, who adopted his theology, instead of borrowing their defensive weapons from Plato, the favourite of their master, had recourse for the exposition and maintenance of their doctrines to the writings of Aristotle, the least pious of philosophical theists. The Augustinian doctrines of original sin, predestination, and grace, little known to the earlier Christian writers, who appear indeed to have adopted opposite and milder opinions, were espoused by Augustin himself in his old age; when by a violent swing from his youthful Manicheism, which divided the sovereignty of the world between two adverse beings, he did not shrink, in his pious solicitude for tracing the power of God in all events, from presenting the most mysterious parts of the moral government of the universe, in their darkest colours and their sternest shape, as articles of faith, the objects of the habitual meditation and practical assent of mankind. The principles of his rigorous system, though not with all their legitimate consequences, were taught in the schools; respectfully promulgated rather than much inculcated by the western church (for in the East these opinions seem to have been unknown); scarcely perhaps distinctly assented to by the majority of the clergy; and seldom heard of by laymen till the systematic genius and fervid eloquence of Calvin rendered them a popular creed in the most devout and moral portion of the Christian world. Anselm, the Piedmontese archbishop of Canterbury, was the earliest reviver of the Augustinian opinions. Aquinas was their most redoubled champion. To them, however, the latter joined others of a different spirit. Faith, according to him, was a virtue, not in the sense in which it denotes the things believed, but in that in which it signifies the state of mind which leads to right belief. Goodness he regarded as the moving principle of the Divine government; justice, as a modification of goodness; and, with all his zeal to magnify the sovereignty of God, he yet taught, that though God always wills what is just, nothing is just solely because he wills it. Scotus, the most subtle of doctors, recoils from the Augustinian rigor, though he rather intimates than avows his doubts. He was assailed for his tendency towards the Pelagian or Anti-Augustinian doctrines by many opponents, of whom the most famous in his time was Thomas Bradwardine, archbishop of Canterbury, formerly confessor of Edward III., whose defence of predestination was among the most noted works of that age. He revived the principles of the ancient philosophers, who, from Plato to Marcus Aurelius, taught that error of judgment, being involuntary, is not the proper subject of moral disapprobation; which indeed is implied in Aquinas's account of faith. But he appears to have been the first whose language inclined to-

1 Notes and Illustrations, note B.
2 Died in 1109.
3 Born in 1224; died in 1279. Notes and Illustrations, note C.
4 Born about 1205; died at Cologne (where his grave is still shown) in 1308. Whether he was a native of Dunstan in Northumberland, or of Dunse in Berwickshire, or of Down in Ireland, was a question long and warmly contested, but which seems to be settled by his biographer, Luke Wadding, who quotes a passage of Scotus's Commentary on Aristotle's Metaphysics, where he illustrates his author thus: "As in the definition of St Francis, or St Patrick, man is necessarily presupposed." (Scotii Opera, I. 3.) As Scotus was a Franciscan, the mention of St Patrick seems to show that he was an Irishman. Notes and Illustrations, note D.
5 Born about 1390; died in 1349; the contemporary of Chaucer, and probably a fellow-student of Wicliffe and Roger Bacon. His principal work was entitled, De Causa Dei contra Pelagium, et de Virtute Consensis, Libri III.
6 Notes and Illustrations, note E.
wards that most pernicious of moral heresies, which represents morality to be founded on will.\(^1\) William of Ockham, the most justly celebrated of English schoolmen, went so far beyond this inclination of his master, as to affirm, that "if God had commanded his creatures to hate himself, the hatred of God would ever be the duty of man;" a monstrous hyperbole, into which he was perhaps betrayed by his denial of the doctrine of general ideas, the pre-existence of which in the Eternal intellect was commonly regarded as the foundation of the immutable nature of morality. The doctrine of Ockham, which by necessary implication refuses moral attributes to the Deity, and contradicts the existence of a moral government, is practically equivalent to atheism.\(^2\) As all devotional feelings have moral qualities for their sole object; as no being can inspire loye or reverence otherwise than by those qualities which are naturally amiable or venerable, this doctrine would, if men were consistent, extinguish piety, or, in other words, annihilate religion. Yet so astonishing are the contradictions of human nature, that this most impious of all opinions probably originated in a pious solicitude to magnify the sovereignty of God, and to exalt his authority even above his own goodness. Hence we may understand its adoption by John Gerson, the oracle of the Council of Constance, and the great opponent of the spiritual monarchy of the Pope; a pious mystic, who placed religion in devout feeling.\(^3\) In further explanation, it may be added, that Gerson was of the sect of the Nominalists, of which Ockham was the founder; and that he was the more ready to follow his master, because they both courageously maintained the independence of the state on the church, and the authority of the church over the Pope. The general opinion of the schools was, however, that of Aquinas, who, from the native soundness of his own understanding, as well as from the excellent example of Aristotle, was averse from all rash and extreme dogmas on questions which had any relation, however distant, to the duties of life.

It is very remarkable, though hitherto unobserved, that Aquinas anticipated those controversies respecting perfect disinterestedness in the religious affections which occupied the most illustrious members of his communion\(^4\) four hundred years after his death; and that he discussed the like question respecting the other affections of human nature with a fulness and clearness, an exactness of distinction, and a justness of determination, scarcely surpassed by the most acute of modern philosophers.\(^5\) It ought to be added, that, according to the most natural and reasonable construction of his words, he allowed to the church a control only over spiritual concerns, and recognised the supremacy of the civil powers in all temporal affairs.\(^6\)

It has already been stated that the scholastic system was a collection of dialectical subtilities, contrived for the support of the corrupted Christianity of that age, by a succession of divines, whose extraordinary powers of distinction and reasoning were morbidly enlarged in the long meditation of the cloister, by the exclusion of every other pursuit, and the consequent paley of every other faculty; who were cut off from all the materials on which the mind can operate, and doomed for ever to toil in defence of what they must never dare to examine; to whom their age and their condition denied the means of acquiring literature, of observing nature, or of studying mankind. The few in whom any portion of imagination and sensibility survived this discipline, retired from the noise of debate, to the contemplation of pure and beautiful visions. They

\(^1\) Notes and Illustrations, note F.

\(^2\) A passage to this effect, from Ockham, with nearly the same remark, has, since the text was written, been discovered on a re-pertual of Cudworth's *Immutabile Moralia*. See p. 10.

\(^4\) Bossuet and Fenelon.

\(^5\) See *Aquinas*, *Comm. in lib. Lib. Sentent. distinctio xxiq. quinquaginta. Art. 4. 4. Utrum Deus sit super omnia diligentissimus ex charitate." (Opera, IX. 322, 323.) Some illustrations of this memorable anticipation, which has escaped the research even of the industrious Tenneman, will be found in the Notes and Illustrations, note G.

\(^6\) Notes and Illustrations, note H.
were called Mystics. The greater part, driven back on themselves, had no better employment than to weave cobwebs out of the terms of art which they had vainly, though ingeniously, multiplied. The institution of clerical celibacy, originating in an enthusiastic pursuit of purity, promoted by a mistake in moral prudence, which aimed at raising religious teachers in the esteem of their fellows, and at concentrating their whole minds on professional duties, at last, encouraged by the ambitious policy of the see of Rome, desire of detaching them from all ties but her own, had the effect of shutting up all the avenues which Providence has opened for the entrance of social affection and virtuous feeling into the human heart. Though this institution perhaps prevented knowledge from becoming once more the exclusive inheritance of a sacerdotal caste; though the rise of innumerable laymen, of the lowest condition, to the highest dignities of the church, was the grand democratical principle of the middle age, and one of the most powerful agents in impelling mankind towards a better order; yet celibacy must be considered as one of the peculiar infelicities of these secluded philosophers; not only as it abridged their happiness, nor even solely, though chiefly, as it excluded them from the school in which the heart is humanized, but also (an inferior consideration, but more pertinent to our present purpose) because the extinction of these moral feelings was as much a subtraction from the moralist's store of facts and means of knowledge, as the loss of sight or of touch could prove to those of the naturalist.

Neither let it be thought that to have been destitute of letters was to them no more than a want of ornament and a curtailment of gratification. Every poem, every history, every oration, every picture, every statute, is an experiment on human feeling, the grand object of investigation by the moralist. Every work of genius in every department of ingenious art and polite literature, in proportion to the extent and duration of its sway over the spirits of men, is a repository of ethical facts, of which the moral philosopher cannot be deprived by his own insensibility or by the iniquity of the times, without being robbed of the most precious instruments and invaluable materials of his science. Moreover, letters, which are closer to human feeling than science can ever be, have another influence on the sentiments with which the sciences are viewed, on the activity with which they are pursued, on the safety with which they are preserved, and even on the mode and spirit in which they are cultivated: they are the channels by which ethical science has a constant intercourse with general feeling. As the arts called useful maintain the popular honour of physical knowledge, so polite letters allure the world into the neighbourhood of the sciences of mind and of morals. Whenever the agreeable vehicles of literature do not convey their doctrines to the public, they are liable to be interrupted by the dispersion of a handful of recluse doctors, and the overthrow of their barren and un lamented seminaries. Nor is this all; these sciences themselves suffer as much when they are thus released from the curb of common sense and natural feeling, as the public loses by the want of those aids to right practice which moral knowledge in its sound state is qualified to afford. The necessity of being intelligible at least to all persons who join superior understanding to habits of reflection, who are themselves in constant communication with the far wider circle of intelligent and judicious men, which slowly but surely forms general opinion, is the only effectual check on the natural proneness of metaphysical speculations to degenerate into gaudy dreams or a mere war of words. The disputants who are set free from the wholesome check of sense and feeling, generally carry their dogmatism so far as to rouse the sceptic, who from time to time is provoked to look into the timeliness of their cobwebs, and rushes in with his besom to sweep them and their systems into oblivion. It is true that literature, which thus draws forth moral science from the schools into the world, and recalls her from thorny distinctions to her natural alliance with the intellect and sentiments of mankind, may, in ages and nations otherwise situated, produce the contrary evil of rendering Ethics shallow, declamatory, and inconsistent. Europe at this moment affords, in different countries, specimens of these opposite and alike-mischievous extremes.
But we are now concerned only with the temptations and errors of the scholastic age.

We ought not so much to wonder at the mistakes of men so situated, as that they, without the restraints of the general understanding, and with the clogs of system and establishment, should in so many instances have opened questions untouched by the more unfettered ancients, and veins of speculation since mistakenly supposed to have been first explored in more modern times. Scarcely any metaphysical controversy agitated among recent philosophers was unknown to the schoolmen, unless we except that which relates to liberty and necessity, which would be an exception of doubtful propriety; for the disposition to it is clearly discoverable in the disputes of the Thomists and Scotists respecting the Augustinian and Pelagian doctrines, although restrained from the avowal of legitimate consequences on either side by the theological authority which both parties acknowledged. The Scotists steadfastly affirmed the blamelessness of erroneous opinion; a principle which is the only effectual security for conscientious inquiry, for mutual kindness, and for public quiet. The controversy between the Nominalists and Realists, treated by some modern writers as an example of barbarous wrangling, was in truth an anticipation of that modern dispute which still divides metaphysicians, whether the human mind can form general ideas, and whether the words which are supposed to convey such ideas be: not general terms, representing only a number of particular perceptions—questions so far from frivolous, that they deeply concern both the nature of reasoning and the structure of language;—on which Hobbes, Berkeley, Hume, Stewart, and Tooke, have followed the Nominalists; and Descartes, Locke, Reid, and Kant, have, with various modifications and some inconsistencies, adopted the doctrine of the Realists. With the schoolmen appears to have originated the form, though not the substance, of the celebrated maxim, which, whether true or false, is pregnant with systems, “There is nothing in the understanding which was not before in the senses.”

Ockham the Nominalist first denied the Peripatetic doctrine of the existence of certain species (since the time of Descartes called ideas) as the direct objects of perception and thought, interposed between the mind and outward objects; the modern opposition to which by Dr Reid has been supposed to justify the allotment of so high a station to that respectable philosopher. He taught also that we know nothing of mind but its acts, of which we are conscious. More inclination towards an independent philosophy is to be traced among the schoolmen than might be expected from their circumstances. Those who follow two guides will sometimes choose for themselves, and may prefer the subordinate on some occasions. Aristotle rivalled the church; and the church herself safely allowed considerable latitude to the philosophical reasonings of those who were only heard or read in colleges or cloisters, on condition that they neither impugned her authority, nor disserted from her worship, nor departed from the language of her creeds. The Nominalists were a freethinking sect, who, notwithstanding their defence of kings against the court of Rome, were persecuted by the civil power. It should not be forgotten that Luther was a Nominalist.

If not more remarkable, it is more pertinent to our purpose, that the ethical system of the schoolmen, or, to speak more properly, of Aquinas, as the moral master of Christendom for three centuries, was in its practical part so excellent as to leave little need of extensive change,

1 Notes and Illustrations, note I.
2 Locke speaks on this subject inconsistently; Reid calls himself a Conceptualist; Kant uses terms so different that he ought perhaps to be considered as of neither party. Leibnitz, varying in some measure from the general spirit of his speculations, warmly panegyrizes the Nominalists: “Secta Nominalium, omnium inter scholasticos profundissima, et hodiernae reformatae philosophandi rationi congruentissima.” (LEIBN. Op. IV. Pars I. p. 60.)
3 Nihil est in intellectu quod non prius fuit in sensu.
4 “Maximi vir ingenii, et eruditionis pro illo sevo summe, Wilhelmus Occam, Anglicus.” (LEIBN. ibid. p. 60.) The writings of Ockham, which are very rare, I have never seen. I owe my knowledge of them to Tenneman, who however quotes the words of Ockham, and of his disciple Briel.
5 “In Martini Lutheri scriptis prioribus amor Nominalium satim elucet, donec in oneris monachos equaliter affectus esse ceptit.” (LEIBN. IV. Pars I. p. 60.)
with the inevitable exception of the connection of his religious opinions with his precepts and counsels. His rule of life is neither lax nor impracticable. His grounds of duty are solely laid in the nature of man, and in the wellbeing of society. Such an intruder as subtlety seldom strays into his moral instructions. With a most imperfect knowledge of the Peripatetic writings, he came near the great master, by abstaining, in practical philosophy, from the unsuitable exercise of that faculty of distinction, in which he would probably have shown that he was little inferior to Aristotle if he had been equally unrestrained. His very frequent coincidence with modern moralists is doubtless to be ascribed chiefly to the nature of the subject; but in part also to that unbroken succession of teachers and writers, which preserved the observations contained in what had been long the text-book of the European schools, after the books themselves had been for ages banished and forgotten. The praises bestowed on Aquinas by every one of the few great men who appear to have examined his writings since the downfall of his power, among whom may be mentioned Erasmus, Grothus and Leibnitz, are chiefly, though not solely, referable to his ethical works. 1

Though the schoolmen had thus anticipated many modern controversies of a properly metaphysical sort, they left untouched most of those questions of ethical theory which were unknown to, or neglected by the ancients. They do not appear to have discriminated between the nature of moral sentiments, and the criterion of moral acts; to have considered to what faculty of our mind moral approbation is referable; or to have inquired whether our moral faculty, whatever it may be, is implanted or acquired. Those who measure only by palpable results, have very consistently regarded the metaphysical and theological controversies of the schools as a mere waste of intellectual power. But the contemplation of the athletic vigour and versatile skill manifested by the European understanding, at the moment when it emerged from this tedious and rugged discipline, leads, if not to approba-

1 See especially the excellent Preface of Leibnitz to Nizolius, sect. 57.
Charles V., on occasion of the conference held before him at Valladolid, in 1542, between Sepulveda, an advocate of the Spanish colonists, and Las Casas, the champion of the unhappy Americans; of which the result was a very imperfect edict of reformation in 1543, which, though it contained little more than a recognition of the principle of justice, almost excited a rebellion in Mexico. Sepulveda, a scholar and a reasoner, advanced many maxims which were specious, and in themselves reasonable, but which practically tended to defeat even the scanty and almost illusive reform which ensued. Las Casas was a passionate missionary, whose zeal, kindled by the long and near contemplation of cruelty, prompted him to exaggerations of fact and argument; yet, with all its errors, it afforded the only hope of preserving the natives of America from extirpation. The opinion of Soto could not fail to be conformable to his excellent principle, that "there can be no difference between Christians and Pagans, for the law of nations is equal to all nations." To Soto belongs the signal honour of being the first writer who condemned the African slave-trade. "It is affirmed," says he, "that the unhappy Ethiopians are by fraud or force carried away and sold as slaves. If this is true, neither those who have taken them, nor those who purchased them, nor those who hold them in bondage, can ever have a quiet conscience till they emancipate them, even if no compensation should be obtained." As the work which contains this memorable condemnation of man-stealing and slavery was the substance of lectures many years delivered at Salamanca, philosophy and religion

1 Many of the separate dissertations, on points of this nature, are contained in the immense collection entitled Tractatus Tractatuum, published at Venice in 1584, under the patronage of the Roman see. There are three de Bello; one by Lupus of Segovia when Francis I. was prisoner in Spain; another, more celebrated, by Francis Arias, who, on the 11th June 1532, discussed before the College of Cardinals the legitimacy of a war by the Emperor against the Pope. There are two de Pace; and others de Potestate Regia, de Pana Mortis, &c. The most ancient and scholastic is that of J. de Lignano of Milan de Bello. The above writers are mentioned in the Prolegomena to Grotius de Jure Belli. Pietro Belloni (Counsellor of the Duke of Savoy) de Re Militari, treats his subject with the minuteness of a Judge-Advocate, and has more modern examples, chiefly Italian, than Grotius.

2 Born in 1494; died in 1560. (Antonii Bibliotheca Hispana Nova.) The opinion of Soto's knowledge entertained by his contemporaries is expressed in a jingle, Qui sibi Sotum sibi totum.

3 Notes and Illustrations, note K.

4 "Indis non debere auferri imperium, ideo quia sunt pecatores, vel ideo quia non sunt Christiani," were the words of Victoria.

4 Notes and Illustrations, note L.

5 "Neque discrepantia (ut reor) est inter Christianos et infideles, quoniam ius gentium cunctis gentibus sequeale est."

6 Soto de Justitia et Jure, lib. iv. quast. ii. art. 2.
appear, by the hand of their faithful minister, to have thus smitten the monsters in their earliest infancy. It is hard for any man of the present age to conceive the praise which is due to the excellent monks who courageously asserted the rights of those whom they never saw, against the prejudices of their order, the supposed interest of their religion, the ambition of their government, the avarice and pride of their countrymen, and the prevalent opinions of their time.

Francis Suarez, a Jesuit, whose voluminous works amount to twenty-four volumes in folio, closes the list of writers of his class. His work on Laws, and on God the Lawgiver, may be added to the above treatise of Soto, as exhibiting the most accessible and perspicuous abridgement of the theological philosophy in its latest form.

Grotius, who, though he was the most upright and candid of men, could not have praised a Spanish Jesuit beyond his deserts, calls Suarez the most acute of philosophers and divines.

On a practical matter, which may be naturally mentioned here, though in strict method it belongs to another subject, the merit of Suarez is conspicuous. He first saw that international law was composed not only of the simple principles of justice applied to the intercourse between states, but of those usages, long observed in that intercourse by the European race, which have since been more exactly distinguished as the consuetudinary law acknowledged by the Christian nations of Europe and America.

This important point his views are more clear than those of his contemporary Alberico Gentili. It must even be owned, that the succeeding intimation of the same general doctrine by Grotius is somewhat more dark, perhaps from his excessive pursuit of concise diction.

SECTION IV.

Modern Ethics.

The introduction to the great work of Grotius, composed in the first years of his exile, and published at Paris in 1625, contains the most clear and authentic statement of the general principles of morals prevalent in Christendom after the close of the schools, and before the writings of Hobbes had given rise to those ethical controversies which more peculiarly belong to modern times. That he may lay down the fundamental principles of Ethics, he introduces Carneades on the stage as denying altogether the reality of moral distinctions; teaching that law and morality are contrived by powerful men for their own interest; that they vary in different countries, and change in successive ages; that there can be no natural law, since nature leads men as well as other animals to prefer their own interest to every other object; that therefore there is either no justice, or if there be, it is another name for the height of folly.

1 Born in 1538; died in 1617.
3 "Namque enim civitates sunt sibi tam sufficientes quin indigent mutuo juvamine et societate, interdum ad majorem utilitatem, interdum ob necessitatem moralem. Hac igitur ratione indigent aliquo jure quo dirigantur et recte ordinantur in hoc genere societatis. Et quies magna ex parte hoc fiat per rationem naturalis, non tamen sufficient et immediate quod omnia, idque specialia juro poterant esse earundem gentium introducta." (Suarez de Legibus, lib. ii. cap. i. sect. 9. et seq.)
4 Born in the March of Ancona in 1550; died at London in 1605.
6 Prolegomena. His letter to Vossius, of 1st August 1625, determines the exact period of the publication of this famous work. Grotii Epist. 74.
inasmuch as it is a fond attempt to persuade a human being to injure himself for the unnatural purpose of benefiting his fellow-men.

To this Grotius answered, that even inferior animals, under the powerful though transient impulse of parental love, prefer their young to their own safety or life; that gleams of compassion, and, he might have added, of gratitude and indignation, appear in the human infant long before the age of moral discipline; that man at the period of maturity is a social animal, who delights in the society of his fellow-creatures for its own sake, independently of the help and accommodation which it yields; that he is a reasonable being, capable of framing and pursuing general rules of conduct, of which he discerns that the observance contributes to a regular, quiet, and happy intercourse between all the members of the community; and that from these considerations all the precepts of morality, and all the commands and prohibitions of just law, may be derived by impartial reason.

"And these principles," says the pious philosopher, "would have their weight, even if it were to be granted (which could not be conceded without the highest impiety) that there is no God, or that he exercises no moral government over human affairs."

"Natural law is the dictate of right reason, pronouncing that there is in some actions a moral obligation, and in others a moral deformity, arising from their respective suitableness or repugnance to the reasonable and social nature; and that consequently such acts are either forbidden or enjoined by God, the author of nature. Actions which are the subject of this exertion of reason, are in themselves lawful or unlawful, and are therefore as such necessarily commanded or prohibited by God."

Such was the state of opinion respecting the first principles of the moral sciences, when, after an imprisonment of a thousand years in the cloister, they began once more to hold intercourse with the general understanding of mankind. It will be seen in the laxity and confusion, as well as in the prudence and purity of this exposition, that some part of the method and precision of the schools was lost with their endless subtilities and their barbarous language. It is manifest that the latter paragraph is a proposition, not what it affects to be, a definition; that as a proposition it contains too many terms very necessary to be defined; that the purpose of the excellent writer is not so much to lay down a first principle of morals, as to exert his unmatched power of saying much in few words, in order to assemble within the smallest compass the most weighty inducements, and the most effectual persuasions to well-doing.

This was the condition in which ethical theory was found by Hobbes, with whom the present Dissertation should have commenced, if it had been possible to state modern controversies in a satisfactory manner, without a retrospect of the revolutions in opinion from which they in some measure flowed.

THOMAS HOBBES of Malnesbury may be numbered among those eminent persons born in the latter half of the sixteenth century, who gave a new character to European philosophy in the succeeding age. He was one of the late writers and late learners. It was not till he was

1 The same commonplace paradoxes were retailed by the Sophists, whom Socrates is introduced as chastising in the Dialogues of Plato. They were common enough to be put by the historian into the mouth of an ambassador in a public speech.

2 "Et haec quidem locum aliquem haberent, etiam dare tur (quod sine summo scelere dari nequit) non esse Deum, aut non curari ab eo negotia humana." (Proleg. 11.) And in another place, "Jus naturale est dictatum recte rationis, indicans actui aliiue, ex ejus convenientia aut disconvenientia cum ipsa natura rationali et sociali, inesse moralem turpitudinem aut necessitatem moralem, ac consequenter ab auctore naturae Deo tam actum aut vetari aut praecepi. Actus de quibus tale exstat dictatum, debiti sunt aut illiciti per se, atque ideo a Deo necessario praecipi aut vetetur intelliguntur." (Lib. I. cap. i. sect. 10.)

3 Born in 1588; died in 1679.

4 Bacon, Descartes, Hobbes, and Grotius. The writings of the first are still as delightful and wonderful as they ever were, and his authority will have no end. Descartes forms an era in the history of Metaphysics, of Physics, of Mathematics. The controversies excited by Grotius have long ceased, but the powerful influence of his works will be doubted by those only who are unacquainted with the disputes of the seventeenth century.
nearly thirty that he supplied the defects of his early education, by classical studies so successfully prosecuted, that he wrote well in the Latin then used by his scientific contemporaries; and made such proficiency in Greek as, in his earliest work, the Translation of Thucydides, published when he was forty, to afford a specimen of a version still valued for its remarkable fidelity; though written with a stiffness and constraint very opposite to the masterly facility of his original compositions. It was after forty that he learned the first rudiments of geometry (so miserably defective was his education); but yielding to the paradoxical disposition apt to infect those who begin to learn after the natural age of commencement, he exposed himself, by absurd controversies with the masters of a science which looks down with scorn on the Sophist. A considerable portion of his mature age was passed on the Continent, where he travelled as tutor to two successive Earls of Devonshire; a family with whom he seems to have passed near half a century of his long life. In France his reputation, founded at that time solely on personal intercourse, became so great, that his observations on the Meditations of Descartes were published in the works of that philosopher, together with those of Gassendi and Arnauld.1 It was about his sixtieth year that he began to publish those philosophical writings which contain his peculiar opinions;—which set the understanding of Europe into general motion, and stirred up controversies among metaphysicians and moralists, not even yet determined. At the age of eighty-seven he had the boldness to publish metrical versions of the Iliad and Odyssey, which the greatness of his name, and the singularity of the undertaking, still render objects of curiosity, if not of criticism. He owed his influence to various causes; at the head of which may be placed that genius for system, which, though it cramps the growth of knowledge,2 perhaps finally atones for that mischief, by the zeal and activity which it rouses among followers and opponents, who discover truth by accident, when in pursuit of weapons for their warfare. A system which attempts a task so hard as that of subjecting vast provinces of human knowledge to one or two principles, if it presents some striking instances of conformity to superficial appearances, is sure to delight the framer; and, for a time, to subdue and captivate the student too entirely for sober reflection and rigorous examination. The evil does not indeed very frequently recur. Perhaps Aristotle, Hobbes, and Kant, are the only persons who united in the highest degree the great faculties of comprehension and discrimination which compose the Genius of System. Of the three, Aristotle alone could throw it off where it was glaringly unsuitable; and it is deserving of observation, that the reign of system seems, from these examples, progressively to shorten in proportion as reason is cultivated and knowledge advances. But, in the first instance, consistency passes for truth. When principles in some instances have proved sufficient to give an unexpected explanation of facts, the delighted reader is content to accept as true all other deductions from the principles. Specious premises being assumed to be true, nothing more can be required than logical inference. Mathematical forms pass current as the equivalent of mathematical certainty. The unwary admirer is satisfied with the completeness and symmetry of the plan of his house—unmindful of the need of examining the firmness of the foundation and the soundness of the materials. The system-maker, like the conqueror, long dazzles and overawes the world; but when their sway is past, the vulgar herd, unable to measure their astonishing faculties, take revenge by trampling on fallen greatness.

The dogmatism of Hobbes was, however unjustly, one of the sources of his fame. The founders of systems deliver their novelties with the undoubting spirit of discoverers; and their

1 The prevalence of freethinking under Louis XIII., to a far greater degree than it was avowed, appears not only from the complaints of Mersenne and of Grotius, but from the disclosures of Guy Patin; who, in his Letters, describes his own conversations with Gassendi and Naudé, so as to leave no doubt of their opinions.

2 "Another error," says the Master of Wisdom, "is the over-early and peremptory reduction of knowledge into arts and methods, from which time commonly receives small augmentation." (Bacon’s Advancement of Learning, book i.) "Method," says he, "carrying a show of total and perfect knowledge, has a tendency to generate acquiescence." What pregnant words!
followers are apt to be dogmatical, because they can see nothing beyond their own ground. It might seem incredible, if it were not established by the experience of all ages, that those who differ most from the opinions of their fellowmen are most confident of the truth of their own. But it commonly requires an overweening conceit of the superiority of a man’s own judgment, to make him espouse very singular notions; and when he has once embraced them, they are endeared to him by the hostility of those whom he construes as the prejudiced vulgar. The temper of Hobbes must have been originally haughty. The advanced age at which he published his obnoxious opinions, rendered him more impatient of the acrimonious opposition which they necessarily provoked; until at length a strong sense of the injustice of the punishment impending over his head, for the publication of what he believed to be truth, cooperated with the peevishness andtimidity of his years, to render him the most imperious and morose of dogmatists. His dogmatism has indeed one quality more offensive than that of most others. Propositions the most adverse to the opinions of mankind, and the most abhorrent from their feelings, are introduced into the course of his argument with mathematical coldness. He presents them as demonstrated conclusions, without deigning to explain to his fellow-creatures how they all happened: to believe the opposite absurdities; without even the compliment of once observing how widely his discoveries were at variance with the most ancient and universal judgments of the human understanding. The same quality in Spinoza indicates a recluse’s ignorance of the world. In Hobbes it is the arrogance of a man who knows mankind and despises them.

A permanent foundation of his fame consists in his admirable style, which seems to be the very perfection of didactic language. Short, clear, precise, pithy, his language never has more than one meaning, which never requires a second thought to find. By the help of his exact method, it takes so firm a hold on the mind, that it will not allow attention to slacken. His little tract on Human Nature has scarcely an ambiguous or a needless word. He has so great a power of always choosing the most significant term, that he never is reduced to the poor expedient of using many in its stead. He had so thoroughly studied the genius of the language, and knew so well to steer between pedantry and vulgarity, that two centuries have not superannuated probably more than a dozen of his words. His expressions are so luminous, that he is clear without the help of illustration. Perhaps no writer of any age or nation, on subjects so abstruse, has manifested an equal power of engraving his thoughts on the mind of his readers. He seems never to have taken a word for ornament or pleasure; and he deals with eloquence and poetry as the natural philosopher who explains the mechanism of children’s toys, or deigns to contrive them. Yet his style so stimulates attention, that it never tires; and, to those who are acquainted with the subject, appears to have as much spirit as can be safely blended with reason. He compresses his thoughts so unaffectedly, and yet so tersely, as to produce occasionally maxims which excite the same agreeable surprise with wit, and have become a sort of philosophical proverbs; the success of which he partly owed to the suitableness of such forms of expression to his dictatorial nature. His words have such an appearance of springing from his thoughts, as to impress on the reader a strong opinion of his originality, and indeed to prove that he was not conscious of borrowing; though conversation with Gassendi must have influenced his mind; and it is hard to believe that his coincidence with Ockham should have been purely accidental, on points so important as the denial of general ideas, the reference of moral distinctions to superior power, and the absolute thraldom of religion under the civil power, which he seems to have thought necessary, to maintain that independence of the state on the church with which Ockham had been contented.

His philosophical writings might be read without reminding any one that the author was more than an intellectual machine. They never betray a feeling except that insupportable arrogance which looks down on men as a lower species of beings; whose almost unanimous hostility is so far from shaking the firmness of his
conviction, or even ruffling the calmness of his contempt, that it appears too petty a circumstance to require explanation, or even to merit notice. Let it not be forgotten, that part of his renown depends on the application of his admirable powers to expound truth when he meets it. This great merit is conspicuous in that part of his treatise of *Human Nature* which relates to the perceptive and reasoning faculties. It is also very remarkable in many of his *secondary principles* on the subject of government and law, which, while the first principles are false and dangerous, are as admirable for truth as for his accustomed and unrivalled propriety of expression.\(^1\) In many of these observations he even shows a disposition to soften his paradoxes, and to conform to the common sense of mankind.\(^2\)

It was with perfect truth observed by my excellent friend Mr Stewart, that “the ethical principles of Hobbes are completely interwoven with his political system.”\(^3\) He might have said, that the whole of Hobbes’s system, moral, religious, and in part philosophical, depended on his political scheme; not indeed logically, as conclusions depend on premises, but (if the word may be excused) *psychologically*, as the formation of one opinion may be influenced by a disposition to adapt it to previously cherished opinions. The *Translation of Thucydides*, as he himself boasts, was published to show the evils of popular government.\(^4\) Men he represented as being originally equal, and having an equal right to all things, but as being taught by reason to sacrifice this right for the advantages of peace, and to submit to a common authority, which can preserve quiet, only by being the sole depositary of force, and must therefore be absolute and unlimited. The supreme authority cannot be sufficient for its purpose, unless it be wielded by a single hand; nor even then, unless his absolute power extends over religion, which may prompt men to discord by the fear of an evil greater than death. The perfect state of a community, according to him, is where law prescribes the religion and morality of the people, and where the will of an absolute sovereign is the sole fountain of law. Hooker had inculcated the simple truth, that “to live by one man’s will is the cause of many men’s misery.” Hobbes embraced the daring paradox, that to live by one man’s will is the only means of all men’s happiness. Having thus rendered religion the slave of every human tyrant, it was an unavoidable consequence, that he should be disposed to lower her character, and lessen her power over men; that he should regard atheism as the most effectual instrument of preventing rebellion; at least that species of rebellion which prevailed in his time, and had excited his alarms. The formidable alliance of religion with liberty haunted his mind, and urged him to the bold attempt of rooting out both these mighty principles; which, when combined with interests and passions, when debased by impure support, and provoked by unjust resistance, have indeed the power of fearfully agitating society; but which are, nevertheless, in their own nature, and as far as they are unmixcd and undisturbed, the fountains of justice, of order, of peace, as well as of those moral hopes, and of those glorious aspirations after higher excellence, which encourage and exalt the soul in its passage through misery and depravity. A Hobbist is the only consistent persecutor; for he alone considers himself as bound, by whatever conscience he has remaining, to conform to the religion of the sovereign.

\(^1\) See *De Corpore Politico*, Part i. chap. ii. iii. iv. and *Leviathan*, Part i. chap. xiv. xv. for remarks of this sort, full of sagacity.

\(^2\) “The laws of nature are immutable and eternal; for injustice, ingratitude, arrogance, pride, iniquity, acception of persons, and the rest, can never be made lawful. For it can never be that war shall preserve life, and peace destroy it.” *(Leviathan*, Part i. chap. xv. See also Part ii. chap. xxvi. xxvii. on Laws, and on Punishments.)

\(^3\) See *Dissertation First*, p. 42. The political state of England is indeed said by himself to have occasioned his first philosophical publication.

\(^4\) The speech of Euphemus in the 6th book of that historian, and the conference between the ministers from Athens and the Melean chiefs, in the 6th book, exhibit an undisguised *Hobbesian*, which was very dramatically put into the mouth of Athenian statesmen at a time when, as we learn from Plato and Aristophanes, it was preached by the Sophists.
He claims from others no more than he is himself ready to yield to any master;1 while the religionist who persecutes a member of another communion, exacts the sacrifice of conscience and sincerity, though professing that, rather than make it himself, he is prepared to die.

REMARKS.

The fundamental errors on which the ethical system of Hobbes is built are not peculiar to him; though he has stated them with a bolder precision, and placed them in a more conspicuous station in the van of his main force, than any other of those who have either frankly avowed or tacitly assumed them, from the beginning of speculation to the present moment. They may be shortly stated as follows.

1. The first and most inveterate of these errors is, that he does not distinguish thought from feeling, or rather that he in express words confounds them. The mere perception of an object, according to him, differs from the pleasure or pain which that perception may occasion, no otherwise than as they affect different organs of the bodily frame. The action of the mind in perceiving or conceiving an object is precisely the same with that of feeling the agreeable or disagreeable.2 The necessary result of this original confusion is, to extend the laws of the intellectual part of our nature over that other part of it, hitherto without any adequate name, which feels, and desires, and loves, and hopes, and wills. In consequence of this long confusion, or want of distinction, it has happened that, while the simplest act of the merely intellectual part has many names, (such as sensation, perception, impression, &c.) the correspondent act of the other not less important portion of man is not denoted by a technical term in philosophical systems; nor by a convenient word in common language. Sensation has another more common sense. Emotion is too warm for a generic term. Feeling has some degree of the same fault, besides its liability to confusion with the sense of touch. Pleasure and pain represent only two properties of this act, which render its repetition the object of desire or aversion; which last states of mind presuppose the act. Of these words, emotion seems to be the least objectionable, since it has no absolute double meaning, and does not require so much vigilance in the choice of the accompanying words as would be necessary if we were to prefer feeling; which, however, being a more familiar word, may, with due caution, be also sometimes employed. Every man who attends to the state of his own mind will acknowledge, that these words, emotion and feeling, thus used, are perfectly simple, and as incapable of further explanation by words as sight or hearing; which may indeed be rendered into synonymous words, but never can be defined by any more simple or more clear. Reflection will in like manner teach that perception, reasoning, and judgment may be conceived to exist without being followed by emotion. Some men hear music without gratification: one may distinguish a taste without being pleased or displeased by it; or at least the relish or disrelish is often so slight, without lessening the distinctness of the sapid qualities, that the distinction of it from the perception cannot be doubted.

1 Spinoza adopted precisely the same first principle with Hobbes, that all men have a natural right to all things. (Tractatus Politicus, cap. ii. sect. 3.) He even avows the absurd and detestable maxim, that states are not bound to observe their treaties longer than the interest or danger which first formed the treaties continues. But on the internal constitution of states he embraces opposite opinions. Servatius enim non potest interest omnem potestatem ad unum transferr. (Ibid. cap. vi. sect. 4.) Limited monarchy he considers as the only tolerable example of that species of government. An aristocracy nearly approaching to the Dutch system during the suspension of the Stadtholdership, he seems to prefer. He speaks favourably of democracy, but the chapter on that subject is left unfinished. "Nulla plane tempora urbium sumptibus edificanda, nec jura de opinionibus statuenda." He was the first republican atheist of modern times, and probably the earliest irreligious opponent of an ecclesiastical establishment.

2 This doctrine is explained in his tract on Human Nature, c. vii.—x. "Conception is a motion in some internal substance of the head, which proceeding to the heart, when it helpeth the motion there, it is called pleasure; when it weakeneth or hindereth the motion, it is called pain." The same matter is handled more cursorily, agreeably to the practical purpose of the work, in Leviathan, Part i. chap. vi. These passages are here referred to as proofs of the statement in the text. With the materialism of it we have here no concern. If the multiplied suppositions were granted, we should not advance one step towards understanding what they profess to explain. The first four words are as unmeaning as if one were to say that greenness is very loud. It is obvious that many motions which promote the motion of the heart are extremely painful.
The multiplicity of errors which have flowed into Moral Science from this original confusion is very great. They have spread over many schools of philosophy; and many of them are prevalent to this day. Hence the laws of the understanding have been applied to the affections; virtuous feelings have been considered as just reasonings; evil passions represented as mistaken judgments; and it has been laid down as a principle, that the will always follows the last decision of the practical intellect.\(^1\)

2. By this great error, Hobbes was led to represent all the variety of the desires of men, as being only so many instances of objects deliberately and solely pursued; because they were the means, and at the time perceived to be so, of directly or indirectly procuring organic gratification to the individual.\(^2\) The human passions are described as if they reasoned accurately, deliberately coolly, and calculated exactly. It is assumed that, in performing these operations, there is and can be no act of life in which a man does not bring distinctly before his eyes the pleasure which is to accrue to himself from the act. From this single and simple principle, all human conduct may, according to him, be explained and even foretold.

The true laws of this part of our nature (so totally different from those of the percipient part) were, by this grand mistake, entirely withdrawn from notice. Simple as the observation is, it seems to have escaped not only Hobbes, but many, perhaps most philosophers, that our desires seek a great diversity of objects; that the attainment of these objects is indeed followed by, or rather called Pleasure; but that it could not be so, if the objects had not been previously desired. Many besides him have really represented self as the ultimate object of every action; but none ever so hardly thrust forward the selfish system in its hardest and coarsest shape. The mastery which he shows over other metaphysical subjects, forsakes him on this. He does not scruple, for the sake of this system, to distort facts of which all men are conscious; and to do violence to the language in which the result of their uniform experience is conveyed. "Acknowledgment of power is called Honour."\(^3\) His explanations are frequently sufficient confutations of the doctrine which required them. "Pity is the imagination of future calamity to ourselves, proceeding from the sense (observation) of another man's calamity."\(^4\) "Laughter is occasioned by sudden glory in our eminence, or in comparison with the infirmity of others." Every man who ever wept or laughed, may determine whether this be a true account of the state of his mind on either occasion. "Love is a conception of his need of the one person desired;" a definition of love, which, as it excludes kindness, might perfectly well comprehend the hunger of a cannibal, provided that it were not too ravenous to exclude choice. "Good-will, or charity, which containeth the natural affection of parents to their children, consists in a man's conception that he is able not only to accomplish his own desires, but to assist other men in theirs:" from which it follows, as the pride of power is felt in destroying as well as in saving men, that cruelty and kindness are the same passion.\(^5\)

Such were the expedients to which a man of the highest class of understanding was driven, in order to evade the admission of the simple and evident truth, that there are in our nature perfectly disinterested passions, which seek the wellbeing of others as their object and end, without looking beyond it to self, or pleasure, or happiness. A proposition, from which such a man could attempt to escape only by such means, may be strongly presumed to be true.

3. Hobbes having thus struck the affections out of his map of human nature, and having totally misunderstood (as will appear in a succeeding part of this Dissertation) the nature even of the appetites, it is no wonder that we should

\(^1\) "Voluntas semper sequitur ultimum indicium intellectus practici."

\(^2\) See the passages before quoted.

\(^3\) Human Nature, chap. viii. The ridiculous explanation of the admiration of personal beauty, "as a sign of power generative," shows the difficulties to which this extraordinary man was reduced by a false system.

\(^4\) Ibid. chap. ix. I forbear to quote the passage on Platonic love, which immediately follows. But, considering Hobbes's blameless and honourable character, that passage is perhaps the most remarkable instance of the shifts to which his selfish system reduced him.

Diss. ii.

\(^5\)
find in it not a trace of the moral sentiments. Moral good he considers merely as consisting in the signs of a power to produce pleasure; and repentance is no more than regret at having missed the way: so that, according to this system, a disinterested approbation of, and reverence for virtue, are no more possible than disinterested affections towards our fellow-creatures. There is no sense of duty, no compunction for our own offences, no indignation against the crimes of others, unless they affect our own safety; no secret cheerfulness shed over the heart by the practice of well-doing. From his philosophical writings it would be impossible to conclude that there are in man a set of emotions, desires, and aversions, of which the sole and final objects are the voluntary actions and habitual dispositions of himself and of all other voluntary agents; which are properly called Moral Sentiments; and which, though they vary more in degree, and depend more on cultivation, than some other parts of human nature, are as seldom as most of them found to be entirely wanting.

4. A theory of man which comprehends in its explanations neither the social affections, nor the moral sentiments, must be owned to be sufficiently defective. It is a consequence, or rather a modification of it, that Hobbes should constantly represent the deliberate regard to personal advantage, as the only possible motive of human action; and that he should altogether disdain to avail himself of those refinements of the selfish scheme which allow the pleasures of benevolence and of morality, themselves, to be a most important part of that interest which reasonable beings pursue.

5. Lastly, though Hobbes does in effect acknowledge the necessity of morals to society, and the general coincidence of individual with public interest—truths so palpable that they never have been excluded from any ethical system—he betrays his utter want of moral sensibility by the coarse and odious form in which he has presented the first of these great principles; and his view of both leads him most strongly to support that common and pernicious error of moral reasoners, that a perception of the tendency of good actions to preserve the being and promote the wellbeing of the community, and a sense of the dependence of our own happiness upon the general security, either are essential constituents of our moral feelings, or are ordinarily mingled with the most effectual motives to right conduct.

The court of Charles II. were equally pleased with Hobbes's poignant brevity, and his low estimate of human motives. His ethical epigrams became the current coin of profligate wits. Sheffield, Duke of Buckinghamshire, who represented the class still more perfectly in his morals than in his faculties, has expressed their opinion in verses, of which one line is good enough to be quoted:

Fame bears no fruit till the vain planter dies.

Dryden speaks of "the philosopher and poet (for such is the condescending term employed) of Malmaesbury," as resembling Lucretius in haughtiness. But Lucretius, though he held many of the opinions of Hobbes, had the sensibility as well as genius of a poet. His dogmatism is full of enthusiasm; and his philosophical theory of society discovers occasionally as much tenderness as can be shown without reference to individuals. He was a Hobbist in only half his nature.

The moral and political system of Hobbes was a palace of ice, transparent, exactly proportioned, majestic, admired by the unwary as a delightful dwelling; but gradually undermined by the central warmth of human feeling, before it was thawed into muddy water by the sunshine of true philosophy.

When Leibnitz, in the beginning of the eighteenth century, reviewed the moral writers of modern times, his penetrating eye saw only two who were capable of reducing morals and jurisprudence to a science. "So great an enterprise," says he, "might have been executed by the deep-searching genius of Hobbes, if he had not set out from evil principles; or by the judgment and learning of the incomparable Grotius, if his powers had not been scattered over many

1 Which he calls the *pulchrum*, for want, as he says, of an English word to express it. (Leviathan, Part i. c. vi.)
subjects, and his mind distracted by the cares of an agitated life." Perhaps in this estimate, admiration of the various and excellent qualities of Grotius may have overrated his purely philosophical powers, great as they unquestionably were. Certainly the failure of Hobbes was owing to no inferiority in strength of intellect. Probably his fundamental errors may be imputed, in part, to the faintness of his moral sensibilities, insufficient to make him familiar with those sentiments and affections which can be known only by being felt;—a faintness perfectly compatible with his irreproachable life, but which obstructed, and at last obliterated, the only channel through which the most important materials of ethical science enter into the mind.

Against Hobbes, says Warburton, the whole church militant took up arms. The answers to the *Levithan* would form a library. But the far greater part have followed the fate of all controversial pamphlets. Sir Robert Filmer was jealous of any rival theory of servitude. Harrington defended liberty, and Clarendon the church, against a common enemy. His philosophical antagonists were, Cumberland, Cudworth, Shaftesbury, Clarke, Butler, and Hutcheson. Though the last four writers cannot be considered as properly polemics, their labours were excited, and their doctrines modified, by the stroke from a vigorous arm which seemed to shake Ethics to its foundation. They lead us far into the eighteenth century; and their works, occasioned by the doctrines of Hobbes, sowed the seed of the ethical writings of Hume, Smith, Price, Kant, and Stewart; in a less degree, also, of those of Tucker and Paley: not to mention Mandeville, the buffoon and sophister of the ale-house; or Helvetius, an ingenious but flimsy writer, the low and loose moralist of the vain, the selfish, and the sensual.

SECTION V.

Controversies concerning the Moral Faculties and the Social Affections.

CUMBERLAND—CUDWORTH—CLARKE—SHAFTESBURY—BOSSUET—PENELON—LEIBNITZ—
MALEBRANCHE—EDWARDS—BUFFIER.

Dr. Richard Cumberland, raised to the see of Peterborough after the revolution of 1688, was the only professed answerer of Hobbes. His work on the *Law of Nature* still retains a place on the shelf, though not often on the desk. The philosophical epigrams of Hobbes form a contrast to the verbose, prolix, and languid diction of his answerer. The forms of scholastic argument serve more to encumber his style than to insure his exactness. But he has substantial merits. He justly observes, that all men can only be said to have had originally a right to all things, in a sense in which right has the same meaning with power. He shows that Hobbes is at variance with himself; inasmuch as the dictates of right reason, which, by his own statement, teach men for their own safety to forego the exercise of that right, and which he calls *Laws of Nature*, are coeval with it; and that mankind perceive the moral limits of their power as clearly and as soon as they are conscious of its existence. He enlarges the intimations of Grotius on the social feelings, which prompt men to the pleasures of pacific intercourse, as certainly as the apprehension of danger and destruction urges them to avoid hostility. The

1 "Et tale aliquid potuit esse vel ab incomparabili Grotii judicio et doctrina, vel a profundo Hobbi ingenio: prestari nisi illum multa distraxisserent: hic vero praevalit constituisset principia." (*Leibniti Epist. ad Melanum*; IV. Pars ill. p. 276.)

2 Born in 1692; died in 1710.
fundamental principle of his Ethics is, that
"the greatest benevolence of every rational
agent to all others is the happiest state of each
individual, as well as of the whole."
1 The
happiness accruing to each man from the observ-
ance and cultivation of benevolence, he con-
siders as appended to it by the supreme Ruler;
through which he sanctions it as his law, and
reveals it to the mind of every reasonable creature.
From this principle he deduces the rules of mo-
rality, which he calls the Laws of Nature. The
surest, or rather only mark that they are the
commandments of God, is, that their observance
promotes the happiness of man: for that reason
alone could they be imposed by that Being whose
essence is love. As our moral faculties must to
us be the measure of all moral excellence, he
infers that the moral attributes of the Divinity
must in their nature be only a transcendent degree
of those qualities which we most approve, love,
and reverence, in those moral agents with whom we
are familiar. 2 He had a momentary glimpse of
the possibility that some human actions might
be performed with a view to the happiness of
others, without any consideration of the pleasure
reflected back on ourselves. 3 But it is too faint
and transient to be worthy of observation, other-
wise than as a new proof how often great truths
must flit before the understanding, before they
can be firmly and finally held in its grasp. His
only attempt to explain the nature of the moral
faculty, is the substitution of practical reason (a
phrase of the schoolmen, since become celebrat-
ed from its renewal by Kant) for right reason; 4
and his definition of the first, as that which points
out the ends and means of action. Throughout
his whole reasoning, he adheres to the accustomed
confusion of the quality which renders actions
virtuous, with the sentiments excited in us by the
contemplation of them. His language on the
identity of general and individual interest is ex-
tremely vague; though it be, as he says, the
foundation-stone of the Temple of Concord
among men.

It is little wonder that Cumberland should not
have disembroiled this ancient and established
confusion, since Leibnitz himself, in a passage
where he reviews the theories of morals which
had gone before him, has done his utmost to
perpetuate it. "It is a question," says he,
"whether the preservation of human society be
the first principle of the law of nature. This
our author denies, in opposition to Grotius, who
laid down sociability to be so; to Hobbes, who
ascribed that character to mutual fear; and to
Cumberland, who held that it was mutual bene-
volence; which are all three only different names
for the safety and welfare of society." 5 Here
the great philosopher considered benevolence or
fear, two feelings of the human mind, to be the
first principles of the law of nature; in the same
sense in which the tendency of certain actions
to the wellbeing of the community may be so
regarded. The confusion, however, was then
common to him with many, as it even now is
with most. The comprehensive view was his
own. He perceives the close resemblance of
these various and even conflicting opinions, in
that important point of view in which they re-
late to the effects of moral and immoral actions
on the general interest. The tendency of virtue
to preserve amicable intercourse was enforced
by Grotius; its tendency to prevent injury was
dwelt on by Hobbes; its tendency to promote
an interchange of benefits was inculcated by
Cumberland.

1 Cumberland de Legibus Nature, cap. 1. sect. 12. first published in London, 1672, and then so popular as to be reprint-
ed at Lubeck in 1683.
2 Ibid. cap. v. sect. 19.
3 Ibid. cap. ii. sect. 20.
4 "Whoever determines his judgment and his will by right reason, must agree with all others who judge according to
right reason in the same matter." (Ibid. cap. ii. sect. 8.) This is in one sense only a particular instance of the identical proposi-
tion, that two things which agree with a third thing must agree with each other in that in which they agree with the third.
But the difficulty entirely consists in the particular third thing here introduced, namely, "right reason," the nature of
which not one step is made to explain. The position is curious, as coinciding with "the universal categorical imperative,"
adopted as a first principle by Kant.
5 Leibn. IV. Pars ill. p. 271. The unnamed work which occasioned these remarks (perhaps one of Thomasius) appeared
in 1699. How long after this Leibnitz's Dissertation was written, does not appear.
CUDWORTH.

Cudworth, one of the eminent men educated or promoted in the English Universities during the Puritan rule, was one of the most distinguished of the Latitudinarian or Arminian party who came forth at the Restoration, with a love of liberty imbibed from their Calvinistic masters, as well as from the writings of antiquity, yet tempered by the experience of their own agitated age; and with a spirit of religious toleration more impartial and mature, though less systematic and professedly comprehensive, than that of the Independents, the first sect who preached that doctrine. Taught by the errors of their time, they considered religion as consisting, not in vain efforts to explain unsearchable mysteries, but in purity of heart exalted by pious feelings, and manifested by virtuous conduct. The government of the church was placed in their hands by the revolution, and their influence was long felt among its rulers and luminaries. The first generation of their scholars turned their attention too much from the cultivation of the heart to the mere government of outward action; and in succeeding times the tolerant spirit, not natural to an establishment, was with difficulty kept up by a government whose existence depended on discouraging intolerant pretensions. No sooner had the first sketch of the Hobbian philosophy been privately circulated at Paris, than Cudworth seized the earliest opportunity of sounding the alarm against the most justly odious of the modes of thinking which it cultivates, or forms of expression which it would introduce; the prelude to a war which occupied the remaining forty years of his life. The Intellectual System, his great production, is directed against the atheistical opinions of Hobbes: it touches ethical questions but occasionally and incidentally. It is a work of stupendous erudition, of much more acuteness than at first appears, of frequent mastery over diction and illustration on subjects where it is most rare; and it is distinguished, perhaps beyond any other volume of controversy, by that best proof of the deepest conviction of the truth of a man's principles, a fearless statement of the most formidable objections to them; a fairness rarely practised but by him who is conscious of his power to answer them. In all his writings, it must be owned, that his learning obscures his reasonings, and seems even to oppress his powerful intellect. It is an unfortunate effect of the redundant fulness of his mind, that it overflows in endless digressions, which break the chain of argument, and turn aside the thoughts of the reader from the main object. He was educated before usage had limited the naturalization of new words from the learned languages; before the failure of those great men, from Baco to Milton, who laboured to follow a Latin order in their sentences,—and the success of those men of inferior powers, from Cowley to Addison, who were content with the order, as well as the words, of pure and elegant conversation,—had, as it were, by a double series of experiments, ascertained that the involutions and inversions of the ancient languages are seldom reconcilable with the genius of ours; and, unless skilfully, as well as sparingly introduced, are at variance with the natural beauties of our prose composition. His mind was more that of an ancient than of a modern philosopher. He often

1 Born in 1617; died in 1688.
2 See the beautiful account of them by Burnet, (Hist. I. 321, Oxford edit. 1823) who was himself one of the most distinguished of this excellent body; with whom may be classed, notwithstanding some shades of doctrinal difference, his early master, Leighton, bishop of Dunblane, a beautiful writer, and one of the best of men. The earliest account of them is in a curious contemporary pamphlet, entitled, An Account of the new Sect of Latitude-men at Cambridge, republished in the collection of tracts entitled, Phaenix Britannicus. Jeremy Taylor deserves the highest and perhaps the earliest place among them. But Cudworth's excellent sermon before the House of Commons (31st March 1647) in the year of the publication of Taylor's Liberty of Prophesying, may be compared even to Taylor in charity, piety, and the most liberal toleration.
3 De Cive, 1642.
indulged in that sort of amalgamation of fancy with speculation, the delight of the Alexandrian doctors, with whom he was most familiarly conversant; and the Intellectual System, both in thought and expression, has an old and foreign air, not unlike a translation from the work of a later Platonist. Large ethical works of this eminent writer are extant in manuscript in the British Museum. One posthumous volume on morals was published by Dr. Chandler, bishop of Durham, entitled, *A Treatise concerning Eternal and Immutable Morality.* But there is the more reason to regret (as far as relates to the history of opinion) that the larger treatises are still unpublished, because the above volume is not so much an ethical treatise as an introduction to one. Protagoras of old, and Hobbes then alive, having concluded that right and wrong were unreal, because they were not perceived by the senses, and because all human knowledge consists only in such perception, Cudworth endeavours to refute them, by disproving that part of their premises which forms the last-stated proposition. The mind has many conceptions (συμφασία) which are not cognizable by the senses; and though they are *occasioned* by sensible objects, yet could not be formed but by a faculty superior to sense. The conceptions of justice and duty he places among them. The distinction of right from wrong is discerned by reason; and as soon as these words are defined, it becomes evident that it would be a contradiction in terms to affirm that any power, human or divine, could change their nature; or, in other words, make the same act to be just and unjust at the same time. They had existed eternally, in the only mode in which truths can be said to be eternal, in the Eternal Mind; and they were indestructible and unchangeable like that Supreme Intelligence. Whatever judgment may be formed of this reasoning, it is manifest that it relates merely to the philosophy of the understanding, and does not attempt any explanation of what constitutes the very essence of morality, its relation to the will. That we perceive a distinction between right and wrong as much as between a triangle and a square, is indeed true; and may possibly lead to an explanation of the reason why men should adhere to the one and avoid the other. But it is not that reason. A command or a precept is not a proposition. It cannot be said that either is true or false. Cudworth, as well as many who succeeded him, confounded the mere apprehension by the understanding that right is different from wrong, with the practical authority of these important conceptions, exercised over voluntary actions, in a totally distinct province of the human soul.

Though his life was devoted to the assertion of divine Providence, and though his philosophy was imbued with the religious spirit of Platonism, yet he had placed Christianity too purely in the love of God and man to be considered as having much regard for those controversies about rites and opinions with which zealots disturb the world. They represented him as having fallen into the same heresy with Milton and with Clarke; and some of them even charged him with atheism, for no other reason than that he was not afraid to state the atheistic difficulties in their fullest force. As blind anger heaps inconsistent accusations on each other, they called him at least "an Arian, a Socinian, or a Deist." The courtiers of Charles II., who were delighted with every part of Hobbes but his in-
tegrity, did their utmost to decry his antagonist. They turned the railing of the bigots into a sarcasm against religion; as we learn from him who represented them with unfortunate fidelity. "He has raised," says Dryden, "such strong objections against the being of God, that many think he has not answered them;"—"the common fate," as Lord Shaftesbury tells us, "of those who dare to appear fair authors." 1. He had, indeed, earned the hatred of some theologians, better than they could know from the writings published during his life; for in his posthumous work he classes with the ancient atheists those of his contemporaries, whom he forbears to name, who held "that God may command what is contrary to moral rules; that he has no inclination to the good of his creatures; that he may justly doom an innocent being to eternal torments; and that whatever God does will, for that reason is just, because he wills it." 2. It is an interesting incident in the life of a philosopher, that Cudworth's daughter, Lady Masham, had the honour to nurse the infirmities and to watch the last breath of Mr. Locke, who was opposed to her father in speculative philosophy, but who heartily agreed with him in the love of truth, liberty, and virtue.

Connected with Cudworth by principle, though separated by some interval of time, was Dr. Samuel Clarke, a man eminent at once as a divine, a mathematician, a metaphysical philosopher, and a philologist; who, as the interpreter of Homer and Cæsar, the scholar of Newton, and the antagonist of Leibnitz, approved himself not unworthy of correspondence with the highest order of human spirits. Roused by the prevalence of the doctrines of Spinoza and Hobbes, he endeavoured to demonstrate the being and attributes of God, from a few axioms and definitions, in the manner of geometry; an attempt in which, with all his powers of argument, it must be owned that he is compelled sometimes tacitly to assume what the laws of reasoning required him to prove; and that, on the whole, his failure may be regarded as a proof that such a mode of argument is beyond the faculties of man. 4. Justly considering the moral attributes of the Deity as what alone renders him the object of religion, and to us constitutes the difference between theism and atheism, he laboured with the utmost zeal to place the distinctions of right and wrong on a more solid foundation; and to explain the conformity of morality to reason, in a manner calculated to give a precise and scientific signification to that phraseology which all philosophers had, for so many ages, been content to employ, without thinking themselves obliged to define. 5.

It is one of the most rarely successful efforts of the human mind, to place the understanding at the point from which a philosopher takes the views that compose his system, to recollect constantly his purposes, to adopt for a moment his previous opinions and prepossessions, to think in his words and to see with his eyes; especially when the writer widely dissent from the system which he attempts to describe, and after a general change in the modes of thinking and in the use of terms. 6. Every part of the present Dissertation requires such an excuse; but perhaps it may be more necessary in a case like that of Clarke, where the alterations in both respects have been so insensible, and in some respects appear so limited, that they may escape attention, than after those total revolutions in doc-

1 Moralist, Part ii. sect. 3.
2 Eternal and Immutable Morality, p. 11. He names only one book published at Franeker. He quotes Ockham as having formerly maintained the same monstrous positions. To many, if not to most of these opinions or expressions, ancient and modern, reservations are adjourned, which render them literally reconcilable with practical morals. But the dangerous abuse to which the incalculous language of ethical theories is liable, is well illustrated by an anecdote related in Plutarch's Life of Alexander. A sycephant named Anaxarchus consoloed that monarch for the murder of Clistus, by assuring him that every act of a ruler must be just. "Non est posse in omnium omnem donationem: (Plut. Opus. l. 629. Franc. 1696.)
3 Born in 1675; died in 1729.
4 This admirable person had so much candour as in effect to own his failure, and to recur to those other arguments in support of this great truth, which have in all ages satisfied the most elevated minds. In Proposition xii. (Being and Attributes of God, p. 47) which affirms that the first cause must be "intelligent," (where, as he truly states, "lies the main question between us and the atheists") he owns, that the proposition cannot be demonstrated strictly and properly a priori.
5 See Notes and Illustrations, note M.
trine, where the necessity of not measuring other times by our own standard must be apparent to the most undistinguishing.

The sum of his moral doctrine may be stated as follows. Man can conceive nothing without at the same time conceiving its relations to other things. He must ascribe the same law of perception to every being to whom he ascribes thought. He cannot therefore doubt that all the relations of all things to all must have always been present to the Eternal Mind. The relations in this sense are eternal, however recent the things may be between whom they subsist. The whole of these relations constitute truth. The knowledge of them is omniscience. These eternal different relations of things involve a consequent eternal fitness or unfitness in the application of things one to another; with a regard to which, the will of God always chooses, and which ought likewise to determine the wills of all subordinate rational beings. These eternal differences make it fit and reasonable for the creatures so to act; they cause it to be their duty, or lay an obligation on them so to do, separate from the will of God, and antecedent to any prospect of advantage or reward. Nay, wilful wickedness is the same absurdity and insolence in morals, as it would be in natural things to pretend to alter the relations of numbers, or to take away the properties of mathematical figures. "Morality," says one of his most ingenious scholars, "is the practice of reason." Clarke, like Cudworth, considered such a scheme as the only security against Hobbism, and probably against the Calvinistic theology, from which they were almost as averse. Not content, with Cumberland, to attack Hobbes on ground which was in part his own, they thought it necessary to build on entirely new foundations. Clarke more especially, instead of substituting social and generous feeling for the selfish appetites; endeavoured to bestowed on morality the highest dignity, by thus deriving it from reason. He made it more than disinterested; for he placed its seat in a region where interest never enters, and passion never disturbs. By ranking her principles with the first truths of science, he seemed to render them pure and impartial, infallible and unchangeable. It might be excusable to regret the failure of so noble an attempt, if the indulgence of such regrets did not betray an unworthy apprehension that the same excellent ends could only be attained by such frail means; and that the dictates of the most severe reason would not finally prove reconcilable with the majesty of virtue.

REMARKS.

The adoption of mathematical forms and terms was, in England, a prevalent fashion among writers on moral subjects during a large part of the eighteenth century. The ambition of mathematical certainty, on matters concerning which it is not given to man to reach it, is a frailty from which the disciple of Newton ought in reason to have been withheld, but to which he was naturally tempted by the example of his master. Nothing but the extreme difficulty of detaching assent from forms of expression to which it has been long wedded, can explain the fact, that the ineptious expressions above cited, into which Clarke was hurried by his moral sensibility, did not awaken him to a sense of the error into which he had fallen. As soon as he had said that "a wicked act was as absurd as an attempt to take away the properties of a figure," he ought to have seen, that principles which led logically to such a conclusion were untrue. As it is an impossibility to make three and three cease to be six, it ought, on his principles, to be impossible to do a wicked act. To act without regard to the relations of things, as if a man were to choose fire for cooling, or ice for heating, would be the part either of a lunatic or an idiot. The murderer who poisons by arsenic, acts agreeably to his knowledge of the power of that substance to kill, which is a relation between two things.

1 "Those who found all moral obligation on the will of God must recur to the same thing, only they do not explain how the nature and will of God is good and just." (Being and Attributes of God, Proposition xii.)
2 Evidence of Natural and Revealed Religion, p. 4, 6th edit. Lond. 1734.
3 Ibid. p. 42.
4 Lowman on the Unity and Perfections of God, p. 29. Lond. 1737.
as much as the physician who employs an emetic after the poison, acts upon his belief of the tendency of that remedy to preserve life, which is another relation between two things. All men who seek a good or bad end by good or bad means, must alike conform their conduct to some relation between their actions as means and their object as an end. All the relations of inanimate things to each other are undoubtedly observed as much by the criminal as by the man of virtue.

It is therefore singular that Dr. Clarke suffered himself to be misled into the representation, that virtue is a conformity with the relations of things universally, vice a universal disregard of them, by the certain, but here insufficient truth, that the former necessarily implied a regard to certain particular relations, which were always disregarded by those who chose the latter. The distinction between right and wrong can, therefore, no longer depend on relations as such, but on a particular class of relations. And it seems evident that no relations are to be considered, except those in which a living, intelligent, and voluntary agent is one of the beings related. His acts may relate to a law, as either observing or infringing it; they may relate to his own moral sentiments and those of his fellows, as they are the objects of approbation or disapprobation; they may relate to his own welfare, by increasing or abating it; they may relate to the well-being of other sentient beings, by contributing to promote or obstruct it: but in all these, and in all supposable cases, the inquiry of the moral philosopher must be, not whether there be a relation, but what the relation is; whether it be that of obedience of law, or agreeableness to moral feeling, or suitableness to prudence, or coincidence with benevolence. The term relation itself, on which Dr. Clarke's system rests, being common to right and wrong, must be struck out of the reasoning. He himself incidentally drops intimations which are at variance with his system. "The Deity," he tells us, "acts according to the eternal relations of things, in order to the welfare of the whole universe;" and subordinate moral agents ought to be governed by the same rules, "for the good of the public." 1

No one can fail to observe that a new element is here introduced—the well-being of communities of men, and the general happiness of the world—which supersedes the consideration of abstract relations and fitnesses.

There are other views of this system, however, of a more general nature, and of much more importance, because they extend in a considerable degree to all systems which found moral distinctions or sentiments, solely or ultimately, upon reason. A little reflection will discover an extraordinary vacuity in this system. Supposing it were allowed that it satisfactorily accounts for moral judgments, there is still an important part of our moral sentiments which it passes by without an attempt to explain them. Whence, on this scheme, the pleasure or pain with which we review our own actions, or survey those of others? What is the nature of remorse? Why do we feel shame? Whence is indignation against injustice? These are surely no exercise of reason. Nor is the assent of reason to any other class of propositions followed or accompanied by emotions of this nature, by any approaching them, or indeed necessarily by any emotion at all. It is a fatal objection to a moral theory, that it contains no means of explaining the most conspicuous, if not the most essential, parts of moral approbation and disapprobation.

But to rise to a more general consideration: Perception and emotion are states of mind perfectly distinct; and an emotion of pleasure or pain differs much more from a mere perception, than the perceptions of one sense do from those of another. The perceptions of all the senses have some qualities in common. But an emotion has not necessarily anything in common with a perception, but that they are both states of mind. We perceive exactly the same qualities in coffee when we may dislike it, as afterwards when we come to like it. In other words, the perception remains the same when the sensation of pain is changed into the opposite sensation of pleasure. The like change may occur in every case where pleasure or pain (in such instances called sensations) enter the mind.
with perceptions through the eye or the ear. The prospect or the sound which was disagreeable may become agreeable, without any alteration in our idea of the objects. We can easily imagine a peripient and thinking being without a capacity of receiving pleasure or pain. Such a being might perceive what we do; if we could conceive him to reason, he might reason justly; and if he were to judge at all, there seems no reason why he should not judge truly. But what could induce such a being to will or to act? It seems evident that his existence could only be a state of passive contemplation. Reason, as reason, can never be a motive to action. It is only when we superadd to such a being sensibility, or the capacity of emotion or sentiment, (or what in corporeal cases is called sensation) of desire and aversion, that we introduce him into the world of action. We then clearly discern, that when the conclusion of a process of reasoning presents to his mind an object of desire, or the means of obtaining it, a motive of action begins to operate; and reason may then, but not till then, have a powerful though indirect influence on conduct. Let any argument to dissuade a man from immorality be employed, and the issue of it will always appear to be an appeal to a feeling. You prove that drunkenness will probably ruin health. No position founded on experience is more certain. Most persons with whom you reason must be as much convinced of it as you are. But your hope of success depends on the drunkard's fear of ill health; and he may always silence your argument by telling you that he loves wine more than he dreads sickness. You speak in vain of the infamy of an act to one who disregards the opinion of others; or of its imprudence to a man of little feeling for his own future condition. You may truly, but vainly, tell of the pleasures of friendship to one who has little affection. If you display the delights of liberality to a miser, he may always shut your mouth by answering, "The spendthrift may prefer such pleasures; I love money more." If you even appeal to a man's conscience, he may answer you, that you have clearly proved the immorality of the act, and that he himself knew it before; but that now when you had renewed and freshened his conviction, he was obliged to own, that his love of virtue, even aided by the fear of dishonour, remorse, and punishment, was not so powerful as the desire which hurried him into vice.

Nor is it otherwise, however confusion of ideas may cause it to be so deemed, with that calm regard to the welfare of the agent, to which philosophers have so grossly misapplied the hardly intelligible appellation of self-love. The general tendency of right conduct to permanent wellbeing is indeed one of the most evident of all truths. But the success of persuasives or dissuasives addressed to it, must always be directly proportioned, not to the clearness with which the truth is discerned, but to the strength of the principle addressed, in the mind of the individual; and to the degree in which he is accustomed to keep an eye on its dictates. A strange prejudice prevails, which ascribes to what is called self-love an invariable superiority over all the other motives of human action. If it were to be called by a more fit name, such as foresight, prudence, or, what seems most exactly to describe its nature, a sympathy with the future feelings of the agent, it would appear to every observer to be, very often, too languid and inactive, always of late appearance, and, sometimes, so faint as to be scarcely perceptible. Almost every human passion in its turn prevails over self-love.

It is thus apparent that the influence of reason on the will is indirect, and arises only from its being one of the channels by which the objects of desire or aversion are brought near to these springs of voluntary action. It is only one of these channels. There are many other modes of presenting to the mind the proper objects of the emotions which it is intended to excite, whether of a calmer or of a more active nature; so that they may influence conduct more powerfully than when they reach the will through the channel of conviction. The distinction between conviction and persuasion would indeed be otherwise without a meaning: to teach the mind would be the same thing as to move it; and eloquence would be nothing but logic, although the greater part of the power of the former is displayed in the direct excitement of feeling;—on condition, indeed, (for reasons foreign to our present purpose) that the orator shall never appear to give
counsel inconsistent with the duty or the lasting welfare of those whom he would persuade. In like manner it is to be observed, that though reasoning be one of the instruments of education, yet education is not a proof of reasoning, but a wise disposal of all the circumstances which influence character; and of the means of producing those habitual dispositions which insure well-doing, of which reasoning is but one. Very similar observations are applicable to the great arts of legislation and government; which are here only alluded to as forming a strong illustration of the present argument.

The abusive extension of the term Reason to the moral faculties, one of the predominant errors of ancient and modern times, has arisen from causes which it is not difficult to discover. Reason does in truth perform a great part in every case of moral sentiment. To reason often belong the preliminaries of the act; to reason altogether belongs the choice of the means of execution. The operations of reason, in both cases, are comparatively slow and lasting; they are capable of being distinctly recalled by memory. The emotion which intervenes between the previous and the succeeding exertions of reason is often faint, generally transient, and scarcely ever capable of being reproduced by an effort of the mind. Hence the name of reason is applied to this mixed state of mind; more especially when the feeling, being of a cold and general nature, and scarcely ruffling the surface of the soul, such as those of prudence and of ordinary kindness and propriety, almost passes unnoticed, and is irretrievably forgotten. Hence the mind is, in such conditions, said by moralists to act from reason, in contradistinction to its more excited and disturbed state, when it is said to act from passion. The calmness of reason gives to the whole compound the appearance of unmixed reason. The illusion is further promoted by a mode of expression used in most languages. A man is said to act reasonably, when his conduct is such as may be reasonably expected. Amidst the disorders of a vicious mind, it is difficult to form a reasonable conjecture concerning future conduct; but the quiet and well-ordered state of virtue renders the probable acts of her fortunate votaries the object of very rational expectation.

As far as it is not presumptuous to attempt a distinction between modes of thinking foreign to the mind which makes the attempt, and modes of expression scarcely translatable into the only technical language in which that mind is wont to think, it seems that the systems of Cudworth and Clarke, though they appear very similar, are in reality different in some important points of view. The former, a Platonist, sets out from those Ideas, (a word, in this acceptance of it, which has no corresponding term in English) the eternal models of created things, which, as the Athenian master taught, pre-existed in the everlasting intellect, and, of right, rule the will of every inferior mind. The illustrious scholar of Newton, with a manner of thinking more natural to his age and school, considered primarily the very relations of things themselves; conceived indeed by the Eternal Mind, but which, if such inadequate language may be pardoned, are the law of its will, as well as the model of its works.¹

EARL OF SHAFTESBURY.

Lord Shaftesbury, the author of the Characteristics, was the grandson of Sir Antony Ashley Cooper, created Earl of Shaftesbury, one of the master spirits of the English nation, whose vices, the bitter fruits of the insecurity of a troublous time, succeeded by the corrupting habits of an inconstant, venal, and profligate court, have led an ungrateful posterity to overlook his

¹ Mr Wollaston's system, that morality consisted in acting according to truth, seems to coincide with that of Dr Clarke. The murder of Cicero by Popilius Lenas, was, according to him, a practical falsehood; for Cicero had been his benefactor, but Popilius acted as if that were untrue. If the truth spoken of be, that gratitude is due for benefits, the reasoning is evidently a circle. If any truth be meant, indifferently, it is plain that the assassin acted in perfect conformity to several certain truths; such as the malignity of Antony, the ingratitude and venality of Popilius, and the probable impunity of his crime, when law was suspended, and good men without power.
² Born in 1671; died in 1713.
wisdom, and disinterested perseverance, in obtaining for the English nation the unspeakable benefits of the Habeas Corpus act. The fortune of the Characteristics has been singular. For a time the work was admired more undistinguishingly than its literary character warrants. In the succeeding period it was justly criticised, but too severely condemned. Of late, more unjustly than in either of the former cases, it has been generally neglected. It seemed to have the power of changing the temper of its critics. It provoked the amiable Berkeley to a harshness equally unwonted and unwarranted; while it softened the rugged Warburton so far as to dispose the fierce yet not altogether ungenerous polemic to praise an enemy in the very heat of conflict.

Leibnitz, the most celebrated of Continental philosophers, warmly applauded the Characteristics, and, (what was a more certain proof of admiration) though at an advanced age, criticised that work minutely. Le Clerc, who had assisted the studies of the author, contributed to spread its reputation by his Journal, then the most popular in Europe. Locke is said to have aided in his education, probably rather by counsel than by tuition. The author had indeed been driven from the regular studies of his country by the insults with which he was loaded at Winchester school, when he was only twelve years old, immediately after the death of his grandfather; a choice of time which seemed not so much to indicate anger against the faults of a great man, as triumph over the principles of liberty, which seemed at that time to have fallen for ever. He gave a genuine proof of respect for freedom of thought, by preventing the expulsion, from Holland, of Bayle, (with whom he differs in every moral, political, and, it may be truly added, religious opinion) when, it must be owned, the right of asylum was, in strict justice, forfeited by the secret services which the philosopher had rendered to the enemy of Holland and of Europe. In the small part of his short life which premature infirmities allowed him to apply to public affairs, he co-operated zealously with the friends of freedom; but, as became a moral philosopher, he supported, even against them, a law to allow those who were accused of treason to make their defence by counsel, although the parties first to benefit from this act of imperfect justice were conspirators to assassinate King William, and to re-enslave their country. On that occasion it is well known with what admirable quickness he took advantage of the embarrassment which seized him, when he rose to address the House of Commons. "If I," said he, "who rise only to give my opinion on this bill, am so confounded that I cannot say what I intended, what must the condition of that man be, who, without assistance, is pleading for his own life!" He was the friend of Lord Somers; and the tribute paid to his personal character by Warburton, who knew many of his contemporaries and some of his friends, may be considered as evidence of its excellence.

His fine genius and generous spirit shine through his writings; but their lustre is often dimmed by peculiarities, and, it must be said, by affectations, which, originating in local, temporary, or even personal circumstances, are particularly fatal to the permanence of fame. There is often a charm in the egotism of an artless writer, or of an actor in great scenes. But other laws are imposed on the literary artist. Lord Shaftesbury, instead of hiding himself behind his work, stands forward with too frequent marks of self-complacency, as a nobleman of polished manners, with a mind adorned by the

1 Berkeley's Minute Philosopher, Dialogue iii.; but especially his Theory of Vision Vindicated, Lond. 1733, (not re-published in the quarto edition of his works) where this most excellent man sinks for a moment to the level of a railing polemic.

2 It is remarkable that the most impure passages of Warburton's composition are those in which he lets loose his controversial zeal, and that he is a fine writer principally where he writes from generous feeling. Of all the virtues which were so much in this noble writer's heart and in his writings, there was not one he more revered than the love of public liberty. ... The noble author of the Characteristics had many excellent qualities, both as a man and a writer. He was temperate, chaste, honest, and a lover of his country. In his writings he has shown how much he has imbibed the deep sense, and how naturally he could copy the gracious manner, of Plato." (Dedication to the Freethinkers, prefixed to the Divine Legation.) Warburton, however, soon relapses, but not without excuse; for he thought himself vindicating the memory of Locke.

3 Opera, tom. III. p. 39-56.
fine arts, and instructed by ancient philosophy; shrinking with a somewhat effeminate fastidiousness from the clamour and prejudices of the multitude, whom he neither deigns to conciliate nor puts forth his strength to subdue. The enmity of the majority of churchmen to the government established at the Revolution, was calculated to fill his mind with angry feelings; which overflow too often, if not upon Christianity itself, yet upon representations of it, closely intertwined with those religious feelings to which, in other forms, his own philosophy ascribes surpassing worth. His small, and occasional writings, of which the main fault is the want of an object or a plan, have many passages remarkable for the utmost beauty and harmony of language. Had he imbibed the simplicity, as well as copied the expression and cadence of the greater ancients, he would have done more justice to his genius; and his works, like theirs, would have been preserved by that quality, without which but a very few writings, of whatever mental power, have long survived their writers. Grace belongs only to natural movements; and Lord Shaftesbury, notwithstanding the frequent beauty of his thoughts and language, has rarely attained it. He is unfortunately prone to pleasantry, which is obstinately averse from constraint, and which he had no interest in raising to be the test of truth. His affectation of liveliness as a man of the world, tempts him sometimes to overstep the indistinct boundaries which separate familiarity from vulgarity. Of his two more considerable writings, the Moralists, on which he evidently most valued himself, and which is spoken of by Leibnitz with enthusiasm, is by no means the happiest. Yet perhaps there is scarcely any composition in our language more lofty in its moral and religious sentiments, and more exquisitely elegant and musical in its diction, than the Platonic representation of the scale of beauty and love, in the speech to Palemon, near the close of the first part. Many passages might be quoted, which in some measure justify the enthusiasm of the septuagenarian geometer. Yet it is not to be concealed that, as a whole, it is heavy and languid. It is a modern antique. The dialogues of Plato are often very lively representations of conversations which might take place daily at a great university, full, like Athens, of rival professors and eager disciples,—between men of various character, and great fame as well as ability. Socrates runs through them all. His great abilities, his still more venerable virtues, his cruel fate, especially when joined to his very characteristic peculiarities,—to his grave humour, to his homely sense, to his assumed humility, to the honest sliness with which he ensnared the Sophists, and to the intrepidity with which he dragged them to justice, gave unity and dramatic interest to these dialogues as a whole. But Lord Shaftesbury's dialogue is between fictitious personages, and in a tone at utter variance with English conversation. He had great power of thought and command over words. But he had no talent for inventing character and bestowing life on it. The Inquiry concerning Virtue* is nearly exempt from the faulty peculiarities of the author; the method is perfect, the reasoning just, the style precise and clear. The writer has no purpose but that of honestly proving his principles; he himself altogether disappears; and he is intent only on earnestly enforcing what he truly, conscientiously, and reasonably believes. Hence the charm of simplicity is revived in this production, which is unquestionably entitled to a place in the first rank of English tracts on Moral Philosophy.

The point in which it becomes especially pertinent to the subject of this Dissertation is, that it contains more intimations of an original and important nature on the Theory of Ethics than perhaps any preceding work of modern times. It is true that they are often but intimations, cursory, and appearing almost to be casual; so that many of them have escaped the notice of most readers, and even writers on these subjects.

1 Characters, Treatise v. The Moralists, Part i. sect. 3.
2 Ibid. Treatise iv.
3 I am not without suspicion that I have overlooked the claims of Dr Henry More, who, notwithstanding some uncouthness of language, seems to have given the first intimations of a distinct moral faculty, which he calls "the Boniform Faculty," a phrase against which an outcry would now be raised as German. Happiness, according to him, consists in a constant satisfaction. (Enchiridion Ethicum, lib. i. cap. ii.)
That the consequences of some of them are even yet not unfolded, must be owned to be a proof that they are inadequately stated; and may be regarded as a presumption that the author did not closely examine the bearings of his own positions. Among the most important of these suggestions is, the existence of dispositions in man, by which he takes pleasure in the wellbeing of others, without any further view; a doctrine, however, to all the consequences of which he has not been faithful in his other writings.

Another is, that goodness consists in the prevalence of love for the system of which we are a part, over the passions, pointing to our individual welfare; a proposition which somewhat confounds the motives of right acts with their tendency, and seems to favour the melting of all particular affections into general benevolence, because the tendency of these affections is to general good. The next, and certainly the most original, as well as important, is, that there are certain affections of the mind which, being contemplated by the mind itself through what he calls a reflex sense, become the objects of love, or the contrary, according to their nature. So approved and loved, they constitute virtue or merit, as distinguished from mere goodness, of which there are traces in animals who do not appear to reflect on the state of their own minds, and who seem, therefore, destitute of what he elsewhere calls a moral sense. These statements are, it is true, far too short and vague. He nowhere inquires into the origin of the reflex sense. What is a much more material defect, he makes no attempt to ascertain in what state of mind it consists. We discover only by implication, and by the use of the term sense, that he searches for the fountain of moral sentiments, not in mere reason, where Cudworth and Clarke had vainly sought for it, but in the heart, whence the main branch of them assu-

redly flows. It should never be forgotten, that we owe to these hints the reception, into ethical theory, of a moral sense; which, whatever may be thought of its origin, or in whatever words it may be described, must always retain its place in such theory as a main principle of our moral nature.

His demonstration of the utility of virtue to the individual, far surpasses all attempts of the same nature; being founded, not on a calculation of outward advantages or inconveniences, alike uncertain, precarious, and degrading, but on the unshaken foundation of the delight, which is of the very essence of social affection and virtuous sentiment; on the dreadful agony inflicted by all malevolent passions, upon every soul that harbours the hellish inmates; on the all-important truth, that to love is to be happy, and to hate is to be miserable,—that affection is its own reward, and ill-will its own punishment; or, as it has been more simply and more affectingly, as well as with more sacred authority, taught, that to give is more blessed than to receive, and that to love one another is the sum of all human virtue.

The relation of religion to morality, as far as it can be discovered by human reason, was never more justly or more beautifully stated. If he represented the mere hope of reward and dread of punishment as selfish, and therefore inferior motives to virtue and piety, he distinctly owns their efficacy in reclaiming from vice, in rousing from lethargy, and in guarding a feeble penitence; in all which he coincides with illustrious and zealous Christian writers. If by the hope of reward be understood the love and desire of virtuous enjoyment, or of the very practice and exercise of virtue in another life; an expectation or hope of this kind is so far from being derogatory from virtue, that it is an evidence of our loving it the more sincerely and for its own sake.

1 "It is the height of wisdom no doubt to be rightly selfish." (Charac. I. 121.) The observation seems to be taken from what Aristotle says of ϕιλανθρωπία: Τι μην άγαπή κι αρετήν ίππα. (ΑΡΙΣΤ. Εθικ. IX. c. viii.) The chapter is admirable, and the assertion of Aristotle is very capable of a good sense.

2 Characteristics, Inquiry concerning Virtue.

3 Ibid. So Jeremy Taylor: “He that is grown in grace pursues virtue purely and simply for its own interest. When persons come to that height of grace, and love God for himself, that is but heaven in another sense.” (Sermon on Growth in Grace.) So before him the once celebrated Mr. John Smith of Cambridge: “The happiness which good men shall partake is not distinct from their godlike nature. Happiness and holiness are but two several notions of one thing. Hell is rather a
FENELON—BOSSUET.

As the last question, though strictly speaking theological, is yet in truth dependent on the more general question, which relates to the reality of disinterested affections in human nature, it seems not foreign from the present purpose to give a short account of a dispute on the subject in France, between two of the most eminent persons of their time; namely, the controversy between Fenelon and Bossuet, concerning the possibility of men being influenced by the pure and disinterested love of God. Never were two great men more unlike. Fenelon in his writings exhibits more of the qualities which predispose to religious feelings, than any other equally conspicuous person;—a mind so pure as steadily to contemplate supreme excellence; a heart capable of being touched and affected by the contemplation; a gentle and modest spirit, not elated by the privilege, but seeing its own want of worth as it came nearer to such brightness, and disposed to treat with compassion forbearance those errors in others, of which it felt a humbling consciousness. Bossuet was rather a great minister in the ecclesiastical commonwealth; employing knowledge, eloquence, argument, the energy of his character, the influence, and even the authority of his station, to vanquish opponents, to extirpate revolters, and, sometimes with a patrician firmness, to withstand the dictatorial encroachment of the Roman Pontiff on the spiritual aristocracy of France. Fenelon had been appointed tutor to the Duke of Burgundy. He had all the qualities which fit a man to be the preceptor of a prince, and which most disable him to get or to keep the office. Even birth, and urbanity, and accomplishment, and vivacity, were an insufficient atonement for his genius and virtue. Louis XIV. distrusted so fine a spirit, and appears to have early suspected, that a fancy moved by such benevolence might imagine examples for his grandson which the world would consider as a satire on his own reign. Madame de Maintenon, indeed, favored him; but he was generally believed to have forfeited her good graces by discouraging her projects for at least a nearer approach to a seat on the throne. He offended her by obeying her commands, in laying before her an account of her faults, and some of those of her royal husband, which was probably the more painfully felt for its mildness, justice, and refined observation. An opportunity for driving such an intruder from a court presented itself somewhat strangely, in the form of a subtle controversy on one of the most abstruse questions of metaphysical theology. Molinos, a Spanish priest, reviving and perhaps exaggerating the maxims of the ancient Mystics, had recently taught, that Christian perfection consisted in the pure love of God, without hope of reward or fear of punishment. This offence he expiated by seven years' imprisonment in the dungeons of the Roman Inquisition. His opinions were embraced by Madame Guyon, a pious French lady of strong feeling and active imagination, who appears to have expressed them in a hyperbolical language, not infrequent in devotional exercises, especially in those of otherwise amiable

nature than a place, and heaven cannot be so well defined by anything without us, as by something within us." (Select Discourses, 2d edit. Cambridge, 1673.)

In accordance with these old authorities is the recent language of a most ingenious as well as benevolent and pious writer. "The holiness of heaven is still more attractive to the Christian than its happiness. The desire of doing that which is right for its own sake is a part of his desire after heaven." (Unconditional Freedom of the Gospel, by T. Erskine, Esq. p. 32, 33. Edinb. 1652.)

See also the Appendix to Ward's Life of Henry More, 247—271. This account of that ingenious and amiable philosopher (Lond. 1710) contains an interesting view of his opinions, and many beautiful passages of his writings, but unfortunately very few particulars of the man. His letters on Disinterested Piety, (see the Appendix to Mr. Ward's work) his boundless charity, his zeal for the utmost toleration, and his hope of general improvement from "a pacific and perspicacious, and of "a pacific and perspicacious posterity," place him high in the small number of true philosophers who, in their estimate of men, value dispositions more than opinions, and in their search for good, more often look forward than backward.

1 Born in 1631; died in 1715.
2 BAUSSET, Histoire de Fenelon, I. 252.
persons of her sex and character. In the fervour of her zeal, she disregarded the usages of the world and the decorums imposed on females. She left her family, took a part in public conferences, and assumed an independence scarcely reconcilable with the more ordinary and more pleasing virtues of women. Her pious effusions were examined with the rigour which might be exercised on theological propositions. She was falsely charged by Harlay, the dissolute archbishop of Paris, with personal licentiousness. For these crimes she was dragged from convent to convent, imprisoned for years in the Bastile, and, as an act of mercy, confined during the latter years of her life to a provincial town, as a prison at large. A piety thus pure and disinterested could not fail to please Fenelon. He published a work in justification of Madame Guyon’s character, and in explanation of the degree in which he agreed with her. Bossuet, the oracle and champion of the church, took up arms against him. It would be painful to suppose that a man of so great powers was actuated by mean jealousy, and it is needless. The union of zeal for opinion with the pride of authority, is apt to give sternness to the administration of controversial bishops; to say nothing of the haughty and inflexible character of Bossuet himself. He could not brook the independence of him who was hitherto so docile a scholar and so gentle a friend. He was jealous of novelties, and dreaded a fervour of piety likely to be ungovernable, and perhaps to excite movements of which no man could foresee the issue. It must be allowed that he had reason to be displeased with the indiscretion and turbulence of the innovators, and might apprehend that, in preaching motives to virtue and religion which he thought unattainable, the coarser but surer foundations of common morality might be loosened. A controversy ensued, in which he employed the utmost violence of polemical or factious contest. Fenelon replied with brilliant success, and submitted his book to the judgment of Rome. After a long examination, the commission of ten Cardinals appointed to examine it were equally divided, and he seemed in consequence about to be acquitted. But Bossuet had in the mean time easily gained Louis XIV. Madame de Maintenon betrayed Fenelon’s confidential correspondence; and he was banished to his diocese, and deprived of his pensions and official apartments in the palace. Louis XIV. regarded the slightest differences from the authorities of the French church as rebellion against himself. Though endowed with much natural good sense, he was too grossly ignorant to be made to comprehend one of the terms of the question in dispute. He did not, however, scruple to urge the Pope to the condemnation of Fenelon. Innocent XII. (Pignatelli) an aged and pacific Pontiff, was desirous of avoiding such harsh measures. He said that “the archbishop of Cambrai might have erred from excess in the love of God, but the bishop of Meaux had sinned by a defect of the love of his neighbour.” But he was compelled to condemn a series of propositions, of which the first was, “there is an habitual state of love to God, which is pure from every motive of personal interest, and in which neither the fear of punishment nor the hope of reward has any part.” Fenelon read the bull which condemned him in his own cathedral, and professed as humble a submission as the lowest of his flock. In some of the writings of his advanced years, which have been recently published, we observe with regret that, when wearied out by his exile, ambitious to regain a place at court through the Jesuits, or prejudiced against the Calvinising doctrines of the Jansenists, the strongest anti-papal party among Catholics, or somewhat detached from a cause of which his great antagonist had been the victorious leader, he made concessions to the absolute monarchy of Rome, which did not become a luminary of the Gallican church. Bossuet, in his writings on this occasion, besides tradition and authorities, relied mainly on the supposed principle of philosophy, that man must desire his own happiness, and cannot de-

1 BAUSSET, Histoire de Fenelon, III. 220, note.
2 OEuvres de BOUSSET, VIII. 506. Liège, 1767, 8vo.
3 De Summi Pontificis Auctoritate Dissertatio: OEuvres de FENELON, tome II. Versailles, 1820.
sire anything else, otherwise than as a means towards it; which renders the controversy an incident in the history of Ethics. It is immediately connected with the preceding part of this Dissertation, by the almost literal coincidence between Bossuet’s foremost objection to the disinterested piety contended for by Fenelon, and the fundamental position of a very ingenious and once noted divine of the English church, in his attack on the disinterested affections, believed by Shaftesbury to be a part of human nature.

Leibnitz.

There is a singular contrast between the form of Leibnitz’s writings and the character of his mind. The latter was systematical, even to excess. It was the vice of his prodigious intellect, on every subject of science where it was not bound by geometrical chains, to confine his view to those most general principles, so well called by Bacon “merely notional;” which render it, indeed, easy to build a system, but, only because they may be alike adapted to every state of appearances, and become thereby really applicable to any. Though his genius was thus naturally turned to system, his writings were, generally, occasional and miscellaneous. The fragments of his doctrines are scattered in Reviews; or over a voluminous Literary Correspondence; or in the Prefaces and Introductions to those compilations to which this great philosopher was obliged by his situation to descend. This defective and disorderly mode of publication arose partly from the jars between business and study, inevitable in his course of life; but probably yet more from the nature of his system, which, while it widely deviates from the most general principles of former philosophers, is ready to embrace their particular doctrines under its own generalities, and thus to reconcile them to each other, as well as to accommodate itself to popular or established opinions, and compromise with them, according to his favourite and oft-repeated maxim, “that most received doctrines are capable of a good sense,” by which last words our philosopher meant a sense reconcilable with his own principles. Partial and occasional exhibitions of these principles suited better that constant negotiation with opinions, establishments, and prejudices, to which extreme generalities are well adapted, than a full and methodical statement of the whole at once. It is the lot of every philosopher who attempts to make his principles extremely flexible, that they become like those tools which bend so easily as to penetrate nothing. Yet his manner of publication perhaps led him to those wide intuitions, as comprehensive as those of Bacon, of which he expressed the result as briefly and pithily as Hobbes. The fragment which contains his ethical principles is the Preface to a collection of documents illustrative of international law, published at Hanover in 1693; to which he often referred as his standard afterwards, especially when he speaks of Lord Shaftesbury, or of the controversy between the two great theologians of France. “Right,” says he, “is moral power; obligation moral necessity. By moral, I understand what with a good man prevails as much as if it were physical. A good man is he who loves all men as far as reason allows. Justice

1 “Hec est natura voluntatis humane, ut et beatitudinem, et ea quorum necessaria connexio cumb beatus unire clare intelligitur, necessaria appetit......Nullus est actus ad quem novera non impellimur motivo beatitudinis, explicite vel implicite,” meaning by the latter that it may be concealed from ourselves, as he says, for a short time, by a hænder object. (Œuvres de Bossuet, VIII. 80.) “The only motive by which individuals can be induced to the practice of virtue, must be the feeling or the prospect of private happiness.” (Brown’s Essays on the Characteristics, p. 139. Lond. 1732.) It must, however, be owned, that the selfishness of the Warburtonian is more rigid; making no provision for the object of one’s own happiness slipping out of view for a moment. It is due to the very ingenious author of this forgotten book to add, that it is full of praise of his adversary, which, though just, was in the answerer generous; and that it contains an assertion of the unbounded right of public discussion, unusual even at the tolerant period of its appearance.

2 Born in 1646; died in 1716.

* Nouveaux Essais sur l’Entendement Humain, liv. i. chap. ii. p. 57. These Essays, which form the greater part of the publication entitled Œuvres Philosophiques, edited by Raspe, Amtft. et Leipzig. 1765, are not included in Dutens’s edition of Leibnitz’s works.

* Codex Juris Gentium Diplomaticus. Hanov. 1693.

Diss. 11.
is the benevolence of a wise man. *To love is to be pleased with the happiness of another; or, in other words, to convert the happiness of another into a part of one's own.* Hence is explained the possibility of a disinterested love. When we are pleased with the happiness of any being, his happiness becomes one of our enjoyments. Wisdom is the science of happiness."

REMARKS.

It is apparent from the above passage, that Leibnitz had touched the truth on the subject of disinterested affection; and that he was more near clinging to it than any modern philosopher, except Lord Shaftesbury. It is evident, however, from the latter part of it, that, like Shaftesbury, he shrunk from his own just conception; under the influence of that most ancient and far-spread prejudice of the schools, which assumed that such an abstraction as Happiness could be the object of love, and that the desire of so faint, distant, and refined an object, was the first principle of all moral nature, of which every other desire was only a modification or a fruit. Both he and Shaftesbury, however, when they relapsed into the selfish system, embraced it in its most refined form; considering the benevolent affections as valuable parts of our own happiness, not in consequence of any of their effects or extrinsic advantages, but of that intrinsic delightfulness which was inherent in their very essence. But Leibnitz considered this refined pleasure as the object in the view of the benevolent man; an absurdity, or rather a contradiction, which, at least in the *Inquiry concerning Virtue*, Shaftesbury avoids. It will be seen from Leibnitz's limitation, taken together with his definition of Wisdom, that he regarded the distinction of the moral sentiments from the social affections, and the just subordination of the latter, as entirely founded on the tendency of general happiness to increase that of the agent, not merely as being real, but as being present to the agent's mind when he acts. In a subsequent passage he lowers his tone not a little. "As for the sacrifice of life, or the endurance of the greatest pain for others, these things are rather generously enjoined than solidly demonstrated by philosophers. For honour, glory, and self-congratulation, to which they appeal under the name of Virtue, are indeed mental pleasures, and of a high degree, but not to all, nor outweighing every bitterness of suffering; since all cannot imagine them with equal vivacity, and that power is little possessed by those whom neither education, nor situation, nor the doctrines of religion or philosophy, have taught to value mental gratifications." He concludes very truly, that morality is completed by a belief of moral government. But the *Inquiry concerning Virtue* had reached that conclusion by a better road. It entirely escaped his sagacity, as it has that of nearly all other moralists, that the coincidence of morality with well-understood interest in our outward actions, is very far from being the most important part of the question; for these actions flow from habitual dispositions, from affections and sensibilities, which determine their nature. There may be, and there are many immoral acts, which, in the sense in which words are commonly used, are advantageous to the actor. But the whole sagacity and ingenuity of the world may be safely challenged to point out a case in which virtuous dispositions, habits, and feelings, are not conducive in the highest degree to the happiness of the individual; or to maintain that he is not the happiest, whose moral sentiments and affections are such as to prevent the possibility of the prospect of advantage through unlawful means from presenting itself to his mind. It would indeed have been impossible to prove to Regulus that it was his interest to return to a death of torture in Africa. But what if the proof had been easy? The most thorough conviction on such a point would not have enabled him to set this example, if he had not been supported by his own integrity and generosity, by love of his country, and reverence for his pledged faith. What could the conviction add to that greatness of soul, and to these glorious attributes? With such virtues he could not act otherwise than he

1 See Notes and Illustrations, note N.

2 Ibid. note N.
DISSERTATION SECOND.

339

did. Would a father affectionately interested in a son's happiness, of very lukewarm feelings of morality, but of good sense enough to weigh gratifications and sufferings exactly, be really desirous that his son should have these virtues in a less degree than Regulus, merely because they might expose him to the fate which Regulus chose? On the coldest calculation he would surely perceive, that the high and glowing feelings of such a mind during life, altogether throw into shade a few hours of agony in leaving it. And, if he himself were so unfortunate that no more generous sentiment arose in his mind to silence such calculations, would it not be a reproach to his understanding not to discover, that though in one case out of millions such a character might lead a Regulus to torture, yet, in the common course of nature, it is the source not only of happiness in life, but of quiet and honour in death. A case so extreme as that of Regulus will not perplex, if we bear in mind, that though we cannot prove the act of heroic virtue to be conducive to the interest of the hero, yet we may perceive at once, that nothing is so conducive to his interest as to have a mind

so formed that it could not shrink from it, but must rather embrace it with gladness and triumph. Men of vigorous health are said sometimes to suffer most in a pestilence. No man was ever so absurd as for that reason to wish that he were more infirm. The distemper might return once in a century. If he were then alive, he might escape it; and even if he fell, the balance of advantage would be in most cases greatly on the side of robust health. In estimating beforehand the value of a strong bodily frame, a man of sense would throw the small chance of a rare and short evil entirely out of the account. So must the coldest and most selfish moral calculator, who, if he be sagacious and exact, must pronounce, that the inconveniences to which a man may be sometimes exposed by a pure and sound mind, are no reasons for regretting that we do not escape them by possessing minds more enfeebled and distempered. Other occasions will call our attention, in the sequel, to this important part of the subject. But the great name of Leibnitz seemed to require that his degrading statement should not be cited without warning the reader against its egregious fallacy.

MALEBRANCHE.1

This ingenious philosopher and beautiful writer is the only celebrated Cartesian who has professedly handled the Theory of Morals.2 His theory has in some points of view a conformity to the doctrine of Clarke; while in others it has given occasion to his English follower Norris3 to say, that if the Quakers understood their own opinion of the illumination of all men, they would explain it on the principles of Malebranche. "There is," says he, "one parent virtue, the universal virtue, the virtue which renders us just and perfect, the virtue which will one day render us happy. It is the only virtue. It is the love of the universal order, as it eternally existed in the Divine reason, where every created reason contemplates it. This order is composed of practical as well as speculative truth.

Reason perceives the moral superiority of one being over another, as immediately as the equality of the radii of the same circle. The relative perfection of beings is that part of the immoveable order to which men must conform their minds and their conduct. The love of order is the whole of virtue, and conformity to order constitutes the morality of actions." It is not difficult to discover, that in spite of the singular skill employed in weaving this web, it answers no other purpose than that of hiding the whole difficulty. The love of universal order, says Malebranche, requires that we should value an animal more than a stone, because it is more valuable; and love God infinitely more than man, because he is infinitely better. But without presupposing the reality of moral dis-

1 Born in 1638; died in 1715.
2 Traité de Morale. Rotterdam, 1684.
3 Author of the Theory of the Ideal World, who well copied, though he did not equal the clearness and choice of expression which belonged to his master.
tinctions, and the power of moral feelings, the two points to be proved, how can either of these propositions be evident, or even intelligible? To say that a love of the eternal order will produce the love and practice of every virtue, is an assertion untenable unless we take morality for granted, and useless if we do.

In his work on Morals, all the incidental and secondary remarks are equally well considered and well expressed. The manner in which he applied his principle to the particulars of human duty, is excellent. He is perhaps the first philosopher who has precisely laid down and rigidly adhered to the great principle, that virtue consists in pure intentions and dispositions of mind, without which, actions, however con-

JONATHAN EDWARDS.

This remarkable man, the metaphysician of America, was formed among the Calvinists of New England, when their stern doctrine retained its rigorous authority. His power of subtle argument, perhaps unmatched, certainly unsurpassed among men, was joined, as in some of the ancient Mystics, with a character which raised his piety to fervour. He embraced their doctrine, probably without knowing it to be theirs. "True religion," says he, "in a great measure consists in holy affections. A love of divine things, for the beauty and sweetness of their moral excellency, is the spring of all holy affections." Had he suffered this noble principle to take the right road to all its fair consequences, he would have entirely concurred with Plato, with Shaftesbury, and Malebranche, in devotion to "the first good, first perfect, and first fair." But he thought it necessary afterwards to limit his doctrine to his own persuasion, by denying that such moral excellence could be discovered in divine things by those formable to rules, are not truly moral; a truth of the highest importance, which, in the theological form, may be said to have been the main principle of the first Protestant Reformers. The ground of piety, according to him, is the conformity of the attributes of God to those moral qualities which we irresistibly love and revere. "Sovereign princes," says he, "have no right to use their authority without reason. Even God has no such miserable right." His distinction between a religious society and an established church, and his assertion of the right of the temporal power alone to employ coercion, are worthy of notice, as instances in which a Catholic, at once philosophical and orthodox, could thus speak, not only of the nature of God, but of the rights of the church.

EDWARDS. Christians who did not take the same view with him of their religion. All others, and some who hold his doctrines with a more enlarged spirit, may adopt his principle without any limitation. His ethical theory is contained in his Dissertation on the Nature of True Virtue; and in another, On God's Chief End in the Creation, published in London thirty years after his death. True virtue, according to him, consists in benevolence, or love to being "in general," which he afterwards limits to "intelligent being," though sentient would have involved a more reasonable limitation. This good-will is felt towards a particular being, first in proportion to his degree of existence (for, says he, "that which is great has more existence, and is farther from nothing, than that which is little") and secondly, in proportion to the degree in which that particular being feels benevolence to others. Thus God, having infinitely more existence and benevolence than man, ought to be infinitely more loved; and for the same rea-

1 "Il faut aimer l'Être infiniment parfait, et non pas un fantôme épouvantable, un Dieu injuste, absolu, puissant, mais sans bonté et sans sagesse. S'il y avait un tel Dieu, le vrai Dieu nous défendrait de l'adorer et de l'aimer. Il y a peut-être plus de danger d'offenser Dieu lorsqu'on lui donne une forme si horrible, que de mépriser ce fantôme." (Traité de Morale, chap. xii.)
2 Ibid. chap. xxii.
3 Born in 1703, at Windsor in Connecticut; died in 1758, at Princeton in New Jersey.
4 Notes and Illustrations, note 0.
son, God must love himself infinitely more than he does all other beings. He can act only from regard to himself, and his end in creation can only be to manifest his whole nature, which is called acting for his own glory.

As far as Edwards confines himself to created beings, and while his theory is perfectly intelligible, it coincides with that of universal benevolence, hereafter to be considered. The term being is a mere encumbrance, which serves indeed to give it a mysterious outside, but brings with it from the schools nothing except their obscurity. He was betrayed into it by the cloak which it threw over his really unmeaning assertion or assumption, that there are degrees of existence; without which that part of his system which relates to the Deity would have appeared to be as baseless as it really is. When we try such a phrase by applying it to matters within the sphere of our experience, we see that it means nothing but degrees of certain faculties and powers. But the very application of the term being to all things, shows that the least perfect has as much being as the most perfect; or rather that there can be no difference, so far as that word is concerned, between two things to which it is alike applicable. The justness of the compound proportion on which human virtue is made to depend, is capable of being tried by an easy test. If we suppose the greatest of evil spirits to have a hundred times the bad passions of Marcus Aurelius, and at the same time a hundred times his faculties, or, in Edwards’s language, a hundred times his quantity of being, it follows from this moral theory, that we ought to esteem and love the devil exactly in the same degree as we esteem and love Marcus Aurelius.

The chief circumstance which justifies so much being said on the last two writers, is their concurrence in a point towards which Ethical Philosophy had been slowly approaching, from the time of the controversies raised up by Hobbes. They both indicate the increase of this tendency, by introducing an element into their theory, foreign from those cold systems of ethical abstraction, with which they continued in other respects to have much in common. Malebranche makes virtue consist in the love of order, Edwards in the love of being. In this language we perceive a step beyond the representation of Clarke, which made it a conformity to the relations of things; but a step which cannot be made without passing into a new province;—without confessing, by the use of the word love, that not only perception and reason, but emotion and sentiment, are among the fundamental principles of morals. They still, however, were so wedded to scholastic prejudice, as to choose two of the most aerial abstractions which can be introduced into argument,—being and order,—to be the objects of those strong active feelings which were to govern the human mind.

BUFFIER. 5

The same strange disposition to fix on abstractions as the objects of our primitive feelings, and the end sought by our warmest desires, manifests itself in the ingenious writer with whom this part of the Dissertation closes, under a form of less dignity than that which it assumes in the hands of Malebranche and Clarke. Buffier, the only Jesuit whose name has a place in the history of Abstract Philosophy, has no peculiar opinions which would have required any mention of him as a moralist, were it not for the just reputation of his treatise on First Truths, with which Dr Reid so remarkably, though unaware of its existence, coincides, even in the misapplication of so practical a term as common sense to denote the faculty which recognizes the truth of First Principles. His philosophical writings 6 are remarkable for that

1 The coincidence of Malebranche with this part of Edwards, is remarkable. Speaking of the Supreme Being, he says, "Il s’estime invincible." He adds another more startling expression, "Certainement Dieu ne peut agir que pour lui-même; il n’a point d’autre motif que son amour propre." (Traité de Morale, chap. xvii.)
2 Born in 1661; died in 1737.
3 Cours de Sciences. Paris, 1732, folio.
perfect clearness of expression, which, since the great examples of Descartes and Pascal, has been so generally diffused as to have become one of the enviable peculiarities of French philosophical style, and almost of the French language. His ethical doctrine is that most commonly received among philosophers, from Aristotle to Paley and Bentham: "I desire to be happy; but as I live with other men, I cannot be happy without consulting their happiness:" a proposition perfectly true indeed, but far too narrow, as inferring, that in the most benevolent acts a man must pursue only his own interest, from the fact that the practice of benevolence does increase his happiness, and that because a virtuous mind is likely to be the happiest, our observation of that property of virtue is the cause of our love and reverence for it.

SECTION VI.

Foundations of a more just Theory of Ethics.

From the beginning of ethical controversy to the eighteenth century, it thus appears, that the care of the individual for himself, and his regard for the things which preserve self, were thought to form the first, and, in the opinion of most, the earliest of all the principles which prompt men and other animals to activity; that nearly all philosophers regarded the appetites and desires, which look only to self-gratification, as modifications of this primary principle of self-love; and that a very numerous body considered even the social affections themselves as nothing more than the produce of a more latent and subtle operation of the desire of interest, and of the pursuit of pleasure. It is true, they often spoke otherwise; but it was rather from the looseness and fluctuation of their language, than from distrust in their doctrine. It is true, also, that perhaps all represented the gratifications of virtue as more unmixed, more secure, more frequent, and more lasting, than other pleasures; without which they could neither have retained a hold on the assent of mankind, nor reconciled the principles of their systems with the testimony of their hearts. We have seen how some began to be roused from a lazy acquiescence in this ancient hypothesis, by the monstrous consequences which Hobbes had legitimately deduced from it. A few, of pure minds and great intellect, laboured to render morality disinterested, by tracing it to reason as its source; without considering that reason, elevated indeed far above interest, is also separated by an impassable gulf, from feeling, affection, and passion. At length it was perceived by more than one, that through whatever length of reasoning the mind may pass in its advances towards action, there is placed at the end of any avenue through which it can advance, some principle wholly unlike mere reason,—some emotion or sentiment which must be touched, before the springs of will and action can be set in motion. Had Lord Shaftesbury steadily adhered to his own principles—had Leibnitz not recoiled from his statement—the truth might have been regarded as promulgated, though not unfolded. The writings of both prove, at least to us, enlightened as we are by what followed, that they were skilful in sounding, and that their lead had touched the bottom. But it was reserved for another moral philosopher to determine this hitherto unfathomed depth.1

1 The doctrine of the Stoics is thus put by Cicero into the mouth of Cato: "Placeat his, inquit, quorum ratio mibi probatur, simul atque natum sit animal, (hinc enim est erudiendum) ipsum sibi conciliari et commendari ad se conservandum,
BUTLER. 1

Butler, who was the son of a Presbyterian trader, early gave such promise, as to induce his father to fit him, by a proper education, for being a minister of that persuasion. He was educated at one of their seminaries under Mr Jones of Gloucester, where Seeker, afterwards archbishop of Canterbury, was his fellow-student. Though many of the dissenters had then begun to relinquish Calvinism, the uniform effect of that doctrine, in disposing its adherents to metaphysical speculation, long survived the opinions which caused it, and cannot be doubted to have influenced the mind of Butler. When a student at the academy of Gloucester, he wrote private letters to Dr Clarke on his celebrated Demonstration, suggesting objections which were really insuperable, and which are marked by an acuteness which neither himself nor any other ever surpassed. Clarke, whose heart was as well schooled as his head, published the letters, with his own answers, in the next edition of his work; and, by his good offices with his friend and follower, Sir Joseph Jekyll, obtained for the young philosopher an early opportunity of making his abilities and opinions known, by the appointment of preacher at the Chapel of the Master of the Rolls. He was afterwards raised to one of the highest seats on the Episcopal bench, through the philosophical taste of Queen Caroline, and her influence over the mind of her husband, which continued long after her death.

"He was wafted," says Horace Walpole, "to the see of Durham, on a cloud of Metaphysics." 2 Even in the fourteenth year of his widowhood, George II. was desirous of inserting the name of the Queen's metaphysical favourite in the Regency Bill of seventeen hundred and fifty-one.

His great work on the Analogy of Religion to the Course of Nature, though only a commentary on the singularly original and pregnant passage of Origen, which is so honestly prefixed to it as a motto, is, notwithstanding, the most original and profound work extant in any language on the Philosophy of Religion. It is entirely beyond our present scope. His ethical discussions are contained in those deep and sometimes dark Dissertations which he preached at the Chapel of the Rolls, and afterwards published under the name of Sermons, while he was yet fresh from the schools, and full of that courage with which youth often delights to exercise its strength in abstract reasoning, and to push its faculties into the recesses of abstruse speculation. But his youth was that of a sober and mature mind, early taught by nature to discern the boundaries of knowledge, and to abstain from fruitless efforts to reach inaccessible ground. In these sermons, 3 he has taught truths more capable of being exactly distinguished from the doctrines of his predecessors, more satisfactorily established by him, more comprehensively applied to particulars, more rationally connected with each other, and therefore more worthy of the name of discovery, than any with which we are acquainted; if we ought not, with some hesitation, to except the first steps of the Grecian philosophers towards a Theory of Morals. It is a peculiar hardship, that the extreme ambiguity of language, an obstacle which it is one of the chief merits of an ethical philosopher to vanquish, is one of the circumstances which prevent men

1 Born in 1692; died in 1782.
2 See Sermons i. ii. and iii. On Human Nature; v. On Compassion; vii. On Resentment; ix. On Forgiveness; xi. and xii. On the Love of our Neighbour; and xii. On the Love of God; together with the excellent Preface.

from seeing the justice of applying to him so ambitious a term as discovery. Butler owed more to Lord Shaftesbury than to all other writers besides. He is just and generous towards that philosopher; yet, whoever carefully compares their writings, will without difficulty distinguish the two builders, and the larger as well as more regular and laboured part of the edifice, which is due to Butler.

Mankind have various principles of action; some leading directly to the private good, some immediately to the good of the community. But the private desires are not self-love, or any form of it; for self-love is the desire of a man's own happiness, whereas the object of an appetite or passion is some outward thing. Self-love seeks things as means of happiness; the private appetites seek things, not as means, but as ends. A man eats from hunger, and drinks from thirst; and though he knows that these acts are necessary to life, that knowledge is not the motive of his conduct. No gratification can indeed be imagined without a previous desire. If all the particular desires did not exist independently, self-love would have no object to employ itself about; for there would be no happiness, which, by the very supposition of the opponents, is made up of the gratifications of various desires. No pursuit could be selfish or interested, if there were not satisfactions first gained by appetites which seek their own outward objects without regard to self; which satisfactions compose the mass which is called a man's interest.

In contending, therefore, that the benevolent affections are disinterested, no more is claimed for them than must be granted to mere animal appetites and to malevolent passions. Each of these principles alike seeks its own object, for the sake simply of obtaining it. Pleasure is the result of the attainment, but no separate part of the aim of the agent. The desire that another person may be gratified, seeks that outward object alone, according to the general course of human desire. Resentment is as disinterested as gratitude or pity, but not more so. Hunger or thirst may be, as much as the purest benevolence, at variance with self-love. A regard to our own general happiness is not a vice, but in itself an excellent quality. It were well if it prevailed more generally over craving and short-sighted appetites. The weakness of the social affections, and the strength of the private desires, properly constitute selfishness; a vice utterly at variance with the happiness of him who harbours it, and as such, condemned by self-love. There are as few who attain the greatest satisfaction to themselves, as who do the greatest good to others. It is absurd to say with some, that the pleasure of benevolence is selfish because it is felt by self. Understanding and reasoning are acts of self, for no man can think by proxy; but no one ever called them selfish. Why? Evidently because they do not regard self. Precisely the same reason applies to benevolence. Such an argument is a gross confusion of self, as it is a subject of feeling or thought, with self considered as the object of either. It is no more just to refer the private appetites to self-love because they commonly promote happiness, than it would be to refer them to self-hatred in those frequent cases where their gratification obstructs it.

But, besides the private or public desires, and besides the calm regard to our own general welfare, there is a principle in man, in its nature supreme over all others. This natural supremacy belongs to the faculty which surveys, approves, or disapproves the several affections of our minds and actions of our lives. As self-love is superior to the private passions, so conscience is superior to the whole of man. Passion implies nothing but an inclination to follow it; and in that respect passions differ only in force. But no notion can be formed of the principle of reflection, or conscience, which does not comprehend judgment, direction, superintendency. Authority over all other principles of action is a constituent part of the idea of conscience, and cannot be separated from it. Had it strength as it has right, it would govern the world. The passions would have their power but according to their nature, which is to be subject to conscience. Hence we may understand the purpose at which the ancients, perhaps confusedly, aimed, when they laid it down, that virtue consisted in following nature. It is neither easy, nor, for the main object of the
moralist, important, to render the doctrines of the ancients by modern language. If Butler returns to this phrase too often, it was rather from the remains of undistinguishing reverence for antiquity, than because he could deem its employment important to his own opinions.

The tie which holds together Religion and Morality, is, in the system of Butler, somewhat different from the common representations, but not less close. Conscience, or the faculty of approving or disapproving, necessarily constitutes the bond of union. Setting out from the belief of Theism, and combining it, as he had entitled himself to do, with the reality of conscience, he could not avoid discovering, that the being who possessed the highest moral qualities, is the object of the highest moral affections. He contemplates the Deity through the moral nature of man. In the case of a being who is to be perfectly loved, "goodness must be the simple acting principle within him; this being the moral quality which is the immediate object of love." "The highest, the adequate object of this affection, is perfect goodness; which, therefore, we are to love with all our heart, with all our soul, and with all our strength." "We should refer ourselves implicitly to him, and cast ourselves entirely upon him. The whole attention of life should be to obey his commands." Moral distinctions are thus presupposed before a step can be made towards religion: virtue leads to piety; God is to be loved, because goodness is the object of love; and it is only after the mind rises through human morality to divine perfection, that all the virtues and duties are seen to hang from the throne of God.

REMARKS.

There do not appear to be any errors in the ethical principles of Butler. The following remarks are intended to point out some defects in his scheme; and even that attempt is made with the unfeigned humility of one who rejoices in an opportunity of doing justice to that part of the writings of a great philosopher which has not been so clearly understood, nor so justly estimated by the generality, as his other works.

1. It is a considerable defect, though perhaps unavoidable in a sermon, that he omits all inquiry into the nature and origin of the private appetites, which first appear in human nature. It is implied, but it is not expressed in his reasonings, that there is a time before the child can be called selfish, any more than social, when these appetites seem as it were separately to pursue their distinct objects, long antecedent to the state of mind in which all their gratifications are regarded as forming the mass called happiness. It is hence that they are likened to instincts, in contradiction to their subsequent distinction, which requires reason and experience.

2. Butler shows admirably well, that unless there were principles of action independent of self, there could be no pleasures and no happiness for self-love to watch over. A step farther would have led him to perceive, that self-love is altogether a secondary formation; the result of the joint operation of reason and habit upon the primary principles. It could not have existed without presupposing original appetites and organic gratifications. Had he considered this part of the subject, he would have strengthened his case by showing that self-love is as truly a derived principle, not only as any of the social affections, but as any of the most confessedly acquired passions. It would appear clear, that as self-love is not divested of its self-regarding character by considering it as acquired, so the social affections do not lose any part of their disinterested character, if they be considered as formed from simpler elements. Nothing would more tend to root out the old prejudice which treats a regard to self as analogous to a self-evident principle, than the proof, that self-love is itself formed from certain original elements, and that a living being long subsists before its appearance.

5 The very able work ascribed to Mr Hazlitt, entitled Essay on the Principles of Human Action, Lond. 1805, contains original views on this subject.
6 Compare this statement with the Stoical doctrine explained by Cicero in the book de Finibus, quoted above, of which it is the direct opposite.

Diss. II.
3. It must be owned that those parts of Butler's discourses which relate to the social affections are more satisfactory than those which handle the question concerning the moral sentiments. It is not that the real existence of the latter is not as well made out as that of the former. In both cases he occupies the unassailable ground of an appeal to consciousness. All men (even the worst) feel that they have a conscience and disinterested affections. But he betrays a sense of the greater vagueness of his notions on this subject. He falters as he approaches it. He makes no attempt to determine in what state of mind the action of conscience consists. He does not venture steadily to denote it by a name. He fluctuates between different appellations, and multiplies the metaphors of authority and command, without a simple exposition of that mental operation which these metaphors should only have illustrated. It commands other principles. But the question recurs, why, or how?

Some of his own hints, and some fainter intimations of Shaftesbury, might have led him to what appears to be the true solution; which, perhaps from its extreme simplicity, has escaped him and his successors. The truth seems to be, that the moral sentiments in their mature state, are a class of feelings which have no other object but the mental dispositions leading to voluntary action, and the voluntary actions which flow from these dispositions. We are pleased with some dispositions and actions, and displeased with others, in ourselves and our fellows. We desire to cultivate the dispositions, and to perform the actions, which we contemplate with satisfaction. These objects, like all those of human appetite or desire, are sought for their own sake. The peculiarity of these desires is, that their gratification requires the use of no means. Nothing (unless it be a volition) is interposed between the desire and the voluntary act. It is impossible, therefore, that these passions should undergo any change by transfer from the end to the means, as is the case with other practical principles. On the other hand, as soon as they are fixed on these ends, they cannot regard any further object. When another passion prevails over them, the end of the moral faculty is converted into a means of gratification. But volitions and actions are not themselves the end, or last object in view, of any other desire or aversion. Nothing stands between the moral sentiments and their object. They are, as it were, in contact with the will. It is this sort of mental position, if the expression may be pardoned, that explains, or seems to explain those characteristic properties which true philosophers ascribe to them, and which all reflecting men feel to belong to them. Being the only desires, aversions, sentiments, or emotions, which regard dispositions and actions, they necessarily extend to the whole character and conduct. Among motives to action, they alone are justly considered as universal. They may and do stand between any other practical principle and its object; while it is absolutely impossible that another shall intercept their connection with the will. Be it observed, that though many passions prevail over them, no other can act beyond its own appointed and limited sphere; and that the prevalence itself, leaving the natural order undisturbed in any other part of the mind, is perceived to be a disorder, when seen in another man, and felt to be so by the mind disordered, when the disorder subsides. Conscience may forbid the will to contribute to the gratification of a desire. No desire ever forbids will to obey conscience.

This result of the peculiar relation of conscience to the will, justifies those metaphorical expressions which ascribe to it authority and the right of universal command. It is immutable; for, by the law which regulates all feelings, it must rest on action, which is its object, and beyond which it cannot look; and as it employs no means, it never can be transferred to nearer objects, in the way in which he who first desires an object as a means of gratification, may come to seek it as his end. Another remarkable peculiarity is bestowed on the moral feelings by the nature of their object. As the objects of all other desires are outward, the satisfaction of them may be frustrated by outward causes. The moral sentiments may always be gratified, because voluntary actions and moral dispositions spring from within. No external circumstance affects them. Hence their independence. As the moral sentiment needs no means, and the desire is instantaneously followed by the volition,
it seems to be either that which first suggests the relation between command and obedience, or at least that which affords the simplest instance of it. It is therefore with the most rigorous precision that authority and universality are ascribed to them. Their only unfortunate property is their too frequent weakness; but it is apparent that it is from that circumstance alone that their failure arises. Thus considered, the language of Butler concerning conscience, that, "had it strength as it has right it would govern the world," which may seem to be only an effusion of generous feeling, proves to be a just statement of the nature and action of the highest of human faculties. The union of universality, immutability, and independence, with direct action on the will, which distinguishes the moral sense from every other part of our practical nature, renders it scarcely metaphorical language to ascribe to it unbounded sovereignty and awful authority over the whole of the world within:—shows that attributes, well denoted by terms significant of command and control, are, in fact, inseparable from it, or rather constitute its very essence;—justifies those ancient moralists who represent it as alone securing, if not forming the moral liberty of man; and finally, when religion rises from its roots in virtuous feeling, it clothes conscience with the sublime character of representing the divine purity and majesty in the human soul. Its title is not impaired by any number of defects; for every defeat necessarily disposes the disinterested and dispassionate bystander to wish that its force were strengthened: and though it may be doubted whether, consistently with the present constitution of human nature, it could be so invigorated as to be the only motive to action, yet every such bystander rejoices at all accessions to its force; and would own, that man becomes happier, more excellent, more estimable, more venerable, in proportion as conscience acquires a power of banishing malevolent passions, of strongly curbing all the private appetites, of influencing and guiding the benevolent affections themselves.

Let it be carefully considered whether the same observations could be made with truth, or with plausibility, on any other part or element of the nature of man. They are entirely independent of the question, whether conscience be an inherent or an acquired principle. If it be inherent, that circumstance is, according to the common modes of thinking, a sufficient proof of its title to veneration. But if provision be made in the constitution and circumstances of all men, for uniformly producing it, by processes similar to those which produce other acquired sentiments, may not our reverence be augmented by admiration of that supreme wisdom which, in such mental contrivances, yet more brightly than in the lower world of matter, accomplishes mighty purposes by instruments so simple? Should these speculations be thought to have any solidity by those who are accustomed to such subjects, it would be easy to unfold and apply them so fully, that they may be thoroughly apprehended by every intelligent person.

4. The most palpable defect of Butler's scheme is, that it affords no answer to the question, "What is the distinguishing quality common to all right actions?" If it were answered, "Their criterion is, that they are approved and commanded by conscience," the answerer would find that he was involved in a vicious circle; for conscience itself could be no otherwise defined than as the faculty which approves and commands right actions. There are few circumstances more remarkable than the small number of Butler's followers in Ethics; and it is perhaps still more observable, that his opinions were not so much rejected as overlooked. It is an instance of the importance of style. No thinker so great was ever so bad a writer. Indeed, the ingenious apologies which have been lately attempted for this defect, amount to no more than that his power of thought was too much for his skill in language. How general must the reception have been of truths so certain and momentous as those contained in Butler's Discourses,—with how much more clearness must they have appeared to his own great understanding, if he had possessed the strength and distinctness with which Hobbes enforces odious falsehood, or the unspeakable charm of that transparent diction which clothed the unfruitful paradoxes of Berkeley!
Hutcheson.

This ingenious writer began to try his own strength by private Letters, written in his early youth to Dr Clarke, the metaphysical patriarch of his time; on whom young philosophers seem to have considered themselves as possessing a claim, which he had too much goodness to reject. His correspondence with Hutcheson is lost; but we may judge of its spirit by his answers to Butler, and by one to Mr Henry Home, afterwards Lord Kames, then a young adventurer in the prevalent speculations. Nearly at the same period with Butler's first publication, the writings of Hutcheson began to show coincidences with him, indicative of the tendency of moral theory to a new form, to which an impulse had been given by Shaftesbury, and which was roused to activity by the adverse system of Clarke. Lord Molesworth, the friend of Shaftesbury, patronised Hutcheson, and even criticised his manuscript. Though a Presbyterian, he was befriended by King, archbishop of Dublin, himself a metaphysician; and he was aided by Mr Syngue, afterwards a bishop, to whom speculations somewhat similar to his own had occurred.

Butler and Hutcheson coincided in the two important positions, that disinterested affections, and a distinct moral faculty, are essential parts of human nature. Hutcheson is a chaste and simple writer, who imbibed the opinions, without the literary faults of his master, Shaftesbury. He has a clearness of expression, and fulness of illustration, which are wanting in Butler. But he is inferior to both these writers in the appearance at least of originality, and to Butler especially in that philosophical courage which, when it discovers the fountains of truth and falsehood, leaves others to follow the streams. He states as strongly as Butler, that "the same cause which determines us to pursue happiness for ourselves, determines us both to esteem and benevolence on their proper occasions—even the very frame of our nature." It is vain, as he justly observes, for the patrons of a refined selfishness to pretend that we pursue the happiness of others for the sake of the pleasure which we derive from it; since it is apparent that there could be no such pleasure if there had been no previous affection. "Had we no affection distinct from self-love, nothing could raise a desire of the happiness of others, but when viewed as a mean of our own." He seems to have been the first who entertained just notions of the formation of the secondary desires, which had been overlooked by Butler. "There must arise, in consequence of our original desires, secondary desires of every thing useful to gratify the primary desire. Thus, as soon as we apprehend the use of wealth or power to gratify our original desires, we also desire them. From their universality as means arises the general prevalence of these desires of wealth and power." Proceeding farther in his zeal against the selfish system than Lord Shaftesbury, who seems ultimately to rest the reasonableness of benevolence on its subserviency to the happiness of the individual, he represents the moral faculty to be, as well as self-love and benevolence, a calm general impulse, which may and does impel a good man to sacrifice not only happiness, but even life itself, to virtue.

As Mr Locke had spoken of an internal sensation,—Lord Shaftesbury once or twice of a reflex sense, and once of a moral sense,—Hutcheson, who had a steadier, if not a clearer view of the nature of conscience than Butler, calls it a Moral Sense; a name which quickly became popular, and continues to be a part of philosophical language. By sense, he understood a capacity of receiving ideas, together with pleasures and pains, from a class of

1 Born in Ireland in 1694; died at Glasgow in 1747.
2 Woodhouselee's Life of Lord Kames, vol. I. Append. No. 3.
3 The first edition of Butler's Sermons was published in 1726, in which year also appeared the second edition of Hutcheson's Inquiry into Beauty and Virtue. The Sermons had been preached some years before, though there is no likelihood that the contents could have reached a young teacher at Dublin. The place of Hutcheson's birth is not mentioned in any account known to me. Ireland may be truly said to be "incarnis suorum."
4 Inquiry, p. 152.
5 Essay on the Passions, p. 17.
6 Ibid. p. 8.
objects. The term moral was used to describe the particular class in question. It implied only that conscience was a separate element in our nature, and that it was not a state or act of the understanding. According to him, it also implied that it was an original and implanted principle; but every other part of his theory might be embraced by those who hold it to be derivative.

The object of moral approbation, according to him, is general benevolence; and he carries this generous error so far as to deny that prudence, as long as it regards ourselves, can be morally approved;—an assertion contradicted by every man's feelings, and to which we owe the Dissertation on the Nature of Virtue which Butler annexed to his Analogy. By proving that all virtuous actions produce general good, he fancied that he had proved the necessity of regarding the general good in every act of virtue;—an instance of that confusion of the theory of moral sentiments with the criterion of moral actions, against which the reader was warned at the opening of this Dissertation, as fatal to Ethical Philosophy. He is chargeable, like Butler, with a vicious circle, in describing virtuous acts as those which are approved by the moral sense, while he at the same time describes the moral sense as the faculty which perceives and feels the morality of actions.

He was the father of speculative philosophy in Scotland, at least in modern times; for though in the beginning of the sixteenth century the Scotch are said to have been known throughout Europe by their unmeasured passion for dialectical subtleties, and though this metaphysical taste was nourished by the controversies which followed the Reformation, yet it languished, with every other intellectual taste and talent, from the Restoration, first silenced by civil disorders, and afterwards repressed by an exemplary but unlettered clergy, till the philosophy of Shaftesbury was brought by Hutcheson from Ireland. We are told by the writer of his Life, (a fine piece of philosophical biography) that "he had a remarkable degree of rational enthusiasm for learning, liberty, religion, virtue, and human happiness;"* that he taught in public with persuasive eloquence; that his instructive conversation was at once lively and modest; that he united pure manners with a kind disposition. What wonder that such a man should have spread the love of knowledge and virtue around him, and should have rekindled in his adopted country a relish for the sciences which he cultivated! To him may also be ascribed that proneness to multiply ultimate and original principles in human nature, which characterized the Scottish School till the second extinction of a passion for metaphysical speculation in Scotland. A careful perusal of the writings of this now little studied philosopher will satisfy the well-qualified reader, that Dr Adam Smith's ethical speculations are not so unsuggested as they are beautiful.

dering those to be altogether without it, who, like Johnson and Beattie, believed that his speculations were sceptical, that they implied any distrust in the senses, or that they had the smallest

BERKELEY.*

This great metaphysician was so little a moralist, that it requires the attraction of his name to excise its introduction here. His Theory of Vision contains a great discovery in mental philosophy. His inmaterialism is chiefly valuable as a touchstone of metaphysical sagacity; showing those to be altogether without it, who, like Johnson and Beattie, believed that his speculations were sceptical, that they implied any distrust in the senses, or that they had the smallest

* The character given of the Scotch by the famous and unfortunate Servetus, in his edition of Ptolemy, (1633) is in many respects curious. "Gallis amicissimi, Anglorumque regi maxime infausti. Subita ingenia, et in ultionem prona, ferociaque. In bello fortes, ineditis, vigiliae, algoris patiescentissimi, decenti forma sed cultu negligientiori; invidi natura et ceterorum mortali contempores; ostentant plus nimio nobilitatem suum, et in summo etiam egredisse suum genus ad regiam stirpem referunt, nec non dialecticis argutissimis blandiuntur."—Subita ingenia is an expression equivalent to the "Prefidivum Scotorum ingenium" of Buchanan. Churchill almost agrees in words with Servetus:

Whose lineage springs

From great and glorious, though forgotten kings.

And the strong antipathy of the late King George III. to what he called "Scotch Metaphysics," proves the permanency of the last part of the national character.

* Life by Dr Leechman, prefixed to Hutcheson's System of Moral Philosophy, 1755.

* Born near Thomastown in Ireland, in 1694; died at Oxford in 1753.
tendency to disturb reasoning or alter conduct. Ancient learning, exact science, polished society, modern literature, and the fine arts, contributed to adorn and enrich the mind of this accomplished man. All his contemporaries agreed with the satirist in ascribing

To Berkeley every virtue under heaven.

Adverse factions and hostile wits concurred only in loving, admiring, and contributing to advance him. The severe sense of Swift endured his visions; the modest Addison endeavoured to reconcile Clarke to his ambitious speculations. His character converted the satire of Pope into fervid praise. Even the discerning, fastidious, and turbulent Atterbury said, after an interview with him, "So much understanding, so much knowledge, so much innocence, and such humility, I did not think had been the portion of any but angels, till I saw this gentleman." "Lord Bathurst told me, that the Members of the Scriblerus Club being met at his house at dinner, they agreed to rally Berkeley, who was also his guest, on his scheme at Bermudas. Berkeley, having listened to the many lively things they had to say, begged to be heard in his turn, and displayed his plan with such an astonishing and animating force of eloquence and enthusiasm, that they were struck dumb, and after some pause, rose all up together, with earnestness exclaiming, 'Let us set out with him immediately.'" It was when thus beloved and celebrated that he conceived, at the age of forty-five, the design of devoting his life to reclaim and convert the natives of North America; and he employed as much influence and solicitation as common men do for their most prized objects, in obtaining leave to resign his dignities and revenues, to quit his accomplished and affectionate friends, and to bury himself in what must have seemed an intellectual desert. After four years' residence at Newport in Rhode Island, he was compelled, by the refusal of Government to furnish him with funds for his College, to forego his work of heroic, or rather godlike benevolence; though not without some consoling forethought of the fortune of the country where he had sojourned.

Westward the course of empire takes its way,
The first four acts already past,
As fifth shall close the drama with the day,
Time's noblest offspring is its last.

Thus disappointed in his ambition of keeping a School for savage children, at a salary of a hundred pounds by the year, he was received, on his return, with open arms by the philosophical queen, at whose metaphysical parties he made one with Sherlock, who, as well as Smalridge, was his supporter, and with Hoadley, who, following Clarke, was his antagonist. By her influence, he was made bishop of Cloyne. It is one of his highest boasts, that though of English extraction, he was a true Irishman, and the first eminent Protestant, after the unhappy contest at the Revolution, who avowed his love for all his countrymen. He asked, "Whether their habitations and furniture were not more sordid than those of the savage Americans?" "Whether a scheme for the welfare of this nation should not take in the whole inhabitants?" and, "Whether it was a vain attempt, to project the flourishing of our Protestant gentry, exclusive of the bulk of the natives?" He proceeds to promote the reformation suggested in this pregnant question by a series of Queries, intimating, with the utmost skill and address, every reason that proves the necessity, and the safety, and the wisest mode of adopting his suggestion. He contributed, by a truly Christian address to the Roman Catholics of his diocese, to their perfect quiet during the rebellion of 1745; and soon after published a letter to the clergy of that persuasion, beseeching them to inculcate industry among their flocks, for which he received their thanks. He tells them, that it was a saying among the negro slaves, "if negro were not negro, Irishman would be negro." It is difficult to read these proofs of benevolence and foresight without emotion, at the moment when, after a lapse of near a century, his suggestions have been at length, at the close of a struggle of twenty-five years, adopted, by the admis-

1 Duncombe's Letters, 166, 107.
2 Warton on Pope.
3 See his Querist, 338; published in 1735.
4 Ibid. 255.
5 April 1829.
sion of the whole Irish nation to the privileges of the British Constitution. The patriotism of Berkeley was not, like that of Swift, tainted by disappointed ambition; nor was it, like Swift's, confined to a colony of English Protestants. Perhaps the Querist contains more hints, then original, still unapplied in legislation and political economy, than are to be found in any equal space. From the writings of his advanced years, when he chose a medical Tract to be the vehicle of his philosophical reflections, though it cannot be said that he relinquished his early opinions, it is at least apparent that his mind had received a new bent, and was habitually turned from reasoning towards contemplation. His immaterialism indeed modestly appears, but only to purify and elevate our thoughts, and to fix them on Mind, the paramount and primeval principle of all things.

"Perhaps," says he, "the truth about innate ideas may be, that there are properly no ideas or passive objects in the mind but what are derived from sense, but that there are also, besides these, her own acts and operations—such are notions," a statement which seems once more to admit general conceptions, and which might have served, as well as the parallel passage of Leibnitz, as the basis of the modern philosophy of Germany. From these compositions of his old age, he appears then to have recursed with fondness to Plato and the later Platonists; writers from whose mere reasonings an intellect so acute could hardly hope for an argumentative satisfaction of all its difficulties, and whom he probably rather studied as a means of inuring his mind to objects beyond the visible diurnal sphere, and of attaching it, through frequent meditation, to that perfect and transcendent goodness to which his moral feelings always pointed, and which they incessantly strove to grasp. His mind, enlarging as it rose, at length receives every theist, however imperfect his belief, to a communion in its philosophic piety.

"Truth," he beautifully concludes, "is the cry of all, but the game of a few. Certainly, where it is the chief passion, it does not give way to vulgar cares, nor is it contented with a little ardour in the early time of life; active perhaps to pursue, but not so fit to weigh and revise. He that would make a real progress in knowledge, must dedicate his age as well as youth, the later growth as well as first fruits, at the altar of Truth." So did Berkeley, and such were almost his latest words.

His general principles of Ethics may be shortly stated in his own words:—"As God is a being of infinite goodness, his end is the good of his creatures. The general wellbeing of all men of all nations, of all ages of the world, is that which he designs should be procured by the concurring actions of each individual." Having stated that this end can be pursued only in one of two ways—either by computing the consequences of each action, or by obeying rules which generally tend to happiness—and having shown the first to be impossible, he rightly infers, "that the end to which God requires the concurrence of human actions, must be carried on by the observation of certain determinate and universal rules or moral precepts, which in their own nature have a necessary tendency to promote the wellbeing of mankind, taking in all nations and ages, from the beginning to the end of the world." A romance, of which a journey to an Utopia, in the centre of Africa, forms the chief part, called The Adventures of Signor Gaudentio di Lucca, has been commonly ascribed to him; probably on no other ground than its union of pleasing invention with benevolence and elegance. Of the exquisite grace and beauty of his diction, no man accustomed to English composition can need to be informed. His works are, beyond dispute, the finest models of philosophical style since Cicero. Perhaps they surpass those of the orator, in the wonderful art by which the fullest light is thrown on the most minute and evanescent parts of the most subtle of human conceptions. Perhaps he also surpassed Cicero in the charm of simplicity, a quality eminently found in Irish writers before the end of the eighteenth century; conspicuous in the masculine severity of Swift,

1 Siris, or Reflections on Tar Water.
2 Sermon in Trinity College Chapel, on Passive Obedience, 1712.
3 Gentleman's Magazine, January 1777.
in the Platonic fancy of Berkeley, in the native
tenderness and elegance of Goldsmith, and not
withholding its attractions from Hutcheson and
Leland, writers of classical taste, though of
inferior power. The two Irish philosophers
of the eighteenth century may be said to have
co-operated in calling forth the metaphysical
genius of Scotland; for, though Hutcheson
spread the taste, and furnished the principles,
yet Berkeley undoubtedly produced the scep-
ticism of Hume, which stimulated the instinc-
tive school to activity, and was thought inca-
ble of confutation, otherwise than by their
doctrines.

DAVID HUME!

The Life of Mr Hume, written by himself, is
remarkable above most, if not all writings of that
sort, for hitting the degree of interest between
coldness and egotism which becomes a modest
man in speaking of his private history. Few
writers, whose opinions were so obnoxious, have
more perfectly escaped every personal imputa-
tion. Very few men of so calm a character have
been so warmly beloved. That he approached
to the character of a perfectly good and wise
man, is an affectionate exaggeration, for which
his friend Dr Smith, in the first moments of
his sorrow, may well be excused. But such a
praise can never be earned without passing
through either of the extremes of fortune; with-
out standing the test of temptations, dangers,
and sacrifices. It may be said with truth, that
the private character of Mr Hume exhibited all
the virtues which a man of reputable station,
under a mild government, in the quiet times of
a civilized country, has often the opportunity to
practise. He showed no want of the qualities
which fit men for more severe trials. Though
others had warmer affections, no man was a
kinder relation, a more unwearied friend, or
more free from meanness and malice. His cha-
acter was so simple, that he did not even affect
modesty; but neither his friendships nor his de-
portment were changed by a fame which filled
all Europe. His good nature, his plain manners,
and his active kindness, procured him at Paris
the enviable name of the good David, from a
society not so alive to goodness, as without
reason to place it at the head of the qualities of
a celebrated man. His whole character is faith-
fully and touchingly represented in the story of
La Roche, where Mr Mackenzie, without con-
cealing Mr Hume's opinions, brings him into
contact with scenes of tender piety, and yet pre-
serves the interest inspired by genuine and un-
alloyed, though moderated feelings and affec-
tions. The amiable and venerable patriarch of
Scottish Literature was averse from the opinions
of the philosopher on whom he has composed
this best panegyric. He tells us that he read the
manuscript to Dr Smith, "who declared he did
not find a syllable to object to, but added, with
his characteristic absence of mind, that he was
surprised he had never heard of the anecdote be-
fore." So lively was the delineation thus san-
tioned by the most natural of all testimonies.
Mr Mackenzie indulges his own religious feel-
ings by modestly intimating, that Dr Smith's
answer seemed to justify the last words of the
tale, "that there were moments when the phi-
losopher recalled to his mind the venerable fi-
gure of the good La Roche, and wished that he
had never doubted." To those who are strangers
to the seductions of paradox, to the intoxication
of fame, and to the bewitchment of prohibited
opinions, it must be unaccountable, that he who
revered benevolence should, without apparent
regret, cease to see it on the Throne of the Uni-
verse. It is a matter of wonder that his habitual
esteem for every fragment and shadow of moral
excellence should not lead him to envy those
who contemplated its perfection in that living
and paternal character which gives it a power
over the human heart.

On the other hand, if we had no experience
of the power of opposite opinions in producing irreconcilable animosities, we might have hoped that those who retained such high privileges would have looked with more compassion than dislike on a virtuous man who had lost them. In such cases it is too little remembered, that repugnance to hypocrisy, and impatience of long concealment, are the qualities of the best formed minds; and that, if the publication of some doctrines proves often painful and mischievous, the habitual suppression of opinion is injurious to reason, and very dangerous to sincerity. Practical questions thus arise, so difficult and perplexing, that their determination generally depends on the boldness or timidity of the individual,—on his tenderness for the feelings of the good, or his greater reverence for the free exercise of reason. The time is not yet come when the noble maxim of Plato, "that every soul is unwillingly deprived of truth," will be practically and heartily applied by men to the honest opponents who differ from them most widely.

In his twenty-seventh year he published at London the Treatise of Human Nature, the first systematic attack on all the principles of knowledge and belief, and the most formidable, if universal scepticism could ever be more than a mere exercise of ingenuity. This memorable work was reviewed in a Journal of that time, in a criticism not distinguished by ability, which affects to represent the style of a very clear writer as unintelligible—sometimes from a purpose to insult, but oftener from sheer dulness—which is unaccountably silent respecting the consequences of a sceptical system; and which concludes with a prophecy so much at variance with the general tone of the article, that it would seem to be added by a different hand. "It bears incontestable marks of a great capacity, of a soaring genius, but young, and not yet thoroughly practised. Time and use may ripen these qualities in the author, and we shall probably have reason to consider this, compared with his later productions, in the same light as we view the juvenile works of Milton, or the first manner of Raphael."

The great speculator did not, in this work, amuse himself, like Bayle, with dialectical exercises, which only inspire a disposition towards doubt, by showing in detail the uncertainty of most opinions. He aimed at proving, not that nothing was known, but that nothing could be known;—from the structure of the understanding to demonstrate, that we are doomed for ever to dwell in absolute and universal ignorance. It is true that such a system of universal scepticism never can be more than an intellectual amusement, an exercise of subtlety; of which the only use is to check dogmatism, but which perhaps oftener provokes and produces that much more common evil. As those dictates of experience which regulate conduct must be the objects of belief, all objections which attack them in common with the principles of reasoning must be utterly ineffectual. Whatever attacks every principle of belief can destroy none. As long as the foundations of knowledge are allowed to remain on the same level (be it called of certainty or uncertainty) with the maxims of life, the whole system of human conviction must continue undisturbed. When the sceptic boasts of having involved the results of experience and the elements of geometry in the same ruin with the doctrines of religion and the principles of philosophy, he may be answered, That no dogmatist ever claimed more than the same degree of certainty for these various convictions and opinions; and that his scepticism, therefore, leaves them in the relative condition in which it found them. No man knew better, or owned more frankly than Mr Hume, that to

1 Sextus, a physician of the empirical, i.e. anti-theoretical school, who lived at Alexandria in the reign of Antoninus Pius, has preserved the reasonings of the ancient Sceptics as they were to be found in their most improved state, in the writings of Anaxidemus, a Cretan, who was a Professor in the same city, soon after the reduction of Egypt into a Roman province. The greater part of the grounds of doubt are very shallow and popular. There are, among them, intimations of the argument against a necessary connection of causes with effects; afterwards better presented by Glanville in his Sceptica Scientifica. See Notes and Illustrations, note Q.

2 History of the Works of the Learned, November and December 1739, p. 353-404. This Review is attributed by some (Chalmers, Biographical Dictionary) to Warburton, but certainly without foundation.

Diss. II. 2 y
thi
n only reply. Universal scepticism involves a contradiction in terms. It is a belief that there can be no belief. It is an attempt of the mind to act without its structure, and by other laws than those to which its nature has subjected its operations. To reason without assenting to the principles on which reasoning is founded, is not unlike an effort to feel without nerves, or to move without muscles. No man can be allowed to be an opponent in reasoning, who does not set out with admitting all the principles, without the admission of which it is impossible to reason. It is indeed a puerile, nay, in the eye of wisdom, a childish play, to attempt either to estab

354 PRELIMINARY DISSERTATIONS.

This answer there is no serious reply. Universal scepticism involves a contradiction in terms. It is a belief that there can be no belief. It is an attempt of the mind to act without its structure, and by other laws than those to which its nature has subjected its operations. To reason without assenting to the principles on which reasoning is founded, is not unlike an effort to feel without nerves, or to move without muscles. No man can be allowed to be an opponent in reasoning, who does not set out with admitting all the principles, without the admission of which it is impossible to reason. It is indeed a puerile, nay, in the eye of wisdom, a childish play, to attempt either to establish or to confute principles by argument, which every step of that argument must presuppose. The only difference between the two cases is, that he who tries to prove them can do so only by first taking them for granted; and that he who attempts to impugn them falls at the very first step into a contradiction, from which he never can rise.

It must, however, be allowed, that universal scepticism has practical consequences of a very mischievous nature. This is because its universality is not steadily kept in view, and constantly borne in mind. If it were, the above short and plain remark would be an effectual antidote to the poison. But in practice, it is an armoury from which weapons are taken to be employed against some opinions, while it is hidden from notice that the same weapon would equally cut down every other conviction. It is thus that Mr Hume's theory of causation is used as an answer to arguments for the existence of the Deity, without warning the reader that it would equally lead him not to expect that the sun will rise to-morrow. It must also be added, that those who are early accustomed to dispute first principles are never likely to acquire, in a sufficient degree, that earnestness and that sincerity, that strong love of truth, and that conscientious solicitude for the formation of just opinions, which are not the least virtues of men, but of which the cultivation is the more especial duty of all who call themselves philosophers. It is not an uninteresting fact, that Mr Hume having been introduced by Lord Kames (then Mr Henry Home) to Dr Butler, sent a copy of his Treatise to that philosopher at the moment of his preferment to the bishopric of Durham; and that the perusal of it did not deter the philosophic prelate from "everywhere recommending Mr Hume's Moral and Political Essays," published two years afterwards;—Essays which it would indeed have been unworthy of such a man not to have liberally commended, for they, and those which followed them, whatever may be thought of the contents of some of them, must be ever regarded as the best models in any language, of the short but full, of the clear and agreeable, though deep discussion of difficult questions.

Mr Hume considered his Enquiry concerning the Principles of Morals as the best of his writings. It is very creditable to his character, that he should have looked back with most complacency on a Tract the least distinguished by originality, and the least tainted with paradox, among his philosophical works; but deserving of all commendation for the elegant perspicuity of the style, and the novelty of illustration and inference with which he unfolded to general readers a doctrine too simple, too certain, and too important, to remain till his time undiscovered among philosophers. His diction has, indeed, neither the grace of Berkeley nor the strength of Hobbes; but it is without the verbosity of the former, or the rugged sternness of the latter. His manner is more lively, more easy, more ingratiating, and, if the word may

1 This maxim, which contains a sufficient answer to all universal scepticism, or, in other words, to all scepticism properly so called, is significantly conveyed in the quaint title of an old and rare book, entitled, Scivi, Scivi Scepticos et Sceptorum a Jure Disputationis Exclusis, by Thomas White, the metaphysician of the English Catholics in modern times. "Fortunately," says the illustrious sceptic himself, "since Reason is insensible of dispelling these clouds, Nature herself suffices for that purpose, and cures me of this philosophical delirium." (Treatise of Human Nature, I. 467) almost in the sublime and immortal words of Pascal: Le Raison confond les Dogmatistes, et la Nature les Sceptiques.

2 It would be an act of injustice to those readers who are not acquainted with that valuable volume entitled, Essays on the Formation of Opinions, not to refer them to it as enforcing that neglected part of morality. To it may be added, a masterly article in the Westminster Review, occasioned by the Essays. Woodhouselee's Life of Kames, I. 86, 104.
be so applied, more amusing, than that of any other metaphysical writer. He knew himself too well to be, as Dr Johnson asserted, an imitator of Voltaire; who, as it were, embodied in his own person all the wit and quickness and versatile ingenuity of a people which surpasses other nations in these brilliant qualities. If he must be supposed to have had an eye on any French writer, it would be a more plausible guess, that he sometimes copied, with a temperate hand, the unexpected thoughts and familiar expressions of Fontenelle. Though he carefully weeded his writings in their successive editions, yet they still contain Scot icisms and Gallicisms enough to employ the successors of such critics as those who exulted over the Patavinity of the Roman Historian. His own great and modest mind would have been satisfied with the praise which cannot be withheld from him, that there is no writer in our language who, through long works, is more agreeable; and it is no derogation from him, that, as a Scotsman, he did not reach those native and secret beauties, characteristic of a language, which are never attained, in elaborate composition, but by a very small number of those who familiarly converse in it from infancy.

The Enquiry affords perhaps the best specimen of his style. In substance, its chief merit is the proof, from an abundant enumeration of particulars, that all the qualities and actions of the mind which are generally approved by mankind agree in the circumstance of being useful to society. In the proof, (scarcely necessary) that benevolent affectations and actions have that tendency, he asserts the real existence of these affectations with unusual warmth; and he well abridges some of the most forcible arguments of Butler, whom it is remarkable that he does not mention. To show the importance of his principle, he very unnecessarily distinguishes the comprehensive duty of justice, from other parts of morality, as an artificial virtue, for which our respect is solely derived from notions of utility. If all things were in such plenty that there could never be a want, or if men were so benevolent as to provide for the wants of others as much as for their own, there would, says he, in neither case be any justice, because there would be no need for it. But it is evident that the same reasoning is applicable to every good affection and right action. None of them could exist if there were no scope for their exercise. If there were no suffering, there could be no pity and no relief. If there were no offences, there could be no placability. If there were no crimes, there could be no mercy. Temperance, prudence, patience, magnanimity, are qualities of which the value depends on the evils by which they are respectively exercised.

On purity of manners, it must be owned that Mr Hume, though he controverts no rule, yet treats vice with too much indulgence. It was his general disposition to distrust virtues which are liable to exaggeration, and may be easily counterfeited. The ascetic pursuit of purity, and hypocritical pretences to patriotism, had too much withdrawn the respect of his equally calm and sincere nature from these excellent virtues; more especially as severity in both these respects was often at apparent variance with affection, which can neither be long assumed, nor ever overvalued. Yet it was singular that he who, in his Essay on Polygamy and Divorce, had so

1 These commendations are so far from being at variance with the remarks of the late most ingenious Dr Thomas Brown, on Mr Hume's "mode of writing," (Enquiry into the Relation of Cause and Effect, 3d ed. 327) that they may rather be regarded as descriptive of those excellencies of which the excess produced the faults of Mr Hume as a mere searcher and teacher; justly, though perhaps severely, animadverted on by Dr Brown.

2 Enquiry, sect. ii. part I., especially the concluding paragraphs: those which precede being more his own.

3 "Si nobis, cum ex haec vita migraverimus, in bestorum insulis, ut fabulae ferunt, immortale avum degere liceret, quid opus esset eloquentia, cum judicia nulla fierent? aut ipsis etiam virtutibus? Nec enim fortitudine indigeremus, nullo proposito aut labore aut periculo; nec justitia, cum esset nihil quod appetetur alibi; nec temperantia, quare gentes eae quae nullae essent libidines: ne prudentia quidem egeremus, nullo proposito delectum honorum et malorum. Una igitur essesmus beatissimae cognitione rerum et scientiae." (Frag. Cis. Hortens. apud Augustin. de Triumvate.) Cicero is more extensive, and therefore more consistent, than Hume; but his enumeration errs both by excess and defect. He supposes knowledge to render beings happy in this imaginary state, without stooping to inquire how. He omits a virtue which might well exist in it, though we cannot conceive its formation in such a state—the delight in each other's well-being; and he omits a conceivable though unknown vice, that of unmixed ill-will, which would render such a state a hell to the wretch who harboured the malevolence.

4 Essays and Treatises, vol. I.
well shown the connection of domestic ties with the outward order of society, should not have perceived their deeper and closer relation to all the social feelings of human nature. It cannot be enough regretted, that, in an Enquiry written with a very moral purpose, his habit of making truth attractive, by throwing over her the dress of paradox, should have given him for a moment the appearance of weighing the mere amusements of society and conversation against domestic fidelity, which is the preserver of domestic affection, the source of parental fondness and filial regard, and, indirectly, of all the kindness which exists between human beings. That families are schools where the infant heart learns to love, and that pure manners are the cement which alone holds these schools together, are truths so certain, that it is wonderful he should not have betrayed a stronger sense of their importance. No one could so well have proved that all the virtues of that class, in their various orders and degrees, minister to the benevolent affections; and that every act which separates the senses from the affections tends, in some degree, to deprive kindness of its natural auxiliary, and to lessen its prevalence in the world. It did not require his sagacity to discover that the gentlest and tenderest feelings flourish only under the stern guardianship of these severe virtues. Perhaps his philosophy was loosened, though his life was untainted, by that universal and undistinguishing prolifigacy which prevailed on the Continent, from the regency of the Duke of Orleans to the French revolution; the most dissolute period of European history, at least since the Roman emperors. At Rome, indeed, the connection of licentiousness with cruelty, which, though scarcely traceable in individuals, is generally very observable in large masses, bore a fearful testimony to the value of antecedent purity. The alliance of these remote vices seemed to be broken in the time of Mr Hume. Pleasure, in a more improved state of society, seemed to return to her more natural union with kindness and tenderness, as well as with refinement and politeness. Had he lived fourteen years longer, however, he would have seen, that the virtues which guard the natural seminaries of the affections are their only true and lasting friends. The demand of all well-informed men for the improvement of civil institutions—the demand of classes of men growing in intelligence, to be delivered from a degrading inferiority, and admitted to a share of political power proportioned to their new importance, being feebly yet violently resisted by those ruling Castes, who neither knew how to yield nor how to withstand—being also attended by very erroneous principles of legislation, having suddenly broken down the barriers (imperfect as these were) of law and government, led to popular excesses, desolating wars, and a military dictatorship, which for a long time threatened to defeat the reformation, and to disappoint the hopes of mankind. This tremendous convulsion threw a fearful light on the ferocity which lies hid under the arts and pleasures of corrupted nations; as earthquakes and volcanoes disclose the layers which compose the deeper parts of our planet, beneath a fertile and flowery surface. A part of this dreadful result may be ascribed, not improbably, to that relaxation of domestic ties, unhappily natural to the populace of vast capitals, and at that time countenanced and aggravated by the example of their superiors. Another part doubtless arose from the barbarizing power of absolute government, or, in other words, of injustice in high places. A very large portion attests, as strongly as Roman history, though in a somewhat different manner, the humanizing efficacy of the family virtues, by the consequences of the want of them in the higher classes, whose profuse and ostentatious sensuality inspired the laborious and suffering portion of mankind with contempt, disgust, envy, and hatred.

The Enquiry is disfigured by another speck of more frivolous paradox. It consists in the attempt to give the name of virtue to qualities of the understanding; and it would not have deserved the single remark about to be made on it, had it been the paradox of an inferior man. He has altogether omitted the circumstance on which depends the difference of our sentiments regarding moral and intellectual qualities. We

1 See Notes and Illustrations, note R.
admire intellectual excellence, but we bestow no moral approbation on it. Such approbation has no tendency directly to increase it, because it is not voluntary. We cultivate our natural disposition to esteem and love benevolence and justice, because these moral sentiments, and the expression of them, directly and materially dispose others, as well as ourselves, to cultivate these two virtues. We cultivate a natural anger against oppression, which guards ourselves against the practice of that vice, and because the manifestation of it deters others from its exercise. The first rude resentment of a child is against every instrument of hurt. We confine it to intentional hurt, when we are taught by experience that it prevents only that species of hurt; and at last it is still further limited to wrong done to ourselves or others, and in that case becomes a purely moral sentiment. We morally approve industry, desire of knowledge, love of truth, and all the habits by which the understanding is strengthened and rectified, because their formation is subject to the will. But we do not feel a moral anger against folly or ignorance, because they are involuntary. No one but the religious persecutor, a mischievous and overgrown child, wreaks his vengeance on involuntary, inevitable, compulsory acts or states of the understanding, which are no more affected by blame than the stone which the foolish child beats for hurting him. Reasonable men apply to every thing which they wish to move, the agent which is capable of moving it;—force to outward substances, arguments to the understanding, and blame, together with all other motives, whether moral or personal, to the will alone. It is as absurd to entertain an abhorrence of intellectual inferiority or error, however extensive or mischievous, as it would be to cherish a warm indignation against earthquakes or hurricanes. It is singular that a philosopher who needed the most liberal toleration should, by representing states of the understanding as moral or immoral, have offered the most philosophical apology for persecution.

That general utility constitutes a uniform ground of moral distinctions, is a part of Mr Hume's ethical theory which never can be impeached, until some example can be produced of a virtue generally pernicious, or of a vice generally beneficial. The religious philosopher, who, with Butler, holds that benevolence must be the actuating principle of the Divine mind, will, with Berkeley, maintain that pure benevolence can prescribe no rules of human conduct but such as are beneficial to men; thus bestowing on the theory of Moral Distinctions the certainty of demonstration in the eyes of all who believe in God.

The other question of moral philosophy which relates to the theory of Moral Approbation, has been by no means so distinctly and satisfactorily handled by Mr Hume. His general doctrine is, that an interest in the well-being of others, implanted by nature, which he calls Sympathy in his Treatise of Human Nature, and much less happily Benevolence in his subsequent Enquiry, prompts us to be pleased with all generally beneficial actions. In this respect his doctrine nearly resembles that of Hutcheson. He does not trace his principle through the variety of forms which our moral sentiments assume. There are very important parts of them, of which it affords no solution. For example, though he truly represents our approbation, in others, of qualities useful to the individual, as a proof of benevolence, he makes no attempt to explain our moral approbation of such virtues as temperance and fortitude in ourselves. He entirely overlooks that consciousness of the rightful supremacy of the moral faculty over every other principle of human action, without an explanation of which, ethical theory is wanting in one of its vital organs.

Notwithstanding these considerable defects, his proof from induction of the beneficial tendency of virtue, his conclusive arguments for human disinterestedness, and his decisive observations on the respective provinces of reason and sentiment in morals, concur in ranking the

1 "In hac questione primas tenet Voluntas, qua ut alt. Augustinus, peccatur, et recte victor." (Hyperaspis, Diatribe abserens Scrumum Arbitrium Martini Luthcri, per Desiderium Erasmum Rotterdamensem.)
2 Essays and Treatises, vol. II.
The great name of Adam Smith rests upon the *Enquiry into the Nature and Causes of the Wealth of Nations*; perhaps the only book which produced an immediate, general, and irrevocable change in some of the most important parts of the legislation of all civilized states. The works of Grotius, of Locke, and of Montesquieu, which bear a resemblance to it in character, and had no inconsiderable analogy to it in the extent of their popular influence, were productive only of a general amendment, not so conspicuous in particular instances, as discoverable, after a time, in the improved condition of human affairs. The work of Smith, as it touched those matters which may be numbered, and measured, and weighed, bore more visible and palpable fruit. In a few years it began to alter laws and treaties, and has made its way, throughout the convulsions of revolution and conquest, to a due ascendant over the minds of men, with far less than the average obstructions of prejudice and clamour, which choke the channels through which truth flows into practice. The most eminent of those who have since cultivated and improved the science will be the foremost to address their immortal master.

"........... Tenebris tantis tam clarum extollere lumen

Qui primus potuisti, Inlustres commoda vite,
Te sequor!" (Lucret. lib. iii.)

In a science more difficult, because both ascending to more simple general principles, and running down through more minute applications, though the success of Smith has been less complete, his genius is not less conspicuous. Perhaps there is no ethical work since Cicero’s *Of fices*, of which an abridgement enables the reader so inadequately to estimate the merit, as the *Theory of Moral Sentiments*. This is not chiefly owing to the beauty of diction, as in the case of Cicero; but to the variety of explanations of life and manners which embellish the book often more than they illuminate the theory. Yet, on the other hand, it must be owned that, for purely philosophical purposes, few books more need abridgement: for the most careful reader frequently loses sight of principles buried under illustrations. The naturally copious and flowing style of the author is generally redundant, and the repetition of certain formularies of the system is, in the later editions, so frequent as to be wearisome, and sometimes ludicrous. Perhaps Smith and Hobbes may be considered as forming the two extremes of good style in our philosophy; the first of graceful fulness falling into vacillcy; while the masterly concision of the second is oftener tainted by dictatorial dryness. Hume and Berkeley, though they are nearer the extreme of abundance, are probably the least distant from perfection.

That mankind are so constituted as to sympathize with each other’s feelings, and to feel pleasure in the accordance of these feelings, are the only facts required by Dr Smith, and they certainly must be granted to him. To adopt the feelings of another, is to approve them. When the sentiments of another are such as would be excited in us by the same objects, we approve them as morally proper. To obtain this accord, it becomes necessary for him who enjoys or suffers, to lower his expression of feeling to the point to which the by-stander can raise his fellow-feelings; on which are founded all the high virtues of self-denial and self-command; and it is equally necessary for the by-stander to raise his sympathy as near as he can to the level of the original feeling. In all unsocial passions, such as anger, we have a divided sympathy between him who feels them and those who are the

1 Born in 1723; died in 1790.
2 Notes and Illustrations, note 8.
3 This remark is chiefly applicable to Hume’s *Essays*. His *Treatise of Human Nature* is more Hobbian in its general tenor, though it has Ciceronian passages.
objects of them. Hence the propriety of extremely moderating them. Pure malice is always to be concealed or disguised, because all sympathy is arrayed against it. In the private passions, where there is only a simple sympathy—that with the original passion—the expression has more liberty. The benevolent affections, where there is a double sympathy—with those who feel them, and those who are their objects—are the most agreeable, and may be indulged with the least apprehension of finding no echo in other breasts. Sympathy with the gratitude of those who are benefited by good actions, prompts us to consider them as deserving of reward, and forms the sense of merit; as fellow-feeling with the resentment of those who are injured by crimes leads us to look on them as worthy of punishment, and constitutes the sense of demerit. These sentiments require not only beneficial actions, but benevolent motives for them; being compounded, in the case of merit, of a direct sympathy with the good disposition of the benefactor, and an indirect sympathy with the persons benefited; in the opposite case, with precisely opposite sympathies. He who does an act of wrong to another to gratify his own passions, must not expect that the spectators, who have none of his undue partiality to his own interest, will enter into his feelings. In such a case, he knows that they will pity the person wronged, and be full of indignation against him. When he is cooled, he adopts the sentiments of others on his own crime, feels shame at the impropriety of his former passion, pity for those who have suffered by him, and a dread of punishment from general and just resentment. Such are the constituent parts of remorse.

Our moral sentiments respecting ourselves arise from those which others feel concerning us. We feel a self-approbation whenever we believe that the general feeling of mankind coincides with that state of mind in which we ourselves were at a given time. "We suppose ourselves the spectators of our own behaviour, and endeavour to imagine what effect it would in this light produce in us." We must view our own conduct with the eyes of others before we can judge it. The sense of duty arises from putting ourselves in the place of others, and adopting their sentiments respecting our own conduct. In utter solitude there could have been no self-approbation. The rules of morality are a summary of those sentiments; and often beneficially stand in their stead when the self-delusions of passion would otherwise hide from us the non-conformity of our state of mind with that which, in the circumstances, can be entered into and approved by impartial bystanders. It is hence that we learn to raise our mind above local or temporary clamour, and to fix our eyes on the surest indications of the general and lasting sentiments of human nature.

"When we approve of any character or action, our sentiments are derived from four sources: first, we sympathize with the motives of the agent; secondly, we enter into the gratitude of those who have been benefited by his actions; thirdly, we observe that his conduct has been agreeable to the general rules by which those two sympathies generally act; and, last of all, when we consider such actions as forming part of a system of behaviour which tends to promote the happiness either of the individual or of society, they appear to derive a beauty from this utility, not unlike that which we ascribe to any well-contrived machine."1

REMARKS.

That Smith is the first who has drawn the attention of philosophers to one of the most curious and important parts of human nature—who has looked closely and steadily into the workings of Sympathy, its sudden action and reaction, its instantaneous conflicts and its emotions, its minute play and varied illusions—is sufficient to place him high among the cultivators of mental philosophy.

He is very original in applications and explanations; though, for his principle, he is somewhat indebted to Butler, more to Hutcheson, and most of all to Hume. These writers, except Hume in his original work, had derived sym-

1 Theory of Moral Sentiments, II. 304. Edinb. 1801.
pathy, or great part of it, from benevolence. Smith, with deeper insight, inverted the order. The great part performed by various sympathies in moral approbation was first unfolded by him; and besides its intrinsic importance, it strengthened the proofs against those theories which ascribe that great function to Reason. Another great merit of the theory of sympathy is, that it brings into the strongest light that most important characteristic of the moral sentiments which consists in their being the only principles leading to action, and dependent on emotion or sensibility, with respect to the objects of which, it is not only possible but natural for all mankind to agree.

The main defects of this theory seem to be the following.

1. Though it is not to be condemned for declining inquiry into the origin of our fellow-feeling, which, being one of the most certain of all facts, might well be assumed as ultimate in speculations of this nature, it is evident that the circumstances to which some speculators ascribe the formation of sympathy at least contribute to strengthen or impair, to contract or expand it. It will appear, more conveniently, in the next article, that the theory of sympathy has suffered from the omission of these circumstances. For the present, it is enough to observe how much our compassion for various sorts of animals, and our fellow-feeling with various races of men, are proportioned to the resemblance which they bear to ourselves, to the frequency of our intercourse with them, and to other causes which, in the opinion of some, afford evidence that sympathy itself is dependent on a more general law.

2. Had Smith extended his view beyond the mere play of sympathy itself, and taken into account all its preliminaries, and accompaniments, and consequences, it seems improbable that he should have fallen into the great error of representing the sympathies in their primitive state, without undergoing any transformation, as continuing exclusively to constitute the moral sentiments. He is not content with teaching that they are the roots out of which these sentiments grow, the stocks on which they are grafted, the elements of which they are compounded; — doctrines to which nothing could be objected but their unlimited extent. He tacitly assumes, that if a sympathy in the beginning caused or formed a moral approbation, so it must ever continue to do. He proceeds like a geologist who should tell us that the layers of this planet had always been in the same state, shutting his eyes to transition states and secondary formations; or like a chemist who should inform us that no compound substance can possess new qualities entirely different from those which belong to its materials. His acquiescence in this old and still general error is the more remarkable, because Mr Hume's beautiful Dissertation on the Passions had just before opened a striking view of some of the compositions and decompositions which render the mind of a formed man as different from its original state, as the organization of a complete animal is from the condition of the first dim speck of vitality. It is from this oversight (ill supplied by moral rules, a loose stone in his building) that he has exposed himself to objections founded on experience, to which it is impossible to attempt any answer. For it is certain that in many, nay in most cases of moral approbation, the adult man approves the action or disposition merely as right, and with a distinct consciousness that no process of sympathy intervenes between the approval and its object. It is certain that an unbiased person would call it moral approbation, only as far as it excluded the interposition of any reflection between the conscience and the mental state approved. Upon the supposition of an unchanged state of our active principles, it would follow that sympathy never had any share in the greater part of them. Had he admitted the sympathies to be only elements entering into the formation of Conscience, their disappearance, or their appearance only as auxili-
aries, after the mind is mature, would have been no more an objection to his system, than the conversion of a substance from a transitional to a permanent state is a perplexity to the geologist. It would perfectly resemble the destruction of qualities, which is the ordinary effect of chemical composition.

3. The same error has involved him in another difficulty perhaps still more fatal. The sympathies have nothing more of an imperative character than any other emotions. They attract or repel like other feelings, according to their intensity. If, then, the sympathies continue in mature minds to constitute the whole of conscience, it becomes utterly impossible to explain the character of command and supremacy, which is attested by the unanimous voice of mankind to belong to that faculty, and to form its essential distinction. Had he adopted the other representation, it would be possible to conceive, perhaps easy to explain, that conscience should possess a quality which belonged to none of its elements.

4. It is to this representation that Smith's theory owes that unhappy appearance of rendering the rule of our conduct dependent on the notions and passions of those who surround us, of which the utmost efforts of the most refined ingenuity have not been able to divest it. This objection or topic is often ignorantly urged; the answers are frequently solid; but to most men they must always appear to be an ingenious and intricate contrivance of cycles and epicycles, which perplex the mind too much to satisfy it, and seem devised to evade difficulties which cannot be solved. All theories which treat conscience as built up by circumstances inevitably acting on all human minds, are, indeed, liable to somewhat of the same misconception; unless they place in the strongest light (what Smith's theory excludes) the total destruction of the scaffolding which was necessary only to the erection of the building, after the mind is adult and mature, and warn the hastiest reader, that it then rests on its own foundation alone.

5. The constant reference of our own dispositions and actions to the point of view from which they are estimated by others, seems to be rather an excellent expedient for preserving our impartiality, than a fundamental principle of Ethics. But impartiality, which is no more than a removal of some hindrance to right judgment, supplies no materials for its exercise, and no rule, or even principle, for its guidance. It nearly coincides with the Christian precept of doing unto others as we would they should do unto us; an admirable practical maxim, but, as Leibnitz has said truly, intended only as a correction of self-partiality.

6. Lastly, this ingenious system renders all morality relative,—by referring it to the pleasure of an agreement of our feelings with those of others, by confining itself entirely to the question of moral approbation, and by providing no place for the consideration of that quality which distinguishes all good from all bad actions;—a defect which will appear in the sequel to be more immediately fatal to a theorist of the sentimental, than to one of the intellectual school. Smith shrinks from considering utility in that light as soon as it presents itself, or very strangely ascribes its power over our moral feelings to admiration of the mere adaptation of means to ends,—which might surely be as well felt for the production of wide-spread misery, by a consistent system of wicked conduct,—instead of ascribing it to benevolence, with Hutcheson and Hume, or to an extension of that very sympathy which is his own first principle.

RICHARD PRICE.

About the same time with the celebrated work of Smith, but with a popular reception very different, Dr Richard Price, an excellent and eminent non-conformist minister, published A Review of the principal Questions in Morals;—an attempt to revive the intellectual theory of

1 Born in 1723; died in 1791.
2 The third edition was published at London in 1787.
moral obligation, which seemed to have fallen under the attacks of Butler, Hutcheson, and Hume, even before Smith. It attracted little observation at first; but being afterwards con- tenanced by the Scottish School, may seem to deserve some notice, at a moment when the kindred speculations of the German metaphysi- cians have effected an establishment in France, and are no longer unknown in England.

The understanding itself is, according to Price, an independent source of simple ideas. "The various kinds of agreement and disagree- ment between our ideas, spoken of by Locke, are so many new simple ideas." "This is true of our ideas of proportion, of our ideas of identity and diversity, existence, connection, cause and effect, power, possibility, and of our ideas of right and wrong." "The first relates to quantity; the last to actions, the rest to all things." "Like all other simple ideas, they are undefinable."

It is needless to pursue this theory farther, till an answer shall be given to the observation made before, that as no perception or judgment, or other unmixed act of understanding, merely as such, and without the agency of some intermediate emotion, can affect the will, the account given by Dr Price of perceptions or judgments respecting moral subjects, does not advance one step towards the explanation of the authority of conscience over the will, which is the matter to be explained. Indeed, this respectable writer felt the difficulty so much as to allow, "that in contemplating the acts of moral agents, we have both a perception of the understanding and a feeling of the heart." He even admits, that it would have been highly pernicious to us if our reason had been left without such support. But he has not shown how, on such a supposition, we could have acted on a mere opinion; nor has he given any proof that what he calls support is not, in truth, the whole of what directly produces the conformity of voluntary acts to morality. 1

DAVID HARTLEY. 6

The work of Dr Hartley, entitled Observations on Man, 7 is distinguished by an uncommon union of originality with modesty, in unfolding a simple and fruitful principle of human nature. It is disfigured by the absurd affectation of mathe- matical forms then prevalent; and it is encumbered and deformed by a mass of physiolo- gical speculations, groundless, or at best uncertain, wholly foreign from its proper purpose, which repel the inquirer into mental philosophy from its perusal; and lessen the respect of the physiologist for the author's judgment. It is an unfortunate example of the disposition predominant among undistinguishing theorists to class together all the appearances which are observed at the same time, and in the immediate neigh-

1 The following sentences will illustrate the text, and are in truth applicable to all moral theories on merely intellectual principles:—"Reason alone, did we possess it in a higher degree, would answer all the ends of the passions. Thus there would be no need of parental affection, were all parents sufficiently acquainted with the reasons for taking upon them the guidance and support of those whom nature has placed under their care, and were they virtuous enough to be always determined by those reasons." (Price's Review, 121.) A very slight consideration will show, that without the last words the preceding part would be utterly false, and with them it is utterly insignificant.

2 Born in 1705; died in 1757.

3 London, 1749.

4 G. E. Stahl, born in 1660; died in 1734; a German physician and chemist of deserved eminence.
Hartley and Condillac, who, much about the same time, but seemingly without any knowledge of each other’s speculations, began in a very similar mode to simplify, but also to mutilate the system of Locke, stopped short of what is called Materialism, which consummates the confusion, but touched its threshold. Thither, it must be owned, their philosophy pointed, and thither their followers proceeded. Hartley and Bonnet, still more than Condillac, suffered themselves, like most of their contemporaries, to overlook the important truth, that all the changes in the organs which can be likened to other material phenomena, are nothing more than antecedents and prerequisites of perception, bearing not the faintest likeness to it; as much outward in relation to the thinking principle, as if they occurred in any other part of matter; and of which the entire comprehension, if it were attained, would not bring us a step nearer to the nature of thought. They who would have been the first to exclaim against the mistake of a sound for a colour, fell into the more unspeakable error of confounding the perception of objects, as outward, with the consciousness of our own mental operations. Locke’s doctrine, that reflection was a separate source of ideas, left room for this greatest of all distinctions,—though with much unhappiness of expression, and with no little variance from the course of his own speculations. Hartley, Condillac, and Bonnet, in hewing away this seeming deformity from the system of their master, unwittingly struck off the part of the building which, however unsighty, gave it the power of yielding some shelter and guard to truths, of which the exclusion rendered it utterly untenable. They became consistent Nominalists; a controversy on which Locke expresses himself with confusion and contradiction; but on this subject they added nothing to what had been taught by Hobbes and Berkeley. Both Hartley and Condillac have the merit of having been unseduced by the temptations either of scepticism or of useless idealism; which, even if Berkeley and Hume could have been unknown to them, must have been within sight. Both agree in referring all the intellectual operations to the association of ideas, and in representing that association as reducible to the single law, that ideas which enter the mind at the same time, acquire a tendency to call up each other, which is in direct proportion to the frequency of their having entered together. In this important part of their doctrine they seem, whether unconsciously or otherwise, to have only repeated, and very much expanded, the opinion of Hobbes. In its simplicity it is more agreeable than the system of Mr Hume, who admitted five independent laws of association; and it is in comprehension far superior to the views of the same subject by Mr Locke, whose ill-chosen name still retains its place in our nomenclature, but who only appeals to the principle as explaining some fancies and whimsies of the human mind. The capital fault of Hartley is that of a rash generalization, which may prove imperfect, and which is at least premature. All attempts to explain instinct by this principle have hitherto been unavailing. Many of the most important processes of reasoning have not hitherto been accounted for by it. It would appear by a close examination, that even this theory, simple as it appears, presupposes many facts relating to the mind, of which its authors

1 Born in 1715; died in 1790.
2 Traité sur l’Origine des Connaissances Humaines, 1746; Traité des Systèmes, 1749; Traité des Sensations, 1754. Foreign books were then little and slowly known in England. Hartley’s reading, except on theology, seems confined to the physical and mathematical sciences; and his whole manner of thinking and writing is so different from that of Condillac, that there is not the least reason to suppose the work of the one to have been known to the other.
3 Born in 1729; died in 1793.
4 The following note of Condillac will show how much he differed from Hartley in his mode of considering the Newtonian hypothesis of vibrations, and how far he was in that respect superior to him. “Je suppose ici et ailleurs que les perceptions de l’ame ont pour cause physique l’ébranlement des fibres du cerveau; non que je regarde cette hypothèse comme démontrée, mais parce qu’elle est la plus commode pour expliquer ma pensée.” (Œuvres de Condillac, I. 60. Paris, 1793.)
5 “Ce que les logiciens ont dit de raisonnements dans bien des volumes, me paroit entièrement superflu, et de nul usage” (Condillac, I. 118); an assertion of which the gross absurdity will be apparent to the readers of Dr Whately’s Treatise on Logic, one of the most important works of the present age.
do not seem to have suspected the existence. How many ultimate facts of that nature, for example, are contained and involved in Aristotle’s celebrated comparison of the mind in its first state to a sheet of unwritten paper! The texture of the paper, even its colour, the sort of instrument fit to act on it, its capacity to receive and to retain impressions, all its differences, from steel on the one hand to water on the other, certainly presuppose some facts, and may imply many, without a distinct statement of which, the nature of writing could not be explained to a person wholly ignorant of it. How many more, as well as greater laws, may be necessary to enable mind to perceive outward objects! If the power of perception may be thus dependent, why may not what is called the association of ideas, the attraction between thoughts, the power of one to suggest another, be affected by mental laws hitherto unexplored, perhaps unobserved?

But to return from digression into the intellectual part of man: It becomes proper to say, that the difference between Hartley and Condillac, and the immeasurable superiority of the former, are chiefly to be found in the application which Hartley first made of the law of association to that other unnamed portion of our nature with which morality more immediately deals; that which feels pain and pleasure, is influenced by appetites and loathings, by desires and aversions, by affections and repugnances. Condillac’s Treatise on Sensation, published five years after the work of Hartley, reproduces the doctrine of Hobbes with its root, namely, that love and hope are but transformed sensations, by which he means perceptions of the senses; and its wide-spread branches, consisting in desires and passions, which are only modifications of self-love. “The words goodness and beauty,” says he, almost in the very words of Hobbes, “express those qualities of things by which they contribute to our pleasures.” In the whole of his philosophical works, we find no trace of any desire produced by association, of any disinterested principle, or indeed of any distinction between the percipient and what, perhaps, we may now venture to call the emotive or the pathetamic part of human nature, until some more convenient and agreeable name shall be hit on by some luckier or more skilful adventurer, in such new terms as seem to be absolutely necessary.

To the ingenuous, humble, and anxiously conscientious character of Hartley, we owe the knowledge that, about the year 1730, he was informed that the Rev. Mr Gay of Sidney College, Cambridge, then living in the west of England, asserted the possibility of deducing all our intellectual pleasures and pains from association; that this led him (Hartley) to consider the power of association; and that about that time Mr Gay published his sentiments on this matter in a dissertation prefixed to Bishop Law’s Translation of King’s Origin of Evil. No writer deserves more the praise of abundant fairness than Hartley in this avowal. The dissertation of which he speaks is mentioned by no philosopher but himself. It suggested nothing apparently to any other reader. The general texture of it is that of homespun selfishness. The writer had the merit to see and to own that Hutcheson had established as a fact the reality of moral sentiments and disinterested affections. He blames, perhaps justly, that most ingenious man, for assuming that these sentiments and affections are implanted, and partake of the nature of instincts. The object of his dissertation is to reconcile the mental appearances described by Hutcheson with the
first principle of the selfish system, that "the true principle of all our actions is our own happiness." Moral feelings and social affections are, according to him, "resolvable into reason, pointing out our private happiness; and whenever this end is not perceived, they are to be accounted for from the association of ideas." Even in the single passage in which he shows a glimpse of the truth, he begins with confusion, advances with hesitation, and after holding in his grasp for an instant the principle which sheds so strong a light around it, suddenly drops it from his hand. Instead of receiving the statements of Hutcheson (his silence relating to Butler is unaccountable) as enlargements of the science of man, he deals with them merely as difficulties to be reconciled with the received system of universal selfishness. In the conclusion of his fourth section, he well exemplifies the power of association in forming the love of money, of fame, of power, &c.; but he still treats these effects of association as aberrations and infirmities, the fruits of our forgetfulness and shortsightedness, and not at all as the great process employed to sow and rear the most important principles of a social and moral nature.

This precious mine may therefore be truly said to have been opened by Hartley; for he who did such superabundant justice to the hints of Gay, would assuredly not have withheld the like tribute from Hutcheson, had he observed the happy expression of "secondary passions," which ought to have led that philosopher himself farther than he ventured to advance. The extraordinary value of this part of Hartley's system has been hidden by various causes, which have also enabled writers who borrow from it to decry it. The influence of his medical habits renders many of his examples displeasing, and sometimes disgusting. He has none of that knowledge of the world, of that familiarity with literature, of that delicate perception of the beauties of nature and art, which not only supply the most agreeable illustrations of mental philosophy, but afford the most obvious and striking instances of its happy application to subjects generally interesting. His particular applications of the general law are often mistaken, and seldom more than brief notes and hasty suggestions; the germs of theories which, while some might adopt them without detection, others might discover without being aware that they were anticipated. To which it may be added, that in spite of the imposing forms of geometry, the work is not really distinguished by good method, or even uniform adherence to that which had been chosen. His style is entitled to no praise but that of clearness, and a simplicity of diction, through which is visible a singular simplicity of mind. No book perhaps exists which, with so few of the common allurements, comes at last so much to please by the picture it presents of the writer's character,—a character which kept him pure from the pursuit, often from the consciousness of novelty, and rendered him a discoverer in spite of his own modesty. In those singular passages in which, amidst the profound internal tranquillity of all the European nations, he foretells approaching convulsions, to be followed by the overthrow of states and churches, his quiet and gentle spirit, elsewhere almost ready to inculcate passive obedience for the sake of peace, is supported under its awful forebodings by the hope of that general progress in virtue and happiness which he saw through the preparatory confusion. A meek piety, inclining towards mysticism, and sometimes indulging in visions which borrow a lustre from his fervid benevolence, was beautifully, and perhaps singularly, blended in him with zeal for the most unbounded freedom of inquiry, flowing both from his own conscientious belief and his unmingled love of truth. Whoever can so far subdue his repugnance to petty or secondary faults as to bestow a careful perusal on the work, must be unfortunate if he does not see, feel, and own, that the writer was a great philosopher and a good man.

To those who thus study the work, it will be apparent that Hartley, like other philosophers, either overlooked, or failed explicitly to announce, that distinction between perception and emotion, without which no system of mental philosophy is complete. Hence arose the partial and incomplete view of truth conveyed by the use of the phrase "association of ideas." If the word association, which rather indicates the connection between separate things, than the
perfect combination and fusion which occur in many operations of the mind, must, notwithstanding its inadequacy, still be retained, the phrase ought at least to be "association of thoughts with emotions, as well as with each other." With that enlargement an objection to the Hartleian doctrine would have been avoided, and its originality, as well as superiority over that of Condillac, would have appeared indisputable. The examples of avarice and other factitious passions are very well chosen; first, because few will be found to suppose that they are original principles of human nature; secondly, because the process by which they are generated, being subsequent to the age of attention and recollection, may be brought home to the understanding of all men; and, thirdly, because they afford the most striking instance of secondary passions, which not only become independent of the primary principles from which they are derived, but hostile to them, and so superior in strength as to be capable of overpowering their parents. As soon as the mind becomes familiar with the frequent case of the man who first pursued money to purchase pleasure, but at last, when he becomes a miser, loves his hoard better than all that it could purchase, and sacrifices all pleasures for its increase, we are prepared to admit that, by a like process, the affections, when they are fixed on the happiness of others as their ultimate object, without any reflection on self, may not only be perfectly detached from self-regard or private desires, but may subdue these, and every other antagonist passion which can stand in their way. As the miser loves money for its own sake, so may the benevolent man delight in the wellbeing of his fellows. His good-will becomes as disinterested as if it had been implanted and underived. The like process applied to what is called self-love, or the desire of permanent wellbeing, clearly explains the mode in which that principle is gradually formed from the separate appetites, without whose previous existence no notion of wellbeing could be obtained. In like manner, sympathy, perhaps it-

self the result of a transfer of our own personal feelings by association to other sentient beings, and of a subsequent transfer of their feelings to our own minds, engenders the various social affections, which at last generate in most minds some regard to the wellbeing of our country, of mankind, of all creatures capable of pleasure. Rational self-love controls and guides those far keener self-regarding passions of which it is the child, in the same manner as general benevolence balances and governs the variety of much warmer social affections from which it springs. It is an ancient and obstinate error of philosophers to represent these two calm principles as being the source of the impelling passions and affections, instead of being among the last results of them. Each of them exercises a sort of authority in its sphere, but the dominion of neither is co-existent with the whole nature of man. Though they have the power to quicken and check, they are both too feeble to impel; and if the primary principles were extinguished, they would both perish from want of nourishment. If indeed all appetites and desires were destroyed, no subject would exist on which either of these general principles could act.

The affections, desires, and emotions, having for their ultimate object the dispositions and actions of voluntary agents, which alone, from the nature of their object, are co-extensive with the whole of our active nature, are, according to the same philosophy, necessarily formed in every human mind by the transfer of feeling which is effected by the principle of association. Gratitude, pity, resentment, and shame, seem to be the simplest, the most active, and the most uniform elements in their composition.

It is easy to perceive how the complacency inspired by a benefit may be transferred to a benefactor, thence to all beneficent beings and acts. The well-chosen instance of the nurse familiarly exemplifies the manner in which the child transfers his complacency from the gratification of his senses to the cause of it, and thus learns an affection for her who is the source of

1 A very ingenious man, Lord Kames, whose works had a great effect in rousing the mind of his contemporaries and countrymen, has indeed fancied that there is "a hoarding instinct" in man and other animals. But such conclusions are not so much objects of confutation, as ludicrous proofs of the absurdity of the premises which lead to them.
his enjoyment. With this simple process concur, in the case of a tender nurse, and far more of a mother, a thousand acts of relief and endearment, of which the complacency is fixed on the person from whom they flow, and in some degree extended by association to all who resemble that person. So much of the pleasure of early life depends on others, that the like process is almost constantly repeated. Hence the origin of benevolence may be understood, and the disposition to approve all benevolent, and disapprove all malevolent acts. Hence also the same approbation and disapprobation are extended to all acts which we clearly perceive to promote or obstruct the happiness of men. When the complacency is extended to action, benevolence may be said to be transformed into a part of conscience. The rise of sympathy may probably be explained by the process of association, which transfers the feelings of others to ourselves, and ascribes our own feelings to others;—at first, and in some degree, always in proportion as the resemblance of ourselves to others is complete. The likeness in the outward signs of emotion is one of the widest channels in this commerce of hearts. Pity thereby becomes one of the grand sources of benevolence, and perhaps contributes more largely than gratitude. It is indeed one of the first motives to the conferring of those benefits which inspire grateful affection. Sympathy with the sufferer, therefore, is also transformed into a real sentiment, directly approving benevolent actions and dispositions, and more remotely all actions that promote happiness. The anger of the sufferer, first against all causes of pain, afterwards against all intentional agents who produce it, and finally against all those in whom the infliction of pain proceeds from a mischievous disposition, when it is communicated to others by sympathy, and is so far purified by gradual separation from selfish and individual interest as to be equally felt against all wrong-doers, whether the wrong be done against ourselves, our friends, or our enemies, is the root out of which springs that which is commonly and well called a Sense of Justice—the most indispensable, perhaps, of all the component parts of the moral faculties. It is the main guard against wrong. It relates to that portion of morality where many of the outward acts are capable of being reduced under certain rules, of which the violations, wherever the rule is sufficiently precise, and the mischief sufficiently great, may be guarded against by the terror of punishment. In the observation of the rules of justice consists duty; breaches of them we denominate crimes. An abhorrence of crimes, especially of those which indicate the absence of benevolence, as well as of regard to justice, is peculiarly strong; because well-framed penal laws, being the lasting declaration of the moral indignation of many generations of mankind, exceedingly strengthen the same feeling in every individual, as long as they remain in unison with the sentiments of the age and country for which they are destined, and, indeed, wherever the laws do not so much deviate from the habitual feelings as to produce a struggle between law and sentiment, in which it is hard to say on which side success is most deplorable. A man who performs his duties may be esteemed, but is not admired; because it requires no more than ordinary virtue to act well where it is shameful and dangerous to do otherwise. The righteousness of those who act solely from such inferior motives, is little better than that "of the Scribes and Pharisees." Those only are just in the eye of the moralist who act justly from a constant disposition to render to every man his own. Acts of kindness, of generosity, of pity, of placability, of humanity, when they are long continued, can hardly fail mainly to flow from the pure fountain of an excellent nature. They are not reducible to rules; and the attempt to enforce them by punishment would destroy them. They are virtues of which the essence consists in a good disposition of mind. As we gradually transfer our desire from praise to praiseworthiness, this principle also is adopted into consciousness. On the other hand,
when we are led by association to feel a painful contempt for those feelings and actions of our past self which we despise in others, there is developed in our hearts another element of that moral sense. It is a remarkable instance of the power of the law of association, that the contempt or abhorrence which we feel for the bad actions of others may be transferred by it, in any degree of strength, to our own past actions of the like kind. And as the hatred of bad actions is transferred to the agent, the same transfer may occur in our own case in a manner perfectly similar to that of which we are conscious in our feelings towards our fellow-creatures. There are many causes which render it generally feebleer; but it is perfectly evident that it requires no more than a sufficient strength of moral feeling to make it equal; and that the most apparently hyperbolical language used by penitents, in describing their remorse, may be justified by the principle of association.

At this step in our progress, it is proper to observe, that a most important consideration has escaped Hartley, as well as every other philosopher. The language of all mankind implies that the moral faculty, whatever it may be, and from what origin soever it may spring, is intelligibly and properly spoken of as One. It is as common in mind as in matter for a compound to have properties not to be found in any of its constituent parts. The truth of this proposition is as certain in the human feelings as in any material combination. It is therefore easily understood, that originally separate feelings may be so perfectly blended by a process performed in every mind, that they can no longer be disjoined from each other, but must always co-operate, and thus reach the only union which we can conceive. The sentiment of Moral Approbation, formed by association out of antecedent affections, may become so perfectly independent of them, that we are no longer conscious of the means by which it was formed, and never can in practice repeat, though we may in theory perceive, the process by which it was generated. It is in that mature and sound state of our nature that our emotions at the view of Right and Wrong are ascribed to Conscience. But why, it may be asked, do these feelings, rather than others, run into each other, and constitute Conscience? The answer seems to be what has already been intimated in the observations on Butler. The affinity between these feelings consists in this, that while all other feelings relate to outward objects, they alone contemplate exclusively the dispositions and actions of voluntary agents. When they are completely transferred from objects, and even persons, to dispositions and actions, they are fitted, by the perfect coincidence of their aim, for combining to form that one faculty which is directed only to that aim.

The words Duty and Virtue, and the word Ought, which most perfectly denotes Duty, but is also connected with Virtue, in every well-constituted mind, in this state become the fit language of the acquired, perhaps, but universally and necessarily acquired, faculty of Conscience. Some account of its peculiar nature has been attempted in the remarks on Butler;—for others a fitter occasion will occur hereafter. Some light may however now be thrown on the subject by a short statement of the hitherto unobserved distinction between the moral sentiments and another class of feelings with which they have some qualities in common. The pleasures (so called) of Imagination appear, at least in most cases, to originate in association. But it is not till the original cause of the gratification is obliterated from the mind, that they acquire their proper character. Order and proportion may be at first chosen for their convenience: it is not until they are admired for their own sake that they become objects of taste. Though all the proportions for which a horse is valued may be indications of speed, safety, strength, and health, it is not the less true that they only can be said to admire the animal for his beauty, who leave such considerations out of the account while they admire. The pleasure of contemplation in these particulars of nature and art becomes universal and immediate, being entirely detached from all regard to individual beings. It contemplates neither use nor interest.

1 See supra, section on Butler.
In this important particular the pleasures of imagination agree with the moral sentiments. Hence the application of the same language to both in ancient and modern times. Hence also it arises that they may contemplate the same qualities and objects. There is certainly much beauty in the softer virtues—much grandeur in the soul of a Hero or a Martyr. But the essential distinction still remains. The purest moral taste contemplates these qualities only with *quiescent* delight or reverence. It has no further view;—it points towards no action. Conscience, on the contrary, containing in it a pleasure in the prospect of doing right, and an ardent desire to act well, having for its sole object the dispositions and acts of voluntary agents, is not, like moral taste, satisfied with passive contemplation, but constantly tends to act on the will and conduct of the man. Moral taste may aid it, may be absorbed into it, and usually contributes its part to the formation of the moral faculty; but it is distinct from that faculty, and may be disembodied from it. Conscience, being by its nature confined to mental dispositions and voluntary acts, is of necessity excluded from the ordinary consideration of all things antecedent to these dispositions. The circumstances from which such states of mind may arise, are most important objects of consideration for the understanding; but they are without the sphere of conscience, which never ascends beyond the heart of the man. It is thus that in the eye of conscience man becomes amenable to its authority for all his inclinations as well as deeds; that some of them are approved, loved, and revered; and that all the outward effects of esteem, contempt, or moral anger, are felt to be the just lot of others.

But, to return to Hartley, from this perhaps intrusive statement of what does not properly belong to him: He represents all the social affections of gratitude, veneration, and love, inspired by the virtues of our fellow-men, as capable of being transferred by association to the transcendent and unmingled goodness of the Ruler of the world, and thus to give rise to piety, to which he gives the name of the theophatic affection. This principle, like all the former in the mental series, is gradually detached from the trunk on which it grew: it takes separate root, and may altogether overshadow the parent stock. As such a being cannot be conceived without the most perfect and constant reference to his goodness, so piety may not only become a part of conscience, but its governing and animating principle, which, after long lending its own energy and authority to every other, is at last described by our philosopher as swallowing up all of them in order to perform the same functions more infallibly.

In every stage of this progress we are taught by Dr Hartley that a new product appears, which becomes perfectly distinct from the elements which formed it, which may be utterly dissimilar to them, and may attain any degree of vigour, however superior to theirs. Thus the objects of the private desires disappear when we are employed in the pursuit of our lasting welfare; that which was first sought only as a means, may come to be pursued as an end, and preferred to the original end; the good opinion of our fellows becomes more valued than the benefits for which it was at first courted; a man is ready to sacrifice his life for him who has shown generosity, even to others; and persons otherwise of common character are capable of cheerfully marching in a forlorn hope, or of almost instinctively leaping into the sea to save the life of an entire stranger. These last acts, often of almost unconscious virtue, so familiar to the soldier and the sailor, so unaccountable on certain systems of philosophy, often occur without a thought of applause and reward; too quickly for the thought of the latter, too obscurely for the hope of the former; and they are of such a nature that no man could be impelled to them by the mere expectation of either.

The gratitude, sympathy, resentment, and shame, which are the principal constituent parts of the Moral Sense, thus lose their separate agency, and constitute an entirely new faculty, co-extensive with all the dispositions and actions of voluntary agents; though some of them are more predominant in particular cases of moral sentiment than others, and though the aid of all continues to be necessary in their original character, as subordinate but distinct motives of action. Nothing more evidently points out the
distinction of the Hartleian system from all systems called selfish, not to say its superiority in respect to disinterestedness over all moral systems before Butler and Hutc hesson, than that excellent part of it which relates to the Rule of Life. The various principles of human action rise in value according to the order in which they spring up after each other. We can then only be in a state of as much enjoyment as we are evidently capable of attaining, when we prefer interest to the original gratifications—honour to interest—the pleasures of imagination to those of sense—the dictates of conscience to pleasure, interest, and reputation—the well-being of fellow-creatures to our own indulgences; in a word, when we pursue moral good and social happiness chiefly and for their own sake. "With self-interest," says Hartley, somewhat inaccurately in language, "man must begin. He may end in self-annihilation. Theopathy, or piety, although the last result of the purified and exalted sentiments, may at length swallow up every other principle, and absorb the whole man." Even if this last doctrine should be an exaggeration unsuited to our present condition, it will the more strongly illustrate the compatibility, or rather the necessary connection, of this theory with the existence and power of perfectly disinterested principles of human action.

It is needless to remark on the secondary and auxiliary causes which contribute to the formation of moral sentiment; education, imitation, general opinion, laws and government. They all presuppose the moral faculty: in an improved state of society they contribute powerfully to strengthen it, and on some occasions they enfeeble, distort, and maim it; but in all cases they must themselves be tried by the test of an ethical standard.

The value of this doctrine will not be essentially affected by supposing a greater number of original principles than those assumed by Dr Hartley. The principle of association applies as much to a greater as to a smaller number. It is a quality common to it with all theories, that the more simplicity it reaches consistently with truth, the more perfect it becomes. Causes are not to be multiplied without necessity. If by a considerable multiplication of primary desires the law of association were lowered nearly to the level of an auxiliary agent, the philosophy of human nature would still be under indelible obligations to the philosopher who, by his fortunate error, rendered the importance of that great principle obvious and conspicuous.

ABRAHAM TUCKER.

It has been the remarkable fortune of this writer to have been more prized by the cultivators of the same subjects, and more disregarded by the generality even of those who read books on such matters, than perhaps any other philosopher. He had many of the qualities which might be expected in an affluent country gentleman, living in a privacy undisturbed by political zeal, and with a leisure unbroken by the calls of a profession, at a time when England had not entirely renounced her old taste for metaphysical speculation. He was naturally endowed, not indeed with more than ordinary acuteness or sensibility, nor with a high degree of reach and range of mind, but with a singular capacity for careful observation and original reflection, and with a fancy perhaps unmatched in producing various and happy illustration. The most observable of his moral qualities appear to have been prudence and cheerfulness, good-nature and easy temper. The influence of his situation and character is visible in his writings. Indulging his own tastes and fancies, like most English squires of his time, he became, like

1 Born in 1705; died in 1774.
2 "I have found in this writer more original thinking and observation upon the several subjects that he has taken in hand than in any other, not to say than in all others put together. His talent also for illustration is unrivalled." (PALEY, Preface to Moral and Political Philosophy.) See the excellent preface to an abridgement, by Mr Hazlitt, of Tucker's work, published in London in 1807. May I venture to refer also to my own discourse on the Law of Nature and Nations, London, 1799. Mr Stewart treats Tucker and Hartley with unwonted harshness.
many of them, a sort of humourist. Hence much of his originality and independence; hence the boldness with which he openly employs illustrations from homely objects. He wrote to please himself more than the public. He had too little regard for readers, either to sacrifice his sincerity to them, or to curb his own prolixity, repetition, and egotism, from the fear of fatiguing them. Hence he became as loose, as rambling, and as much an egotist as Montaigne; but not so agreeably so, notwithstanding a considerable resemblance of genius; because he wrote on subjects where disorder and egotism are unseasonable, and for readers whom they disturb instead of amusing. His prolixity at last increased itself, when his work became so long, that repetition in the latter parts partly arose from forgetfulness of the former; and though his freedom from slavish deference to general opinion is very commendable, it must be owned, that his want of a wholesome fear of the public renders the perusal of a work which is extremely interesting, and even amusing in most of its parts, on the whole a laborious task. He was by early education a believer in Christianity, if not by natural character religious. His calm good sense and accommodating temper led him rather to explain established doctrines in a manner agreeable to his philosophy, than to assail them. Hence he was represented as a timeless-server by free-thinkers, and as a heretic by the orthodox. Living in a country where the secure tranquillity flowing from the Revolution was gradually drawing forth all mental activity towards practical pursuits and outward objects, he hastened from the rudiments of mental and moral philosophy, to those branches of it which touch the business of men. Had he recast without changing his thoughts,—had he detached those ethical observations for which he had so peculiar a vocation, from the disputes of his country and his day,—he might have thrown many of his chapters into their proper form of essays, which might have been compared, though not likened, to those of Hume. But the country gentleman, philosophic as he was, had too much fondness for his own humours to engage in a course of drudgery and deference. It may, however, be confidently added, on the authority of all those who have fairly made the experiment, that whoever, unfettered by a previous system, undertakes the labour necessary to discover and relish the high excellencies of this metaphysical Montaigne, will find his toil lightened as he proceeds, by a growing indulgence, if not partiality, for the foibles of the humourist; and at last rewarded, in a greater degree perhaps than by any other writer on mixed and applied philosophy, by being led to commanding stations and new points of view, whence the mind of a moralist can hardly fail to catch some fresh prospects of nature and duty.

It is in mixed, not in pure philosophy, that his superiority consists. In the part of his work which relates to the intellect, he has adopted much from Hartley, hiding but aggravating the offence by a change of technical terms; and he was ungrateful enough to countenance the vulgar sneer which involves the mental analysis of that philosopher in the ridicule to which his physiological hypothesis is liable. Thus, for the Hartleian term Association he substitutes that of Translation, when he adopts the same theory of the principles which move the mind to action. In the practical and applicable part of that inquiry he indeed far surpasses Hartley; and it is little to add, that he unspeakably exceeds that bare and naked thinker in the useful as well as admirable faculty of illustration. In the strictly theoretical

1 This disposition to compromise and accommodation, which is discoverable in Paley, was carried to its utmost length by Mr Hey, a man of much acuteness, Professor of Divinity at Cambridge.

2 Perhaps no philosopher ever stated more justly, more naturally, or more modestly than Tucker, the ruling maxim of his life. "My thoughts," says he, "have taken a turn from my earliest youth towards searching into the foundations and measures of right and wrong; my love for retirement has furnished me with continual leisure; and the exercise of my reason has been my daily employment."

3 Eight of Nature, i.e. xviii. of which the conclusion may be pointed out as a specimen of perhaps unmatched fruitfulness, vivacity, and felicity of illustration. The admirable sense of the conclusion of chap. xxv. seems to have suggested Paley's good chapter on Happiness. The alteration of Plato's comparison of reason to a charioteer, and the passions to the horses, in chap. xxvi. is of characteristic and transcendent excellence.
part his exposition is considerably fuller; but the defect of his genius becomes conspicuous when he handles a very general principle. The very term Translation ought to have kept up in his mind a steady conviction that the secondary motives to action become as independent, and seek their own objects as exclusively, as the primary principles. His own examples are rich in proofs of this important truth. But there is a slippery descent in the Theory of Human Nature, by which he, like most of his forerunners, slid unawares into selfishness. He was not preserved from this fall by seeing that all the deliberate principles which have self for their object are themselves of secondary formation; and he was led to the general error by the notion that Pleasure, or, as he calls it, Satisfaction, was the original and sole object of all appetites and desires; confounding this with the true but very different proposition, that the attainment of all the objects of appetite and desire is productive of pleasure. He did not see that, without presupposing Desires, the word Pleasure would have no signification; and that the representations by which he was seduced would leave only one appetite or desire in human nature. He had no adequate and constant conception, that the translation of Desire from the end to the means occasioned the formation of a new passion, which is perfectly distinct from, and altogether independent of, the original desire. Too frequently (for he was neither obstinate nor uniform in error) he considered these translations as accidental defects in human nature, not as the appointed means of supplying it with its variety of active principles. He was too apt to speak as if the selfish elements were not destroyed in the new combination, but remained still capable of being recalled, when convenient, like the links in a chain of reasoning, which we pass over from forgetfulness, or for brevity. Take him all in all, however, the neglect of his writings is the strongest proof of the disinclination of the English nation, for the last half century, to Metaphysical Philosophy.

WILLIAM PALEY.*

This excellent writer, who, after Clarke and Butler, ought to be ranked among the brightest ornaments of the English church in the eighteenth century, is, in the history of philosophy, naturally placed after Tucker, to whom, with praiseworthy liberality, he owns his extensive obligations. It is a mistake to suppose that he owed his system to Hume, a thinker too refined, and a writer perhaps too elegant, to have naturally attracted him. A coincidence in the principle of utility, common to both with so many other philosophers, affords no sufficient ground for the supposition. Had he been habitually influenced by Mr Hume, who has translated so many of the dark and crabbed passages of Butler into his own transparent as well as beautiful language, it is not possible to suppose that such a mind as that of Paley should have fallen into those principles of gross selfishness of which Mr Hume is a uniform and zealous antagonist.

The natural frame of Paley's understanding fitted it more for business and the world than for philosophy; and he accordingly enjoyed with considerable relish the few opportunities which the latter part of his life afforded of taking a part in the affairs of his county as a magistrate. Penetration and shrewdness, firmness and coolness, a vein of pleasantry, fruitful though somewhat unrefined, with an original homeliness and significance of expression, were

1 Much of Tucker's chapter on Pleasure, and of Paley's on Happiness (both of which are invaluable), is contained in the passage of The Traveller, of which the following couplet expresses the main object:

"Unknown to them when sensual pleasures close, To fill the languid pause with finer joy."

2 "An honest man," says Mr Hume, "has the frequent satisfaction of seeing knaves betrayed by their own maxims." (Enquiry into Morals.)

"I used often to laugh at your honest simple neighbour Flamborough, and one way or another generally cheated him once a year. Yet still the honest man went forward without suspicion, and grew rich, while I still continued tricky and cunning, and was poor, without the consolation of being honest." (Victor of Wakefield, chap. xxvi.)

* Born in 1743; died in 1805.
perhaps more remarkable in his conversation than the restraints of authorship and profession allowed them to be in his writings. Grateful remembrance brings this assemblage of qualities with unfaded colours before the mind at the present moment, after the long interval of twenty-eight years. His taste for the common business and ordinary amusements of life fortunately gave a zest to the company which his neighbourhoof chanced to yield, without rendering him insensible to the pleasures of intercourse with more enlightened society. The practical bent of his nature is visible in the language of his writings, which, on practical matters, is as precise as the nature of the subject requires, but, in his rare and reluctant efforts to rise to first principles, becomes indeterminate and unsatisfactory; though no man's composition was more free from the impediments which hinder a writer's meaning from being quickly and clearly seen. He seldom distinguishes more exactly than is required for palpable and direct usefulness. He possessed that chastised acuteness of discrimination, exercised on the affairs of men, and habitually looking to a purpose beyond the mere increase of knowledge, which forms the character of a lawyer's understanding, and which is apt to render a mere lawyer too subtle for the management of affairs, and yet too gross for the pursuit of general truth. His style is as near perfection in its kind as any in our language. Perhaps no words were ever more expressive and illustrative than those in which he represents the art of life to be that of rightly "setting our habits."

The most original and ingenious of his writings is the Hora Paulina. The Evidences of Christianity are formed out of an admirable translation of Butler's Analogy, and a most skilful abridgement of Lardner's Credibility of the Gospel History. He may be said to have thus given value to two works, of which the first was scarcely intelligible to most of those who were most desirous of profiting by it; and the second soon wearies out the greater part of readers, though the few who are more patient have always been gradually won over to feel pleasure in a display of knowledge, probity, charity, and meekness, unmatched by an avowed advocate in a case deeply interesting his warmest feelings. His Natural Theology is the wonderful work of a man who, after sixty, had studied anatomy in order to write it; and it could only have been surpassed by a man who, to great originality of conception and clearness of exposition, added the advantage of a high place in the first class of physiologists.

It would be unreasonable here to say much of a work which is in the hands of so many as his Moral and Political Philosophy. A very few remarks on one or two parts of it may be sufficient to estimate his value as a moralist, and to show his defects as a metaphysician. His general account of virtue may indeed be chosen for both purposes. The manner in which he deduces the necessary tendency of all virtuous actions to the general happiness, from the goodness of the Divine Lawgiver, though the principle be not, as has already more than once appeared, peculiar to him, but rather common to most religious philosophers, is characterized by a clearness and vigour which have never been surpassed. It is indeed nearly, if not entirely, an identical proposition, that a Being of unmixt benevolence will prescribe those laws only to his creatures which contribute to their well-being. When we are convinced that a course of conduct is generally beneficial to all men, we cannot help considering it as acceptable to a benevolent Deity. The usefulness of actions is the mark set on them by the Supreme Legislator, by which reasonable beings discover it to be His will that such actions should be done. In this apparently unanswerable deduction it is partly admitted, and universally implied, that the principles of right and wrong may be treated apart from the manifestation of them in the Scriptures. If it were otherwise, how could men of perfectly different religions deal or reason with each other on moral subjects? How could they regard rights and duties as subsisting between them? To what common principles could they appeal

1 See Animal Mechanics, by Mr Charles Bell, published by the Society for Useful Knowledge.
in their differences? Even the Polytheists themselves, those worshippers of
Gods partial, changeful, passionate, unjust,
Whose attributes are rage, revenge, or lust,
by a happy inconsistency are compelled, however irregularly and imperfectly, to ascribe some general enforcement of the moral code to their deities. If there were no foundation for morality antecedent to revealed religion, we should want that important test of the conformity of a revelation to pure morality, by which its claim to a divine origin is to be tried. The internal evidence of religion necessarily presupposes such a standard. The Christian contrasts the precepts of the Koran with the pure and benevolent morality of the Gospel. The Mahometan claims, with justice, a superiority over the Hindoo, inasmuch as the Mussulman religion inculcates the moral perfection of one Supreme Ruler of the world. The ceremonial and exclusive character of Judaism has ever been regarded as an indication that it was intended to pave the way for a universal religion,—a morality seated in the heart, and a worship of sublime simplicity. These discussions would be impossible, unless morality were previously proved or granted to exist. Though the science of Ethics is thus far independent, it by no means follows that there is any equality, or that there may not be the utmost inequality, in the moral tendency of religious systems. The most ample scope is still left for the zeal and activity of those who seek to spread important truth. But it is absolutely essential to ethical science that it should contain principles, the authority of which must be recognised by men of every conceivable variety of religious opinion.

The peculiarities of Paley's mind are discoverable in the comparison, or rather contrast, between the practical chapter on Happiness, and the philosophical portion of the chapter on Virtue. "Virtue is the doing good to mankind, in obedience to the will of God, and for the sake of everlasting happiness." It is not perhaps very important to observe, that these words, which he offers as "a definition," ought in propriety to have been called a proposition; but it is much more necessary to say that they contain a false account of virtue. According to this doctrine, every action not done for the sake of the agent's happiness is vicious. Now, it is plain that an act cannot be said to be done for the sake of anything which is not present to the mind of the agent at the moment of action. It is a contradiction in terms to affirm that a man acts for the sake of any object, of which, however it may be, the necessary consequence of his act, he is not at the time fully aware. The unfelt consequences of his act can no more influence his will than its unknown consequences. Nay, further, a man is only with any propriety said to act for the sake of his chief object; nor can he with entire correctness be said to act for the sake of anything but his sole object. So that it is a necessary consequence of Paley's proposition, that every act which flows from generosity or benevolence is a vice. So also of every act of obedience to the will of God, if it arises from any motive but a desire of the reward which he will bestow. Any act of obedience influenced by gratitude, and affection, and veneration towards supreme benevolence and perfection, is so far imperfect; and if it arises solely from these motives it becomes a vice. It must be owned, that this excellent and most enlightened man has laid the foundations of religion and virtue in a more intense and exclusive selfishness than was avowed by the Catholic enemies of Fenelon, when they persecuted him for his doctrine of a pure and disinterested love of God.

In another province, of a very subordinate kind, the disposition of Paley to limit his principles to his own time and country, and to look at them merely as far as they are calculated to amend prevalent vices and errors, betrayed him into narrow and false views. His chapter on what he calls the Law of Honour is unjust, even in its own small sphere, because it supposes honour to allow what it does not forbid; though the truth be, that the vices enumerated by him are only not forbidden by honour, because they are

1 Paley, book i. chap. vii.
not within its jurisdiction. He considers it as "a system of rules constructed by people of fashion"—a confused and transient mode of expression, which may be understood with difficulty by our posterity, and which cannot now be exactly rendered perhaps in any other language. The subject, however, thus narrowed and lowered, is neither unimportant in practice, nor unworthy of the consideration of the moral philosopher. Though all mankind honour virtue and despise vice, the degree of respect or contempt is often far from being proportioned to the place which virtues and vices occupy in a just system of Ethics. Wherever higher honour is bestowed on one moral quality than on others of equal or greater moral value, what is called a point of honour may be said to exist. It is singular that so shrewd an observer as Paley should not have observed a law of honour far more permanent than that which attracted his notice, in the feelings of Europe respecting the conduct of men and women. Cowardice is not so immoral as cruelty, nor indeed so detestable, but it is more despicable and disgraceful. The female point of honour forbids indeed a great vice, but one not so great as many others by which it is not violated. It is easy enough to see, that where we are strongly prompted to a virtue by a natural impulse, we love the man who is constantly actuated by the amiable sentiment, but we do not consider that which is done without difficulty as requiring or deserving admiration and distinction. The kind affections are their own rich reward, and they are the object of affection to others. To encourage kindness by praise would be to insult it, besides its effect in producing counterfeits. It is for the conquest of fear, it would be still more for the conquest of resentment, if that were not, wherever it is real, the cessation of a state of mental agony, that the applause of mankind is reserved. Observations of a similar nature will easily occur to every reader respecting the point of honour in the other sex. The conquest of natural frailties, especially in a case of far more importance to mankind than is at first sight obvious, is well distinguished as an object of honour, and the contrary vice is punished by shame. Honour is not wasted on those who abstain from acts which are punished by the law. These acts may be avoided without a pure motive. Wherever a virtue is easily performed by good men—wherever it is its nature to be attended by delight—wherever its outward observance is so necessary to society as to be enforced by punishment—it is not the proper object of honour. Honour and shame, therefore, may be reasonably dispensed, without being strictly proportioned to the intrinsic morality of actions, if the inequality of their distribution contributes to the general equipoise of the whole moral system.

A wide disproportion, however, or indeed any disproportion not justifiable on moral grounds, would be a deprivation of the moral principle. Duelling is among us a disputed case, though the improvement of manners has rendered it so much more infrequent, that it is likely in time to lose its support from opinion. Those who excuse individuals for yielding to a false point of honour, as in the suicides of the Greeks and Romans, may consistently blame the faulty principle, and rejoice in its destruction. The shame fixed on a Hindoo widow of rank who voluntarily survives her husband, is regarded by all other nations with horror.

There is room for great praise and some blame in other parts of Paley's works. His political opinions were those generally adopted by moderate whigs in his own age. His language on the Revolution of 1688 may be very advantageously compared, both in precision and in generous boldness, to that of Blackstone, a great master of classical and harmonious composition, but a feeble reasoner and a confused thinker, whose writings are not exempt from the taint of slavishness.

It cannot be denied that Paley was sometimes rather a lax moralist, especially on public duties.

1 "Government may be too secure. The greatest tyrants have been those whose titles were the most unquestioned. Whenever, therefore, the opinion of right becomes too predominant and superstitious, it is abated by breaking the custom. Thus the Revolutions broke the custom of succession, and thereby moderated, both in the prince and in the people, those lofty notions of hereditary right, which in the one were become a continual incentive to tyranny, and disposed the other to invite servitude, by undue compliances and dangerous concessions." (Paley, book vi. chap. ii.)
It is a sin which easily besets men of strong good sense, little enthusiasm, and much experience. They are naturally led to lower their precepts to the level of their expectations. They see that higher pretensions often produce less good, to say nothing of the hypocrisy, extravagance, and turbulence, to which they lend some colour. As those who claim more from men often gain less, it is natural for more sober and milder casuists to present a more accessible virtue to their followers. It was thus that the Jesuits began, till, strongly tempted by their perilous station as the moral guides of the powerful, some of them by degrees fell into that absolute licentiousness for which all, not without injustice, have been cruelly immortalized by Pascal. Indulgence, which is a great virtue in judgment concerning the actions of others, is too apt, when blended in the same system with the precepts of morality, to be received as a licence for our own offences. Accommodation, without which society would be painful, and arduous affairs would become impracticable, is more safely imbibed from temper and experience, than taught in early and systematic instruction. The middle region between laxity and rigour is hard to be fixed, and it is still harder steadily to remain within its boundaries. Whatever may be thought of Paley's observations on political influence and ecclesiastical subscription, as temperaments and mitigations which may preserve us from harsh judgment, they are assuredly not well qualified to form a part of that discipline which ought to breathe into the opening souls of youth, at the critical period of the formation of character, those inestimable virtues of sincerity, of integrity, of independence, which will even guide them more safely through life than mere prudence, while they provide an inward fountain of pure delight, immeasurably more abundant than all the outward sources of precarious and perishable pleasure.

JEREMY BENTHAM.

The general scheme of this Dissertation would be a sufficient reason for omitting the name of a living writer. The devoted attachment and invincible repugnance which an impartial estimate of Mr Bentham has to encounter on either side, are a strong inducement not to deviate from that scheme in his case. But the most brief sketch of ethical controversy in England would be imperfect without it; and perhaps the utter hopelessness of any expedient for satisfying his followers, or softening his opponents, may enable a writer to look steadily and solely at what he believes to be the dictates of truth and justice. He who has spoken of former philosophers with unreserved freedom, ought perhaps to subject his courage and honesty to the severest test by an attempt to characterize such a contemporary. Should the very few who are at once enlightened and unbiased be of opinion that his firmness and equity have stood this trial, they will be the more disposed to trust his fairness where the exercise of that quality is more easy.

The disciples of Mr Bentham are more like the hearers of an Athenian philosopher than the pupils of a modern professor, or the cool proselytes of a modern writer. They are in general men of competent age, of superior understanding, who voluntarily embrace the laborious study of useful and noble sciences; who derive their opinions not so much from the cold perusal of his writings, as from familiar converse with a master from whose lips these opinions are recommended by simplicity, disinterestedness, originality, and vivacity; aided rather than impeded by foibles not unamiable, enforced of late by the growing authority of years and of fame, and at all times strengthened by that undoubting reliance on his own judgment which mightily increases the ascendant of such a man over those who approach him. As he and they deserve the credit of braving vulgar prejudices, so they must be content to incur the imputation of falling into the neighbouring vices of seeking distinction by singularity; of clinging to opinions because they are obnoxious; of wantonly wound ing the most respectable feelings of mankind; of regarding an immense display of method and nomenclature as a sure token of a corresponding increase of knowledge; and of considering them-
selves as a chosen few, whom an initiation into
the most secret mysteries of philosophy entitles
to look down with pity, if not contempt, on the
profane multitude. Viewed with aversion or
dread by the public, they become more bound
to each other and to their master; while they
are provoked into the use of language which
more and more exasperates opposition to them.
A hermit in the greatest of cities, seeing only
his disciples, and indignant that systems of go-

government and law which he believes to be per-
fect are disregarded at once by the many and
the powerful, Mr Bentham has at length been
betrayed into the most unphilosophical hypo-
thesis, that all the ruling bodies who guide the
community have conspired to stifle and defeat
his discoveries. He is too little acquainted with
doubts to believe the honest doubts of others,
and he is too angry to make allowance for their
prejudices and habits. He has embraced the
most extreme party in practical politics; mani-
festing more dislike and contempt towards those
who are more moderate supporters of popular
principles than towards their most inflexible op-
ponents. To the unpopularity of his philo-
sophical and political doctrines he has added the
more general and lasting obloquy which arises
from an unseemly treatment of doctrines and
principles which, if there were no other motives
for reverential deference, even a regard to the
feelings of the best men requires to be approach-
ed with decorum and respect.
Fifty-three years have passed since the pub-
ication of Mr Bentham’s first work, A Fragment
on Government,—a considerable octavo volume,
employed in the examination of a short para-
graph of Blackstone,—unmatched in acute hy-
percriticism, but conducted with a severity
which leads to an unjust estimate of the writer

criticised, till the like experiment be repeated on
other writings. It was a waste of extraordinary
power to employ it in pointing out flaws and
patches in the robe occasionally stolen from the
philosophical schools, which hung loosely and
unbecomingly on the elegant commentator. This
volume, and especially the preface, abounds in
fine, original, and just observation; it contains
the germs of most of his subsequent productions,
and it is an early example of that disregard for
the method, proportions, and occasion of a writ-
ing which, with all common readers, deeply af-
facts its power of interesting or instructing.
Two years after, he published a most excellent
tract on The Hard Labour Bill, which, concur-
ing with the spirit excited by Howard’s inqui-
ries, laid the foundation of just reasoning on Re-
formatory Punishment. The Letters on Usury
are perhaps the best specimen of the exhaustive
discussion of a moral or political question, leav-
ing no objection, however feeble, unanswered,
and no difficulty, however small, unexplained;
remarkable also for the clearness and spirit of
the style, for the full exposition which suits them
to all intelligent readers, for the tender and skilful
hand with which prejudice is touched, and for the
urbane of his admirable apology for projectors,
addressed to Dr Smith, whose temper and manner
he seems for a time to have imbibed. The Intro-
duction to the Principles of Morals and Politics,
printed before the Letters, but published after
them, was the first sketch of his system, and is
still the only account of it by himself.
The great merit of this work, and of his other
writings in relation to Jurisprudence properly so
called, is not within our present scope. To the
Roman jurists belongs the praise of having al-
lotted a separate portion of their Digest to the
signification of the words of most frequent use

1 They were addressed to Mr George Wilson, who retired from the English bar to his native country, and died at Edin-
burn in 1816; an early friend of Mr Bentham, and afterwards an intimate friend of Lord Ellenborough, Sir Vicary Gibbs,
and of all the most eminent of his professional contemporaries. The rectitude of judgment, purity of heart, elevation of ho-
nour, the sternness only in integrity, the scorn of baseness, and indulgence towards weakness, which were joined in him
with a gravity exclusive neither of feeling nor of pleasantry, contributed still more than his abilities and attainments of va-
rious sorts, to a moral authority with his friends, and in his profession, which few men more amply possessed, or more use-
fully exercised. The same character, somewhat softened, and the same influence, distinguished his closest friend, the late
Mr Lens. Both were inflexible and incorruptible friends of civil and religious liberty, and both knew how to reconcile the
warmest zeal for that sacred cause, with a charity towards their opponents, which partisans, often more violent than steady,
treated as lukewarm. The present writer hopes that the good-natured reader will excuse him for having thus, perhaps un-
seasonably, bestowed heartfelt commendation on those who were above the pursuit of praise, and the remembrance of whose
good opinion and good-will help to support him under a deep sense of faults and vices.

Diss. II.
in law and legal discussion. Bentham not only first perceived and taught the great value of an introductory section, composed of definitions of general terms, as subjacent to brevity and precision in every part of a code, but he also discovered the unspeakable importance of natural arrangement in jurisprudence, by rendering the mere place of a proposed law in such an arrangement a short and easy test of the fitness of the proposal. But here he does not distinguish between the value of arrangement as scaffolding, and the inferior convenience of its being the very frame-work of the structure. Mr Bentham, indeed, is much more remarkable for laying down desirable rules for the determination of rights, and the punishment of wrongs, in general, than for weighing the various circumstances which require them to be modified in different countries and times: in order to render them either more useful, more easily introduced, more generally respected, or more certainly executed. The art of legislation consists in thus applying the principles of jurisprudence to the situation, wants, interests, feelings, opinions, and habits, of each distinct community at any given time. It bears the same relation to jurisprudence which the mechanical arts bear to pure Mathematics. Many of these considerations serve to show, that the sudden establishment of new codes can seldom be practicable or effectual for their purpose; and that reformations, though founded on the principles of jurisprudence, ought to be not only adapted to the peculiar interests of a people, but engrafted on their previous usages, and brought into harmony with those national dispositions on which the execution of laws depends. The Romans, under Justinian, adopted at least the true principle, if they did not apply it with sufficient freedom and boldness. They considered the multitude of occasional laws, and the still greater mass of usages, opinions, and determinations, as the materials of legislation, not precluding, but demanding a systematic arrangement of the whole by the supreme authority. Had the arrangement been more scientific, had there been a bolder examination and a more free reform of many particular branches, a model would have been offered for liberal imitation by modern lawgivers. It cannot be denied, without injustice and ingratitude, that Mr Bentham has done more than any other writer to rouse the spirit of juridical reformation, which is now gradually examining every part of law, and, when further progress is facilitated by digesting the present laws, will doubtless proceed to the improvement of all. Greater praise it is given to few to earn. It ought to satisfy Mr Bentham, for the disappointment of hopes which were not reasonable, that Russia should receive a code from him, or that North America could be brought to renounce the variety of her laws and institutions, on the single authority of a foreign philosopher, whose opinions had not worked their way either into legislation or into general reception in his own country. It ought also to dispose his followers to do fuller justice to the Romillys and Broughams, without whose prudence and energy, as well as reason and eloquence, the best plans of reformation must have continued a dead letter,—for whose sake it might have been fit to reconsider the obloquy heaped on their profession, and to show more general indulgence to all those whose chief offence seems to consist in their doubts whether sudden changes, almost always imposed by violence on a community, be the surest road to lasting improvement.

It is unfortunate that Ethical Theory, with

1 Digest. lib. tit. 16. De Verborum Significatione.
2 See a beautiful article on Codification, in the Edinburgh Review, vol. XXIX. p. 217. It need no longer be concealed that it was contributed by Sir Samuel Romilly. The steadiness with which he held the balance in weighing the merits of his friend against his unfortunate defects, is an example of his union of the most commanding moral principle with a sensibility so warm, that, if it had been released from that stern authority, it would not so long have endued the coarseness and roughness of human concerns. From the tenderness of his feelings, and from an anger never roused but by cruelty and baseness, as much as from his genius and his pure taste, sprung that original and characteristic eloquence, which was the hope of the afflicted as well as the terror of the oppressor. If his oratory had not flowed so largely from this moral source, which years do not dry up, he would not perhaps have been the only example of an orator who, after the age of sixty, daily increased in polish, in vigour, and in splendour.
3 An excellent medium between those who absolutely require new codes, and those who obstinately adhere to ancient usages, has been pointed out by M. Meyer, in his most justly celebrated work, Institutions Judiciaires des Principaux Pays de l'Europe, tome I. Introduction, p. 8, 9. "La Haye et Amst. 1819-23, 6 vols. 8vo."
which we are now chiefly concerned, is not the province in which Mr. Bentham has reached the most desirable distinction. It may be remarked, both in ancient and in modern times, that whatever modifications prudent followers may introduce into the system of an innovator, the principles of the Master continue to mould the habitual dispositions, and to influence the practical tendency of the School. Mr. Bentham preaches the principle of utility with the zeal of a discoverer. Occupied more in reflection than in reading, he knew not, or forgot, how often it had been the basis, and how generally an essential part, of moral systems.¹ That in which he really differs from others, is in the necessity which he teaches, and the example which he sets, of constantly bringing that principle before us. This peculiarity appears to us to be his radical error. In an attempt, of which the constitution of human nature forbids the success, he seems to us to have been led into fundamental errors in moral theory, and to have given to his practical doctrine a dangerous taint.

The confusion of moral approbation with the moral qualities which are its objects, common to Mr. Bentham with many other philosophers, is much more uniform and prominent in him than in most others. This general error, already mentioned at the opening of this Dissertation, has led him more than others to assume, that because the principle of utility forms a necessary part of every moral theory, it ought therefore to be the chief motive of human conduct. Now it is evident that this assumption, rather tacitly than avowedly made, is wholly gratuitous. No practical conclusion can be deduced from the principle, but that we ought to cultivate those habitual dispositions which are the most effectual motives to useful actions. But before a regard to our own interest, or a desire to promote the welfare of men in general, be allowed to be the exclusive, or even the chief regulators of human conduct, it must be shown that they are the most effectual motives to such useful actions. It is demonstrated by experience that they are not. It is even owned by the most ingenious writers of Mr. Bentham's school, that desires which are pointed to general and distant objects, although they have their proper place and their due value, are commonly very faint and inefficacious inducements to action. A theory founded on utility, therefore, requires that we should cultivate, as excitements to practice, those other habitual dispositions which we know by experience to be generally the source of actions beneficial to ourselves and our fellows; habits of feeling productive of habits of virtuous conduct, and in their turn strengthened by the re-action of these last. What is the result of experience on the choice of the objects of moral culture?² Beyond all dispute, that we should labour to attain that state of mind in which all the social affections are felt with the utmost warmth, giving birth to more comprehensive benevolence, but not supplanted by it; when the moral sentiments most strongly approve what is right and good, without being perplexed by a calculation of consequences, though not incapable of being gradually rectified by reason, whenever they are decisively proved by experience not to correspond in some of their parts to the universal and perpetual effects of conduct. It is a false representation of human nature to affirm that "courage" is only "prudence."³ They coincide in their effects; and it is always prudent to be courageous. But a man who fights because he thinks it more hazardous to yield, is not brave. He does not become brave till he feels cowardice to be base and painful, and till he is no longer in need of any aid from prudence. Even if it were the interest of every man to be bold, it is clear that so cold a consideration cannot prevail over the fear of danger. Where it seems to do so, it must be by the unseen power either of the fear of shame, or of some other powerful passion, to which it lends its name. It was long ago with striking

¹ See Notes and Illustrations, note V.
² Mr. Mill's Analysis of the Human Mind, vol. II. p. 237. It would be unjust not to say that this book, partly perhaps from a larger adoption of the principles of Hartley, holds out fairer opportunities of negotiation with natural feelings and the doctrines of former philosophers, than any other production of the same school. But this very assertion about courage clearly shows at least a forgetfulness that courage, even if it were the offspring of prudence, would not for that reason be a species of it.
justice observed by Aristotle, that he who abstains from present gratification, under a distinct apprehension of its painful consequences, is only prudent, and that he must acquire a disinclination for excess on its own account, before he deserves the name of a temperate man. It is only when the means are firmly and unalterably converted into ends, that the process of forming the mind is completed. Courage may then seek, instead of avoiding danger. Temperance may prefer abstinence to indulgence. Prudence itself may choose an orderly government of conduct, according to certain rules, without regard to the degree in which it promotes welfare. Benevolence must desire the happiness of others, to the exclusion of the consideration how far it is connected with that of the benevolent agent; and those alone can be accounted just who obey the dictates of justice from having thoroughly learned an habitual veneration for its strict rules and for its larger precepts. In that complete state the mind possesses no power of dissolving the combinations of thought and feeling which impel it to action. Nothing in this argument turns on the difference between implanted and acquired principles. As no man can cease, by any act of his, to see distance, though the power of seeing it be universally acknowledged to be an acquisition, so no man has the power to extinguish the affections and the moral sentiments, however much they may be thought to be acquired, any more than that of eradicating the bodily appetites. The best writers of Mr Bentham's school overlook the indissolubility of these associations, and appear not to bear in mind that their strength and rapid action constitute the perfect state of a moral agent.

The pursuit of our own general welfare, or of that of mankind at large, though from their vagueness and coldness they are unfit habitual motives and unsafe ordinary guides of conduct, yet perform functions of essential importance in the moral system. The former, which we call self-love, preserves the balance of all the active principles which regard ourselves ultimately, and contributes to subject them to the authority of the moral principles. The latter, which is general benevolence, regulates in like manner the equipoise of the narrower affections; quickens the languid, and checks the enroaching; borrows strength from pity, and even from indignation; receives some compensation, as it enlarges, in the addition of beauty and grandeur, for the weakness which arises from dispersion; enables us to look on all men as brethren, and overflows on every sentient being. The general interest of mankind, in truth, almost solely affects us through the affections of benevolence and sympathy; for the coincidence of general with individual interest, even where it is certain, is too dimly seen to produce any emotion which can impel to, or restrain from action. As a general truth, its value consists in its completing the triumph of morality, by demonstrating the absolute impossibility of forming any theory of human nature which does not preserve the superiority of virtue over vice; a great, though not a directly practical advantage.

The followers of Mr Bentham have carried to an unusual extent the prevalent fault of the more modern advocates of utility, who have dwelt so exclusively on the outward advantages of virtue as to have lost sight of the delight which is a part of virtuous feeling; and of the beneficial influence of good actions upon the frame of the mind. "Benevolence towards others," says Mr Mill, "produces a return of benevolence from them." The fact is true, and ought to be stated. But how unimportant is it in comparison with that which is passed over in silence, the pleasure of the affection itself, which, if it could become lasting and intense, would convert the heart into a heaven! No one who has ever felt kindness, if he could accurately recall his feelings, could hesitate about their infinite superiority. The cause of the general neglect of this consideration is, that it is only when a gratification is something distinct from a state of mind, that we can easily learn to consider it as a pleasure. Hence the great error respecting the affections, where the inherent delight is not duly estimated, on account of that very peculiarity of being a part of a state of mind.
which renders it unspeakably more valuable as independent of every thing without. The social affections are the only principles of human nature which have no direct pains. To have any of these desires is to be in a state of happiness. The malevolent passions have properly no pleasures; for that attainment of their purpose which is improperly so called, consists only in healing or assuaging the torture which envy, jealousy, and malice, inflict on the malignant mind. It might with as much propriety be said that the toothache and the stone have pleasures, because their removal is followed by an agreeable feeling. These bodily disorders, indeed, are often cured by the process which removes the suffering; but the mental distempers of envy and revenge are nourished by every act of odious indulgence which for a moment suspends their pain.

The same observation is applicable to every virtuous disposition, though not so obviously as to the benevolent affections. That a brave man is, on the whole, far less exposed to danger than a coward, is not the chief advantage of a courageous temper. Great dangers are rare; but the constant absence of such painful and mortifying sensations as those of fear, and the steady consciousness of superiority to what subdues ordinary men, are a perpetual source of inward enjoyment. No man who has ever been visited by a gleam of magnanimity can place any outward advantage of fortitude in comparison with the feeling of being always able fearlessly to defend a righteous cause. Even Humility, in spite of first appearances, is a remarkable example. It has of late been unwarrantably used to signify that painful consciousness of inferiority which is the first stage of envy. It is a term consecrated in Christian ethics to denote that disposition which, by inclining towards a modest estimate of our qualities, corrects the prevalent tendency of human nature to overvalue our merits and to overrate our claims. What can be a less doubtful or a much more considerable blessing than this constant sedative, which soothes and composes the irritable passions of vanity and pride? What is more conducive to lasting peace of mind than the consciousness of proficiency in that most delicate species of equity which, in the secret tribunal of conscience, labours to be impartial in the comparison of ourselves with others?

What can so perfectly assure us of the purity of our moral sense, as the habit of contemplating, not that excellence which we have reached, but that which is still to be pursued? Of not considering how far we may outrun others, but how far we are from the goal?

Virtue has often outward advantages, and always inward delights; but the second, though constant, strong, inaccessible, and inviolable, are not easily considered by the common observer as apart from the virtue with which they are blended. They are so subtle and evanescent as to escape the distinct contemplation of all but the very few who meditate on the acts of mind. The outward advantages, on the other hand, cold, uncertain, dependant, and precarious as they are, yet stand out to the sense and to the memory, may be handled and counted, and are perfectly on a level with the general apprehension. Hence they have become the almost exclusive theme of all moralists who profess to follow reason. There is room for suspecting that a very general illusion prevails on this subject. Probably the smallest part of the pleasure of virtue, because it is the most palpable, has become the sign and mental representative of the whole. The outward and visible sign suggests insensibly the inward and mental delight. Those who display the external benefits of magnanimity and kindness, would speak with far less fervour, and perhaps less confidence, if their feelings were not unconsciously affected by the mental state which they overlook in their statements, though they feel some part of it when they write or speak on it. When they speak of

1 According to Cicero's definition of fortitude, "Virtus pugnans pro equitate." The remains of the original sense of Virtus, Manhood, give a beauty and force to these expressions, which cannot be preserved in our language. The Greek Arete and the German Tugend, originally denoted Strength, afterwards Courage, and at last Virtue. But the happy derivation of Virtus from Vir gives an energy to the phrase of Cicero, which illustrates the use of etymology in the hands of a skilful writer.

2 Mr Mill's Analysis of the Human Mind, vol. II. p. 222.

3 For a description of vanity, by a great orator, see the Rev. R. Hall's Sermon on Modern Infidelity.
what is without, they feel what was within, and their words excite the same feeling in others.

Is it not probable that much of our love of praise may be thus ascribed to humane and sociable pleasure in the sympathy of others with us? Praise is the symbol which represents sympathy, and which the mind insensibly substitutes for it in recollection and in language. Does not the desire of posthumous fame, in like manner, manifest an ambition for the fellow-feeling of our race, when it is perfectly unproductive of any advantage to ourselves? In this point of view, it may be considered as the passion of which the very existence proves the mighty power of disinterested desire. Every other pleasure from sympathy is confined to the men who are now alive. The love of fame alone seeks the sympathy of unborn generations, and stretches the chain which binds the race of man together, to an extent to which hope sets no bounds. There is a noble, even if unconscious, union of morality with genius in the mind of him who sympathizes with the masters who lived twenty centuries before him, in order that he may learn to command the sympathies of the countless generations who are to come.

In the most familiar, as well as in the highest instances, it would seem, that the inmost thoughts and sentiments of men are more pure than their language. Those who speak of "a regard to character," if they be serious, generally infuse into that word, unawares, a large portion of that sense in which it denotes the frame of the mind. Those who speak of "honour" very often mean a more refined and delicate sort of conscience, which ought to render the more educated classes of society alive to such smaller wrongs as the laborious and the ignorant can scarcely feel. What heart does not warm at the noble exclamation of the ancient poet: "Who is pleased by false honour, or frightened by lying infamy, but he who is false and depraved!" Every uncorrupted mind feels unmerited pain as a bitter reproach, and regards a consciousness of demerit as a drop of poison in the cup of honour. How different is the applause which truly delights us all, a proof that the consciences of others are in harmony with our own! "What," says Cicero, "is glory but the concurring praise of the good, the unbought approbation of those who judge aright of excellent virtue?" A far greater than Cicero rises from the purest praise of man, to more sublime contemplations.

Fame is no plant that grows on mortal soil,
But lives and spreads aloft, by those pure eyes
And perfect witness of all-judging Jove.

Those who have most inculcated the doctrine of utility have given another notable example of the very vulgar prejudice which treats the unseen as insignificant. Tucker is the only one of them who occasionally considers that most important effect of human conduct which consists in its action on the frame of the mind, by fitting its faculties and sensibilities for their appointed purpose. A razor or a penknife would well enough cut cloth or meat; but if they were often so used, they would be entirely spoiled. The same sort of observation is much more strongly applicable to habitual dispositions, which, if they be spoiled, we have no certain means of replacing or mending. Whatever act, therefore, disposes the moral machinery of mind, is more injurious to the welfare of the agent than most disasters from without can be; for the latter are commonly limited and temporary; the evil of the former spreads through the whole of life. Health of mind, as well as of body, is not only productive in itself of a greater sum of enjoyment than arises from other sources, but is the only condition of our frame in which we are capable of receiving pleasure from without. Hence it appears how incredibly absurd it is to prefer, on grounds of calculation, a present interest to the preservation of those mental habits on which our wellbeing depends. When they are most moral, they may often prevent us from obtaining advantages. It would be as absurd to desire to lower them for that reason, as it would be to weaken the body, lest its strength should render it more liable to contagious disorders of rare occurrence.

It is, on the other hand, impossible to combine the benefit of the general habit with the advantages of occasional deviation; for every such deviation either produces remorse, or weakens the habit, and prepares the way for its gradual destruction. He who obtains a fortune by the undetected forgery of a will, may indeed be
honest in his other acts; but if he had such a scorn of fraud before as he must himself allow to be generally useful, he must suffer a severe punishment from contrition; and he will be haunted with the fears of one who has lost his own security for his good conduct. In all cases, if they be well examined, his loss by the distemper of his mental frame will outweigh the profits of his vice. By repeating the like observation on similar occasions, it will be manifest that the infirmity of recollection, aggravated by the defects of language, gives an appearance of more selfishness to man than truly belongs to his nature; and that the effect of active agents upon the habitual state of mind, one of the considerations to which the epithet "sentimental" has of late been applied in derision, is really among the most serious and reasonable objects of moral philosophy. When the internal pleasures and pains which accompany good and bad feelings, or rather form a part of them, and the internal advantages and disadvantages which follow good and bad actions, are sufficiently considered, the comparative importance of outward consequences will be more and more narrowed; so that the Stoical philosopher may be thought almost excusable for rejecting it altogether, were it not an indispensably necessary consideration for those in whom right habits of feeling are not sufficiently strong. They alone are happy, or even truly virtuous, who have little need of it.

The later moralists who adopt the principle of utility, have so misplaced it, that in their hands it has as great a tendency as any theoretical error can have, to lessen the intrinsic pleasure of virtue, and to unfit our habitual feelings for being the most effectual inducements to good conduct. This is the natural tendency of a discipline which brings utility too closely and frequently into contact with action. By this habit, in its best state, an essentially weaker motive is gradually substituted for others which must always be of more force. The frequent appeal to utility as the standard of action tends to introduce an uncertainty with respect to the conduct of other men, which would render all intercourse insupportable. It affords also so fair a disguise for selfish and malignant passions, as often to hide their nature from him who is their prey. Some taint of these mean and evil principles will at least creep in, and by their venom give an animation not its own to the cold desire of utility. The moralists who take an active part in those affairs which often call out unamiable passions, ought to guard with peculiar watchfulness against such self-delusions. The sin that must most easily beset them, is that of sliding from general to particular consequences,—that of trying single actions, instead of dispositions, habits, and rules, by the standard of utility,—that of authorizing too great a latitude for discretion and policy in moral conduct,—that of readily allowing exceptions to the most important rules,—that of too lenient a censure of the use of doubtful means when the end seems to them good,—and that of believing unphilosophically, as well as dangerously, that there can be any measure or scheme so useful to the world as the existence of men who would not do a base thing for any public advantage. It was said of Andrew Fletcher, "he would lose his life to serve his country, but would not do a base thing to save it." Let those preachers of utility who suppose that such a man sacrifices ends to means, consider whether the scorn of baseness be not akin to the contempt of danger, and whether a nation composed of such men would not be invincible. But theoretical principles are counteracted by a thousand causes, which confine their mischief as well as circumscribe their benefits. Men are never so good or so bad as their opinions. All that can be with reason apprehended is, that they may always produce some part of their natural evil, and that the mischief will be greatest among the many who seek excuses for these passions. Aristippus found in the Socratic representation of the union of virtue and happiness a pretext for sensuality; and many Epicureans became voluptuaries in spite of the example of their master; easily dropping by degrees the limitations by which he guarded his doctrines. In proportion as a man accustoms himself to be influenced by the utility of particular acts, without regard to rules, he approaches to the casuistry of the Jesuits, and to the practical maxims of Cesar Borgia.
suffered by *Ethics*, from its close affinity to *Jurisprudence*. The true and eminent merit of Mr Bentham is that of a reformer of jurisprudence. He is only a moralist with a view to being a jurist; and he sometimes becomes for a few hurried moments a metaphysician with a view to laying the foundation of both the moral sciences. Both he and his followers have treated *Ethics* too *juridically*. They do not seem to be aware, or at least they do not bear constantly in mind, that there is an essential difference in the subjects of these two sciences.

The object of law is the prevention of actions injurious to the community. It considers the dispositions from which they flow only *indirectly* to ascertain the likelihood of their recurrence, and thus to determine the necessity and the means of preventing them. The *direct* object of *Ethics* is only mental disposition. It considers actions *indirectly* as the signs by which such dispositions are manifested. If it were possible for the mere moralist to see that a moral and amiable temper was the mental source of a bad action, he could not cease to approve and love the temper, as we sometimes presume to suppose may be true of the judgments of the Searcher of Hearts. Religion necessarily coincides with morality in this respect; and it is the peculiar distinction of Christianity that it places the seat of virtue in the heart. Law and *Ethics* are necessarily so much blended, that in many intricate combinations the distinction becomes obscure. But in all strong cases the difference is evident. Thus, law punishes the most sincerely repentant; but wherever the soul of the penitent can be thought to be thoroughly purified, religion and morality receive him with open arms.

It is needless, after these remarks, to observe, that those whose habitual contemplation is directed to the rules of action, are likely to underrate the importance of feeling and disposition; an error of very unfortunate consequences, since the far greater part of human actions flow from these neglected sources; while the law interposes only in cases which may be called exceptions, which are now rare, and ought to be less frequent.

The coincidence of Mr Bentham's school with the ancient Epicureans in the disregard of the pleasures of taste and of the arts dependent on imagination, is a proof both of the inevitable adherence of much of the popular sense of the words "interest" and "pleasure," to the same words in their philosophical acceptation, and of the pernicious influence of narrowing "utility" to mere visible and tangible objects, to the exclusion of those which form the larger part of human enjoyment.

The mechanical philosophers who, under Descartes and Gassendi, began to reform Physics in the seventeenth century, attempted to explain all the appearances of nature by an immediate reference to the figure of particles of matter impelling each other in various directions, and with unequal force, but in all other points alike. The communication of motion by impulse they conceived to be perfectly simple and intelligible. It never occurred to them, that the movement of one ball when another is driven against it, is a fact of which no explanation can be given which will amount to more than a statement of its constant occurrence. That no body can act where it is not, appeared to them as self-evident as that the whole is equal to all the parts. By this axiom they understood that no body moves another without touching it. They did not perceive, that it was only self-evident where it means that no body can act where it has not the *power of acting*; and that if it be understood more largely, it is a mere assumption of the proposition on which their whole system rested. Sir Isaac Newton reformed Physics, not by simplifying that science, but by rendering it much more complicated. He introduced into it the force of attraction, of which he ascertained many laws, but which even he did not dare to represent as being as intelligible and as conceivably ultimate as impulsion itself. It was necessary for Laplace to introduce intermediate laws, and to calculate disturbing forces, before the phenomena of the heavenly bodies could be reconciled even to Newton's more complex theory. In the present state of physical and chemical knowledge, a man who should attempt to refer all the immense variety of facts to the simple impulse of the Cartesians, would have no chance of serious confusion. The number of laws augments with the progress of knowledge. The
speculations of the followers of Mr Bentham are not unlike the unsuccessful attempt of the Cartesians. Mr Mill, for example, derives the whole theory of Government from the single fact, that every man pursues his interest when he knows it; which he assumes to be a sort of self-evident practical principle, if such a phrase be not contradictory. That a man’s pursuing the interest of another, or indeed any other object in nature, is just as conceivable as that he should pursue his own interest, is a proposition which seems never to have occurred to this acute and ingenious writer. Nothing, however, can be more certain than its truth, if the term “interest” be employed in its proper sense of general wellbeing, which is the only acceptance in which it can serve the purpose of his arguments. If, indeed, the term be employed to denote the gratification of a predominant desire, his proposition is self-evident, but wholly unserviceable in his argument; for it is clear that individuals and multitudes often desire what they know to be most inconsistent with their general welfare. A nation, as much as an individual, and sometimes more, may not only mistake its interest, but, perceiving it clearly, may prefer the gratification of a strong passion to it. The whole fabric of his political reasoning seems to be overthrown by this single observation; and instead of attempting to explain the immense variety of political facts by the simple principle of a contest of interests, we are reduced to the necessity of once more referring them to that variety of passions, habits, opinions, and prejudices, which we discover only by experience. Mr Mill’s Essay on Education affords another example of the inconvenience of leaping at once from the most general laws, to a multiplicity of minute appearances. Having assumed, or at least inferred from insufficient premises, that the intellectual and moral character is entirely formed by circumstances, he proceeds, in the latter part of the essay, as if it were a necessary consequence of that doctrine that we might easily acquire the power of combining and directing circumstances in such a manner as to produce the best possible character. Without disputing for the present the theoretical proposition, let us consider what would be the reasonableness of similar expectations in a more easily intelligible case. The general theory of the winds is pretty well understood; we know that they proceed from the rushing of air from those portions of the atmosphere which are more condensed, into those which are more rarefied; but how great a chasm is there between that simple law and the great variety of facts which experience teaches us respecting winds! The constant winds between the tropics are large and regular enough to be in some measure capable of explanation; but who can tell why, in variable climates, the wind blows to-day from the east, to-morrow from the west? Who can foretell what its shifting and variations are to be? Who can account for a tempest on one day, and a calm on another? Even if we could foretell the irregular and infinite variations, how far might we not still be from the power of combining and guiding their causes? No man but the lunatic in the story of Rasselas ever dreamt that he could command the weather. The difficulty plainly consists in the multiplicity and minuteness of the circumstances which act on the atmosphere. Are those which influence the formation of the human character likely to be less minute and multiplied?

The style of Mr Bentham underwent a more remarkable revolution than perhaps befell that of any other celebrated writer. In his early works, it was clear, free, spirited, often and seasonably eloquent. Many passages of his later writings retain the inimitable stamp of genius; but he seems to have been oppressed by the vastness of his projected works,—to have thought that he had no longer more than leisure to preserve the heads of them,—to have been impelled by a fruitful mind to new plans before he had completed the old. In this state of things, he

1 Essay on Government, originally printed in the Supplement to the fourth, fifth, and sixth editions of the Encyclopaedia Britannica.
2 The same mode of reasoning has been adopted by the writer of a late criticism on Mr Mill’s Essay. See Edinburgh Review, No. 97, March 1829.
3 In the Supplement to the Encyclopaedia Britannica.

Diss. II.
gradually ceased to use words for conveying his thoughts to others, but merely employed them as a short-hand to preserve his meaning for his own purpose. It was no wonder that his language should thus become obscure and repulsive. Though many of his technical terms are in themselves exact and pithy, yet the overflow of his vast nomenclature was enough to darken his whole diction.

It was at this critical period that the arrangement and translation of his manuscripts were undertaken by M. Dumont, a generous disciple, who devoted a genius formed for original and lasting works, to diffuse the principles and promote the fame of his master. He whose pen Mirabeau did not disdain to borrow,—who, in the same school with Romilly, had studiously pursued the grace as well as the force of composition,—was perfectly qualified to strip of its uncouthness a philosophy which he understood and admired. As he wrote in a general language, he propagated its doctrines throughout Europe, where they were beneficial to jurisprudence, but perhaps injurious to the cause of reformation in government. That they became more popular abroad than at home, is partly to be ascribed to the taste and skill of M. Dumont; partly to that tendency towards free speculation and bold reform which was more prevalent among nations newly freed, or impatiently aspiring to freedom, than in a people long satisfied with the possession of a system of government like that which others were struggling to obtain, and not yet aware of the imperfections and abuses in their laws, to the amendment of which a cautious consideration of Mr Bentham's works will undoubtedly most materially contribute.

DUGALD

STEWART.

Manifold are the discouragements rising up at every step in that part of this Dissertation which extends to very recent times. No sooner does the writer escape from the angry disputes of the living, than he may feel his mind clouded by the name of a departed friend. But there are happily men whose fame is brightened by free discussion, and to whose memory an appearance of belief that they needed tender treatment would be a grosser injury than it could suffer from a respectable antagonist.

Dugald Stewart was the son of Dr Matthew Stewart, Professor of Mathematics in the University of Edinburgh; a station immediately before filled by Maclaurin, on the recommendation of Newton. Hence the poet spoke of "the philosophic sire and son." He was educated at Edinburgh, and he heard the lectures of Reid at Glasgow. He was early associated with his father in the duties of the Mathematical Professorship; and during the absence of Dr Adam Ferguson as Secretary to the Commissioners sent to conclude a peace with North America, he occupied the chair of Moral Philosophy. He was appointed to the Professorship on the resignation of Ferguson, not the least distinguished among the modern moralists inclined to the Stoical school.

This office, filled in immediate succession by Ferguson, Stewart, and Brown, received a lustre from their names, which it owed in no degree to its modest exterior or its limited advantages; and was rendered by them the highest dignity, in the humble, but not obscure, establishments of Scottish literature. The lectures of Mr Stewart, for a quarter of a century, rendered it famous through every country where the light of reason was allowed to penetrate. Perhaps few men ever lived, who poured into the breasts of youth a more fervid and yet reasonable love of liberty, of truth, and of virtue. How many are still alive, in different countries, and in every rank to which education reaches, who, if they accurately examined their own minds and lives, would not ascribe much of whatever goodness and happiness they possess, to the early impressions of his gentle and persuasive eloquence! He lived to see his disciples

1 Born in 1753; died in 1829.
2 Burns.
Dissertation Second.

387

distinguished among the lights and ornaments of the council and the senate. 1 He had the consolation to be sure that no words of his promoted the growth of an impure taste, of an exclusive prejudice, of a malevolent passion. Without derogation from his writings, it may be said that his disciples were among his best works. He, indeed, who may justly be said to have cultivated an extent of mind which would otherwise have lain barren, and to have contributed to raise virtuous dispositions where the natural growth might have been useless or noxious, is not less a benefactor of mankind, and may indirectly be a larger contributor to knowledge, than the author of great works, or even the discoverer of important truths. The system of conveying scientific instruction to a large audience by lectures, from which the English universities have in a great measure departed, renders his qualities as a lecturer a most important part of his merit in a Scottish university which still adheres to the general method of European education. Probably no modern ever exceeded him in that species of eloquence which springs from sensibility to literary beauty and moral excellence; which neither obscures science by prodigal ornament, nor disturbs the serenity of patient attention; but though it rather calms and soothes the feelings, yet exalts the genius, and insensibly inspires a reasonable enthusiasm for whatever is good and fair.

He embraced the philosophy of Dr Reid, a patient, modest, and deep thinker, 2 who, in his first work (Enquiry into the Human Mind), deserves a commendation more descriptive of a philosopher than that bestowed by Professor Cousin—of having made "a vigorous protest against scepticism on behalf of common sense."

His observations on suggestions, on natural signs, on the connection between what he calls sensation and perception, though perhaps occasioned by Berkeley, whose idealism Reid had once adopted, are marked by the genuine spirit of original observation. As there are too many who seem more wise than they are, so it was the more uncommon fault of Reid to appear less a philosopher than he really was. Indeed his temporary adoption of Berkeleianism is a proof of an unprejudiced and acute mind. Perhaps no man ever rose finally above the seductions of that simple and ingenious system, who had not sometimes tried their full effect by surrendering his whole mind to them.

But it is never with entire impunity that philosophers borrow vague and inappropriate terms from vulgar use. Never did man afford a stronger instance of the danger than Reid, in his two most unfortunate terms, Common Sense and Instinct. Common Sense is that average portion of understanding, possessed by most men, which, as it is nearly always applied to conduct, has acquired an almost exclusively practical

1 As an example of Mr Stewart's work may be mentioned Francis Horner, a favourite pupil, and, till his last moment, an affectionate friend. The short life of this excellent person is worthy of serious contemplation, by those more especially, who, in circumstances like his, enter on the slippery path of public affairs. Without the aids of birth or fortune, in an assembly where aristocratical propensities prevail,—by his understanding, industry, pure taste, and useful information,—still more by modest independence, by steadiness and sincerity, joined to moderation,—by the stamp of unbending integrity, and by the conscientious considerateness which breathed through his well-chosen language,—he raised himself, at the early age of thirty-six, to a moral authority which, without these qualities, no brilliancy of talents or power of reasoning could have acquired. No eminent speaker in Parliament owed so much of his success to his moral character. His high place was therefore honourable to his audience and to his country. Regret for his death was expressed with touching unanimity from every part of a divided assembly, unused to manifestations of sensibility, abhorrent from theatrical display, and whose tribute on such an occasion derived its peculiar value from their general coldness and sluggishness. The tears of those to whom he was unknown were shed over him; and at the head of those by whom he was "praised, wept, and honoured," was one, whose commendation would have been more enhanced in the eye of Mr Horner, by his discernment and veracity, than by the signal proof of the concurrence of all orders, as well as parties, which was afforded by the name of Howard.

2 Those who may doubt the justice of this description will do well to weigh the words of the most competent of judges, who, though candid and even indulgent, was not prodigal of praise. "It is certainly very rare that a piece so deeply philosophical is written with so much spirit, and affords so much entertainment to the reader. Whenever I enter into your ideas, no man appears to express himself with greater perspicuity. Your style is so correct and so good English, that I found not any thing worth the remarking. I beg my compliments to my friendly adversaries Dr Campbell and Dr Gerard, and also to Dr Gregory, whom I suspect to be of the same disposition, though he has not openly declared himself such." (Letter from Mr Hume to Dr Reid; Stewart's Biographical Memoirs, p. 417.)

The latter part of the above sentences (written after a perusal of the proofsheets of Dr Reid's Enquiry, but before its publication) sufficiently shows, that Mr Hume felt no displeasure against Reid and Campbell, undoubtedly his most formidable antagonists, however he might resent the language of Dr Beattie, an amiable man, an elegant and tender poet, and a good writer on miscellaneous literature in prose, but who, in his Essay on Truth—an unfair appeal to the multitude on philosophical questions—indulged himself in the personalities and invectives of a popular pamphleteer.
sense. Instinct is the habitual power of producing effects like contrivances of reason, yet so far beyond the intelligence and experience of the agent, as to be utterly inexplicable by reference to them. No man, if he had been in search of improper words, could have discovered any more unfit than these two, for denoting that law, or state, or faculty of mind, which compels us to acknowledge certain simple and very abstract truths, not being identical propositions, to lie at the foundation of all reasoning, and to be the necessary ground of all belief.

Long after the death of Dr Reid, his philosophy was taught at Paris by M. Royer Collard, who, on the restoration of free debate, became the most philosophical orator of his nation, and now fills, with impartiality and dignity, the chair of the Chamber of Deputies. His ingenious and eloquent scholar, Professor Cousin, dissatisfied with what he calls "the sage and timid" doctrines of Edinburgh, which he considered as only a vigorous protest, on behalf of common sense, against the scepticism of Hume, sought in Germany for a philosophy of "such a masculine and brilliant character as might command the attention of Europe, and be able to struggle with success on a greater theatre, against the genius of the adverse school." It may be questioned whether he found in Kant more than the same vigorous protest, under a more systematic form, with an immense nomenclature, and constituting a philosophical edifice of equal symmetry and vastness. The preference of the more boastful system, over a philosophy thus chiefly blamed for its modest pretensions, does not seem to be entirely justified by its permanent authority in the country which gave it birth; where, however powerful its influence still continues to be, its doctrines do not appear to have now many supporters: and, indeed, the accomplished Professor himself rapidly shot through Kantianism, and now appears to rest or to stop at the doctrines of Schelling and Hegel, at a point so high, that it is hard to descry from it any distinction between objects, —even that indispensable distinction between Reality and Illusion. As the works of Reid, and those of Kant, otherwise so different, appear to be simultaneous efforts of the conservative power of philosophy to expel the mortal poison of scepticism, so the exertions of M. Royer Collard and M. Cousin, however at variance in metaphysical principles, seem to have been chiefly roused by the desire of delivering Ethics from that fatal taint of personal, and, indeed, gross interest, which that science had received in France from the followers of Condillac, especially Helvetius, St Lambert, and Cabanis. The success of these attempts to render Speculative Philosophy once more popular in the country of Descartes, has already been considerable. The French youth, whose desire of knowledge and love of liberty afford an auspicious promise of the succeeding age, have eagerly received doctrines, of which the moral part is so much more agreeable to their liberal spirit, than the selfish theory, generated in the stagnation of a corrupt, cruel, and dissolve tyranny.

These agreeable prospects bring us easily back to our subject; for though the restoration of Speculative Philosophy in the country of Descartes is due to the precise statement and vigorous logic of M. Royer Collard, the modifications introduced by him into the doctrine of Reid coincide with those of Mr Stewart, and would have appeared to agree more exactly, if the forms of the French philosopher had not been more dialectical, and the composition of Mr Stewart had retained less of that oratorical character, which belonged to a justly celebrated speaker. Amidst excellencies of the highest order, his writings, it must be confessed, leave some room for criticism. He took precautions against offence to the feelings of his contemporaries, more anxious and frequent than the impatient searcher for truth may deem necessary. For the sake of promoting the favourable re-

1 Fragments of his lectures have been recently published in a French translation of Dr Reid, by M. Jonffroy: *Oeuvres Completes de Thomas Reid*, vol. IV. Paris, 1829.
ception of philosophy itself, he studies perhaps too visibly to avoid whatever might raise up prejudices against it. His gratitude and native modesty dictated a superabundant care in softening and excusing his dissent from those who had been his own instructors, or who were the objects of general reverence. Exposed by his station, both to the assaults of political prejudice, and to the religious animosities of a country where a few sectcies attacked the slumbering zeal of a Calvinistic people, it would have been wonderful if he had not betrayed more wariness than would have been necessary or becoming in a very different position. The fulness of his literature seduced him too much into multiplied illustrations. To many of the expedients happily used to allure the young may unnecessarily swell his volumes. Perhaps a successive publication in separate parts made him more voluminous than he would have been if the whole had been at once before his eyes.

A peculiar susceptibility and delicacy of taste produced forms of expression, in themselves extremely beautiful, but of which the habitual use is not easily reconcilable with the condensation desirable in works necessarily so extensive. If, however, it must be owned that the caution incident to his temper, his feelings, his philosophy, and his station, has somewhat lengthened his composition, it is not less true, that some of the same circumstances have contributed towards those peculiar beauties which place him at the head of the most adorned writers on philosophy in our language.

Few writers rise with more grace from a plain groundwork, to the passages which require greater animation or embellishment. He gives to narrative, according to the precept of Bacon, the colour of the time, by a selection of happy expressions from original writers. Among the secret arts by which he diffuses elegance over his diction, may be remarked the skill which, by deepening or brightening a shade in a secondary term, by opening partial or preparatory glimpses of a thought to be afterwards unfolded, unobservedly heightens the import of a word, and gives it a new meaning, without any offence against old use. It is in this manner that philosophical originality may be reconciled to purity and stability of speech,—that we may avoid new terms, which are the easy resource of the unskilful or the indolent, and often a characteristic mark of writers who love their language too little to feel its peculiar excellencies, or to study the art of calling forth its powers.

He reminds us not unfrequently of the character given by Cicero to one of his contemporaries, "who expressed refined and abstruse thought in soft and transparent diction." His writings are a proof that the mild sentiments have their eloquence as well as the vehement passions. It would be difficult to name works in which so much refined philosophy is joined with so fine a fancy,—so much elegant literature, with such a delicate perception of the distinguishing excellencies of great writers, and with an estimate in general so just of the services rendered to knowledge by a succession of philosophers. They are pervaded by a philosophical benevolence, which keeps up the ardour of his genius, without disturbing the serenity of his mind,—which is felt in his reverence for knowledge, in the generosity of his praise, and in the tenderness of his censure. It is still more sensible in the general tone with which he relates the successful progress of the human understanding; among many formidable enemies. Those readers are not to be envied who limit their admiration to particular parts, or to excellencies merely literary, without being warmed by the glow of that honest triumph in the advancement of knowledge, and of that assured faith in the final prevalence of truth and justice, which breathe through every page of them, and give the unity and dignity of a moral purpose to the whole of these classical works.

He has often quoted poetical passages, of which some throw much light on our mental operations. If he sometimes prized the moral common-places of Thomson and the speculative fancy of Akenside more highly than the higher poetry of their betters, it was not to be wondered at that the metaphysician and the moralist should sometimes prevail over the lover of poetry. His natural sensibility was perhaps occasionally cramped by the cold criticism of an unpoetical age; and some of his remarks may be thought to indicate a more constant and exclusive regard.
to diction than is agreeable to the men of a generation who have been trained by tremendous events to a passion for daring inventions, and to an irregular enthusiasm, impatient of minute elegancies and refinement. Many of those beauties which his generous criticism delighted to magnify in the works of his contemporaries, have already faded under the scorching rays of a fiercer sun.

Mr Stewart employed more skill in contriving, and more care in concealing, his very important reforms of Reid’s doctrines, than others exert to maintain their claims to originality. Had his well-chosen language of "laws of human thought or belief" been at first adopted in that school, instead of "instinct" and "common sense," it would have escaped much of the reproach (which Dr Reid himself did not merit) of shallowness and popularity. Expressions so exact, employed in the opening, could not have failed to influence the whole system, and to have given it, not only in the general estimation, but in the minds of its framers, a more scientific complexion. In those parts of Mr Stewart’s speculations in which he most departed from his general principles, he seems sometimes, as it were, to be suddenly driven back by what he unconsciously shrinks from as ungrateful apostasy; and to be desirous of making amends to his master, by more harshness, than is otherwise natural to him, towards the writers whom he has insensibly approached. Hence perhaps the unwonted severity of his language towards Tucker and Hartley. It is thus at the very time when he largely adopts the Principle of Association in his excellent Essay on the Beautiful,¹ that he treats most rigidly the latter of these writers, to whom, though neither the discoverer nor the sole advocate of that principle, it surely owes the greatest illustration and support.

In matters of far other importance, causes perhaps somewhat similar may have led to the like mistake. When he absolutely contradicts Dr Reid, by truly stating that "it is more philosophical to resolve the power of habit into the association of ideas, than to resolve the association of ideas into habit,"² he, in the sequel of the same volume,³ refuses to go farther than to own, that "the theory of Hartley concerning the origin of our affections, and of the moral sense, is a most ingenious refinement on the selfish system, and that by means of it the force of many of the common reasonings against that system is eluded," though he somewhat inconsistently allows, that "active principles which, arising from circumstances in which all the situations of mankind must agree, are therefore common to the whole species, at whatever period of life they may appear, are to be regarded as a part of human nature, no less than the instinct of suction; in the same manner as the acquired perception of distance, by the eye, is to be ranked among the perceptive powers of man, no less than the original perceptions of the other senses."⁴ In another place also he makes a remark on mere beauty, which might have led him to a more just conclusion respecting the theory of the origin of the affections and the moral sense: "It is scarcely necessary for me to observe, that, in those instances where association operates in heightening (or he might have said creates) the pleasures we receive from sight, the pleasing emotion continues still to appear, to our consciousness, simple and uncompounded."⁵ To this remark he might have added, that until all the separate pleasures be melted into one,—as long as any of them are discerned and felt as distinct from each other,—the associations are incomplete, and the qualities which gratify are not called by the name of beauty. In like manner, as has been repeatedly observed, it is only when all the separate feelings, pleasurable and painful, excited by the contemplation of voluntary action, are lost in the general sentiments of ap-

¹ Stewart’s Philosophical Essays, part ii. essay i. especially chap. vi. The condensation, if not omission, of the discussion of the theories of Buffier, Reynolds, Burke, and Price, in this essay, would have lessened that temporary appearance which is unsuitable to a scientific work.
² Elements of the Philosophy of the Human Mind, vol. i. p. 281, edit. 1792, 4to.
³ Ibid. p. 363.
⁴ Ibid. p. 363.
⁵ Philosophical Essays, part ii. essay i. chap. vi.
Dissertation Second.

391

Probation or disapprobation,—when these general feelings retain no trace of the various emotions which originally attended different actions,—when they are held in a state of perfect fusion by the habitual use of the words used in every language to denote them,—that conscience can be said to exist, or that we can be considered as endowed with a moral nature. The theory which thus ascribes the uniform formation of the moral faculty to universal and paramount laws, is not a refinement of the selfish system, nor is it any modification of that hypothesis. The partisans of selfishness maintain, that in acts of will the agent must have a view to the pleasure or happiness which he hopes to reap from it. The philosophers who regard the social affections and the moral sentiments as formed by a process of association, on the other hand, contend that these affections and sentiments must work themselves clear from every particle of self-regard, before they deserve the names of benevolence and of conscience. In the actual state of human motives, the two systems are not to be likened, but to be contrasted to each other. It is remarkable that Mr Stewart, who admits the "question respecting the origin of the affections to be rather curious than important,"1 should have held a directly contrary opinion respecting the moral sense;2 to which these words, in his sense of them, seem to be equally applicable. His meaning in the former affirmation is, that if the affections be acquired, yet they are justly called natural; and if their origin be personal, yet their nature may and does become disinterested. What circumstance distinguishes the former from the latter case? With respect to the origin of the affections, it must not be overlooked that his language is somewhat contradictory. For if the theory on that subject from which he dissents were merely "a refinement on the selfish system," its truth or falsehood could not be represented as subordinate, since the controversy would continue to relate to the existence of disinterested motives of human conduct.3 It may also be observed, that he uniformly represents his opponents as deriving the affections from self-love, which, in its proper sense, is not the source to which they refer even avarice; and which is itself derived from other antecedent principles, some of which are inherent, and some acquired. If the object of this theory of the rise of the most feelings of human nature were, as our philosopher supposes, "to elude objections against the selfish system," it would be at best worthless. Its positive merits are several. It affirms the actual disinterestedness of human motives, as strongly as Butler himself. The explanation of the mental law, of which benevolence and conscience are formed habitually, when it is contemplated deeply, impresses on the mind the truth that they not only are but must be disinterested. It confirms, as it were, the testimony of consciousness, by exhibiting to the understanding the means employed to insure the production of disinterestedness. It affords the only effectual answer to the prejudice against the disinterested theory, from the multiplication of ultimate facts and implanted principles, which, under all its other forms, it seems to require. No room is left for this prejudice by a representation of disinterestedness, which ultimately traces its formation to principles almost as simple as those of Hobbes himself. Lastly, every step in just generalization is an advance in philosophy. No one has yet shown, either that man is not actually disinterested, or that he may not have been destined to become so by such a process as has been described:—the cause to which the effects are ascribed is a real agent, which seems adequate to the appearance; and if future observation should be found to require that the theory shall be confined within narrower limits, such a limitation will not destroy its value.

The acquiescence of Mr Stewart in Dr Reid's general representation of our mental constitu-

1 Outlines of Moral Philosophy, p. 93.
2 Outlines, p. 117. "This is the most important question that can be stated with respect to the Theory of Morals."
3 In the Philosophy of the Active and Moral Powers of Man (vol. I. p. 164) Mr Stewart has done more manifest injustice to the Hartleian theory, by calling it "a doctrine fundamentally the same" with the selfish system, and especially by representing Hartley, who ought to be rather classed with Butler and Hume, as agreeing with Gay, Tucker, and Paley.
tion, led him to indulge more freely the natural bent of his understanding, by applying it to theories of character and manners, of life and literature, of taste and the arts, more than to the consideration of those more simple principles which rule over human nature under every form. His chief work, as he frankly owns, is indeed rather a collection of such theories, pointing toward the common end of throwing light on the structure and functions of the mind, than a systematic treatise, such as might be expected from the title of "Elements." It is in essays of this kind that he has most surpassed other cultivators of mental philosophy. His remarks on the effects of casual associations may be quoted as a specimen of the most original and just thoughts conveyed in the best manner.\(^1\) In this beautiful passage, he proceeds from their power of confusing speculation, to that of disturbing experience and of misleading practice; and ends with their extraordinary effect in bestowing on trivial, and even ludicrous circumstances, some portion of the dignity and sanctity of those sublime principles with which they are associated. The style, at first only clear, afterwards admitting the ornaments of a calm and grave elegance, at last rising to as high a strain as philosophy will endure, and of which all the parts (various as their nature is) are held together by an invisible thread of gentle transition, affords a specimen of adaptation of manner to matter which it will be hard to match in any philosophical writer. Another very fine remark, which seems to be as original as it is just, may be quoted as a sample of those beauties with which his writings abound. "The apparent coldness and selfishness of mankind may be traced, in a great measure, to a want of attention and a want of imagination. In the case of those misfortunes which happen to ourselves or our near connections, neither of these powers is necessary to make us acquainted with our situation. But without an uncommon degree of both, it is impossible for any man to comprehend completely the situation of his neighbour, or to have an idea of the greater part of the distress which exists in the world. If we feel more for ourselves than for others, in the former case the facts are more fully before us than they can be in the latter."\(^2\) Yet several parts of his writings afford the most satisfactory proof, that his abstinence from what is commonly called metaphysical speculation, arose from no inability to pursue it with signal success. As examples, his observations on General Terms, and on Causation, may be appealed to with perfect confidence. In the first two Dissertations of the volume bearing the title of Philosophical Essays, he with equal boldness and acuteness grapples with the most extensive and abstruse questions of mental philosophy, and points out both the sources and the uttermost boundaries of human knowledge with a Vulcaean hand. In another part of his writings, he calls what are denominated first principles of experience, "fundamental laws of human belief, or primary elements of human reason,"\(^3\) which last form of expression has so close a resemblance to the language of Kant, that it should have protected the latter from the imputation of writing jargon.

Mr Stewart's excellent volume entitled Outlines of Moral Philosophy,\(^4\) though composed only as a text-book for the use of his hearers, is one of the most decisive proofs that he was perfectly qualified to unite precision with ease, to be brief with the utmost clearness, and to write with becoming elegance in a style where the meaning is not overlaid by ornaments. This volume contains his properly Ethical Theory,\(^5\) which is much expanded, but not substantially altered, in his Philosophy of the Active and Moral Powers,\(^6\) — a work almost posthumous, and composed under circumstances which give it a deeper interest than can be inspired by any desert in science. Though, with his usual modesty, he manifests an anxiety to fasten his ethical theory to the kindred speculations of other philosophers of the Intellectual School, especially to those of Cudworth, recently clothed in more modern phraseology by Price, yet he still shows that independence and origin-

\(^1\) *Elements of the Philosophy of the Human Mind*, vol. I. p. 340–352.
\(^3\) *Ibid.* vol. II. p. 57.
\(^4\) Edinburgh, 1794, 8vo.
\(^5\) *P.* 76–146.
\(^6\) *Two vols.* 8vo. Edinburgh, 1828.
ality which all his aversion from parade could not entirely conceal. Right, duty, virtue, moral obligation, and the like or the opposite forms of expression, represent, according to him, certain thoughts, which arise necessarily and instantaneously in the mind (or in the reason, if we take that word in the large sense in which it denotes all that is not emotive) at the contemplation of actions, and which are utterly incapable of all resolution, consequently of all explanation, and which can be known only by being experienced. These thoughts or ideas, or by whatever other name they may be called, are followed as inexplicably, but as inevitably, by pleasurable and painful emotions, which suggest the conception of moral beauty; a quality of human actions distinct from their adherence to or deviation from rectitude, though generally coinciding with it. The question which a reflecting reader will here put is, whether any purpose is served by the introduction of the intermediate mental process between the particular thoughts and the moral emotions. How would the view be darkened or confused, or indeed in any degree changed, by withdrawing that process, or erasing the words which attempt to express it? No advocate of the intellectual origin of the moral faculty has yet stated a case in which a mere operation of reason or judgment, unattended by emotion, could, consistently with the universal opinion of mankind, as it is exhibited by the structure of language, be said to have the nature or to produce the effects of Conscience. Such an example would be equivalent to an experimentum crucis on the side of that celebrated theory. The failure to produce it, after long challenge, is at least a presumption against it, nearly approaching to that sort of decisively discriminative experiment. It would be vain to restate what has already been too often repeated, that all the objections to the selfish philosophy turn upon the actual nature, not upon the original source of our principles of action; and that it is by a confusion of these very distinct questions alone that the confutation of Hobbes can be made apparently to involve Hartley. Mr Stewart appears, like most other metaphysicians, to have blended the inquiry into the nature of our moral sentiments with that other which only seeks a criterion to distinguish moral from immoral habits of feeling and action; for he considers the appearance of moral sentiment at an early age, before the general tendency of actions could be ascertained, as a decisive objection to the origin of these sentiments in association,—an objection which assumes that, if utility be the criterion of morality, associations with utility must be the mode by which the moral sentiments are formed, which no skilful advocate of the theory of association will ever allow. That the main, if not sole object of conscience is to govern our voluntary exertions, is manifest. But how could it perform this great function if it did not impel the will? and how could it have the latter effect as a mere act of reason, or indeed in any respect otherwise than as it is made up of emotions, by which alone its grand aim could in any degree be attained? Judgment and reason are therefore preparatory to conscience, not properly a part of it. That the exclusion of reason reduces virtue to be a relative quality, is another instance of the confusion of the two questions in moral theory; for though a fitness to excite approbation may be only a relation of objects to our susceptibility, yet the proposition that all virtuous actions are beneficial, is a proposition as absolute as any other within the range of our understanding.

A delicate state of health, and an ardent desire to devote himself exclusively to study and composition, induced Mr Stewart, while in the full blaze of his reputation as a lecturer, to retire, in 1810, from the labour of public instruction. This retirement, as he himself describes it, was that of a quiet but active life. Three quarto and two octavo volumes, besides the magnificent Dissertations prefixed to this Encyclopaedia, were among its happy fruits. These Dissertations are, perhaps, the most profusely ornamented of any of his compositions; a peculiarity which must in part have arisen from a principle of taste, which regarded decoration as more suitable to the history of philosophy than to philosophy itself. But the memorable instances of Cicero, of Milton, and still more those of Dryden and Burke, seem to show that there is some natural tendency in the fire of genius to burn more brightly or to blaze more fiercely in
the evening than in the morning of human life. Probably the materials which long experience supplies to the imagination, the boldness with which a more established reputation arms the mind, and the silence of the low but formidable rivals of the higher principles, may concur in producing this unexpected and little observed effect.

It was in the last years of his life, when suffering under the effects of a severe attack of palsy, with which he had been afflicted in 1822, that Mr Stewart most plentifully reaped the fruits of long virtue and a well-ordered mind.

THOMAS

A writer, as he advances in life, ought to speak with diffidence of systems which he had only begun to consider with care after the age in which it becomes hard for his thoughts to flow into new channels. A reader cannot be said practically to understand a theory, till he has acquired the power of thinking, at least for a short time, with the theorist. Even a hearer, with all the helps of voice in the instructor, of countenance from him and from fellow-hearers, finds it difficult to perform this necessary process without either being betrayed into hasty and undistinguishing assent, or falling, while he is in pursuit of an impartial estimate of opinions, into an indifference about their truth. I have felt this difficulty in reconsidering ancient opinions: but it is perhaps more needful to own its power, and to warn the reader against its effects, in the case of a philosopher well known to me, and with whom common friendships stood in the stead of much personal intercourse, as a cement of kindness.

I very early read Brown's Observations on the Zoornomia of Dr Darwin, the perhaps unmatched work of a boy in the eighteenth year of his age. His first tract on Causation appeared to me the finest model of discussion in mental philosophy since Berkeley and Hume; with this superiority over the latter, that its aim is that of a philosopher who seeks to enlarge knowledge, not that of a sceptic, the most illustrious of whom have no better end than that of displaying their powers in confounding and darkening every truth; so that their very happiest efforts cannot be more leniently described than as brilliant fits of mental debauchery. From a diligent perusal of his succeeding works at the time of their publication, I was prevented by pursuits and duties of a very different nature. These causes, together with ill health and growing occupation, hindered me from reading his Lectures with due attention, till it has now become a duty to consider with care that part of them which relates to Ethics.

Dr Brown was born in one of those families of ministers in the Scottish church who, after a

1 Born in 1778; died in 1820.
2 Welsh's Life of Brown, p. 43; a pleasingly affectionate work, full of analytical spirit and metaphysical reading,—of such merit, in short, that I could wish to have found in it no phrenology. Objections a priori in a case dependent on facts are indeed inadmissible. Even the allowance of presumptions of that nature would open so wide a door for prejudices, that at most they can be considered only as maxims of logical prudence, which fortify the watchfulness of the individual. The fatal objection to phrenology seems to me to be, that what is new in it, or peculiar to it, has no approach to an adequate foundation in experience.

* Bayle, a writer who, pervading human nature at his ease, struck into the province of paradox as an exercise for the unwearied vigour of his mind; who, with a soul superior to the sharpest attacks of fortune, and a heart practised to the best philosophy, had not enough of real greatness to overcome that last foible of superior minds, the temptation of honour which the academic exercise of wit is conceived to bring to its professor." So Warburton (Divine Legation, book i. sect. 4), speaking of Bayle, but perhaps in part excusing himself—in a noble strain, of which it would have been more agreeable to find the repetition than the contrast in his language towards Hume.
generation or two of a humble life spent in piety and usefulness, with no more than needful knowledge, have more than once sent forth a man of genius from their cool and quiet shade, to make his fellows wiser or better by tongue or pen, by head or hand. Even the scanty endowments and constant residence of that church, by keeping her ministers far from the objects which awakened turbulent passions and disperse the understanding on many pursuits, afforded some of the leisure and calm of monastic life, without the exclusion of the charities of family and kindred. It may be well doubted whether this undissipated retirement, which during the eighteenth century was very general in Scotland, did not make full amends for the loss of curious and ornamental knowledge, by its tendency to qualify men for professional duty, by the cultivation of reason among a considerable number, and by those opportunities for high meditation, and for the unchangeable concentration of mind on worthy objects, to the few who had the natural capacity for such exertions.

An authentic account of the early exercises of Brown's mind is preserved by his biographer. At the age of nineteen he took a part with others, some of whom became the most memorable men of their time, in the foundation of a private society in Edinburgh, under the name of "the Academy of Physics".

The character of Dr Brown is very attractive, as an example of one in whom the utmost tenderness of affection, and the indulgence of a flowery fancy, were not repressed by the highest cultivation, and by a perhaps excessive refinement of intellect. His mind soared and roamed through every region of philosophy and poetry; but his untravelled heart clung to the hearth of his father, to the children who shared it with him, and after them, first to the other partners of his childish sports, and then almost solely to those companions of his youthful studies who continued to be the friends of his life. Speculation seemed to keep his kindness at home. It is observable, though sparkling with fancy, he does not seem to have been deeply or durably touched by those affections which are lighted at its torch, or at least tinged with its colours. His heart sought little abroad, but contentedly dwelt in his family and in his study. He was one of those men of genius who repaid the tender care of a mother by rocking the cradle of her reposing age. He ended a life spent in searching for truth, and exercising love, by desiring that he should be buried in his native parish, with his "dear father and mother." Some of these delightful qualities were perhaps hidden from the casual observer in general society, by the want of that perfect simplicity of manner which is doubtless their natural representative. Manner is a better mark of the state of a mind, than those large and deliberate actions which form what is called conduct. It is the constant and insensible transpiration of character. In serious acts a man may display himself. In the thousand nameless acts which compose manner, the mind betrays its habitual bent. But manner is then only an index of disposition, when it is that of men who live at ease in the intimate familiarity of friends and equals. It may be diverted from simplicity by causes which do not reach so deep as the character; by bad models, or by a restless and wearisome anxiety to shine, arising from many circumstances, none of which are probably more common than the unseasonable exertions of a recluse student in society, and the

1 See Sir H. Moncrieff's Life of the Reverend Dr Erskine.
2 Welsh's Life of Brown, p. 77, and App. p. 496.
A part of the first day's minutes is here borrowed from Mr Welsh: "7th January 1797.—Present, Mr Erskine, President. Mr Brougham, Mr Reddie, Mr Brown, Mr Birbeck, Mr Leyden," &c. who were afterwards joined by Lord Webb Seymour, Messrs Horner, Jeffrey, Smyth, &c. Mr Erskine, who thus appears at the head of so remarkable an association, and whom diffidence and untoward circumstances have hitherto withheld from the full manifestation of his powers, continued to be the bosom friend of Brown to the last, and showed the constancy of his friendship for others by converting all his invaluable preparations for a translation of Sultan Baber's Commentaries (perhaps the best, certainly the most European work of modern eastern prose) into the means of completing the imperfect attempt of Leyden; with a regard equally generous to the fame of his early friend, and to the comfort of that friend's surviving relations. The review of Baber's Commentaries, by M. Silvestre de Sacy, in the Journal des Savans for May and June 1820, is perhaps one of the best specimens extant of the value of literary commendation when it is bestowed with conscientious calmness, and without a suspicion of bias, by one of the greatest orientalists, in a case where he pronounces every thing to have been done by Mr Erskine "which could have been performed by the most learned and the most scrupulously conscientious of editors and translators."
unfortunate attempts of some others, to take by violence the admiration of those with whom they do not associate with ease. The association with unlike or superior companions which least distorts manners, is that which takes place with those classes whose secure dignity generally renders their own manners easy; with whom the art of pleasing or of not displeasing each other in society is a serious concern; who have leisure enough to discover the positive and negative parts of the smaller moralities; and who, being trained to a watchful eye on what is ludicrous, apply the lash of ridicule to affectation, the most ridiculous of faults. The busy in every department of life are too respectably occupied to form these manners or to bestow them. They are the frivolous work of polished idleness; and perhaps their most serious value consists in the war which they wage against affectation; though even there they betray their nature in punishing it, not as a deviation from nature, but as a badge of vulgarity.

The prose of Dr Brown is brilliant to excess. It must not be denied that its beauty is sometimes womanly; that it too often melts down precision into elegance; that it buries the main idea under a load of illustration, of which every part is expanded and adorned with such a visible labour, as to withdraw the mind from attention to the thoughts which it professes to introduce more easily into the understanding. It is darkened by excessive brightness; it loses ease and liveliness by over-dress; and, in the midst of its luscious sweetness, we wish for the striking and homely illustrations of Tucker, and for the pithy and sinewy sense of Paley, either of whom, by a single short metaphor from a familiar, perhaps a low object, could at one blow set the two worlds of reason and fancy in movement.

It would be unjust to censure severely the declamatory parts of his Lectures; they are excusable in the first warmth of composition. They might even be justifiable allurements in attracting young hearers to abstruse speculations. Had he lived, he would probably have taken his thoughts out of the declamatory forms of spoken address, and given to them the appearance, as well as the reality, of deep and subtile discussion. The habits indeed of so successful a lecturer, and the natural luxuriancy of his mind, could not fail to have somewhat tinctured all his compositions; but though he might still have fallen short of simplicity, he certainly would have avoided much of the diffusion, and even common-place, which hang heavily on original and brilliant thoughts; for it must be owned, that though, as a thinker, he is unusually original, yet when he falls among the declaimers, he is infected by their common-places.

In like manner, he would assuredly have shortened or left out many of the poetical quotations which he loved to recite, and which hearers even beyond youth hear with delight. There are two very different sorts of passages of poetry to be found in works on philosophy, which are as far asunder from each other in value as in matter. A philosopher will admit some of those wonderful lines or words which bring to light the infinite varieties of character, the furious bursts or wily workings of passion, the winding approaches of temptation, the slippery path to depravity, the beauty of tenderness, the grandeur of what is awful and holy in man. In every such quotation, the moral philosopher, if he be successful, uses the best materials of his science; for what are they but the results of experiment and observation on the human heart, performed by artists of far other skill and power than his? They are facts which could have only been ascertained by Homer, by Dante, by Shakspeare, by Cervantes, by Milton. Every year of admiration since the unknown period when the Iliad first gave delight, has extorted new proofs of the justness of the picture of human nature, from the responding hearts of the admirers. Every strong feeling which these masters have excited is a successful repetition of their original experiment, and a continually growing evidence of the greatness of their discoveries. Quotations of this nature may be the most satisfactory, as well as the most delightful, proofs of philosophical positions. Others of inferior merit are not to be interdicted: a pointed maxim, especially when familiar, pleses, and is recollected. I cannot entirely conquer my passion for the Roman and Stoical declamation of some passages in Lucan and Akenside. But
quotations from those who have written on philosophy in verse, or, in other words, from those who generally are inferior philosophers, and voluntarily deliver their doctrines in the most disadvantageous form, seem to be unreasonable. It is agreeable, no doubt, to the philosopher, still more to the youthful student, to meet his abstruse ideas clothed in the sonorous verse of Akenside. The surprise of the unexpected union of verse with science is a very lawful enjoyment. But such slight and momentary pleasures, though they may tempt the writer to display them, do not excuse a vain effort to obtrude them on the sympathy of the searcher after truth in after-times. It is peculiarly unlucky that Dr Brown should have sought supposed ornament from the moral common-places of Thomson, rather than from that illustration of philosophy which is really to be found in his picturesque strokes.

Much more need not be said of Dr Brown's own poetry, somewhat voluminous as it is, than that it indicates fancy and feeling, and rose at least to the rank of an elegant accomplishment. It may seem a paradox, but it appears to me that he is really most poetical in those poems and passages which have the most properly metaphysical character. For every various form of life and nature, when it is habitually contemplated, may inspire feeling; and the just representation of these feelings may be poetical. Dr Brown observed man, and his wider world, with the eye of a metaphysician; and the dark results of such contemplations, when he reviewed them, often filled his soul with feelings which, being both grand and melancholy, were truly poetical. Unfortunately, however, few readers can be touched with feeling. He sings to few, and must be content with sometimes moving a string in the soul of the lonely visionary, who, in the day-dreams of youth, has felt as well as meditated on the mysteries of nature. His heart has produced charming passages in all his poems; but, generally speaking, they are only beautiful works of art and imitation. The choice of Akenside as a favourite and a model may, without derogation from that writer, be considered as no proof of a poetically formed mind. There is more poetry in many single lines of Cowper than in volumes of sonorous verses such as Akenside's. Philosophical poetry is very different from versified philosophy. The former is the highest exertion of genius, the latter cannot be ranked above the slighter amusements of ingenuity. Dr Brown's poetry was, it must be owned, composed either of imitations, which, with some exceptions, may be produced and read without feeling, or of effusions of such feelings only as meet a rare and faint echo in the human breast.

A few words only can here be bestowed on the intellectual part of his philosophy. It is an open revolt against the authority of Reid; and, by a curious concurrence, he began to lecture nearly at the moment when the doctrines of that philosopher came to be taught with applause in France. Mr Stewart had disserted from the language of Reid, and had widely departed from his opinions on several secondary theories. Dr Brown rejected them entirely. He very justly considered the claim of Reid to the merit of detecting the universal delusion which had betrayed philosophers into the belief that ideas which were the sole objects of knowledge had a separate existence, as a proof of his having mistaken their illustrative language for a metaphysical opinion; but he does not do justice to the service which Reid really rendered to mental science, by keeping the attention of all future speculators in a state of more constant watchfulness against the transient influence of such an illusion. His choice of the term feeling to denote the operations which we usually refer to the understanding, is evidently too wide a departure from its ordinary use, to have any probability of general adoption. No definition can strip so familiar a word of the thoughts and emotions which have so long accompanied it, so as to fit it for a technical term of the highest

1 His accomplished friend Mr Erskine confesses that Brown's poems are not written in the language of plain and gross emotion. The string touched is too delicate for general sympathy. They are in an unknown tongue to one half (he might have said nineteen twentieths) of the reading part of the community. (Wilsh's Life of Brown, p. 431.)

3 Ibid. vol. I. p. 220, &c.
abstraction. If we can be said to have a feeling "of the equality of the angle of forty-five degrees to half the angle of ninety degrees," we may call Geometry and Arithmetic sciences of feeling. He has very forcibly stated the necessity of assuming "the primary universal intuitions of direct belief," which, in their nature, are incapable of all proof. They seem to be accurately described as notions which cannot be conceived separately, but without which nothing can be conceived. They are not only necessary to reasoning and to belief, but to thought itself. It is equally impossible to prove or to disprove them. He has very justly blamed the school of Reid for "an extravagant and ridiculous" multiplication of those principles which he truly represents as inconsistent with sound philosophy. To philosophize is indeed nothing more than to simplify securely.

The substitution of suggestion for the former phrase, association of ideas, would hardly deserve notice in so cursory a view, if it had not led him to a serious misconception of the doctrines and deserts of other philosophers. The fault of the latter phrase is rather in the narrowness of the last, than in the inadequacy of the first word. Association presents the fact in the light of a relation between two mental acts. Suggestion denotes rather the power of the one to call up the other. But whether we say that the sight of ashes suggests fire, or that the ideas of fire and ashes are associated, we mean to convey the same fact; and, in both cases, an exact thinker means to accompany the fact with no hypothesis. Dr Brown has supposed the word association as intended to affirm that there was some "intermediate process" between the original succession of the mental acts, and the power which they acquired therefrom of calling up each other. This is quite as much to raise up imaginary antagonists for the honour of conquering them, as he justly reprehends Dr Reid for doing in the treatment of preceding philosophers. He falls into another more important and unaccountable error, in representing his own reduction of Mr Hume's principles of association (resemblance, contrariety, causation, contiguity in time or place) to the one principle of contiguity, as a discovery of his own, by which his theory is distinguished from "the universal opinion of philosophers."

Nothing but too exclusive a consideration of the doctrines of the Scottish school could have led him to speak thus of what was hinted by Aristotle, distinctly laid down by Hobbes, and fully unfolded both by Hartley and Condillac. He has, however, extremely enlarged the proof and the illustration of this law of mind, by the exercise of "a more subtile analysis," and the disclosure of "a finer species of proximity,"

As he has thus aided and confirmed, though he did not discover the general law, so he has rendered a new and very important service to mental science, by what he properly calls "secondary laws of suggestion" or association—circumstances which modify the action of the general law, and must be distinctly considered, in order to explain its connection with the phenomena. The enumeration and exposition are instructive, and the example is worthy of commendation. For it is in this lower region of science that most remains to be discovered; it is that which rests most on observation, and least tempts to controversy; it is by improvements in that part of knowledge that the foundations are secured, and the whole building so repaired as to rest steadily on them. The distinction of common language between the head and the heart, which, as we have seen, is so often overlooked or misapplied by metaphysicians, is, in the system of Brown, signified by the terms "mental states" and "emotions." It is unlucky that no single word could be found for the former, and that the use of "feeling," as the generic term, should disturb its easy

2 Dr Brown always expresses himself best where he is short and familiar. "An hypothesis is nothing more than a reason for making one experiment or observation rather than another." (Lectures, vol. I. p. 170.) In 1012, as the present writer observed to him that Reid and Hume differed more in words than in opinion, he answered, "Yes, Reid bawled out, we must believe an outward world: but added in a whisper, we can give no reason for our belief. Hume cries out, we can give no reason for such a notion; and whispers, I own we cannot get rid of it."
3 Lectures, vol. II. p. 335-347.
4 Ibid. vol. II. p. 349.
5 Ibid. vol. II. p. 218, &c.
6 Ibid. vol. II. p. 270.
comprehension when it is applied more naturally.

In our more proper province he has followed Butler, who appears to have been chiefly known to him through Mr Stewart, in the theory of the social affections. Their disinterestedness is enforced by the arguments of both these philosophers, as well as of Hutcheson. It is observable, however, that he applies the principle of suggestion or association boldly to this part of human nature, and seems inclined to refer to it even sympathy itself. It is hard to understand how, with such a disposition on the subject of a principle so generally thought ultimate as sympathy, he should, inconsistently with himself, follow Mr Stewart in representing the theory which derives the affections from association as "a Modification of the Selfish System." He mistakes that theory by stating, that it derives the affections from our experience that our own interest was connected with that of others; while in truth it considers our regard to our own interest as formed from the same original pleasures by association, which, by the like process, may and do directly generate affections towards others, without passing through the channel of regard to our general happiness. But, says he, this is only an hypothesis, since the formation of those affections is acknowledged to belong to a time of which there is no remembrance;—an objection fatal to every theory of any mental function, —subversive, for example, of Berkeley's discovery of acquired visual perception, and most strangely inconsistent in the mouth of a philosopher whose numerous simplifications of mental theory are and must be founded on occurrences which precede experience. It is in all other cases, and it must be in this, sufficient that the principle of the theory is really existing, that it explains the appearances, that its supposed action resembles what we know to be its action in those similar cases of which we have direct experience. Lastly, he in express words admits that, according to the theory to which he objects, we have affections which are at present disinterested. Is it not a direct contradiction in terms to call such a theory "a modification of the selfish system?" His language in the sequel clearly indicates a distrust of his own statement, and a suspicion that he is not only inconsistent, but altogether mistaken.

As we enter more deeply into the territory of Ethics, we at length discover in Brown a distinction, the neglect of which by preceding speculators we have more than once lamented as productive of obscurity and confusion:—"The moral affections," says he, "which I consider at present, I consider rather physiologically" (or, as he elsewhere better expresses it, "psychologically") "than ethically, as parts of our mental constitution, not as involving the fulfilment or violation of duties." He immediately, however, loses sight of this distinction, and reasons inconsistently with it, instead of following it to its proper consequences in his explanation of conscience. Perhaps, indeed, (for the words are capable of more than one sense,) he meant to distinguish the virtuous affections from those sentiments which have morality exclusively in view, rather than to distinguish the theory of moral sentiment from the attempt to ascertain the characteristic quality of right action. Friendship is conformable in its dictates to morality; but it may, and does exist, without any view to it. He who feels the affections, and performs the duties of friendship, is the object of that distinct emotion which is called moral approbation.

It is on the subject of conscience that, in imitation of Mr Stewart, and with no other arguments than his, he makes his chief stand against the theory which considers the formation of that master faculty itself as probably referable to the necessary and universal operation of those laws of human nature to which he himself ascribes almost every other state of mind. On both sides of this question the supremacy of conscience is alike held to be venerable and absolute. Once

2 Ibid. vol. III. p. 292.
3 Ibid. vol. IV. p. 82, et seq.
4 Ibid. vol. IV. p. 87.
5 Ibid. vol. IV. p. 87.
6 Ibid. vol. IV. p. 94-97.
7 Ibid. vol. III. p. 231.
more, be it remembered, that the question is purely philosophical, and is only whether, from the impossibility of explaining its formation by more general laws, we are reduced to the necessity of considering it as an original fact in human nature, of which no further account can be given. Let it, however, be also remembered, that we are not driven to this supposition by the mere circumstance, that no satisfactory explanation has yet appeared; for there are many analogies in an unexplained state of mind to states already explained, which may justify us in believing that the explanation requires only more accurate observation, and more patient meditation, to be brought to that completeness which it probably will attain.

SECTION VII.

GENERAL REMARKS.

Having thus again premised an already often repeated warning, it remains that we should offer a few observations on the questions so understood, which naturally occur on the consideration of Dr Brown's argument in support of the proposition, that moral approbation is not only in its mature state independent of and superior to any other principle of human nature, regarding which there is no dispute, but that its origin is altogether inexplicable, and that its existence is an ultimate fact in mental science. Though these observations are immediately occasioned by the perusal of Brown, they are yet, in the main, of a general nature, and might have been made without reference to any particular writer.

The term Suggestion, which might be inoffensive in describing merely intellectual associations, becomes peculiarly unsuitable when it is applied to those combinations of thought with emotion, and to those unions of feeling, which compose the emotive nature of man. Its common sense of a sign recalling the thing signified, always embroils the new sense vainly forced upon it. No one can help owning, that if it were consistently pursued, so as that we were to speak of suggesting a feeling or passion, the language would be universally thought absurd. To suggest love or hatred is a mode of expression so manifestly incongruous, that most readers would choose to understand it as suggesting reflections on the subject of these passages. Suggest would not be understood by any common reason as synonymous with revive or rekindle. Defects of the same sort may indeed be found in the parallel phrases of most if not all philosophers, and all of them proceed from the same source,—namely, the erroneous but prevalent notion, that the law of association produces only such a close union of a thought and a feeling, as gives one the power of reviving the other; instead of the truth, that it forms them into a new compound, in which the properties of the component parts are no longer discoverable, and which may itself become a substantive principle of human nature. They supposed the condition, produced by its power, to resemble that of material substances in a state of mechanical diffusion; whereas in reality it may be better likened to a chemical combination of the samesubstances, from which a totally new product arises; The language involves a confusion of the question which relates to the origin of the principles of human activity, with the other and far more important question which relates to their nature; and as soon as this distinction is hidden, the theorist is either betrayed into the selfish system by a desire of clearness and simplicity, or tempted to the needless multiplication of ultimate facts by mistaken anxiety for what he supposes to be the guards of our social and moral nature. The defect is common to Brown with his predecessors; but in him less excusable; for he saw the truth and recoiled from it.
It is the main defect of the term association itself, that it does not, without long habit, convey the notion of a perfect union, but rather leads to that of a combination which may be dissolved, if not at pleasure, at least with the help of care and exertion; which is utterly and dangerously false in the important cases where such unions are considered as constituting the most essential principles of human nature. Men can no more dissolve these unions than they can disuse their habit of judging of distance by the eye, and often by the ear. But suggestion implies, that what suggests is separate from what is suggested, and consequently negatives that unity in an active principle which the whole analogy of nature, as well as our own direct consciousness, shows to be perfectly compatible with its origin in composition.

Large concessions are, in the first place, to be remarked, which must be stated, because they very much narrow the matter in dispute. Those who, before Brown, contended against beneficial tendency as the standard of morality, have either shut their eyes on the connection of virtue with general utility; or carelessly and obscurely allowed, without further remark, a connection which is at least one of the most remarkable and important of ethical facts. He acts more boldly, and avowedly discusses "the relation of virtue to utility." He was compelled by that discussion to make those concessions which so much abridge this controversy. "Utility and virtue are so related, that there is perhaps no action generally felt to be virtuous, which it would not be beneficial that all men in similar circumstances should imitate." 1 "In every case of benefit or injury willingly done, there arise certain emotions of moral approbation or disapprobation." 2 "The intentional produce of evil, as pure evil, is always hated; and that of good, as pure good, always loved." 3 All virtuous acts are thus admitted to be universally beneficial; morality and the general benefit are acknowledged always to coincide. It is hard to say, then, why they should not be reciprocally tests of each other, though in a very different way;—the virtuous feelings, fitted as they are by immediate appearance, by quick and powerful action, being sufficient tests of morality in the moment of action, and for all practical purposes; while the consideration of tendency to general happiness, a more obscure and slowly discoverable quality, should be applied in general reasoning, as a test of the sentiments and dispositions themselves. It has been thus employed, and no proof has been attempted, that it has ever deceived those who used it in the proper place. It has uniformly served to justify our moral constitution, and to show how reasonable it is for us to be guided in action by our higher feelings. At all events it should be, but has not been considered, that from these concessions alone it follows, that beneficial tendency is at least one constant property of virtue. Is not this, in effect, an admission that beneficial tendency does distinguish virtuous acts and dispositions from those which we call vicious? If the criterion be incomplete or delusive, let its faults be specified, and let some other quality be pointed out, which, either singly or in combination with beneficial tendency, may more perfectly indicate the distinction.

But let us not be assailed by arguments which leave untouched its value as a test, and are in truth directed only against its fitness as an immediate incentive and guide to right action. To those who contend for its use in the latter character, it must be left to defend, if they can, so untenable a position. But all others must regard as pure sophistry the use of arguments against it as a test, which really show nothing more than its acknowledged unfitness to be a motive.

When voluntary benefit and voluntary injury are pointed out as the main, if not the sole objects of moral approbation and disapprobation,—when we are told truly, that the production of good, as good, is always loved, and that of evil,
as such, always hated,—can we require a more clear, short, and unanswerable proof, that beneficial tendency is an essential quality of virtue? It is indeed an evidently necessary consequence of this statement, that if benevolence be amiable in itself, our affection for it must increase with its extent; and that no man can be in a perfectly right state of mind, who, if he consider general happiness at all, is not ready to acknowledge that a good man must regard it as being in its own nature the most desirable of all objects, however the constitution and circumstances of human nature may render it unfit or impossible to pursue it directly as the object of life. It is at the same time apparent that no such man can consider any habitual disposition, clearly discerned to be in its whole result at variance with general happiness, as not unworthy of being cultivated, or as not fit to be rooted out. It is manifest that, if it were otherwise, he would cease to be benevolent. As soon as we conceive the sublime idea of a Being who not only foresees, but commands, all the consequences of the actions of all voluntary agents, this scheme of reasoning appears far more clear. In such a case, if our moral sentiments remain the same, they compel us to attribute his whole government of the world to benevolence. The consequence is as necessary as in any process of reason; for if our moral nature be supposed, it will appear self-evident; that it is as much impossible for us to love and reverence such a Being, if we ascribe to him a mixed or imperfect benevolence, as to believe the most positive contradiction in terms. Now, as religion consists in that love and reverence, it is evident that it cannot subsist without a belief in benevolence as the sole principle of divine government. It is nothing to tell us that this is not a process of reasoning, or, to speak more exactly, that the first propositions are assumed. The first propositions in every discussion relating to intellectual operations must likewise be assumed. Conscience is not reason, but it is not less an essential part of human nature than reason. Principles which are essential to all its operations are as much entitled to immediate and implicit assent, as those principles which stand in the same relation to the reasoning faculties. The laws prescribed by a benevolent Being to his creatures must necessarily be founded on the principle of promoting their happiness. It would be singular indeed, if the proofs of the goodness of God, legible in every part of nature, should not, above all others, be most discoverable and conspicuous in the beneficial tendency of his moral laws.

But we are asked, if tendency to general welfare be the standard of virtue, why is it not always present to the contemplation of every man who does or prefers a virtuous action? Must not utility be in that case "the felt essence of virtue"? Why are other ends, besides general happiness, fit to be morally pursued?

These questions, which are all founded on that confusion of the theory of actions with the theory of sentiments, against which the reader was so early warned, might be dismissed with no more than a reference to that distinction from the forgetfulness of which they have arisen. By those advocates of utility, indeed, who hold it to be a necessary part of their system, that some glimpse at least of tendency to personal or general wellbeing is an essential part of the motives which render an action virtuous, these questions cannot be satisfactorily answered. Against such they are arguments of irresistible force; but against the doctrine itself, rightly understood and justly bounded, they are altogether powerless. The reason why there may, and must be, many ends morally more fit to be pursued in practice than general happiness, is plainly to be found in the limited capacity of man. A perfectly good Being, who foresees and commands all the consequences of action, cannot indeed be conceived by us to have any other end in view than general wellbeing. Why evil exists under that perfect government, is a question towards the solution of which the human understanding can scarcely advance a single step. But all who hold the evil to exist only for good, and own their inability to explain why or how,

1 Lectures, vol. IV. p. 38.
2 See supra, p. 297-299.
are perfectly exempt from any charge of inconsistency in their obedience to the dictates of their moral nature. The measure of the faculties of man renders it absolutely necessary for him to have many other practical ends; the pursuit of all of which is moral, when it actually tends to general happiness, though that last end never entered into the contemplation of the agent. It is impossible for us to calculate the effects of a single action, any more than the chances of a single life. But let it not be hastily concluded, that the calculation of consequences is impossible in moral subjects. To calculate the general tendency of every sort of human action, is a possible, easy, and common operation. The general good effects of temperance, prudence, fortitude, justice, benevolence, gratitude, veracity, fidelity,—of the affections of kindred, and of love for our country,—are the subjects of calculations which, taken as generalities, are absolutely unerring. They are founded on a larger and firmer basis of more uniform experience, than any of those ordinary calculations which govern prudent men in the whole business of life. An appeal to these daily and familiar transactions furnishes at once a decisive answer, both to those advocates of utility who represent the consideration of it as a necessary ingredient in virtuous motives, as well as moral approbation, and to those opponents who turn the unwarrantable inferences of unskilful advocates into proofs of the absurdity into which the doctrine leads.

The cultivation of all the habitual sentiments from which the various classes of virtuous actions flow—the constant practice of such actions—the strict observance of rules in all that province of Ethics which can be subjected to rules—the watchful care of all the outworks of every part of duty, of that descending series of useful habits which, being securities to virtue, become themselves virtues,—are so many ends which it is absolutely necessary for man to pursue and to seek for their own sake.

"I saw D'Alembert," says a very late writer, "congratulate a young man very coldly, who brought him a solution of a problem. The young man said, 'I have done this in order to have a seat in the Academy.' 'Sir,' answered D'Alembert, 'with such dispositions you never will earn one. Science must be loved for its own sake, and not for the advantage to be derived. No other principle will enable a man to make progress in the sciences.' It is singular that D'Alembert should not perceive the extensive application of this truth to the whole nature of man. No man can make progress in a virtue who does not seek it for its own sake. No man is a friend, a lover of his country, a kind father, a dutiful son, who does not consider the cultivation of affection and the performance of duty in all these cases respectively as incumbent on him for their own sake, and not for the advantage to be derived from them. Whoever serves another with a view of advantage to himself is universally acknowledged not to act from affection. But the more immediate application of this truth to our purpose is, that in the case of those virtues which are the means of cultivating and preserving other virtues, it is necessary to acquire love and reverence for the secondary virtues for their own sake, without which they never will be effectual means of sheltering and strengthening those intrinsically higher qualities to which they are appointed to minister. Every moral act must be considered as an end, and men must banish from their practice the regard to the most naturally subordinate duty as a means. Those who are perplexed by the supposition that secondary virtues, making up by the extent of their beneficial tendency for what in each particular instance they may want in magnitude, may become of as great importance as the primary virtues themselves, would do well to consider a parallel though very homely case. A house is useful for many purposes; many of these purposes are in themselves, for the time, more important than shelter. The destruction of the house may, nevertheless, become a greater evil than the defeat of several of these purposes, because it is permanently convenient, and indeed necessary to the execution of most of them. A

\[1\]

Mémoires de Montlosier, vol. I. p. 50.
The floor is made for warmth, for dryness—to support tables, chairs, beds, and all the household implements which contribute to accommodation and to pleasure. The floor is valuable only as a means; but, as the only means by which many ends are attained, it may be much more valuable than some of them. The table might be, and generally is, of more valuable timber than the floor; but the workman who should for that reason take more pains in making the table strong than the floor secure would not long be employed by customers of common sense. The connection of that part of morality which regulates the intercourse of the sexes with benevolence, affords the most striking instance of the very great importance which may belong to a virtue, in itself secondary, but on which the general cultivation of the highest virtues permanently depends. Delicacy and modesty may be thought chiefly worthy of cultivation, because they guard purity; but they must be loved for their own sake, without which they cannot flourish. Purity is the sole school of domestic fidelity, and domestic fidelity is the only nursery of the affections between parents and children, from children towards each other, and, through these affections, of all the kindness which renders the world habitable. At each step in the progress, the appropriate end must be loved for its own sake; and it is easy to see how the only means of sowing the seeds of benevolence, in all its forms, may become of far greater importance than many of the modifications and exertions even of benevolence itself. To those who will consider this subject, it will not long seem strange that the sweetest and most gentle affections grow up only under the apparently cold and dark shadow of stern duty. The obligation is strengthened, not weakened, by the consideration that it arises from human imperfection; which only proves it to be founded on the nature of man. It is enough that the pursuit of all these separate ends leads to general wellbeing; the promotion of which is the final purpose of the creation.

The last and most specious argument against beneficial tendency; even as a test, is conveyed in the question, why moral approbation is not bestowed on every thing beneficial, instead of being confined, as it confessedly is, to voluntary acts. It may plausibly be said, that the establishment of the beneficial tendency of all those voluntary acts which are the objects of moral approbation is not sufficient; since, if such tendency be the standard, it ought to follow, that whatever is useful should also be morally approved. To answer, as has before been done, that experience gradually limits moral approbation and disapprobation to voluntary acts, by teaching us that they influence the will, but are wholly wasted if they be applied to any other object,—though the fact be true, and contributes somewhat to the result, is certainly not enough. It is at best a partial solution. Perhaps, on reconsideration, it is entitled only to a secondary place. To seek a foundation for universal, ardent, early, and immediate feelings, in processes of an intellectual nature, has, since the origin of philosophy, been the grand error of ethical inquirers into human nature. To seek for such a foundation in association, an early and insensible process, which confessedly mingles itself with the composition of our first and simplest feelings, and which is common to both parts of our nature, is not liable to the same aversion. If conscience be uniformly produced by the regular and harmonious co-operation of many processes of association, the objection is in reality a challenge to produce a complete theory of it, founded on that principle, by exhibiting such a full account of all these processes as may satisfactorily explain why it proceeds thus far and no farther. This would be a very arduous attempt, and perhaps it may be premature. But something may be more modestly tried towards an outline, which, though it might leave many particulars unexplained, may justify a reasonable expectation that they are not incapable of explanation; and may even now assign such reasons for the limitation of approbation to voluntary acts, as may convert the objection derived from that fact into a corroboration of the doctrines to which it has

1 See supra, p. 356, 357.
been opposed as an insurmountable difficulty. Such an attempt will naturally lead to the close of the present Dissertation. The attempt has indeed been already made, but not without great apprehensions on the part of the author that he has not been clear enough, especially in those parts which appeared to himself to owe most to his own reflection. He will now endeavour, at the expense of some repetition, to be more satisfactory.

There must be primary pleasures, pains, and even appetites, which arise from no prior state of mind, and which, if explained at all, can be derived only from bodiy organization; for if there were not, there could be no secondary desires. What the number of the underived principles may be, is a question to which the answers of philosophers have been extremely various, and of which the consideration is not necessary to our present purpose. The rules of philosophizing, however, require that causes should not be multiplied without necessity. Of two explanations, therefore, which give an equally satisfactory account of appearances, that theory is manifestly to be preferred which supposed the smaller number of ultimate and inexplicable principles. This maxim, it is true, is subject to three indispensable conditions. 1. That the principles employed in the explanation should be known really to exist; in which consists the main distinction between hypothesis and theory. Gravity is a principle universally known to exist; ether and a nervous fluid are mere suppositions. 2. That these principles should be known to produce effects like those which are ascribed to them in the theory. This is a further distinction between hypothesis and theory; for there are an infinite number of degrees of likeness, from the faint resemblances which have led some to fancy that the functions of the nerves depend on electricity, to the remarkable coincidences between the appearances of projectiles on earth, and the movements of the heavenly bodies, which constitutes the Newtonian system; a theory now perfect, though exclusively founded on analogy, and in which one of the classes of phenomena brought together by it is not the subject of direct experience. 3. That it should correspond, if not with all the facts to be explained, at least with so great a majority of them as to render it highly probable that means will in time be found of reconciling it to all. It is only on this ground that the Newtonian system justly claimed the title of a legitimate theory during that long period when it was unable to explain many celestial appearances, before the labours of a century, and the genius of Laplace, at length completed the theory, by adapting it to all the phenomena. A theory may be just before it is complete.

In the application of these canons to the theory which derives most of the principles of human action from the transfer of a small number of pleasures, perhaps organic, by the law of association to a vast variety of new objects, it cannot be denied, 1st, That it satisfies the first of the above conditions; inasmuch as association is really one of the laws of human nature; 2dly, That it also satisfies the second, for association certainly produces effects like those which are referred to it by this theory, otherwise there would be no secondary desires, no acquired relishes and dislikes;—facts universally acknowledged, which are and can be explained only by the principle called by Hobbes mental discourse;—by Locke, Hume, Hartley, Condillac, and the majority of speculators, as well as in common speech, association;—by Tucker, translation;—and by Brown, suggestion. The facts generally referred to the principle resemble those which are claimed for it by the theory in this important particular, that in both cases equally, pleasure becomes attached to perfectly new things, so that the derivative desires become perfectly independent on the primary. The great dissimilarity of these two classes of passions has been supposed to consist in this, that the former always regards the interest of the individual, while the latter regards the welfare of others. The philosophical world has been almost entirely divided into two sects; the partisans of selfishness, comprising mostly all the predecessors of Butler,

1 See supra, p. 346-7, 365-9.
and the greater part of his successors; and the advocates of benevolence, who have generally contended that the reality of disinterestedness depends on its being a primary principle. Enough has been said by Butler against the more fatal heresy of selfishness. Something has already been said against the error of the advocates of disinterestedness, in the progress of this attempt to advance ethical truths historically, in the order in which inquiry and controversy brought them out with increasing brightness. The analogy of the material world is indeed faint, and often delusive; yet we dare not utterly reject that on which the whole technical language of mental and moral science is necessarily grounded. The whole creation teems with instances where the most powerful agents and the most lasting bodies are the acknowledged results of the composition, sometimes of a few, often of many elements. These compounds often in their turn become the elements of other substances; and it is with them that we are conversant chiefly in the pursuits of knowledge, solely in the concerns of life. No man ever fancied, that because they were compounds, they were therefore less real. It is impossible to confound them with any of the separate elements which contribute towards their formation. But a much more close resemblance presents itself. Every secondary desire, or acquired relish, involves in it a transfer of pleasure to something which was before indifferent or disagreeable. Is the new pleasure the less real for being acquired? Is it not often preferred to the original enjoyment? Are not many of these secondary pleasures indestructible? Do not many of them survive primary appetites? Lastly, the important principle of regard to our own general welfare, which dispossession us to prefer it to immediate pleasure, unfortunately called self-love (as if, in any intelligible sense of the term love, it were possible for a man to love himself), is perfectly intelligible if its origin be ascribed to association, but utterly incomprehensible if it be considered as prior to the appetites and desires, which alone furnish it with materials. As happiness consists of satisfactions, self-love presupposes appetites and desires which are to be satisfied. If the order of time were important, the affections are formed at an earlier period than many self-regarding passions, and they always precede the formation of self-love.

Many of the later advocates of the disinterested system, though recollecting from an apparent approach to the selfishness into which the purest of their antagonists had occasionally fallen, were gradually obliged to make concessions to the derivative system, though elided with the contradictory assertion, that it was only a refinement of selfishness; and we have seen that Brown, the last and not the least in genius of them, has nearly abandoned the greater, though not indeed the most important part of the territory in dispute, and scarcely contends for any underived principle but the moral faculty.

In this state of opinion among the very small number in Great Britain who still preserve some remains of a taste for such speculations, it is needless here to trace the application of the law of association to the formation of the secondary desires, whether private or social. For our present purposes, the explanation of their origin may be assumed to be satisfactory. In what follows, it must, however, be steadily borne in mind, that this concession involves an admission that the pleasure derived from low objects may be transferred to the most pure; that from a part of a self-regarding appetite such a pleasure may become a portion of a perfectly disinterested desire; and that the disinterested nature and absolute independence of the latter are not in the slightest degree impaired by the consideration, that it is formed by one of those grand mental processes to which the formation of the other habitual states of the human mind have been, with great probability, ascribed.

When the social affections are thus formed, they are naturally followed in every instance by the will to do whatever can promote their object. Compassion excites a voluntary determination to do whatever relieves the person pitied. The like process must occur in every case of gratitude, generosity, and affection. Nothing so uniformly follows the kind disposition as the act of will, because it is the only means by which the benevolent desire can be gratified. The result of what Brown justly calls "a deeper analysis," shows a mental contiguity of the affection to the
volition to be much closer than appears on a
closer examination of this part of our nature.
No wonder, then, that the strongest association,
the most active power of reciprocal suggestion,
should subsist between them. As all the affec-
tions are delightful, so the volitions, voluntary
acts which are the only means of their gratifica-
tion, become agreeable objects of contemplation
to the mind. The habitual disposition to per-
form them is felt in ourselves, and observed in
others, with satisfaction. As these feelings be-
come more lively, the absence of them may be
viewed in ourselves with a pain, in others with
an alienation capable of indefinite increase. They
become entirely independent sentiments; still,
however, receiving constant supplies of nourish-
ment from their parent affections, which, in
well-balanced minds, reciprocally strengthen
each other; unlike the unkind passions, which
are constantly engaged in the most angry con-
flicts of civil war. In this state, we desire to
experience these beneficent volitions, to cultivate
a disposition towards them, and to do every cor-
respondent voluntary act. They are for their own
sake the objects of desire. They thus constitute
a large portion of those emotions, desires, and
affections, which regard certain dispositions of
the mind and determinations of the will as their
sole and ultimate end. These are what are called
the moral sense, the moral sentiments, or best
though most simply, by the ancient name of Con-
science; which has the merit, in our language, of
being applied to no other purpose, which pecu-
larily marks the strong working of these criminal
feeling in conduct, and which, from its solemn and sacred
character, is well adapted to denote the vener-
able authority of the highest principle of human
nature.

Nor is this all: It has already been seen that
not only sympathy with the sufferer, but indigna-
tion against the wrong-doer, contributes a
large and important share towards the moral
feelings. We are angry at those who disappoint
our wish for the happiness of others. We make
the resentment of the innocent person wronged
our own. Our moderate anger approves all
well-proportioned punishment of the wrong-doer.
We hence approve those dispositions and actions
of voluntary agents which promote such suitable
punishment, and disapprove those which hinder
its infliction or destroy its effect; at the head
of which may be placed that excess of punish-
ment beyond the average feelings of good men
which turns the indignation of the calm by-
stander against the culprit into pity. In this
state, when anger is duly moderated,—when
it is proportioned to the wrong,—when it is
detached from personal considerations,—when
dispositions and actions are its ultimate objects,—it
becomes a sense of justice, and is so purified as
to be fitted to be a new element of conscience.
There is no part of morality which is so directly
aided by a conviction of the necessity of its ob-
servance to the general interest, as justice. The
connection between them is discoverable by the
most common understanding. All public delib-
erations profess the public welfare to be their
object; all laws propose it as their end. This
calm principle of public utility serves to med-
iate between the sometimes repugnant feelings
which arise in the punishment of criminals,
by repressing undue pity on one hand, and re-
ducing resentment to its proper level on the
other. Hence the indescribable importance of
criminal laws as a part of the moral education
of mankind. Whenever they carefully conform
to the moral sentiments of the age and country,
—when they are withheld from approaching the
limits within which the disapprobation of good
men would confine punishment, they contribute
in the highest degree to increase the ignominy
of crimes, to make men recoil from the first sug-
gestions of criminality, and to nourish and ma-
ture the sense of justice, which lends new vigour
to the conscience with which it has been united.

Other contributary streams present them-
sew. Qualities which are necessary to virtue,
but may be subservient to vice, may, independ-
ently of that excellence or of that defect, be in
themselves admirable. Courage, energy, deci-
sion, are of this nature. In their wild state
they are often savage and destructive. When
they are tamed by the society of the affections,
and trained up in obedience to the moral facul-
ty, they become virtues of the highest order,
and, by their name of magnanimity, proclaim
the general sense of mankind that they are the
characteristic qualities of a great soul. They
retain whatever was admirable in their unrecorded state, together with all that they borrow from their new associate and their high ruler. Their nature, it must be owned, is prone to evil; but this propensity does not hinder them from being rendered capable of being ministers of good, in a state where the gentler virtues require to be vigorously guarded against the attacks of daring depravity. It is thus that the strength of the well-educated elephant is sometimes employed in vanquishing the fierceness of the tiger, and sometimes used as a means of defence against the shock of his brethren of the same species. The delightful contemplation, however, of those qualities, when purely applied, becomes one of the sentiments of which the dispositions and actions of voluntary agents are the direct and final object. By this resemblance they are associated with the other moral principles, and with them contribute to form Conscience, which, as the master faculty of the soul, levies such large contributions on every province of human nature.

It is important, in this point of view, to consider also the moral approbation which is undoubtedly bestowed on those dispositions and actions of voluntary agents which terminate in their own satisfaction, security, and wellbeing. They have been called duties to ourselves, as absurdly as a regard to our own greatest happiness is called self-love. But it cannot be reasonably doubted, that intemperance, improvidence, timidity, even when considered only in relation to the individual, are not only regretted as imprudent, but blamed as morally wrong. It was excellently observed by Aristotle, that a man is not commended as temperate, so long as it costs him efforts of self-denial to persevere in the practice of temperance, but only when he prefers that virtue for its own sake. He is not meek, nor brave, as long as the most vigorous self-command is necessary to bridle his anger or his fear. On the same principle, he may be judicious or prudent; but he is not benevolent if he confers benefits with a view to his own greatest happiness. In like manner, it is ascertained by experience, that all the masters of science and of art—that all those who have successfully pursued truth and knowledge—love them for their own sake, without regard to the generally imaginary dower of interest, or even to the dazzling crown which fame may place on their heads. But it may still be reasonably asked, why these useful qualities are morally improved, and how they become capable of being combined with those public and disinterested sentiments which principally constitute conscience? The answer is, because they are entirely conversant with volitions and voluntary actions, and in that respect resemble the other constituents of conscience, with which they are thereby fitted to mingle and coalesce. Like those other principles, they may be detached from what is personal and outward, and fixed on the dispositions and actions, which are the only means of promoting their ends. The sequence of these principles and acts of will becomes so frequent, that the association between both may be as firm as in the former cases. All those sentiments of which the final object is a state of the will, become thus intimately and inseparably blended; and of that perfect state of solution (if such words may be allowed) the result is Conscience—the judge and arbiter of human conduct; which, though it does not supersede ordinary motives of virtuous feelings and habits, which are the ordinary motives of good actions, yet exercises a lawful authority even over them, and ought to blend with them. Whatsoever actions and dispositions are approved by conscience acquire the name of virtues or duties: they are pronounced to deserve commendation; and we are justly considered as under a moral obligation to practise the actions and cultivate the dispositions.
ings is very remarkable in two points of view, from which it seems hitherto to have been scarcely observed. First, It illustrates very forcibly all that has been here offered to prove, that the peculiar character of the moral sentiments consists in their exclusive reference to states of will, and that every feeling which has that quality, when it is purified from all admixture with different objects, becomes capable of being absorbed into Conscience, and of being assimilated to it, so as to become a part of it. For no feelings can be more unlike each other in their object than the private and the social; and yet, as both employ voluntary actions as their sole immediate means, both may be transferred by association to states of the will, in which case they are transmuted into moral sentiments. No example of the coalition of feelings in their general nature less widely asunder, could afford so much support to this position. Secondly, By raising qualities useful to ourselves to the rank of virtues, it throws a strong light on the relation of virtue to individual interest; very much as justice illustrates the relation of morality to general interest. The coincidence of morality with individual interest is an important truth in Ethics. It is most manifest in that part of Ethics which we are now considering. A calm regard to our general interest is indeed a faint and infrequent motive of action. Its chief advantage is, that it is regular, and that its movements may be calculated. In deliberate conduct it may often be relied on, though perhaps never safely without knowledge of the whole temper and character. But in moral reasoning at least, the coincidence is of unspeakable advantage. If there be a miserable man who has cold affections, a weak sense of justice, dim perceptions of right and wrong, and faint feelings of them;—if, still more wretched, his heart be constantly torn and devoured by malevolent passions—the vultures of the soul;—we have one resource still left, even in cases so dreadful. Even he still retains a human principle, to which we can speak. He must own that he has some wish for his own lasting welfare. We can prove to him that his state of mind is inconsistent with it. It may be impos-

sible indeed to show, that while his disposition continues the same, he can derive any enjoyment from the practice of virtue. But it may be most clearly shown, that every advance in the amendment of that disposition is a step towards even temporal happiness. If he do not amend his character, we may compel him to own that he is at variance with himself, and offends against a principle of which even he must recognize the reasonableness.

The formation of Conscience from so many elements, and especially the combination of elements so unlike as the private desires and the social affections, early contributes to give it the appearance of that simplicity and independence which in its mature state really distinguish it. It becomes, from these circumstances, more difficult to distinguish its separate principles; and it is impossible to exhibit them in separate action. The affinity of these various passions to each other, which consists in their having no object but states of the will, is the only common property which strikes the mind. Hence the facility with which the general terms, first probably limited to the relations between ourselves and others, are gradually extended to all voluntary acts and dispositions. Prudence and temperance become the objects of moral approbation. When imprudence is immediately disapproved by the by-stander, without deliberate consideration of its consequences, it is not only displeasing, as being pernicious, but it is blamed as wrong, though with a censure so much inferior to that bestowed on inhumanity and injustice, as may justify those writers who use the milder term improper. At length, when the general words come to signify the objects of moral approbation, and the reverse, they denote merely the power to excite feelings which are as independent as if they were undervived, and which coalesce the more perfectly, because they are detached from objects so various and unlike as to render their return to their primitive state very difficult.

The question, why we do not morally approve the useful qualities of actions which are altogether involuntary, may now be shortly and satisfacto-

1 See supra, p. 347.
rily answered: because conscience is in perpetual contact, as it were, with all the dispositions and actions of voluntary agents, and is by that means indissolubly associated with them exclusively. It has a direct action on the will, and a constant mental contiguity to it. It has no such mental contiguity to involuntary changes. It has never perhaps been observed, that an operation of the conscience precedes all acts deliberate enough to be in the highest sense voluntary, and does so as much when it is defeated as when it prevails. In either case the association is repeated. It extends to the whole of the active man. All passions have a definite outward object to which they tend, and a limited sphere within which they act. But conscience has no object but a state of will; and as an act of will is the sole means of gratifying any passion, conscience is co-extensive with the whole man, and without encroachment curbs or aids every feeling, even within the peculiar province of that feeling itself. As will is the universal means, conscience, which regards will, must be a universal principle. As nothing is interposed between conscience and the will when the mind is in its healthy state, the dictate of conscience is followed by the determination of the will, with a promptitude and exactness which very naturally is likened to the obedience of an inferior to the lawful commands of those whom he deems to be rightfully placed over him. It therefore seems clear, that on the theory which has been attempted, moral approbation must be limited to voluntary operations, and conscience must be universal, independent, and commanding.

One remaining difficulty may perhaps be objected to the general doctrines of this Dissertation, though it does not appear at any time to have been urged against other modifications of the same principle. "If moral approbation," it may be said, "involve no perception of beneficial tendency, whence arises the coincidence between that principle and the moral sentiments?" It may seem at first sight, that such a theory rests the foundation of morals upon a coincidence altogether mysterious, and apparently capricious and fantastic. Waiving all other answers, let us at once proceed to that which seems conclusive. It is true that conscience rarely contemplates so distant an object as the welfare of all sentient beings. But to what point is every one of its elements directed? What, for instance, is the aim of all the social affections? Nothing but the production of larger or smaller masses of happiness among those of our fellow-creatures who are the objects of these affections. In every case these affections promote happiness, as far as their foresight and their power extend. What can be more conducive, or even necessary, to the being and well-being of society, than the rules of justice? Are not the angry passions themselves, as far as they are ministers of morality, employed in removing hindrances to the welfare of ourselves and others, which is indirectly promoting it? The private passions terminate indeed in the happiness of the individual, which, however, is a part of general happiness, and the part over which we have most power. Every principle of which conscience is composed has some portion of happiness for its object. To that point they all converge. General happiness is not indeed one of the natural objects of conscience, because our voluntary acts are not felt and perceived to affect it. But how small a step is left for reason. It only casts up the items of the account. It has only to discover that the acts of those who labour to promote separate portions of happiness must increase the amount of the whole. It may be truly said, that if observation and experience did not clearly ascertain that beneficial tendency is the constant attendant and mark of all virtuous dispositions and actions, the same great truth would be revealed to us by the voice of conscience. The coincidence, instead of being arbitrary, arises necessarily from the laws of human nature, and the circumstances in which mankind are placed. We perform and approve virtuous actions, partly because conscience regards them as right, partly because we are prompted to them by good affections. All these affections contribute towards general wellbeing, though it were not necessary, nor would it be fit, that the agent should be distracted by the contemplation of that vast and remote object.

The various relations of conscience to religion we have already been led to consider on the principles of Butler, of Berkeley, of Paley, and especially of Hartley, who was led by his own
piety to contemplate as the last and highest stage of virtue and happiness, a sort of self-annihilation, which, however unsuitable to the present condition of mankind, yet places in the strongest light the disinterested character of the system, of which it is a conceivable though perhaps not attainable result. The completeness and rigour acquired by conscience, when all its dictates are revered as the commands of a perfectly wise and good Being, are so obvious, that they cannot be questioned by any reasonable man, however extensive his inerudity may be. It is thus that conscience can add the warmth of an affection to the inflexibility of principle and habit. It is true that, in examining the evidence of the divine original of a religious system, in estimating an imperfect religion, or in comparing the demerits of religions of human origin, conscience must be the standard chiefly applied. But it follows with equal clearness, that those who have the happiness to find satisfaction and repose in divine revelation, are bound to consider all those precepts for the government of the will, delivered by it, which are manifestly universal, as the rules to which all their feelings and actions should conform. The true distinction between conscience and a taste for moral beauty has already been pointed out: a distinction which, notwithstanding its simplicity, has been unobserved by philosophers, perhaps on account of the frequent co-operation and intermixture of the two feelings. Most speculators have either denied the existence of the taste, or kept it out of view in their theory, or exalted it to the place which, is rightfully filled only by conscience. Yet it is perfectly obvious that, like all the other feelings called pleasures of imagination, it terminates in delightful contemplation, while the moral faculty always aims exclusively at voluntary action. Nothing can more clearly show that this last quality is the characteristic of conscience, than its being thus found to distinguish that faculty from the sentiments which most nearly resemble it, most frequently attend it, and are most easily blended with it.

Some attempt has now been made to develop the fundamental principles of ethical theory, in that historical order in which meditation and discussion brought them successively into a clearer light. That attempt, as far as it regards Great Britain, is at least chronologically complete. The spirit of bold speculation, conspicuous among the English of the seventeenth century, languished after the earlier part of the eighteenth, and seems, from the time of Hutcheson, to have passed into Scotland, where it produced Hume, the greatest of sceptics, and Smith, the most eloquent of modern moralists; besides giving rise to that sober, modest, perhaps timid Philosophy, which is commonly called Scotch,—which has the singular merit of having first strongly and largely inculcated the absolute necessity of admitting certain principles as the foundation of all reasoning, and as being the indispensable conditions of thought itself. In the eye of the moralist, all the philosophers of Scotland, Hume and Smith as much as Reid, Campbell, and Stewart, have also the merit of having avoided the selfish system; and of having, under whatever variety of representation, alike maintained the disinterested nature of the social affections and the supreme authority of the moral sentiments. Brown reared the standard of revolt against the masters of the Scottish School, and in reality, still more than in words, adopted those very doctrines against which his predecessors, after their war against scepticism, uniformly combated. The law of association, though expressed in other language, became the nearly universal principle of his system; and perhaps it would have been absolutely universal if he had not been restrained rather by respectful feelings than by cogent reasons. With him the love of speculative philosophy, as a pursuit, appears to have expired in Scotland. There are some symptoms, yet however very faint, of the revival of a taste for it among the English youth. It was received with approbation in France from M. Royer Collard, the scholar of Stewart more than of Reid, and

1 See supra, p. 368, 369.
with enthusiasm from his pupil and successor M. Cousin, who has clothed the doctrines of the Schools of Germany in an unwonted eloquence, which always adorns, but sometimes disguises them.

The history of Political Philosophy, even if its extent and subdivisions were better defined, would, it is manifest, have occupied another Dissertation, at least equal in length to the present. The most valuable parts of it belong to Civil History. It is too often tainted by a turbulent and factious spirit to be easily combined with the calmer history of the progress of science, or even of the revolutions of speculation. In no age of the world were its principles so interwoven with political events, and so deeply imbued with the passions and divisions excited by them, as in the eighteenth century.

It was at one time the purpose, or rather perhaps hope, of the writer, to close this discourse by an account of the ethical systems which have prevailed in Germany during the last half century; which, maintaining the same spirit amidst great changes of technical language, and even of speculative principle, have now exclusive possession of Europe to the north of the Rhine, have been welcomed by the French youth with open arms, have roused in some measure the languishing genius of Italy, but are still little known and unjustly estimated by the mere English reader. He found himself, however, soon reduced to the necessity of either being superficial, and by consequence un instructive; or of devoting to that subject a far longer time than he can now spare, and a much larger space than the limits of this work would probably allow. The majority of readers will indeed be more disposed to require an excuse for the extent of what has been done, than for the relinquishment of projected additions. All readers must agree that this is peculiarly a subject on which it is better to be silent than to say too little.

A very few observations, however, on the German Philosophy, as far as relates to its ethical bearings and influence, may perhaps be pardoned. These remarks are not so much intended to be applied to the moral doctrines of that school, considered in themselves, as to those apparent defects in the prevailing systems of Ethics through-
inflexible commands; the power of always obeying them is implied in their very nature. All individual objects, all outward things, must indeed be viewed in the relation of cause and effect. They are necessary conditions of all reasoning. But the acts of the faculty which wills, of which we are immediately conscious, belong to another province of mind, and are not subject to these laws of the theoretical reason. The mere intellect must still regard them as necessarily connected; but the practical reason distinguishes its own liberty from the necessity of nature, conceives volition without at the same time conceiving an antecedent to it, and regards all moral beings as the original authors of their own actions.

Even those who are unacquainted with this complicated and comprehensive system, will at once see the slightness of the above sketch. Those who understand it, will own that so brief an outline could not be otherwise than slight. It will, however, be sufficient for the present purpose, if it render what follows intelligible.

With respect to what is called the practical reason, the Kantian system varies from ours, in treating it as having more resemblance to the intellectual powers than to sentiment and emotion. Enough has already been said on that question. At the next step, however, the difference seems to resolve itself into a misunderstanding. The character and dignity of the human race surely depend, not on the state in which they are born, but on that which they are all destined to attain or to approach. No man would hesitate in assenting to this observation, when applied to the intellectual faculties. Thus, the human infant comes into the world imbecile and ignorant; but a vast majority acquire some vigour of reason and extent of knowledge. Strictly, the human infant is born neither selfish nor social; but the greater part acquire some provident regard to their own welfare, and a number, probably not much smaller, feel some sparks of affection towards others. On our principles, therefore, as much as on those of Kant, human nature is capable of disinterested sentiments. For we too allow and contend that our moral faculty is a necessary part of human nature,—that it universally exists in human beings,—that we cannot conceive any moral agents without qualities which are either like, or produce the like effects. It is necessarily regarded by us as co-extensive with human, and even with moral nature. In what other sense can universality be predicated of any proposition not identical? Why should it be tacitly assumed that all these great characteristics of conscience should necessarily presuppose its being unformed and underived? What contradiction is there between them and the theory of regular and uniform formation?

In this instance it should seem that a general assent to truth is chiefly if not solely obstructed by an inveterate prejudice, arising from the mode in which the questions relating to the affections and the moral faculty have been discussed among ethical philosophers. Generally speaking, those who contend that these parts of the mind are acquired, have also held that they are, in their perfect state, no more than modifications of self-love. On the other hand, philosophers "of purer fire," who felt that conscience is sovereign, and that affection is disinterested, have too hastily fancied that their ground was untenable, without contending that these qualities were inherent or innate, and absolutely underived from any other properties of mind. If a choice were necessary between these two systems as masses of opinion, without any freedom of discrimination and selection, I should unquestionably embrace that doctrine which places in the clearest light the reality of benevolence and the authority of the moral faculty. But it is surely easy to apply a test which may be applied to our conceptions as effectually as a decisive experiment is applied to material substances. Does not he who, whatever he may think of the origin of these parts of human nature, believes that actually conscience is supreme, and affection terminates in its direct object, retain all that for which the partisans of the underived principles value and cling to their system? "But they are made," these philosophers may say, "by this class of our antagonists, to rest on insecure foundations. Unless they are underived, we can see no reason for regarding them as independent." In answer, it may be asked, how is the connection between these two qualities established? It is really assumed. It finds its way easily into the mind.
under the protection of another coincidence, which is of a totally different nature. The great majority of those speculators who have represented the moral and social feelings as acquired, have also considered them as being mere modifications of self-love, and sometimes as being casually formed and easily eradicated, like local and temporary prejudices. But when the nature of our feelings is thoroughly explored, is it not evident that this coincidence is the result of superficial confusion? The better moralists observed accurately, and reasoned justly, on the province of the moral sense and the feelings in the formed and mature man. They reasoned mistakenly on the origin of these principles. But the Epicureans were by no means right, even on the latter question; and they were totally wrong on the other and far more momentous part of the subject. Their error is more extensive, and infinitely more injurious. But what should now hinder an inquirer after truth from embracing but amending their doctrine where it is partially true, and adopting without any change the just description of the most important principles of human nature which we owe to their more enlightened as well as more generous antagonists?

Though unwilling to abandon the arguments by which, from the earliest times, the existence of the supreme and eternal mind has been established, we, as well as the German philosophers, are entitled to call in the help of our moral nature to lighten the burden of those tremendous difficulties which cloud his moral government. The moral nature is an actual part of man, as much on our scheme as on theirs.

Even the celebrated question of Liberty and Necessity may perhaps be rendered somewhat less perplexing, if we firmly bear in mind that peculiar relation of conscience to will which we have attempted to illustrate. It is impossible for reason to consider occurrences otherwise than as bound together by the connection of cause and effect; and in this circumstance consists the strength of the necessitarian system. But conscience, which is equally a constituent part of the mind, has other laws. It is composed of emotions and desires, which contemplate only those dispositions which depend on the will. Now, it is the nature of an emotion to withdraw the mind from the contemplation of every idea but that of the object which excites it. Every desire exclusively looks at the object which it seeks. Every attempt to enlarge the mental vision alters the state of mind, weakens the emotion or dissipates the desire, and tends to extinguish both. If a man, while he was pleased with the smell of a rose, were to reflect on the chemical combinations from which it arose, the condition of his mind would be changed from an enjoyment of the senses to an exertion of the understanding. If, in the view of a beautiful scene, a man were suddenly to turn his thoughts to the disposition of water, vegetables, and earths, on which its appearance depended, he might enlarge his knowledge of geology, but he must lose the pleasure of the prospect. The anatomy and analysis of the flesh and blood of a beautiful woman necessarily suspend admiration and affection. Many analogies here present themselves. When life is in danger either in a storm or a battle, it is certain that less fear is felt by the commander or the pilot, and even by the private soldier actively engaged, or the common seaman laboriously occupied, than by those who are exposed to the peril, but not employed in the means of guarding against it. The reason is not that the one class believe the danger to be less. They are likely in many instances to perceive it more clearly. But having acquired a habit of instantly turning their thoughts to the means of counteracting the danger, their minds are thrown into a state which excludes the ascendency of fear. Mental fortitude entirely depends on this habit. The timid horseman is haunted by the horrors of a fall. The bold and skilful thinks only about the best way of curbing or supporting his horse. Even when all means are equally unavailable, and his condition appears desperate to the by-stander, he still owes to his fortunate habit that he does not suffer the agony of the coward. Many cases have been known where fortitude has reached such strength that the faculties, instead of being confounded by danger, are never raised to their highest activity by a less violent stimulant. The distinction between such men and the coward does not depend on difference of opinion about
the reality or extent of the danger, but on a
state of mind which renders it more or less ac-
cessible to fear. Though it must be owned that
the moral sentiments are very different from any
other human faculty, yet the above observations
seem to be in a great measure applicable to every
state of mind. The emotions and desires which
compose conscience, while they occupy the mind,
must exclude all contemplation of the cause in
which the object of these feelings may have ori-
ginated. To their eye the voluntary dispositions
and actions, their sole object, must appear to be
the first link of a chain. In the view of con-
science they have no foreign original. The con-
science being so constantly associated with all
volitions, its view becomes habitual:—being al-
ways possessed of some, and capable of intense
warmth, it predominates over the habits of
thinking of those few who are employed in the
analyses of mental occupations. The reader
who has in any degree been inclined to adopt
the explanations attempted above, of the im-
perative character of conscience, may be dis-
posed also to believe that they afford some foun-
dation for that conviction of the existence of
a power to obey its commands, which (it ought
to be granted to the German philosophers) is
irresistibly suggested by the commanding tone
of all its dictates. If such an explanation should
be thought worthy of consideration, it must be
very carefully distinguished from that illusive
sense by which some writers have laboured to
reconcile the feeling of liberty with the reality
of necessity. In this case there is no illusion;
—nothing is required but the admission, that
every faculty observes its own laws, and that
when the action of the one fills the mind, that
of every other is suspended. The ear cannot
see, nor can the eye hear. Why then should
not the greater powers of reason and conscience
have different habitual modes of contemplating
voluntary actions? How strongly do experience
and analogy seem to require the arrangement of
motive and volition under the class of causes
and effects! With what irresistible power, on
the other hand, do all our moral sentiments re-
move extrinsic agency from view, and concen-
trate all feeling in the agent himself! The
one manner of thinking may predominate among
the speculative few in their short moments of
abstraction; the other will be that of all other
men, and of the speculator himself when he is
called upon to act, or when his feelings are
powerfully excited by the amiable or odious
dispositions of his fellow-men. In these work-
ings of various faculties there is nothing that
can be accurately described as contrariety of
opinion. An intellectual state, and a feeling,
never can be contrary to each other. They
are too utterly incapable of comparison to be
the subject of contrast. They are agents of a
perfectly different nature, acting in different
spheres. A feeling can no more be called
true or false, than a demonstration, considered
simply in itself, can be said to be agreeable or
disagreeable. It is true, indeed, that in conse-
quence of the association of all mental acts with
each other, emotions and desires may occasion
habitual errors of judgment;—but liability to
error belongs to every exercise of human reason;
it arises from a multitude of causes; it con-
stitutes, therefore, no difficulty peculiar to the
case before us. Neither truth nor falsehood can
be predicated of the perceptions of the senses,
but they lead to false opinions. An object seen
through different mediums may by the inex-
perienced be thought to be no longer the same.
All men long concluded falsely, from what they
saw, that the earth was stationary, and the sun
in perpetual motion around it. The greater part
of mankind still adopt the same error. Newton
and Laplace used the same language with the
ignorant, and conformed (if we may not say to
their opinion) at least to their habits of thinking
on all ordinary occasions, and during the far
greater part of their lives. Nor is this all;
The language which represents various states of
mind is very vague. The word which denotes
a compound state is often taken from its pri-
cipal fact, from that which is most conspicuous,
most easily called to mind, most warmly felt, or
most frequently recurring. It is sometimes bor-

1 Lord Kames, in his Essays on Morality and Natural Religion, and in his Sketches of the History of Man.
rowed from a separate, but, as it were, neighbouring condition of mind. The grand distinc-
tion between thought and feeling is so little ob-
served, that we are peculiarly liable to confusion
on this subject. Perhaps when we use language
which indicates an opinion concerning the acts
of the will, we may mean little more than to ex-
press strongly and warmly the moral sentiments
which voluntary acts alone call up. It would
argue disrespect for the human understanding;
mainly employed for so many centuries in recon-
ciling contradictory opinions, to propose such
suggestions without peculiar diffidence; but be-
fore they are altogether rejected, it may be well
to consider, whether the constant success of the
advocates of necessity on one ground, and of the
partisans of free-will on another, does not seem
to indicate that the two parties contemplate the
subject from different points of view, that nei-
ther habitually sees more than one side of it, and
that they look at it through the medium of dif-
ferent states of mind.

It should be remembered that these hints of a
possible reconciliation between seemingly re-
pugnant opinions are proposed, not as perfect
analogies, but to lead men's minds into the in-
quiry, whether that which certainly befalls the
mind, in many cases on a small scale, may not,
under circumstances favourable to its develop-
ment, occur with greater magnitude, and more
important consequences. The coward and brave,
as has been stated, act differently at the approach
of danger, because it produces exertion in the
one and fear in the other. But very brave men
must, by the terms, be few. They have little
aid in their highest acts, therefore, from fellow-
feeling. They are often too obscure for the
hope of praise, and they have seldom been train-
ed to cultivate courage as a virtue. The very
reverse occurs in the different view taken by un-
derstanding and by conscience, of the nature of volun-
tary actions. The conscientious view must, in
some degree, present itself to all mankind. It
is therefore unspeakably strengthened by gene-
ral sympathy. All men respect themselves for
being habitually guided by it. It is the object of
general commendation; and moral discipline has
no other aim but its cultivation. Whoever does
not feel more pain from his crimes than from his
misfortunes, is looked on with general aversion.
And when it is considered that a Being of per-
fect wisdom and goodness estimates us accord-
ing to the degree in which conscience governs
our voluntary acts, it is surely no wonder that,
in this most important discrepancy between the
great faculties of our nature, we should con-
sider the best habitual disposition to be that
which the coldest reason shows us to be most
c conducive to wellbeing and wellbeing.

On every other point, at least, it should seem
that, without the multiplied suppositions and
immense apparatus of the German School, the
authority of morality may be vindicated, the
disinterestedness of human nature asserted, the
first principles of knowledge secured, and the
hopes and consolations of mankind preserved.
Ages may yet be necessary to give to ethical
theory all the forms and language of science, and
to apply it to the multiplied and complicated facts
and rules which are within its province. In the
mean time, if any statement of the opinions here
unfolded or intimated shall be proved to be at
variance with the reality of social affections, and
with the feeling of moral distinction, the author
of this Dissertation will be the first to relinquish
a theory which will then show itself inadequate
to explain the most indisputable, as well as by
far the most important, parts of human nature.
If it shall be shown to lower the character of
man, to cloud his hopes, or to impair the sense
of duty, he will be grateful to those who may
point out his error, and deliver him from the
poignant regret of adopting opinions which lead
to consequences so pernicious.
NOTE A, p. 305.

The remarks of Cicero on the Stoicism of Cato are perhaps the most perfect specimen of that refined raillery which attains the object of the orator without general injustice to the person whose authority is for the moment to be abated. "Accessit his doctima, non moderata, nec mitis, sed, ut mihi videtur, paulo asperior et durior quam aut veritas aut natura patiatur." After an enumeration of the Stoical paradoxes, he adds: "Hae homo ingeniosissimus M. Cato arripuit, neque disputandi causa, ut magna pars, sed ita vivendi. Nostri autem illi (fatebor enim me quoque in adolescentia diffusum ingenio meo quassisse adjumenta doctrina) nostri, inquam, illi a Platone atque Aristotele moderati homines et temperati aiunt apud sapientem valere aliquando gratiam; viri boni esse misereri: omnes virtutes mediocritate quodam moderas. Hos ad magistros si qua te fortuna, Cato, cum ista natura detulisset, non tu quidem vir melior esses, nec fortior, nec temperantior, nec justior (neque enim esse posses), sed paulo ad lenditatem propensior." (CICERO PRO MURENA.)

NOTE B, p. 309.

The greater part of the following extract from Grotius's History of the Netherlands is inserted as the best abridgement of the ancient history of these still subsisting controversies known in our time. I extract also the introduction as a model of the manner in which an historian may state a religious dispute which has influenced political affairs; but far more because it is an unparalleled example of equity and forbearance in the narrative of a contest of which the historian was himself a victim.

"Habuit hic annus (1608) haud spennendi quaque mali semina, vix ut arma desierant, ex orto publice religionis dissidio, latentibus initis, sed ut paulatim in majus erumperet. Lugduni sacras literas docebant viri eruditione præstantes Gomarus et Arminius, quorum ille uterna Dei lege fixum memorabat, cui hominum salus destinaretur, quis in exitium tenderet; inde alios ad pietatem trahi, et tractos custodiri ne elabantur; reliquii alios communi humanitatis vitio et suis criminibus involutos: hic vero contra integrum judicem, sed eundem optimum patrem, id reorum fecisse discerum, ut peccandi pertuisse fiduciamque in Christum reponentibus veniam ac vitam daret, contumacibus penam; Deoque gratum, ut omnes resipiscant, ac meliora edocti retineant; sed cogi neminem. Accusa tantque invicum; Arminius Gomarum, quod peccandi causas Deo ascriberet, ac fati persuasione teneret immobiles animos; Gomarus Arminium, quod longius ipsis Romanensium scitis hominum arrogantia impletur, nec pateretur soli Deo acceptam ferri, rem maximam, bonam mentem. Constat his quies cura legere veterum libros, antiquos Christianorum tribuisse hominum voluntati vim liberam, tam in acceptanda, quam in retinenda disciplina; unde sua praemis ac supplicia aequitas. Neque idem tamen omisere euncta divinam ad bonitatem referre, cujus munere salutare semen ad nos pervenisset, ac cujus singulari auxilio periculi nostra indigerent. Primus omnium Augustinus, ex quo ipsa cum Pelagio et eum secula certamen (nam ante aliter et ipse sequerat), acer disputantium libertatis vocem relinquere, ut ei decreta quædam Dei preponeret, quæ vini ipsam destruer vide rentur. At per Graciam quidem Asiamque retenta vetus illa ac simplicior sententia. Per occidentem magnum Augustini nomen multos traxit in consensum, repertis tamen per Galliam et alibi qui se opponerent. Posterioribus secu-
The Calvinism, or rather Augustinianism, of Aquinas, is placed beyond all doubt by the following passages:—“Prædestinatio est causa gratiae et gloriae.” (Opera, VII. 356, edit. Paris. 1664.)

“Numerus prædestinationum certus est.” (Ibid. 363.)

“Præscientia meritorum nullo modo est causa prædestinationis divina.” (Ibid. 370.)

“Liberum arbitrum est facultas qua bonum legitur, gratia assistente, vel malum, eadem de- sistente.” (Ibid. VIII. 222.)

“Deus inclinat ad bonum administrando vir- tumen agendi et monendo ad bonum. Sed ad malum dicitur inclinare in quantum gratiam non præbacit, per quam aliquis a malo retrahere- tur.” (Ibid. 364.)

On the other side:

“Accipitur fides pro eo quo creditur, et est virtus, et pro eo quod creditur, et non est virtus. Fides qua creditur, si cum caritate sit, virtus est.” (Ibid. IX. 236.)

“Divina bonitas est primum principium com- municationis totius quam Deus creaturis largi- tur.”

“Quamvis omne quod Deus vult justum sit, non tamen ex hoc justum dicitur quod Deus illud vult.” (Ibid. 697.)

The Augustinian doctrine is, with some hesi- tation and reluctance, acquiesced in by Scotus, in that milder form which ascribes election to an express decree, and considers the rest of mankind as only left to the deserved penalties of their transgressions. “In hujus questionis solutione mallem aliándus andire quam docere.” (Scol. Opera, V. 1329. Lugd. 1639.) This modesty and pru- dence is foreign from the dogmatical genius of a Schoolman; and these qualities are still more ap- parent in the very remarkable language which he applies to the tremendous doctrine of repro- bation. “Eorum autem non miseretur (seil. Deus) quibus gratiam non præbendarum esse aequitate occultissima et ab humanis sensibus remotissima ju- dicat.” (Ibid. 1329.) In the commentary on Scotus which follows, it appears that his acute disciple Ockham disputed very freely against the opinions of his master. “Mala fieri bonum est” is a startling paradox, quoted by Scotus from Augustin. (Ibid. 1381.) It appears that Ock- ham saw no difference between election and rep- probation, and considered those who embraced only the former as at variance with themselves. (Ibid. 1313.)

Scotus, at great length, contends that our thoughts (consequently our opinions) are not subject to the will. (VI. 1054—1056.) One step more would have led him to acknowledge that all erroneous judgment is involuntary, and there-
fore inculpable and unpunishable, however per-

nicious.

His attempt to reconcile foreknowledge with contingen
ty (V. 1300–1327); is a remarkable example of the power of human subtlety to keep up the appearance of a struggle where it is im-
possible to make one real effort.

But the most dangerous of all the deviations of Scotus from the system of Aquinas is, that he opened the way to the opinion that the dis-
tinction of right and wrong depends on the mere will of the Eternal Mind. The absolute power of the Deity, according to him, extends to all but contradictions. His regular power (ordi-
nata) is exercised conformably to an order est-
blished by himself; "Si placet voluntati, sub qua libera est, recta est lex." (Scot. V. 1368, et seq.)

NOTE E, p. 309.

Πᾶσα ἡ μὴ ἴσως γὰρ ἵμα τοῦ ἀνθρώπου σαρκὸς πατήσεις αὐτοῦ ἄρνηται. (Plat. Soph. edit. Bp. II. 224.)

Πᾶσα ἡ ἵματος σαρκίναν ἐνίαν. (Ibid. 227.)

Plato is quoted on this subject by Marcus Aurelius, in a manner which shows, if there had been any doubt, the meaning to be, that all error is involuntary.

Πᾶσα ἡ μὴ ἴσως γὰρ ἴσως, φησιν (Πλατων), στρεφέται αἰσθήματα. Εἰκατερίνη τὸν οὐκ ἡΕἰκατερίνη τὸν οὐκ ἡμῖν.

Augustin closes the long line of ancient tes-
timony to the involuntary character of error: "Quis est qui velit decipi? Fallere nonlunt bo-
ni; falli autem nec boni volunt nec mali." (Aug. Serm. de Verbo.)

NOTE F, p. 310.

From a long, able, and instructive dissertation by the commentator on Scotus, it appears that this immoral dogma was propounded in terms more bold and startling by Ockham, who openly affirmed, that "moral evil was only evil because it was prohibited." "Ock-

hamus, qui putat quod nihil posset esse malum sine voluntate prohibitiiva Dei, hancque volun-
tatem esse liberam; sic ut posset eam non habere, et consequenter ut posset fieri quod nul-

la prorsus essent mala." (Scot. VII. p. 859.)

But, says the commentator, "Dico primo legem naturalem non consistere in jussione ulla que sit actus voluntatis Dei. Hac est communissima theologorum sententia." (Scot. VII. p. 858.) And indeed the reason urged against Ockham completely justifies this approach to unanimity.

"For," he asks, "why is it right to obey the will of God? Is it because our moral faculties perceive it to be right? But they equally per-
ceive and feel the authority of all the primary principles of morality; and if this answer be made, it is obvious that those who make it do in effect admit the independence of moral distinc-
tions on the will of God."

"If God," said Ockham, "had commanded his creatures to hate himself, hatred of God would have been praiseworthy." (Domin. Soto de Justitia et Jure, lib. ii. quest. 3, "Utrum pré-
cepta Decalogi sint dispensabilia?" a book dedicated to Don Carlos, the son of Philip II.) Suarez, the last scholastic philosopher, rejected the Ock-
hamical doctrine, but allowed will to be a part of the foundation of morality. "Voluntas Dei non est tota ratio bonitatis aut malitiae." (Suarez de Legibus, lib. ii. 66, p. 71. edit. Lond. 1679.)

As the great majority of the Schoolmen sup-
ported their opinion of this subject by the con-
sideration of eternal and immutable ideas of right and wrong in the divine intellect, it was natural that the Nominalists, of whom Ockham

was the founder, who rejected all general ideas, should also have rejected those moral distinc-
tions which were then supposed to originate in such ideas. Gerson was a celebrated Nominal-
list; and he was the more disposed to follow the opinions of his master, because they agreed in maintaining the independence of the State on
the Church, and the superiority of the Church over the Pope.

NOTE G, p. 310.

It must be premised that Charitas among the ancient divines corresponded with Eσυς of the Platonists, and with the θυμος of later philos-
ophers, as comprehending the love of all that is loveworthy in the Creator or his creatures. It is the theological virtue of charity, and corre-
PRELIMINARY DISSERTATIONS.

sponds with no term in use among modern moralists. "Cum objectum amoris sit bonum, dupliciter potest aliquid tendere in bonum aliquus rei; uno modo, quod bonum illus rei ad alterum referat, sicut amat quis vim in quantum dulcedinem vini peroptat; et hic amor vocatur a quibusdam amor concupiscientiae. Amor autem iste non terminatur ad rem quae dicitur amari, sed reflectitur ad rem illam cui optatur bonum illus rei. Alia modo amor fortior in bonum aliquus rei, ita quod ad rem ipsam TERMINATUR; et hic est amor benevolentiae. Qua bonum nostrum in Deo perfectum est, sicut in causa universali bonorum; ideo bonum in ipso esse magis naturaliter complacet quam in nobis ipsis: et ideo etiam amore amicitiae naturaliter Deus ab homine plus seipso diligetur."

The above quotations from Aquinas will probably be sufficient for those who are acquainted with these questions, and they will certainly be thought too large by those who are not. In the next question he inquires, whether in the love of God there can be any view to reward. He appears to consider himself as bound by authority to answer in the affirmative; and he employs much ingenuity in reconciling a certain expectation of reward with the disinterested character ascribed by him to piety in common with all the affections which terminate in other beings. "Nihil aliud est merces nostra quam perfri Deo. Ergo charitas non solum non excludit, sed etiam facit habere oculum ad mercedem." In this answer he seems to have anticipated the representations of Jeremy Taylor (Sermon on Growth in Grace); of Lord Shaftesbury (Inquiry concerning Virtue, book i. part iii. sect. 3); of Mr. T. Erskine (Freedom of the Gospel, Edinb. 1829); and more especially of Mr John Smith (Discourses, Lond. 1660). No extracts could convey a just conception of the observations which follow, unless they were accompanied by a longer examination of the technical language of the Schoolmen than would be warranted on this occasion. It is clear that he distinguishes well the affection of piety from the happy fruits, which, as he cautiously expresses it, "are in the nature of a reward," just as the consideration of the pleasures and advantages of friendship may enter into the affection and strengthen it, though they are not its objects, and never could inspire such a feeling. It seems to me also that he had a dimmer view of another doctrine, by which we are taught, that though our own happiness be not the end which we pursue in loving others, yet it may be the final cause of the insertion of disinterested affections into the nature of man. "Ponere mercedem aliquam finem amoris ex parte amati, est contra rationem amicitiae. Sed ponere mercedem esse finem amoris ex parte amantis, non tamen ultimo, prout scilicet ipsa amor est quaedam opertio amantis, non est contra rationem amicitiae. Possum operationem amoris amare propter aliquid aliud, salva amicitia. Potest habeas choritatem habere oculum ad mercedem, uti ponat beati tudinem creatam finem amoris, non autem finem amati." Upon the last words my interpretation chiefly depends. The immediately preceding sentence must be owned to have been founded on a distinction between viewing the good fruits of our own affections as enhancing their intrinsic pleasures, and feeling love for another on account of the advantage to be derived from him; which last is inconceivable.

NOTE H, p. 310.

"Potestas spiritualis et secularis utque deducitur a potestate divina; ideo in tantum secularis est sub spirituali, in quantum est a Deo supposita; scilicet, in his que ad salutem animae pertinent. In his autem que ad bonum civile spectant, est magis obediendum potestati seculari; sicut illud Matthaei, Reddite quae sunt Caesaris Caesar." What follows is more doubtful. "Nisi forte potestati spirituali etiam potestas secularis conjungatur, ut in Papa, qui utriusque potestatis apicem tenet." (VIII. 435.) Here, says the French editor, it may be doubted whether Aquinas means the Pope's temporal power in his own dominions, or a secular authority indirectly extending over all for the sake of religion. My reasons for adopting the more rational construction are shortly these:—1. The text of Matthew is so plain an assertion of the independence of both powers, that it would be the height of extravagance to quote it as an authority for the dependence of the state.
most it could only be represented as reconcilable with such a dependence in one case.

2. The word forte seems manifestly to refer to the territorial sovereignty acquired by the Popes. If they have a general power in secular affairs, it must be because it is necessary to their spiritual authority; and in that case to call it fortuitous would be to ascribe to it an adjunct destructive of its nature. 3. His former reasoning on the same question seems to be decisive. The power of the Pope over bishops, he says, is not founded merely in his superior nature, but in their authority being altogether derived from his, as the proconsular power from the imperial. Therefore he infers that this case is not analogous to the relation between the civil and spiritual power, which are alike derived from God. 4. Had an Italian monk of the twelfth century really intended to affirm the Pope’s temporal authority, he probably would have laid it down in terms more explicit and more acceptable at Rome. Hesitation and ambiguity are here indications of unbelief. Mere veneration for the apostolical see might present a more precise determination against it, as it caused the quotation which follows, respecting the primacy of Peter. (Aquin. Opera, VIII. 434, 435.) A mere abridgement of these very curious passages might excite a suspicion that I had tinctured Aquinas unconsciously with a colour of my own opinions. Extracts are very difficult, from the scholastic method of stating objections and answers, as well as from the mixture of theological authorities with philosophical reasons.

Note I, p. 312.

The debates in the first assembly of the Council of Trent (1546), between the Dominicans who adhered to Aquinas, and the Franciscans who followed Scotus on original sin, justification, and grace, are to be found in Fra Paolo, Istoria del Concilio Tridentino, lib. ii. They show how much metaphysical controversy is hid in a theological form, how many disputes of our times are of no very ancient origin, and how strongly the whole western church, through all the divisions into which it has been separated, has manifested the same unwillingness to avow the Augustinian system, and the same fear of contradicting it. To his admirably clear and short statement of these abstruse controversies, must be added that of his accomplished opponent Cardinal Pallavicino (lib. vii. and viii.), who shows still more evidently the strength of the Augustinian party, and the disposition of the Council to tolerate opinions almost Lutheran, if not accompanied by revolt from the Church. A little more compromising disposition in the Reformers might have betrayed reason to a prolonged thraldom. We must esteem Erasmus and Melanchthon, but we should reserve our gratitude for Luther and Calvin. The Scotists maintained their doctrine of merit of congruity, waived by the Council, and soon after condemned by the Church of England; by which they meant that they who had good dispositions always received the divine grace, not indeed as a reward of which they were worthy, but as aid which they were fit and willing to receive. The Franciscans denied that belief was in the power of man. “I Franciscani lo negavano seguendo Scoto, qual vuole che siccome dalle dimostrazioni per necessità nasce la scienza, così dalle persuasioni nasce la fede; e ch’essa è nell’intelletto, il quale è agente naturale, e mosso naturalmente dall’oggetto. Allegavano l’esperienza, che nessuno può credere che vuole, ma quello che gli par vero.” (Fra Paolo, Istoria del Concilio Tridentino, I. 193. edit. Helmstadt, 1763, 4to.) Cardinal Sforza Pallavicino, a learned and very able Jesuit, was appointed, according to his own account, in 1651; many years after the death of Fra Paolo, to write a true history of the Council of Trent, as a corrective of the misrepresentations of the celebrated Venetian, Algernon Sidney, who knew this court historian at Rome, and who may be believed when he speaks well of a Jesuit and a Cardinal, commands the work in a letter to his father, Lord Leicester. At the end of Pallavicino’s work is a list of three hundred and sixty errors in matters of fact, which the Papal party pretend to have detected in the independent historian, whom they charge with heresy or infidelity, and, in either case, with hypocrisy.
Nôte K, p. 314.

Nôte L, p. 314.

The title of the published account of the conference at Valladolid is, "The controversy between the Bishop of Chiapa and Dr Sepulveda; in which the Doctor contended that the conquest of the Indies from the natives was lawful, and the Bishop maintained that it was unlawful, tyrannical, and unjust, in the presence of many theologians, lawyers, and other learned men assembled by his Majesty." (Antonii Bibl. Hisp. Nova, tom. i. p. 192.)

Las Casas died in 1566, in the 92d year of his age; Sepulveda died in 1571, in his 82d year.

Sepulveda was the scholar of Pomponatus, and a friend of Erasmus, Cardinal Pole, Aldus Manutius, &c. In his book De Justis Belli Causis contra Indos susceptis, he contended only that the king might justly "ad ditionem Indos, non herilem sed regiam et civilem, lege belli redigere." (Antonius in voce Sepulveda: Bibl. Hisp. Nova, tom. i. p. 703.)

But this smooth and specious language covered a poison. Had it entirely prevailed, the cruel consequences of the defeat of the advocate of the oppressed would alone have remained; the limitations and softenings employed by their opponent to obtain success would have beenspeedily disregarded and forgotten.

Covarruvias, another eminent Jurist, was sent by Philip II. to the Council of Trent, at its renewal in 1560, and, with Cardinal Buonamgmagni, drew up the decrees of reformation. Francis Sanchez, the father of philosophical grammar, published his Minerva at Salamanca in 1587; so active was the cultivation of philosophy in Spain in the age of Cervantes.

Nôte M, p. 327.

"Alors en repassant dans mon esprit les diverses opinions qui m'avoient tour-à-tour entrainé depuis ma naissance, je vis que bien qu'aucune d'elles ne fût assez évidente pour produire immédiatement la conviction, elles avoient divers degrés de vraisemblance, et que l'assentiment intérieur s'y prêtait ou s'y refusait à différentes mesures. Sur cette première observation, comparant entre elles toutes ces différentes idées dans le silence des préjugés, je trouvai que la première, et la plus commune, étoit aussi la plus simple et la plus raisonnable; et qu'il ne lui manquoit, pour réunir tous les suffrages, que d'avoir été proposée la dernière. Imaginez tous vos philosophes anciens et modernes, ayant d'abord éprouvé leur bizarreries systèmes de forces, de chances, de fatalité, de nécessité, d'atomes, de monde animé, de matière vivante, de matérialisme de toute espèce; et après eux tous l'illustre Clarke, éclairant le monde, annonçant enfin l'Être des êtres, et le dispensateur des choses. Avec quelle universelle admiration, avec quel aplaisissement unanime n'eût point été reçu ce nouveau système si grand, si consolant, si sublime, si propre à élever l'âme, à donner une base à la vertu, et en même temps si frappant, si lumineux, si simple, et, ce me semble, offrant moins de choses incompréhensibles à l'esprit humain, qu'il n'en trouve d'absurdes en tout autre système! Je me dissou, les objections insolubles sont communes à tous, parce que l'esprit de l'homme est trop borné pour les résoudre: elles ne prouvent donc rien contre aucun par préférence, mais quelle différence entre les preuves directes:"—(Emile, tome III. livre iv. p. 25.)

Nôte N, p. 337.

"Est autem jus quaedam potentia moralis, et obligatio necessitas moralis. Mores autem intelligi, quae apud virum bonum aequipollent naturali: Nam ut praecelare jurisconsultus Romanus ait, quae contra bonos mores sunt, ea nec
facere nos posse credendum est. Vir bonus autem est, qui amat omnes, quantum ratio permittit. Justitiam igitur, quae virtus est huic affectus rectrix, quam Phiλοσοφία Graeci vocant, commo
dissime, ni fallor, definitum caritatem sapientis, hoc est, sequentem sapientiae 'dictata. Itaque, quod Carneades dixisse furtur, justitiam esse summam stultitiam, quia alienis utilitatis consu
suli juget, neglectis propriis, ex ignota ejus definitione natum est. Caritas est benevolentia universalis, et benevolentia amandi sive diligendi habitus. Amare autem sive diligere est felici
tate alterius delectari, vel, quod eodem dedit, felici
tatem alienam adsciscere in suam. Unde difficilis nodus solvitur, magni etiam in Theol
chia momenti, quomodo amor non meretricum detur, qui sit a spe metuque et omni utilitatis respectu separatus : scilicet, quorum utilitas de
dectat, eorum felicitas nostram ingreditur, nam quae delectant, per se expetuntur. Et uti pul
chorum contemplatio ipsa jucesta est, pictaque tabula RaphaeIis intelligenter afficit, etsi nullus census ferat, adeo ut in oculis deliciisque feratur, quodam simulacrum amoris; ita quum res pulch
tum etiam felicitatis est capax, transit affectus in verum amorem. Super autem divinus amor
alios amores, quos Deus cum maximo successu amare potest, quando Deo simul et felicius nihil est, et nihil pulchrius felicitateque dignius intel
ligi potest. Et quum idem sit potentiae sapien
tiæque summæ, felicitas ejus non tantum ingredi
ditur nostram (si sapimus, id est, ipsum amam
mus), sed et facit. Quia autem sapientia carita
tem dirigere debet, huic quoque definitione opus erit. Arbitror autem notioi hominum op
time satisfieri, si sapientiam nihil aliud esse dicamus, quam ipsam scientiam felicitatis." (Leibnizii Opera, tom. IV. pars iii. p. 294.)

"Et jus quidem merum sive strictum nascitur ex principio servandæ pacis; sequitas sive caritas ad majus aliquid contendit, ut, dum quiesce alteri prodest quantum potest, felicitatem suam auget in aliena; et, ut verbo dicam, jus stric
tum miseriam vitat, jus superius ad felicitatem tendit, sed quälis in hanc mortalitatem cadit. Quod vero ipsam vitam, et quicquid hanc vitam expetendum factit, magno commodo alieno post
habere debeamus, ita ut maximos etiam dolores in aliorum gratiam perferre oportet; magis pulchrae
præcipitur a philosophis quam solide demonstra
tur. Nam decus et gloriam, et animi sui virtute
gaudentis sensum, ad quæ sub honestatis nomine
provocant, cognitionis sive mentis bona esse con
stat; magna quidem, sed ne omnis nec omni malorum acerbitati prævalitura, quando non omnes aequo imaginando afficiuntur; præsertim quos neque educatio liberalis, neque consuetudo vivenda ingenua, vel vita secteve disciplina ad
honoris estimationem, vel animi bona sentienda
assequetur. Ut vero universalis demonstratione
conficiatur, omne honestum esse utile, et omne turpe damnosum, assumenda est immortalitas
animae, et rector universi Deus. Ita fit, ut omnes in civitate perfectissima vivere intelligamur, sub
monarcha, qui nec ob sapientiam fallit, nec ob potentiam vitati potest; idemque tam amabilis est, ut felicitas sit tali domino servire. Huic igitur qui animam impendit, Christo docente, eam
luceratur. Hujus potentia providentiaque efficci
tur, ut omnes jux in factum transeat, ut nemo
læsatur nisi a se ipso, ut nihil recte gestum sine
praemio sit, nullum peccatum sine pena." (Ibid. p. 296.)

Note O, p. 340.

The writer of this Discourse was led, on a
former occasion, by a generally prevalent no
tion, too nearly to confound the theological doc
tine of predestination with the philosophical
opinion which supposed the determination of
the will to be, like other events, produced by
adequate causes. (See a criticism on Mr. Stewart's Dissertation, Edinb. Review, XXXVI. 255.)
More careful reflection has corrected a confusion
common to him with most writers on the sub
ject. What is called Sublapsarian Calvinism,
which was the doctrine of the most eminent
men, including Augustin and Calvin himself,
ascribed to God, and to man before the fall, what
is called free-will, which they even own still to
exist in all the ordinary acts of life, though it
be lost with respect to religious morality. The
decree of election, on this scheme, arises from
God's foreknowledge that man was to fall, and
that all men became thereby with justice liable
to eternal punishment. The election of some to
salvation was an act of divine goodness, and the

DISSERTATION SECOND.
preterition of the rest was an exercise of holiness and justice.

This sublapsarian predestination is evidently irreconcilable with the doctrine of necessity, which considers free-will, or volitions not caused by motives, as absolutely inconsistent with the definition of an intelligent being, which is, that he acts from a motive, or, in other words, with a purpose.

The supralapsarian scheme, which represents the fall itself as fore-ordained, may indeed be built on necessitarian principles. But on that scheme original sin seems wholly to lose that importance which the former system gives it as a revolution in the state of the world, requiring an interposition of divine power to remedy a part of its fatal effects. It becomes no more than the first link in the chain of predestined offences. Yet both Catholic and Protestant predestinarians have borrowed the arguments and distinctions of philosophical necessitarians. One of the propositions of Jansenius, condemned by the bull of Innocent X. in 1653, is, that “to merit or demerit in a state of lapsed nature, it is not necessary that there should be in man a liberty free from necessity; it is sufficient that there be a liberty free from constraint.” (Dupin, Histoire de l’Eglise en abrégé, siècle xvii. livre iv. chap. viii. p. 193.) Luther, in his once famous treatise de Servo Arbitrio against Erasmus (printed in 1526), expresses himself as follows: “Hic est fidei summus gradus, credere illum esse elementem qui tam paucos salvat, tam multos damnat; credere justum qui sua voluntate nos necessario damnabiles facit, ut videatur, ut Erasmus refert, delectari cruciatibus miserorum, et odio potius quam amore dignus.” My copy of this stern and abusive book is not pagd. In another passage, he states the distinction between co-action and necessity as familiar a hundred and thirty years before it was proposed by Hobbes, or condemned in the Jansenists. “Necessario dico, non coacte, sed, ut illi dicunt, necessitate immutabilitatis, non coactionis; hoc est, homo, cum vocat Spiritus Dei, non quidem violentia, velut raptus obtorto collo, nolens facit malum, quemadmodum fur aut latro nolens ad pe-nam ducitur, sed sponte et libera voluntate facit.” He uses also the illustration of Hobbes, from the difference between a stream forced out of its course and freely flowing in its channel.

Note P, p. 352.

Though some parts of the substance of the following letter have already appeared in various forms, perhaps the account of Mr Hum’s illness, in the words of his friend and physician Dr Cullen, will be acceptable to many readers. I owe it to the kindness of Mrs Baillie, who had the goodness to copy it from the original, in the collection of her late learned and excellent husband, Dr Baillie. Some portion of what has been formerly published I do not think it necessary to reprint.

From Dr Cullen to Dr Hunter.

“My Dear Friend,—I was favoured with yours by Mr Halket on Sunday, and have answered some part of it by a gentleman whom I was otherwise obliged to write by; but as I was not certain how soon that might come to your hand, I did not answer your postscript; in doing which, if I can oblige you, a part of the merit must be that of the information being early, and I therefore give it you as soon as I possibly could. You desire an account of Mr Hum’s last days, and I give it you with some pleasure; for though I could not look upon him in his illness without much concern, yet the tranquillity and pleasantry which he constantly discovered did even then give me satisfaction, and, now that the curtain is dropped, allows me to indulge the less allayed reflection. He was truly an example des grands hommes qui sont morts en plaisantant....For many weeks before his death he was very sensible of his gradual decay; and his answer to inquiries after his health was, several times, that he was going as fast as his enemies could wish, and as easily as his friends could desire. He was not, however, without a frequent recurrence of pain and uneasiness; but he passed most part of the day in his drawing-room, admitted the visits of his friends, and, with his usual spirit, conversed with them upon literature, politics, or whatever else was accidentally started. In conversation he seemed to be per-
fectly at ease, and to the last abounded with that pleasantry, and those curious and entertaining anecdotes, which ever distinguished him. This, however, I always considered rather as an effort to be agreeable; and he at length acknowledged that it became too much for his strength. For a few days before his death, he became more averse to receive visits; speaking became more and more difficult for him, and for twelve hours before his death his speech failed altogether. His senses and judgment did not fail till the last hour of his life. He constantly discovered a strong sensibility to the attention and care of his friends; and, amidst great uneasiness and languor, never betrayed any peevishness or impatience. This is a general account of his last days; but a particular fact or two may perhaps convey to you a still better idea of them.

“About a fortnight before his death, he added a codicil to his will, in which he fully discovered his attention to his friends, as well as his own pleasantry. What little wine he himself drank was generally port; a wine for which his friend the poet [John Home] had ever declared the strongest aversion. David bequeathes to his friend John one bottle of port; and, upon condition of his drinking this even at two down-sittings, bestows upon him twelve dozen of his best claret. He pleasantly adds, that this subject of wine was the only one upon which they had ever differed. In the codicil there are several other strokes of mirth and pleasantry, highly expressive of the cheerfulness which he then enjoyed. He even turned his attention to some of the simple amusements with which he had been formerly pleased. In the neighbourhood of his brother’s house in Berwickshire is a brook, by which the access in time of floods is frequently interrupted. Mr Hume bequeatheds L.100 for building a bridge over this brook, but upon the express condition that none of the stones for that purpose shall be taken from a quarry in the neighbourhood, which forms part of a romantic scene in which, in his earlier days, Mr Hume took particular delight. Otherwise the money to go to the poor of the parish.

“These are a few particulars which may per-
haps appear trifling; but to me no particulars seem trifling that relate to so great a man. It is perhaps from trifles that we can best distinguish the tranquillity and cheerfulness of the philosopher, at a time when the most part of mankind are under disquiet, anxiety, and sometimes even horror... I had gone so far when I was called to the country; and I have returned only so long before the post as to say, that I am most affectionately yours,

“WILLIAM CULLEN.

“Edinburgh, 17th September 1776.”

NOTE Q, p. 353.

Pyrrho was charged with carrying his scepticism so far as not to avoid a carriage if it was driven against him. *Enesidemus, the most famous of ancient sceptics, with great probability vindicates the more ancient doubter from such lunacy, of which indeed his having lived to the age of ninety seems sufficient to acquit him.*

Enesidemus ὁ μὲν ἀφοὶ, ὁ δὲ Κασταίος, τῷ τῆς εὐθυχίας λόγῳ, μη μενοί γα ἁπαρακατακόησαν: περαιτέρω τίνα ἔχουσιν; (Diog. Laert. lib. ix. sect. 62.)

Brief and imperfect as our accounts of ancient scepticism are, it does appear that their reasoning on the subject of causation had some resemblance to that of Mr Hume. *Anakrasis* ὁ μὲν ἄμαρτωλος, τὸ αἰτίαν τῶν πρὸς τι ἐπεισόδιον ἠττονέας τὸν ἀνακρίνοντα μονόν ὑποκείμενον ὑπέταξεν ἂν ὁ καὶ τὸ αἰτίαν ὁμοίως ἀντίκειτο. (Ibid. ix. sect. 97.) It is perhaps impossible to translate the important technical expression τῷ πρὸς τίνα. It comprehends two or more things as related to each other—both the relative and correlative taken together as such. Fire considered as having the power of burning wood is τῷ πρὸς τίνα. The words of Laertius may therefore be nearly rendered into the language of modern philosophy as follows: ʻCausation they take away thus. A cause is so only in relation to an effect. What is relative is only conceived, but does not exist... Therefore cause is a mere conception.ʻ

The first attempt to prove the necessity of belief in a divine revelation, by demonstrating that natural reason leads to universal scepticism, was made by Algazel, a professor at Bagdad, in...
the beginning of the twelfth century of our era; whose work entitled *The Destruction of the Philosopher* is known to us only by the answer of Averroes, called *Destruction of the Destruction*. He denied a necessary connection between cause and effect; for of two separate things, the affirmation of the existence of one does not necessarily contain the affirmation of the existence of the other; and the same may be said of denial. It is curious enough that this argument was more especially pointed against those Arabian philosophers who, from the necessary connection of causes and effects, reasoned against the possibility of miracles; thus anticipating one doctrine of Mr Hume, to impugn another. (TenneMAN, *Gesch. der Phil. VIII. 387."

The same attempt was made by the learned but unphilosophical Huet, bishop of Avranches (*Questions Alnetane*, Caen, 1690, and *Traité de la Foliéssée de l’Esprit Humain*, Amsterdam, 1723). A similar motive urged Berkeley to his attack on Fluxions. The attempt of Huet has been lately renewed by the Abbé Lamennais, in his treatise on *Religious Indifference*; a fine writer, whose apparent reasonings amount to little more than well-varied assertions, and well-disguised assumptions of the points to be proved. To build religion upon scepticism is the most extravagant of all attempts; for it destroys the proofs of a divine mission, and leaves no natural means of distinguishing between revelation and imposture. The Abbé Lamennais represents authority as the sole ground of belief. Why? If any reason can be given, the proposition must be false; if none, it is obviously a mere groundless assertion.

Note R, p. 356.

Casanova, a Venetian doomed to solitary imprisonment in the dungeons at Venice in 1755, thus speaks of the only books which for a time he was allowed to read. The title of the first was *La Cité Mystique de Sœur Marie de Jesus, appelée d’Agrada.*

"J’y lu tout ce que peut enfanter l’imagina-tion exaltée d’une vierge Espagnole extravagam-
ment dévote, cloître, mélancholique, ayant des directeurs de conscience, ignorans, faux, et dé-vots. Amoureuse et amie très intime de la Sainte Vierge, elle avait reçu ordre de Dieu même d’écrire la vie de sa divine mère. Les in-structions nécessaires lui avaient été fournies par le Saint Esprit. Elle commençait la vie de Marie, non pas du jour de sa naissance, mais du moment de son inœmaculée conception dans le sein de sa mère Anne. Après avoir narré en détail tout ce que sa divine héroïne fit les neuf mois qu’elle a passé dans le sein maternel, elle nous apprend qu’à l’âge de trois ans elle balaya la maison, aidée par neuf cents domestiques, tous anges, commandés par leur propre Prince Michel. Ce qui frappe dans ce livre est l’assurance que tout est dit de bonne foi. Ce sont les visions d’un esprit sublime, qui, sans aucune ombre d’orgueil, ivre de Dieu, croit ne révéler que ce que l’Esprit Saint lui inspire." (Mémoires de Casanova, IV. 343. Leipsie, 1827.)

A week’s confinement to this volume produced such an effect on the author, who, though an unbeliever and a debauchee, was then enfeebled by melancholy, bad air; and bad food, that his sleep was haunted, and his waking hours disturbed by its horrible visions. Many years after, passing through Agrada in Old Castile, he charmed the old priest of that village by speaking of the biographer of the virgin. The priest showed him all the spots which were consecrated by her presence, and bitterly lamented that the Court of Rome had refused to canonize her. It is the natural reflection of the writer, that the book was well qualified to turn a solitary prisoner mad, or to make a man at large an atheist. It ought not to be forgotten, that the inquisitors of state at Venice, who proscribed this book, were probably of the latter persuasion. It is a striking instance of the infatuation of those who, in their eagerness to rivet the bigotry of the igno-rant, use means which infallibly tend to spread utter unbelief among the educated. The book is a disgusting, but in its general outline seeming-ly faithful, picture of the dissolute manners spread over the Continent of Europe in the middle of the eighteenth century.
"The Treatise on the Law of War and Peace, the Essay on Human Understanding, the Spirit of Laws, and the Inquiry into the Causes of the Wealth of Nations, are the works which have most directly influenced the general opinion of Europe during the two last centuries. They are also the most conspicuous landmarks in the progress of the sciences to which they relate. It is remarkable that the defects of all these great works are very similar. The leading notions of none of them can, in the strictest sense, be said to be original, though Locke and Smith in that respect surpass their illustrious rivals. All of them employ great care in ascertaining those laws which are immediately deduced from experience, or directly applicable to practice; but apply metaphysical and abstract principles with considerable negligence. None pursues the order of science, beginning with first elements, and advancing to more and more complicated conclusions; though Locke is perhaps less defective in method than the rest. All admit digressions which, though often intrinsically excellent, distract attention, and break the chain of thought. None of them is happy in the choice, or constant in the use, of technical terms; and in none do we find much of that rigorous precision which is the first beauty of philosophical language. Grotius and Montesquieu were imitators of Tacitus,—the first with more gravity, the second with more vivacity; but both were tempted to forsake the simple diction of science, in pursuit of the poignant brevity which that great historian has carried to a vicious excess. Locke and Smith chose an easy, clear, and free, but somewhat loose and verbose style,—more concise in Locke,—more elegant in Smith,—in both exempt from pedantry, but not void of ambiguity and repetition. Perhaps all these apparent defects contributed in some degree to the specific usefulness of these great works; and, by rendering their contents more accessible and acceptable to the majority of readers, have more completely blended their principles with the common opinions of mankind."

(Edinburgh Review, vol. XXXVI. p. 244.)
an object will remind us of the objects which immediately preceded or followed when originally perceived. But what Mr Coleridge has not told us is, that the Stagyrite confines the application of this law exclusively to the phenomena of recollection alone, without any glimpse of a more general operation extending to all connections of thought and feeling,—a wonderful proof, indeed, even so limited, of the sagacity of the great philosopher, but which for many ages continued barren of further consequences. The illustrations of Aquinas throw light on the original doctrine, and show that it was unenlarged in his time. "When we recollect Socrates, the thought of Plato occurs as like him. When we remember Hector, the thought of Achilles occurs as contrary. The idea of a father is followed by that of a son as near." (Aqu. Opera, I. pars ii. p. 62, et seq.) Those of Ludovicus Vives, as quoted by Mr Coleridge, extend no farther.

But if Mr Coleridge will compare the parts of Hobbes on Human Nature which relate to this subject, with those which explain general terms, he will perceive that the philosopher of Malmesbury builds on these two foundations a general theory of the human understanding, of which reasoning is only a particular case. In consequence of the assertion of Mr Coleridge, that Hobbes was anticipated by Descartes in his excellent and interesting discourse on Method, I have twice repurposed that work in quest of this remarkable anticipation, though, as I thought, well acquainted by my old studies with the writings of that great philosopher. My labour has, however, been vain. I have discovered no trace of that or of any similar speculation. My edition is in Latin by Elzevir, at Amsterdam, in 1650, the year of Descartes's death. I am obliged, therefore, to conjecture that Mr Coleridge, having mislaid his references, has, by mistake, quoted the discourse on Method, instead of another work; which would affect his inference from the priority of Descartes to Hobbes. It is not to be denied, that the opinion of Aristotle, repeated by so many commentators, may have found its way into the mind of Hobbes, and also of Hume; though neither might be aware of its source, or even conscious that it was not originally his own. Yet the very narrow view of association by Locke, his apparently treating it as a novelty, and the silence of common books respecting it, afford a presumption that the Peripatetic doctrine was so little known, that it might have escaped the notice of these philosophers, one of whom boasted that he was unread, and the other is not liable to the suspicion of unacknowledged borrowing.

To Mr Coleridge, who distrusts his own power of building a bridge by which his ideas may pass into a mind so differently trained as mine, I venture to suggest, with that sense of his genius which no circumstance has hindered me from seizing every fit occasion to manifest, that more of my early years were employed in contemplations of an abstract nature, than of those of the majority of his readers; that there are not, even now, many of them less likely to be repelled from doctrines by singularity or uncouthness; more willing to allow that every system has caught an advantageous glimpse of some side or corner of the truth; more desirous of exhibiting this dispersion of the fragments of wisdom by attempts to translate the doctrine of one school into the language of another;—who, when he cannot discover a reason for an opinion, considers it as important to discover the causes of its adoption by the philosopher; believing, in the most unfavourable cases, that one of the most arduous and useful researches of mental philosophy is to explore the subtle illusions which enable great minds to satisfy themselves by mere words, before they deceive others by payment in the same counterfeit coin. These habits, together with the natural influence of my age and avocations, lead me to suspect that in speculative philosophy I am nearer to indifference than to an exclusive spirit. I hope that it can neither be thought presumptuous nor offensive in me to doubt, whether the circumstance of its being found difficult to convey a metaphysical doctrine to a person who, at one part of his life, made such studies his chief pursuit, may not imply either error in the opinion, or defect in the mode of communication.
D I S S E R T A T I O N S E C O N D .

N O T E V , p . 3 7 9 .

A very late writer, who seems to speak for Mr Bentham with authority, tells us that "the first time the phrase of 'the principle of utility' was brought decidedly into notice, was in the 'Essays, by David Hume,' published about the year 1742. In that work it is mentioned as the name of a principle which might be made the foundation of a system of morals, in opposition to a system then in vogue, which was founded on what was called the 'moral sense.' The ideas, however, there attached to it, are vague, and defective in practical application." (Westminster Review, No. xxi.) If these few sentences were scrutinized with the severity and minuteness of Bentham's Fragment on Government, they would be found to contain almost as many misremembrances as assertions. Utility is not "mentioned," but fully discussed, in Mr Hume's Discourse. It is seldom spoken of by "name." Instead of charging it with "vagueness," it would be more just to admire the precision which it combines with beauty. Instead of being "defective in practical application," perhaps the desire of rendering it popular has crowded it with examples and illustrations taken from life. To the assertion that "it was opposed to the moral sense," no reply can be needful but the following words extracted from the Discourse itself: "I am apt to suspect that reason and sentiment concur in almost all moral determinations and conclusions. The final sentence which pronounces characters and actions amiable or odious, probably depends on some internal sense or feeling, which nature has made universal in the whole species." (An Enquiry concerning the Principles of Morals, sect. i.) The phrase "made universal," which is here used instead of the more obvious and common word 'implanted,' shows the anxious and perfect precision of language, by which a philosopher avoids the needless decision of a controversy not at the moment before him.

N O T E W , p . 3 8 0 .

A writer of consummate ability, who has failed in little but the respect due to the abilities and character of his opponents, has given too much countenance to the abuse and confusion of language exemplified in the well-known verse of Pope,

Modes of self-love the Passions we may call.
"We know," says he, "no universal proposition respecting human nature which is true but one—that men always act from self-interest." (Edinburgh Review, March 1829.) It is manifest from the sequel, that the writer is not the dupe of the confusion; but many of his readers may be so. If, indeed, the word self-interest could with propriety be used for the gratification of every prevalent desire, he has clearly shown that this change in the signification of terms would be of no advantage to the doctrine which he controverts. It would make as many sorts of self-interest as there are appetites, and it is irreconcilably at variance with the system of association embraced by Mr Mill. To the word self-love Hartley properly assigns two significations: 1. Gross self-love, which consists in the pursuit of the greatest pleasures, from all those desires which look to individual gratification; or, 2. refined self-love, which seeks the greatest pleasure which can arise from all the desires of human nature,—the latter of which is an invaluable, though inferior principle. The admirable writer whose language has occasioned this illustration, who at an early age has mastered every species of composition, will doubtless hold fast to simplicity, which survives all the fashions of deviation from it, and which a man of a genius so fertile has few temptations to forsake.

DISSERTATION THIRD;

EXHIBITING A GENERAL VIEW

OF THE

PROGRESS OF MATHEMATICAL AND PHYSICAL SCIENCE,

SINCE THE REVIVAL OF LETTERS IN EUROPE.

By JOHN PLAYFAIR,

PROFESSOR OF NATURAL PHILOSOPHY IN THE UNIVERSITY OF EDINBURGH,
FELLOW OF THE ROYAL SOCIETY OF LONDON,
AND SECRETARY OF THE ROYAL SOCIETY OF EDINBURGH.
Dissertation Third

Exhibiting a General View

of the

Progress of Mathematical and Physical Science

Since the Revival of Letters in Europe

By Hon. Platen
Dissertation Third.

Part First.

In conformity to the plan which has been traced and executed with so much ability in the First Dissertation, I am now to present the reader with an historical sketch of the principal discoveries made in Natural Philosophy, from the revival of letters down to the present time. In entering on this task, and on looking at the instructive but formidable model already set before me, I should experience no small solicitude, did I not trust that the subject of which I am to speak, in order to be interesting, needs only to be treated with clearness and precision. These two requisites I will endeavour to keep steadily in view.

In the order which I am to follow, I shall be guided solely by a regard to the subserviency of one science to the progress of another, and to the consequent priority of the former in the order of regular study. For this reason, the history of the pure Mathematics will be first considered, as that science has been one of the two principal instruments applied by the moderns to the advancement of natural knowledge. The other instrument is Experience; and, therefore, the principles of the inductive method, or of the branch of Logic which teaches the application of experiment and observation to the interpretation of nature, must be the second object of inquiry; and in this article I shall give an account of Bacon’s Philosophy, as applied to Physical investigation. After these two sections, which may in some measure be considered as introductory, I am to treat of Natural Philosophy, under the divisions of Mechanics, Astronomy, and Optics. Under the general denomination of Mechanics I include the theory of Motion, as applied not only to solids, but to fluids, both incompressible and elastic. Optics I have placed after Astronomy, because the discoveries in Mechanics have much less affected the progress of the former of these sciences than of the latter. To these will succeed a sixth division, containing the laws of the three unknown substances, if, indeed, they may be called substances—Heat, Electricity, and Magnetism. These, though very different, agree in some general characters. They permeate all substances, though not with the same facility; and, if other
bodies had been formed in the same manner with them, the idea of impenetrability would never have been suggested to the mind. They seem to receive motion, without taking any away from the body which communicates it; so that they can hardly be considered as inert. Two of them, Heat and Electricity, are perceived by the sense of touch; but the impression which they make does not convey an idea of resistance. The third is not perceived by touch; and, therefore, all the three might be denominated impalpable substances. If they have any gravity, it cannot be appreciated; and, for these reasons, had it not too paradoxical an appearance, we might class them together as material, but incorporeal substances. We know, indeed, nothing of them but as powers, transferable from one body to another; and it is in consequence of this last circumstance alone that they are entitled to the name of substances.

Though the general design of this historical sketch extends from the revival of letters to the beginning of the nineteenth century, I shall, in the present Part, confine myself entirely, as has been done in the first Dissertation, to the period preceding the end of the seventeenth century, or, more precisely, to that preceding the invention of the fluxionary calculus, and the discovery of the principle of gravitation; one of the most remarkable epochas, without doubt, in the history of human knowledge.

PART FIRST.

SECTION I.

MATHEMATICS.

1. GEOMETRY.

The great inheritance of mathematical knowledge which the ancients bequeathed to posterity could not, on the revival of learning, be immediately taken possession of; nor could even its existence be discovered, but by degrees. Though the study of the Mathematics had never been entirely abandoned, it had been reduced to matters of very simple and easy comprehension, such as were merely subservient to practice. There had been men who could compute the area of a triangle, draw a meridian line, or even construct a sun-dial, in the worst of times; but between such skill, and the capacity to understand or the taste to relish the demonstrations of Euclid, Apollonius, or Archimedes, there was a great interval, and many difficulties were to be overcome, for which much time, and much subsidiary knowledge, were necessary. The repositories of the ancient treasures were to be opened, and made accessible; the knowledge of the languages was to be acquired; the manuscripts were to be deciphered; and the skill of the grammarian and the critic were to precede, in a certain degree, that of the geometrician or the astronomer. The obligations which we have to those who undertook this laborious and irksome task, and who rescued the ancient books from the prisons to which ignorance and barbarism had condemned them, and from the final destruction by which they must soon have been overtaken, are such as we can never sufficiently acknowledge; and indeed we shall never know even the names of many of the benefactors to whom our thanks are due. In the midst of the wars, the confusion, and bloodshed, which overwhelmed Europe during the middle ages, the religious houses and monasteries afforded to the remains of ancient learning an asylum, which a salutary prejudice forced even the most lawless to respect; and the authors who have given the best account of the revival of letters, agree that it is in a great measure to those establishments
that we owe the safety of the books which have kept alive the scientific and literary attainments of Greece and Rome.

The study of the remains of antiquity gradually produced men of taste and intelligence, who were able to correct the faults of the manuscripts they copied, and to explain the difficulties of the authors they translated. Such were Purbach, Regiomontanus, Commandine, Mau-rolycus, and many others. By their means, the writings of Euclid, Archimedes, Apollonius, Ptolemy, and Pappus, became known and accessible to men of science. Arabia contributed its share towards this great renovation, and from the language of that country was derived the knowledge of many Greek books, of the originals of which, some were not found till long afterwards, and others have never yet been discovered.

In nothing, perhaps, is the inventive and elegant genius of the Greeks better exemplified than in their geometry. The elementary truths of that science were connected by Euclid into one great chain, beginning from the axioms, and extending to the properties of the five regular solids; the whole digested into such admirable order, and explained with such clearness and precision, that no similar work of superior excellence has appeared, even in the present advanced state of mathematical science.

Archimedes had assailed the more difficult problems of geometry, and, by means of the method of Exhaustions, had demonstrated many curious and important theorems with regard to the lengths and areas of curves and the contents of solids. The same great geometer had given a beginning to physics-mathematical science, by investigating several propositions, and resolving several problems in Mechanics and Hydrostatics.

Apollonius had treated of the Conic Sections,—the curves which, after the circle, are the most simple and important in geometry; and, by his elaborate and profound researches, had laid the foundation of discoveries which were to illustrate very distant ages.

Another great invention, the Geometrical Analysis, ascribed very generally to the Platonic school, but most successfully cultivated by the geometer just named, is one of the most ingenious and beautiful contrivances in the Mathematics. It is a method of discovering truth by reasoning concerning things unknown, or propositions merely supposed, as if the one were given, or the other were really true. A quantity that is unknown, is only to be found from the relations which it bears to quantities that are known. By reasoning on these relations, we come at last to some one so simple, that the thing sought is thereby determined. By this analytical process, therefore, the thing required is discovered, and we are at the same time put in possession of an instrument by which new truths may be found out, and which, when skill in using it has been acquired by practice, may be applied to an unlimited extent.

A similar process enables us to discover the demonstrations of propositions, supposed to be true, or, if not true, to discover that they are false.

This method, to the consideration of which we shall again have an opportunity of returning; was perhaps the most valuable part of the ancient Mathematics, inasmuch as a method of discovering truth is more valuable than the truths it has already discovered. Unfortunately, however, the fragments containing this precious remnant had suffered more from the injuries of time than almost any other.

In the fifteenth century, Regiomontanus, already mentioned, is the mathematician who holds the highest rank. To him we owe many translations and commentaries, together with several original and valuable works of his own. Trigonometry, which had never been known to the Greeks as a separate science, and which took that form in Arabia, advanced, in the hands of Regiomontanus, to a great degree of perfection, and approached very near to the condition which it has attained at the present day. He also introduced the use of decimal fractions into arithmetic, and thereby gave to that scale its full extent, and to numerical computation the utmost degree of simplicity and enlargement which it seems capable of attaining.

This eminent man was cut off in the prime of life; and his untimely death, says Mr Smith, amidst innumerable projects for the advance-
ment of science, is even at this day a matter of regret. He was buried in the Pantheon at Rome; and the honours paid to him at his death prove that science had now become a distinction which the great were disposed to recognise.

Werner, who lived in the end of this century, is the first among the moderns who appears to have been acquainted with the geometrical analysis. His writings are very rare, and I have never had an opportunity of examining them. What I here assert is on the authority of Montuel, whose judgment in this matter may be safely relied on, as he has shown, by many instances, that he was well acquainted with the nature of the analysis referred to. It is not a little remarkable that Werner should have understood this subject, when we find many eminent mathematicians, long after his time, entirely unaquainted with it, and continually expressing their astonishment how the ancient geometers found out those simple and elegant constructions and demonstrations, of which they have given so many examples. In the days of Werner there was no ancient book known, except the *Data* of Euclid, from which any information concerning the geometrical analysis could be collected; and it is highly to his credit, that, without any other help, he should have come to the knowledge of a method not a little recondite in its principles, and among the finest inventions either of ancient or of modern science. Werner resolved, by means of it, Archimedes’s problem of cutting a sphere into two segments, having a given ratio to one another. He proposed also to translate, from the Arabic, the work of Apollonius, entitled *Sectio Rationis*, rightly judging it to be an elementary work in that analysis, and to come next after the *Data* of Euclid.

Benedetto, an Italian mathematician, appears also to have been very early acquainted with the principles of the same ingenious method, as he published a book on the geometrical analysis at Turin in 1585.

Maurolycus of Messina flourished in the middle of the sixteenth century, and is justly regarded as the first geometer of that age. Beside furnishing many valuable translations and commentaries, he wrote a treatise on the Conic Sections, which is highly esteemed. He endeavoured also to restore the fifth book of the Conics of Apollonius, in which that geometer treated of the *maxima* and *minima* of the conic sections. His writings all indicate a man of clear conceptions, and of a strong understanding; though he is taxed with having dealt in astrological prediction.

In the early part of the seventeenth century, Cavallieri was particularly distinguished, and made an advance in the higher geometry, which occupies the middle place between the discoveries of Archimedes and those of Newton.

For the purpose of determining the lengths and areas of curves, and the contents of solids contained within curve superficies, the ancients had invented a method, to which the name of Exhaustions has been given; and in nothing, perhaps, have they more displayed their powers of mathematical invention.

Whenever it is required to measure the space bounded by curve lines, the length of a curve, or the solid contained within a curve superficies, the investigation does not fall within the range of elementary geometry. Rectilinear figures are compared, on the principle of superposition, by help of the notion of equality which is derived from the coincidence of magnitudes both similar and equal. Two rectangles of equal bases and equal altitudes are held to be equal, because they can perfectly coincide. A rectangle and an oblique angled parallelogram, having equal bases and altitudes, are shown to be equal, because the same triangle, taken from the rectangle on one side, and added to it on the other, converts it into the parallelogram; and thus two magnitudes which are not similar, are shown to have equal areas. In like manner, if a triangle and a parallelogram have the same base and altitude, the triangle is shown to be half the parallelogram; because, if to the triangle there be added another, similar and equal to itself, but in the reverse position, the two together will compose

1 History of Astronomy, p. 90. Regiomontanus was born in 1436, and died in 1476.

a parallelogram, having the same base and altitude with the given triangle. The same is true of the comparison of all other rectilineal figures; and if the reasoning be carefully analyzed, it will always be found to be reducible to the primitive and original idea of equality, derived from things that coincide or occupy the same space; that is to say, the areas which are proved equal are always such as, by the addition or subtraction of equal and similar parts, may be rendered capable of coinciding with one another.

This principle, which is quite general with respect to rectilineal figures, must fail, when we would compare curvilinear and rectilineal spaces with one another, and make the latter serve as measures of the former; because no addition or subtraction of rectilineal figures can ever produce a figure which is curvilinear. It is possible, indeed, to combine curvilinear figures, so as to produce one that is rectilineal; but this principle is of very limited extent; it led to the quadrature of the _lunes_ of Hippocrates, but has hardly furnished any other result which can be considered as valuable in science.

In the difficulty to which geometers were thus reduced, it might occur, that by inscribing a rectilineal figure within a curve, and circumscribing another round it, two limits could be obtained, one greater and the other less than the area required. It was also evident, that by increasing the number, and diminishing the sides of those figures, the two limits might be brought continually nearer to one another, and of course nearer to the curvilinear area, which was always intermediate between them. In prosecuting this sort of approximation, a result was at length found out, which must have occasioned no less surprise than delight to the mathematician who first encountered it. The result I mean is, that, when the series of inscribed figures was continually increased, by multiplying the number of the sides, and diminishing their size, there was an assignable _rectilinear_ area, to which they continually approached, so as to come nearer it than any difference that could be supposed. The same limit would also be observed to belong to the circumscribed figures, and therefore it could be no other than the curvilinear area required.

It appears to have been to Archimedes that a truth of this sort first occurred, when he found that two-thirds of the rectangle, under the ordinate and abscissa of a parabola, was a limit always greater than the inscribed rectilinear figure, and less than the circumscribed. In some other curves, a similar conclusion was found; and Archimedes contrived to show that it was impossible to suppose that the area of the curve could differ from the said limit, without admitting that the circumscribed figure might become less, or the inscribed figure greater than the curve itself. The method of _Exhaustions_ was the name given to the indirect demonstrations thus formed. Though few things more ingenious than this method have been devised, and though nothing could be more conclusive than the demonstrations resulting from it, yet it laboured under two very considerable defects. In the first place, the process by which the demonstration was obtained was long and difficult; and, in the second place, it was indirect, giving no insight into the principle on which the investigation was founded. Of consequence, it did not enable one to find out similar demonstrations, nor increase one's power of making more discoveries of the same kind. It was a demonstration purely synthetical, and required, as all indirect reasoning must do, that the conclusion should be known before the reasoning is begun. A more compendious, and a more analytical method, was therefore much to be wished for, and was an improvement which, at a moment when the field of mathematical science was enlarging so fast, seemed particularly to be required.

Cavalleri, born at Milan in the year 1598, is the person by whom this great improvement was made. The principle on which he proceeded was, that areas may be considered as made up of an infinite number of parallel lines; solids of an infinite number of parallel planes; and even lines themselves, whether curve or straight, of an infinite number of points. The cubature of a solid being thus reduced to the summation of a series of planes, and the quadrature of a curve to the summation of a series of ordinates, each of the investigations was reduced to something more simple. It added to this simplicity not a little, that the sums of se-
ries are often more easily found when the number of terms is infinitely great, than when it is finite, and actually assigned.

It appears that a tract on Stereometry, written by Kepler, whose name will hereafter be often mentioned, first led Cavalleri to take this view of geometrical magnitudes. In that tract, which was published in 1615, the measurement of many solids was proposed, which had not before fallen under the consideration of mathematicians. Such, for example, was that of the solids generated by the revolution of a curve, not about its axis, but about any line whatsoever. Solids of that kind, on account of their affinity with the figure of casks, and vessels actually employed for containing liquids, appeared to Kepler to offer both curious and useful subjects of investigation. There were no less than eighty-four such solids, which he proposed for the consideration of mathematicians. He was, however, himself unequal to the task of resolving any but a small number of the simplest of these problems. In these solutions, he was bold enough to introduce into geometry, for the first time, the idea of infinitely great and infinitely small quantities; and by this apparent departure from the rigour of the science, he rendered it in fact a most essential service.

Kepler conceived a circle to be composed of an infinite number of triangles, having their common vertex in the centre of the circle, and their infinitely small bases in the circumference. It is to be remarked, that Galileo had also introduced the notion of infinitely small quantities, in his first dialogue, De Mechanica, where he treats of a cylinder cut out of a hemisphere; and he has done the same in treating of the acceleration of falling bodies. Cavalleri was the friend and disciple of Galileo, but much more profound in the Mathematics. In his hands the idea took a more regular and systematic form, and was explained in his work on Indivisibles, published in 1635.

The rule for summing an infinite series of terms in arithmetical progression had been long known, and the application of it to find the area of a triangle, according to the method of indivisibles, was a matter of no difficulty. The next step was, supposing a series of lines in arithmetical progression, and squares to be described on each of them, to find what ratio the sum of all these squares bears to the greatest square, taken as often as there are terms in the progression. Cavalleri showed, that when the number of terms is infinitely great, the first of these sums is just one-third of the second. This evidently led to the cubature of many solids.

Proceeding one step farther, he sought for the sum of the cubes of the same lines, and found it to be one-fourth of the greatest, taken as often as there are terms; and, continuing this investigation, he was able to assign the sum of the nth powers of a series in arithmetical progression, supposing always the difference of the terms to be infinitely small, and their number to be infinitely great. The number of curious results obtained from these investigations may be easily conceived. It gave, over geometrical problems of the higher class, the same power which the integral calculus, or the inverse method of fluxions does, in the case when the exponent of the variable quantity is an integer. The method of indivisibles, however, was not without difficulties, and could not but be liable to objection, with those accustomed to the rigorous exactness of the ancient geometry. In strictness, lines, however multiplied, can never make an area, or any thing but a line; nor can areas, however they may be added together, compose a solid, or any thing but an area.

This is certainly true, and yet the conclusions of Cavalleri, deduced on a contrary supposition, are true also. This happened, because, though the suppositions that a certain series of lines, infinite in number, and contiguous to one another, may compose a certain area, and that another series may compose another area, are neither of them true; yet is it strictly true, that the one of these areas must have to the other the same ratio which the sum of the one series of lines has to the sum of the other series. Thus, it is the ratios of the areas, and not the areas absolutely considered, which are determined by the reasonings of Cavalleri; and that this determination of their ratios is quite accurate, can very readily be demonstrated by the method of exhaustions.

The method of indivisibles, from the great
The mathematician of the greatest celebrity and the most singular facility with which it could be managed, furnished a most ready method of ascertaining the ratios of areas and solids to one another, and, therefore, scarcely seems to deserve the epithet which Newton himself bestows upon it, of involving in its conceptions something harsh, (durum) and not easy to be admitted. It was the doctrine of infinitely small quantities carried to the extreme, and gave at once the result of an infinite series of successive approximations. Nothing, perhaps, more ingenions, and certainly nothing more happy, ever was contrived, than to arrive at the conclusion of all these approximations, without going through the approximations themselves. This is the purpose served by introducing into Mathematics the consideration of quantities infinitely small in size, and infinitely great in number; ideas which, however inaccurate they may seem, yet, when carefully and analogically reasoned upon, have never led into error.

Geometry owes to Cavalleri, not only the general method just described, but many particular theorems, which that method was the instrument of discovering. Among these is the very remarkable proposition, that as four right angles, to the excess of the three angles of any spheri- cal triangle, above two right angles, so is the superficies of the hemisphere to the area of the triangle. At that time, however, science was advancing so fast, and the human mind was everywhere expanding itself with so much energy, that the same discovery was likely to be made by more individuals than one at the same time. It was not known in Italy in 1632, when this determination of the area of a spherical triangle was given by Cavalleri, that it had been published three years before by Albert Girard, a mathematician of the Low Countries, of whose inventive powers we shall soon have more occasion to speak.

The Cycloid afforded a number of problems, well calculated to exercise the proficients in the geometry of indivisibles, or of infinites. It is the curve described by a point in the circumference of a circle, while the circle itself rolls in a straight line along a plane. It is not quite certain when this curve, so remarkable for its curious properties, and for the place which it occupies in the history of geometry, first drew the attention of mathematicians. In the year 1639, Galileo informed his friend Torricelli, that, forty years before that time, he had thought of this curve, on account of its shape; and the graceful form it would give to arches in architecture. The same philosopher had endeavoured to find the area of the cycloid; but though he was one of those who first introduced the consideration of infinites into geometry, he was not expert enough in the use of that doctrine, to be able to resolve this problem. It is still more extraordinary, that the same problem proved too difficult for Cavalleri, though he certainly was in complete possession of the principles by which it was to be resolved. It is, however, not easy to determine whether it be to Torricelli, the scholar of Cavalleri, and his successor in genius and talents, or to Roberval, a French mathematician of the same period, and a man also of great originality and invention, that science is indebted for the first quadrature of the cycloid, or the proof that its area is three times that of its generating circle. Both these mathematicians laid claim to it. The French and Italians each took the part of their own countryman; and in their zeal have so perplexed the question, that it is hard to say on which side the truth is to be found. Torricelli, however, was a man of a mild, amiable, and candid disposition; Roberval, of a temper irritable, violent, and envious; so that, in as far as the testimony of the individuals themselves is concerned, there is no doubt which ought to preponderate. They had both the skill and talent which fitted them for this, or even for more difficult researches.

The other properties of this curve, those that respect its tangents, its length, its curvature, &c. exercised the ingenuity, not only of the geometers just mentioned, but of Wren, Wallis, Huygens, and, even after the invention of the integral calculus, of Newton, Leibnitz, and Bernoulli.

Roberval also improved the method of quadratures invented by Cavalleri, and extended his solutions to the case, when the powers of the terms in the arithmetical progression of which the sum was to be found were fractional; and
Wallis added the case when they were negative. Fermat, who, in his inventive resources, as well as in the correctness of his mathematical taste, yielded to none of his contemporaries, applied the consideration of infinitely small quantities to determine the *maxima* and *minima* of the ordinates of curves, as also their tangents. Barrow, somewhat later, did the same in England. Afterwards the geometry of infinites fell into the hands of Leibnitz and Newton, and acquired that new character which marks so distinguished an era in the mathematical sciences.

2. **ALGEBRA.**

It was not from Greece alone that the light proceeded which dispelled the darkness of the middle ages; for, with the first dawn of that light, a mathematical science, of a name and character unknown to the geometers of antiquity, was received in Europe from Arabia. As early as the beginning of the thirteenth century, Leonardo, a merchant of Pisa, having made frequent visits to the East, in the course of commercial adventure, returned to Italy enriched by the traffic, and instructed by the science of those countries. He brought with him the knowledge of Algebra; and a late writer quotes a manuscript of his, bearing the date of 1202, and another that of 1228. The importation of algebra into Europe is thus carried back nearly 200 years farther than has generally been supposed; for Leonardo has been represented as flourishing in the end of the fourteenth century, instead of the very beginning of the thirteenth. It appears, by an extract from his manuscript, published by the above author, that his knowledge of algebra extended as far as quadratic equations. The language was very imperfect, corresponding to the infancy of the science; the quantities and the operations being expressed in words, with the help only of a few abbreviations. The rule for resolving quadratics by completing the square, is demonstrated geometrically.

Though algebra was brought into Europe from Arabia, it is by no means certain that this last is its native country. There is, indeed, reason to think that its invention must be sought for much farther to the East, and probably not nearer than Indostan. We are assured by the Arabian writers, that Mahomet Ben Musa of Chorasan, distinguished for his mathematical knowledge, travelled, about the year 959, into India, for the purpose of receiving further instruction in the science which he cultivated. It is likewise certain, that some books, which have lately been brought from India into this country, treat of algebra in a manner that has every appearance of originality, or at least of being derived from no source with which we are at all acquainted.

Before the time of Leonardo of Pisa, an important acquisition, also from the East, had greatly improved the science of arithmetic. This was the use of the Arabic notation, and the contrivance of making the same character change its signification, according to a fixed rule, when it changed its position, being increased tenfold for every place that it advanced towards the left. The knowledge of this simple but refined artifice was learned from the Moors by Gerbert, a monk of the Low Countries, in the tenth century, and by him made known in Europe. Gerbert was afterwards Pope, by the name of Silvester the Second, but from that high dignity derived much less glory than from having instructed his countrymen in the decimal notation.

The writings of Leonardo, above mentioned, have remained in manuscript; and the first printed book in algebra is that of Lucas de Burgo, a Franciscan, who, towards the end of the fifteenth century, travelled, like Leonardo, into the East, and was there instructed in the principles of algebra. The characters employed in his work, as in those of Leonardo, are mere abbreviations of words. The letters *p* and *m*

1. He also was very skilful in the geometric analysis, and seems to have more thoroughly imbibed the spirit of that ingenious invention than any of the moderns before Halley.
2. *M. Cossali of Pisa, in a tract on the Origin of Algebra, 1797.*
Dissertation Third.

Denote *plus* and *minus*; and the rule is laid down, that, in multiplication, *plus* into *minus* gives *minus*, but *minus* into *minus* gives *plus*. Thus the first appearance of algebra is merely that of a system of short-hand writing, or an abbreviation of common language, applied to the solution of arithmetical problems. It was a contrivance merely to save trouble; and yet to this contrivance we are indebted for the most philosophical and refined art which men have yet employed for the expression of their thoughts. This scientific language, therefore, like those in common use, has grown up slowly, from a very weak and imperfect state, till it has reached the condition in which it is now found.

Though in all this the moderns received none of their information from the Greeks, yet a work in the Greek language, treating of arithmetical questions, in a manner that may be accounted algebraic, was discovered in the course of the next century, and given to the world, in a Latin translation, by Xylander, in 1575. This is the work of Diophantus of Alexandria, who had composed thirteen books of Arithmetical Questions, and is supposed to have flourished about 150 years after the Christian era. The questions he resolves are often of considerable difficulty; and a great deal of address is displayed in stating them, so as to bring out equations of such a form as to involve only one power of the unknown quantity. The expression is that of common language, abbreviated and assisted by a few symbols. The investigations do not extend beyond quadratic equations; they are, however, extremely ingenious, and prove the author to have been a man of talent, though the instrument he worked with was weak and imperfect.

The name of Cardan is famous in the history of algebra. He was born at Milan in 1501; and was a man in whose character good and ill, strength and weakness, were mixed up in singular profusion. With great talents and industry, he was capricious, insincere, and vain-glorious to excess. Though a man of real science, he professed divination, and was such a believer in the influence of the stars, that he died to accomplish an astrological prediction. He remains, accordingly, a melancholy proof, that there is no folly or weakness too great to be united to high intellectual attainments.

Before his time very little advance had been made in the solution of any equations higher than the second degree; except that, as we are told, about the year 1508, Scipio Ferrei, Professor of Mathematics at Bologna, had found out a rule for resolving one of the cases of cubic equations, which, however, he concealed, or communicated only to a few of his scholars. One of these, Florido, on the strength of the secret he possessed, agreeably to a practice then common among mathematicians, challenged Tartalea of Brescia, to contend with him in the solution of algebraic problems. Florido had at first the advantage; but Tartalea, being a man of ingenuity, soon discovered his rule, and also another much more general, in consequence of which he came off at last victorious. By the report of this victory, the curiosity of Cardan was strongly excited; for, though he was himself much versed in the Mathematics, he had not been able to discover a method of resolving equations higher than the second degree. By the most earnest and importunate solicitation, he wrung from Tartalea the secret of his rules, but not till he had bound himself, by promises and oaths, never to divulge them. Tartalea did not communicate the demonstrations, which, however, Cardan soon found out, and extended, in a very ingenious and systematic manner, to all cubic equations whatsoever. Thus possessed of an important discovery, which was at least in a great part his own, he soon forgot his promises to Tartalea, and published the whole in 1545, not concealing, however, what he owed to the latter. Though a proceeding so directly contrary to an express stipulation cannot be defended, one does not much regret the disappointment of any man who would make a mystery of knowledge, or keep his discoveries a secret, for purposes merely selfish.

Thus was first published the rule which still bears the name of Cardan, and which, at this day, marks a point in the progress of algebraic investigation, which all the efforts of succeeding analysts have hardly been able to go beyond. As to the general doctrine of equations, it ap-
pears that Cardan was acquainted both with the negative and positive roots, the former of which he called by the name of false roots. He also knew that the number of positive, or, as he called them, true roots, is equal to the number of the changes of the signs of the terms; and that the coefficient of the second term is the difference between the sum of the true and the false roots. He also had perceived the difficulty of that case of cubic equations, which cannot be reduced to his own rule. He was not able to overcome the difficulty, but showed how, in all cases, an approximation to the roots might be obtained.

There is the more merit in these discoveries, that the language of algebra still remained very imperfect, and consisted merely of abbreviations of words. Mathematicians were then in the practice of putting their rules into verse. Cardan has given his a poetical dress, in which, as may be supposed, they are very awkward and obscure; for whatever assistance in this way is given to the memory, must be entirely at the expense of the understanding. It is, at the same time, a proof that the language of algebra was very imperfect. Nobody now thinks of translating an algebraic formula into verse; because, if one has acquired any familiarity with the language of the science, the formula will be more easily remembered than any thing that can be substituted in its room.

Italy was not the only country into which the algebraic analysis had by this time found its way: in Germany it had also made considerable progress; and Stipheius, in a book of algebra, published at Nuremberg in 1544, employed the same numeral exponents of powers, both positive and negative, which we now use, as far as integer numbers are concerned; but he did not carry the solution of equations farther than the second degree. He introduced the same characters for plus and minus which are at present employed.

Robert Recorde, an English mathematician, published about this time, or a few years later, the first English treatise on Algebra, and he there introduced the same sign of equality which is now in use.

The properties of algebraic equations were discovered, however, very slowly. Pelletier, a French mathematician, in a treatise which bears the date of 1558, is the first who observed that the root of an equation is a divisor of the last term; and he remarked also this curious property of numbers, that the sum of the cubes of the natural numbers is the square of the sum of the numbers themselves.

The knowledge of the solution of cubic equations was still confined to Italy. Bombelli, a mathematician of that country, gave a regular treatise on Algebra, and considered, with very particular attention, the irreducible case of Cardan's rule. He was the first who made the remark, that the problems belonging to that case can always be resolved by the trisection of an arch. 1

Vieta was a very learned man, and an excellent mathematician, remarkable both for industry and invention. He was the first who employed letters to denote the known as well as the unknown quantities; so that it was with him that the language of algebra first became capable of expressing general truths, and attained to that extension which has since rendered it such a powerful instrument of investigation. He has also given new demonstrations of the rule for resolving cubic, and even biquadratic equations. He also discovered the relation between the roots of an equation of any degree, and the coefficients of its terms, though only in the case where none of the terms are wanting, and where all the roots are real or positive. It is, indeed, extremely curious to remark, how gradually the truths of this

1 A passage in Bombelli's book, relative to the algebra of India, has become more interesting, from the information concerning the science of that country, which has reached Europe within the last twenty years. He tells us, that he had seen in the Vatican library, a manuscript of a certain Diophantus, a Greek author, which he admired so much, that he had formed the design of translating it. He adds, that in this manuscript he had found the Indian authors often quoted; from which it appeared that algebra was known to the Indians before it was known to the Arabians. Nothing, however, of all this is to be found in the work of Diophantus, which was published about three years after the time when Bombelli wrote. As it is, at the same time, impossible that he could be so much mistaken about a manuscript which he had particularly examined, this passage remains a mystery, which those who are curious about the ancient history of science would be very glad to have unravelled. See Hutton's History of Algebra.
sort came in sight. This proposition belonged to a general truth, the greater part of which remained yet to be discovered. Vieta's treatises were originally published about the year 1600, and were afterwards collected into one volume by Schooten, in 1646.

In speaking of this illustrious man, Vieta, we must not omit his improvements in trigonometry, and still less his treatise on Angular Sections, which was a most important application of algebra to investigate the theorems, and resolve the problems of geometry. He also restored some of the books of Apollonius, in a manner highly creditable to his own ingenuity, but not perfectly in the taste of the Greek geometry; because, though the constructions are elegant, the demonstrations are all synthetical.

About the same period, algebra became greatly indebted to Albert Girard, a Flemish mathematician, whose principal work, *Invention Nouvelle en Algèbre*, was printed in 1669. This ingenious author perceived a greater extent, but not yet the whole of the truth, partially discovered by Vieta, viz. the successive formation of the coefficients of an equation from the sum of the roots; the sum of their products taken two and two; the same taken three and three, &c. whether the roots be positive or negative. He appears also to have been the first who understood the use of negative roots in the solution of geometrical problems, and is the author of the figurative expression, which gives to negative quantities the name of *quantities less than nothing*; a phrase that has been severely censured by those who forget that there are correct ideas, which correct language can hardly be made to express. The same mathematician conceived the notion of imaginary roots, and showed that the number of the roots of an equation could not exceed the exponent of the highest power of the unknown quantity. He was also in possession of the very refined and difficult rule, which forms the sums of the powers of the roots of an equation from the coefficients of its terms. This is the greatest list of discoveries which the history of any algebraist could yet furnish.

The person next in order, as an inventor in algebra, is Thomas Harriot, an English mathematician, whose book, *Arts Analyticas Praxis*, was published after his death, in 1631. This book contains the genesis of all equations, by the continued multiplication of simple equations; that is to say, it explains the truth in its full extent, to which Vieta and Girard had been approximating. By Harriot also, the method of extracting the roots of equations was greatly improved; the smaller letters of the alphabet, instead of the capital letters employed by Vieta, were introduced; and by this improvement, trifling, indeed, compared with the rest, the form and exterior of algebraic expression were brought nearer to those which are now in use.

I have been the more careful to note very particularly the degrees by which the properties of equations were thus unfolded, because I think it forms an instance hardly paralleled in science, where a succession of able men, without going wrong, advanced, nevertheless, so slowly in the discovery of a truth which, when known, does not seem to be of a very hidden and abstruse nature. Their slow progress arose from this, that they worked with an instrument, the use of which they did not fully comprehend, and employed a language which expressed more than they were prepared to understand;—a language which, under the notion, first of negative and then of imaginary quantities, seemed to involve such mysteries as the accuracy of mathematical science must necessarily refuse to admit.

The distinguished author of whom I have just been speaking was born at Oxford in 1560. He was employed in the second expedition sent out by Sir Walter Raleigh to Virginia, and on his return published an account of that country. He afterwards devoted himself entirely to the study of the Mathematics; and it appears from some of his manuscripts, lately discovered, that he observed the spots of the sun as early as December 1610, not more than a month later than Galileo. He also made observations on Jupiter's satellites, and on the comets of 1607 and of 1618.¹

¹ The manuscripts which contain these observations, and probably many other things of great interest, are preserved in the collection of the Earl of Egremont, having come into the possession of his family from Henry Percy, Earl of Northumberland, a most liberal patron of science, with whom Harriot appears to have chiefly lived after his return from Virginia.
The succession of discoveries above related brought the algebraic analysis, abstractly considered, into a state of perfection little short of that which it has attained at the present moment. It was thus prepared for the step which was about to be taken by Descartes, and which forms one of the most important epochs in the history of the mathematical sciences. This was the application of the algebraic analysis, to define the nature, and investigate the properties, of curve lines, and, consequently, to represent the notion of variable quantity. It is often said that Descartes was the first who applied algebra to geometry; but this is inaccurate; for such applications had been made before, particularly by Vieta, in his treatise on Angular Sections. The invention just mentioned is the undisputed property of Descartes, and opened up vast fields of discovery for those who were to come after him.

The work in which this was contained is a tract of no more than 100 quarto pages; and there is probably no book of the same size which has conferred so much and so just celebrity on its author. It was first published in 1637.

In the first of the three books into which the tract just mentioned is divided, the author begins with the consideration of such geometrical problems as may be resolved by circles and straight lines; and explains the method of constructing algebraic formulas, or of translating a truth from the language of algebra into that of geometry. He then proceeds to the consideration of the problem, known among the ancients by the name of the locus ad quatuor rectas, and treated of by Apollonius and Pappus. The algebraic analysis afforded a method of resolving this problem in its full extent; and the consideration of it is again resumed in the second book. The thing required is, to find the locus of a point, from which, if perpendiculars be drawn to four lines given in position, a given function of these perpendiculars, in which the variable quantities are only of two dimensions, shall be always of the same magnitude.¹ Descartes shows the locus, on this hypothesis, to be always a conic section; and he distinguishes the cases in which it is a circle, an ellipse, a parabola, or a hyperbola. It was an instance of the most extensive investigation which had yet been undertaken in geometry, though, to render it a complete solution of the problem, much more detail was doubtless necessary. The investigation is extended to the cases where the function, which remains the same, is of three, four, or five dimensions, and where the locus is a line of a higher order, though it may, in certain circumstances, become a conic section. The lines given in position may be more than four, or than any given number; and the lines drawn to them may either be perpendiculars, or lines making given angles with them. The same analysis applies to all the cases; and this problem, therefore, afforded an excellent example of the use of algebra in the investigation of geometrical propositions. The author takes notice of the unwillingness of the ancients to transfer the language of arithmetic into geometry, so that they were forced to have recourse to very circuitous methods of expressing those relations of quantity in which powers beyond the third are introduced. Indeed, to deliver investigation from those modes of expression which involve the composition of ratios, and to substitute in their room the multiplication of the numerical measures, is of itself a very great advantage, arising from the introduction of algebra into geometry.

In this book also, an ingenious method of drawing tangents to curves is proposed by Descartes, as following from his general principles; and it is an invention with which he appears to have been particularly pleased. He says, "Nee verebor dicere, problema huc non modo eorum quae seio utilissimum et generalissimum esse, sed etiam eorum que in geometria seire unquam desideraverim."² This passage is not a little characteristic of Descartes, who was very much disposed to think well of what he had done himself, and even to suppose that it could not easily

¹ It will easily be perceived, that the word \textit{function} is not contained in the original enunciation of the problem. It is a term but lately introduced into mathematical language, and affords here, as on many other occasions, a more general and more concise expression than could be otherwise obtained.
² \textit{Cartesi Geometria}, p. 40.
be rendered more perfect. The truth, however, is, that his method of drawing tangents is extremely operose, and is one of those hasty views which, though ingenious and even profound, require to be vastly simplified, before they can be reduced to practice. Fermat, the rival and sometimes the superior of Descartes, was far more fortunate with regard to this problem, and his method of drawing tangents to curves is the same in effect that has been followed by all the geometers since his time; while that of Descartes, which could only be valued when the other was unknown, has been long since entirely abandoned. The remainder of the second book is occupied with the consideration of the curves, which have been called the Ovals of Descartes, and with some investigations concerning the centres of lenses; the whole indicating the hand of a great master, and deserving the most diligent study of those who would become acquainted with this great enlargement of mathematical science.

The third book of the geometry treats of the construction of equations by geometric curves, and it also contains a new method of resolving biquadratic equations.

The leading principles of algebra were now unfolded, and the notation was brought, from a mere contrivance for abridging common language, to a system of symbolical writing, admirably fitted to assist the mind in the exercise of thought.

The happy idea, indeed, of expressing quantity, and the operations on quantity, by conventional symbols, instead of representing the first by real magnitudes, and enunciating the second in words, could not but make a great change on the nature of mathematical investigation. The language of Mathematics, whatever may be its form, must always consist of two parts; the one denoting quantities simply, and the other denoting the manner in which the quantities are combined, or the operations understood to be performed on them. Geometry expresses the first of these by real magnitudes, or by what may be called natural signs; a line by a line, an angle by an angle, an area by an area, &c.; and it describes the latter by words. Algebra, on the other hand, denotes both quantity, and the operations on quantity, by the same system of conventional symbols. Thus, in the expression $x^3 - a x^2 + b^3 = c$, the letters a, b, x, denote quantities, but the terms x^3, $a x^2$, &c. denote certain operations performed on those quantities, as well as the quantities themselves; x^3 is the quantity x raised to the cube; and ax^2 the same quantity x raised to the square, and then multiplied into a, &c.; the combination, by addition or subtraction, being also expressed by the signs + and −.

Now, it is when applied to this latter purpose that the algebraic language possesses such exclusive excellence. The mere magnitudes themselves might be represented by figures, as in geometry, as well as in any way whatever; but the operations they are to be subjected to, if described in words, must be set before the mind slowly, and in succession, so that the impression is weakened, and the clear apprehension rendered difficult. In the algebraic expression, on the other hand, so much meaning is concentrated into a narrow space, and the impression made by all the parts is so simultaneous, that nothing can be more favourable to the exertion of the reasoning powers, to the continuance of their action, and their security against error. Another advantage resulting from the use of the same notation, consists in the reduction of all the different relations among quantities to the simplest of those relations, that of equality, and the expression of it by equations. This gives a great facility of generalization, and of comparing quantities with one another. A third arises from the substitution of the arithmetical operations of multiplication and division, for the geometrical method of the composition and resolution of ratios. Of the first of these, the idea is so clear, and the work so simple; of the second, the idea is comparatively so obscure, and the process so complex, that the substitution of the former for the latter could not but be accompanied with great advantage. This is, indeed, what constitutes the great difference in practice between the algebraic and the geometrical method of treating quantity. When the quantities are of a complex nature, so as to go beyond what in algebra is called the third power, the geometrical expression is so circuit-
ous and involved, that it renders the reasoning most laborious and intricate. The great facility of generalization in algebra, of deducing one thing from another, and of adapting the analysis to every kind of research, whether the quantities be constant or variable, finite or infinite, depends on this principle more than any other. Few of the early algebraists seem to have been aware of these advantages.

The use of the signs *plus* and *minus* has given rise to some dispute. These signs were at first used, the one to denote addition, the other subtraction, and for a long time were applied to no other purpose. But as, in the multiplication of a quantity, consisting of parts connected by those signs, into another quantity similarly composed, it was always found, and could be universally demonstrated, that, in uniting the particular products of which the total was made up, those of which both the factors had the sign *minus* before them, must be added into one sum with those of which all the factors had the sign *plus*, while those of which one of the factors had the sign *plus*, and the other the sign *minus*, must be subtracted from the same,—this general rule came to be more simply expressed by saying, that in multiplication like signs gave *plus*, and that unlike signs gave *minus*.

Hence the signs *plus* and *minus* were considered, not as merely denoting the relation of one quantity to another placed before it, but, by a kind of fiction, they were considered as denoting qualities inherent in the quantities to the names of which they were prefixed. This fiction was found extremely useful, and it was evident that no error could arise from it. It was necessary to have a rule for determining the sign belonging to a product, from the signs of the factors composing that product, independently of every other consideration; and this was precisely the purpose for which the above fiction was introduced. So necessary is this rule in the generalizations of algebra, that we meet with it in Diophantus, notwithstanding the imperfection of the language he employed; for he states, that $\Delta \nu \mu \tau \varsigma \zeta$ into $\Delta \nu \psi \iota \varsigma$ gives $\tau \varsigma \omega \xi \iota \varsigma \zeta$, &c. The reduction, therefore, of the operations on quantity to an arithmetical form, necessarily involves this use of the signs *plus* or *minus*; that is, their application to denote something like absolute qualities in the objects they collect together. The attempts to free algebra from this use of the signs have of course failed, and must ever do so, if we would preserve to that science the extent and facility of its operations.

Even the most scrupulous purist in mathematical language must admit, that no real error is ever introduced by employing the signs in this most abstract sense. If the equation $x^2 + px^2 + qx + r = a$, be said to have one positive and two negative roots, this is certainly as exceptional an application of the term *negative* as any that can be proposed; yet, in reality, it means nothing but this intelligible and simple truth, that $x^2 + px^2 + qx + r = (x-a)(x-b)(x-c)$; or that the former of these quantities is produced by the multiplication of the three binomial factors, $x-a, x-b, x-c$.

We might say the same nearly as to imaginary roots: they show that the simple factors cannot be found, but that the quadratic factors may be found; and they also point out the means of discovering them.

The aptitude of these same signs to denote contrariety of position among geometric magnitudes, makes the foregoing application of them infinitely more extensive and more indispensable.

From the same source arises the great simplicity introduced into many of the theorems and rules of the mathematical sciences. Thus, the rule for finding the latitude of a place from the sun's meridian altitude, if we employ the signs *plus* and *minus* for indicating the position of the sun and of the place relatively to the equator, is enunciated in one simple proposition, which includes every case, without any thing either complex or ambiguous. But if this is not done,—if the signs *plus* and *minus* are not employed, there must be at least two rules; one when the sun and place are on the same side of the equator, and another when they are on different sides. In the more complicated calculations of spherical trigonometry, this holds still more remarkably. When one would accommodate such rules to those who are unacquainted with the use of the algebraic signs, they are perhaps not to be expressed in less than four, or even six.
different propositions; whereas, if the use of these signs is supposed, the whole is comprehended in a single sentence. In such cases, it is obvious that both the memory and understanding derive great advantage from the use of the signs, and profit by a simplification, which is the work entirely of the algebraic language, and cannot be imitated by any other.

That I might not interrupt the view of improvements so closely connected with one another, I have passed over one of the discoveries, which does the greatest honour to the seventeenth century, and which took place near the beginning of it.

As the accuracy of astronomical observation had been continually advancing, it was necessary that the correctness of trigonometrical calculation, and of course its difficulty, should advance in the same proportion. The signs and tangents of angles could not be expressed with sufficient correctness without decimal fractions, extending to five or six places below unity; and when to three such numbers a fourth proportional was to be found, the work of multiplication and division became extremely laborious. Accordingly, in the end of the sixteenth century, the time and labour consumed in such calculations had become excessive, and were felt as extremely burdensome by the mathematicians and astronomers all over Europe. Napier of Merchiston, whose mind seems to have been peculiarly turned to arithmetical researches, and who was also devoted to the study of astronomy, had early sought for the means of relieving himself and others from this difficulty. He had viewed the subject in a variety of lights, and a number of ingenious devices had occurred to him, by which the tediousness of arithmetical operations might, more or less completely, be avoided. In the course of these attempts, he did not fail to observe, that whenever the numbers to be multiplied or divided were terms of a geometrical progression, the product or the quotient must also be a term of that progression, and must occupy a place in it pointed out by the places of the given numbers, so that it might be found from mere inspection, if the progression were far enough continued. If, for instance, the third term of the progression were to be multiplied by the seventh, the product must be the tenth; and if the twelfth were to be divided by the fourth, the quotient must be the eighth; so that the multiplication and division of such terms was reduced to the addition and subtraction of the numbers which indicated their places in the progression.

This observation, or one very similar to it, was made by Archimedes, and was employed by that great geometer to convey an idea of a number too vast to be correctly expressed by the arithmetical notation of the Greeks. Thus far, however, there was no difficulty; and the discovery might certainly have been made by men much inferior either to Napier or Archimedes. What remained to be done, what Archimedes did not attempt, and what Napier completely performed, involved two great difficulties. It is plain, that the resource of the geometrical progression was sufficient, when the given numbers were terms of that progression; but if they were not, it did not seem that any advantage could be derived from it. Napier, however, perceived, and it was by no means obvious, that all numbers whatsoever might be inserted in the progression, and have their places assigned in it. After conceiving the possibility of this, the next difficulty was, to discover the principle, and to execute the arithmetical process, by which these places were to be ascertained. It is in these two points that the peculiar merit of his invention consists; and at a period when the nature of series, and when every other resource of which he could avail himself, were so little known, his success argues a depth and originality of thought which, I am persuaded, have rarely been surpassed.

The way in which he satisfied himself that all numbers might be intercalated between the terms of the given progression, and by which he found the places they must occupy, was founded on a most ingenious supposition; that of two points describing two different lines, the one with a constant velocity, and the other with a velocity always increasing in the ratio of the space the point had already gone over: the first of these would generate magnitudes in arithmetical, and the second magnitudes in geometrical progression. It is plain, that all numbers whatsoever would find their places among the magnitudes so gene-
rated; and, indeed, this view of the subject is as simple and profound as any which, after two hundred years, has yet presented itself to mathematicians. The mode of deducing the results has been simplified; but it can hardly be said that the principle has been more clearly developed.

I need not observe, that the numbers which indicate the places of the terms of the geometrical progression are called by Napier the logarithms of those terms.

Various systems of logarithms, it is evident, may be constructed according to the geometrical progression assumed; and of these, that which was first contrived by Napier, though the simplest, and the foundation of the rest, was not so convenient for the purposes of calculation, as one which soon afterwards occurred, both to himself and his friend Briggs, by whom the actual calculation was performed. The new system of logarithms was an improvement, practically considered; but in as far as it was connected with the principle of the invention, it is only of secondary consideration. The original tables had been also somewhat embarrassed by too close a connection between them and trigonometry. The new tables were free from this inconvenience.

It is probable, however, that the greatest inventor in science was never able to do more than to accelerate the progress of discovery, and to anticipate what time, "the author of authors," would have gradually brought to light. Though logarithms had not been invented by Napier, they would have been discovered in the progress of the algebraic analysis, when the arithmetic of powers and exponents, both integral and fractional, came to be fully understood. The idea of considering all numbers as powers of one given number would then have readily occurred, and the doctrine of series would have greatly facilitated the calculations which it was necessary to undertake. Napier had none of these advantages, and they were all supplied by the resources of his own mind. Indeed, as there never was any invention for which the state of knowledge had less prepared the way, there never was any where more merit fell to the share of the inventor.

His good fortune, also, not less than his great sagacity, may be remarked. Had the invention of logarithms been delayed to the end of the seventeenth century, it would have come about without effort, and would not have conferred on the author the high celebrity which Napier so justly derives from it. In another respect he has also been fortunate. Many inventions have been eclipsed or obscured by new discoveries; or they have been so altered by subsequent improvements, that their original form can hardly be recognised, and, in some instances, has been entirely forgotten. This has almost always happened to the discoveries made at an early period in the progress of science, and before their principles were fully unfolded. It has been quite otherwise with the invention of logarithms, which came out of the hands of the author so perfect, that it has never received but one material improvement,—that which it derived, as has just been said, from the ingenuity of his friend in conjunction with his own. Subsequent improvements in science, instead of offering any thing that could supplant this invention, have only enlarged the circle to which its utility extended. Logarithms have been applied to numberless purposes, which were not thought of at the time of their first construction. Even the sagacity of their author did not see the immense fertility of the principle he had discovered: he calculated his tables merely to facilitate arithmetical, and chiefly trigonometrical computation; and little imagined that he was at the same time constructing a scale whereon to measure the density of the strata of the atmosphere, and the heights of mountains; that he was actually computing the areas and the lengths of innumerable curves, and was preparing for a calculus which was yet to be discovered, many of the most refined and most valuable of its resources. Of Napier, therefore, if of any man, it may safely be pronounced, that his name will never be eclipsed by any one more conspicuous, or his invention superseded by any thing more valuable.

As a geometer, Napier has left behind him a noble monument in the two trigonometrical theorems, which are known by his name, and which appear first to have been communicated.
in writing to Cavalleri, who has mentioned them with great eulogy. They are theorems not a little difficult, and of much use, as being par-

cularly adapted to logarithmic calculation. They were published in the *Canon Mirificus Logarith- morum*, at Edinburgh, in 1614.

SECTION II.

EXPERIMENTAL INVESTIGATION.

In this section I shall begin with a short view of the state of Physical Knowledge before the introduction of the Inductive Method; I shall next endeavour to explain that method by an analysis of the *Novum Organum*; and shall then inquire how far the principles established in that work have actually contributed to the advance-

ment of Natural Philosophy.

1. ANCIENT PHYSICS.

Though the phenomena of the material world could not but early excite the curiosity of a being who, like man, receives his strongest impressions from without, yet an accurate know-

ledge of those phenomena, and their laws, was not to be speedily acquired. The mere extent and variety of the objects were, indeed, such ob-

stacles to that acquisition, as could not be sur-

mounted but in the course of many ages. Man could not at first perceive from what point he must begin his inquiries, in what direction he must carry them on, or by what rules he must be guided. He was like a traveller going forth to explore a vast and unknown wilderness, in which a multitude of great and interesting ob-

jects presented themselves on every side, while there was no path for him to follow, no rule to direct his survey, and where the art of observ-

ing, and the instruments of observation, must equally be the work of his own invention. In these circumstances, the selection of the objects to be studied was the effect of instinct rather than of reason, or of the passions and emotions, more than of the understanding. When things new, and unlike those which occurred in the course of every day’s experience, presented themselves, they excited wonder or surprise, and created an anxiety to discover some principle which might connect them with the appearances commonly observed. About these last, men felt no desire to be further informed; but when the common order of things was violated, and something new or singular was produced, they began to exa-

mine into the fact, and attempted to inquire into the cause. Nobody sought to know why a stone fell to the ground, why smoke ascended, or why the stars revolved round the earth. But if a fiery meteor shot across the heavens,—if the flames of a volcano burst forth,—or if an earthquake shook the foundations of the world, terror and curiosity were both awakened; and when the former emotion had subsided, the latter was sure to become active. Thus, to trace a resemblance between the events with which the observer was most familiar, and those to which he was less accustomed, and which had excited his wonder, was the first ob-

ject of inquiry, and produced the first advances towards generalization and philosophy.

This principle, which it were easy to trace,

1 *Wallis, Opera Math.* tom. II. p. 875.
2 A reprint of the *Canon Mirificus*, from the original edition, is given in the sixth volume of the great *Thesaurus*, in which Baron Maseres, with his usual zeal and intelligence, has collected and illustrated every thing of importance that has been written on the subject of logarithms. See *Scriptores Logarithmici*, 4to vol. VI. p. 475.
3 *La maraviglia*

Dell’ ignoranza e la figlia,
F del sapere
La madre.

Diss. III. Part I. 3 L
from tribes the most rude and barbarous, to na-
tions the most highly refined, was what yielded
the first attempts toward classification and ar-
range ment, and enabled man, out of individuals
subject to perpetual change, to form certain
fixed and permanent objects of knowledge,—
the species, genera, orders, and classes, into
which he has distributed these individuals. By
this effort of mental abstraction, he has created
to himself a new and intellectual world, free
from those changes and vicissitudes to which
all material things are destined. This, too, is a
work not peculiar to the philosopher, but, in a
certain degree, is performed by every man who
compares one thing with another, and who em-
ploy s the terms of ordinary language.

Another great branch of knowledge is occupi-
ped, not about the mere arrangement and clas-
sification of objects, but about events or changes,
the laws which those changes observe, and the
causes by which they are produced. In a sci-
ence which treated of events and of change, the
nature and properties of motion came of course
to be studied, and the ancient philosophers na-
turally enough began their inquiries with the
definition of motion, or the determination of
that in which it consists. Aristotle's definition
is highly characteristic of the vagueness and
obscurity of his physical speculations. He calls
motion "the act of a being in power, as far
as in power;" words to which it is impossi-
ble that any distinct idea can ever have been
annexed.

The truth is, however, that the best defini-
tion of motion can be of very little service in
Physics. Epicurus defined it to be the "change
of place," which is, no doubt, the simplest and
best definition that can be given; but it must,
at the same time, be confessed, that neither he,
nor the moderns who have retained his defini-
tion, have derived the least advantage from it
in their subsequent researches. The properties,
or, as they are called, the laws of motion, can-
ot be derived from mere definition; they must
be sought for in experience and observation, and
are not to be found without a diligent compar-
ison, and scrupulous examination of facts. Of
such an examination, neither Aristotle, nor any
other of the ancients, ever conceived the ne-
cessity; and hence those laws remained quite
unknown throughout all antiquity.

When the laws of motion were unknown, the
other parts of Natural Philosophy could make no
great advances. Instead of conceiving that there
resides in body a natural and universal tendency
to persevere in the same state, whether of rest
or of motion, they believed that terrestrial bo-
dies tended naturally either to fall to the ground,
or to ascend from it, till they attained their own
place; but that, if they were impelled by an ob-
lique force, then their motion became unnatural
or violent, and tended continually to decay. With
the heavenly bodies, again, the natural motion
was circular and uniform, eternal in its course,
but perpetually varying in its direction. Thus,
by the distinction between natural and violent
motion among the bodies of the earth, and the
distinction between what we may call the laws
of motion in terrestrial and celestial bodies, the
ancients threw into all their reasonings upon this
fundamental subject a confusion and perplexi-
ety, from which their philosophy never was de-
livered.

There was, however, one part of physical
knowledge in which their endeavours were at-
tended with much better success, and in which
they made important discoveries. This was in
the branch of mechanics which treats of the
action of forces in equilibrio, and producing not
motion but rest; a subject which may be under-
stood, though the laws of motion are unknown.

The first writer on this subject is Archimedes.
He treated of the lever, and of the centre of
gravity; and has shown that there will be an
equilibrium between two heavy bodies connect-
ed by an inflexible rod or lever, when the point
in which the lever is supported is so placed be-
tween the bodies, that their distances from it
are inversely as their weights. Great ingenuity
is displayed in this demonstration; and it is re-
markable, that the author borrows no principle
from experiment, but establishes his conclusion
entirely by reasoning a priori. He assumes, in-
deed, that equal bodies, at the ends of the equal
arms of a lever, will balance one another; and
also, that a cylinder, or parallelopiped of homo-
genous matter, will be balanced about its centre
of magnitude. These, however, are not inferences
from experience; they are, properly speaking, conclusions deduced from the principle of the sufficient reason.

The same great geometer gave a beginning to the science of hydrostatics, and discovered the law which determines the loss of weight sustained by a body on being immersed in water, or in any other fluid. His demonstration rests on a principle, which he lays down as a postulatum, that, in water, the parts which are less pressed are always ready to yield in any direction to those that are more pressed; and from this, by the application of mathematical reasoning, the whole theory of floating bodies is derived. The above is the same principle on which the modern writers on hydrostatics proceed; they give it, not as a postulatum, but as constituting the definition of a fluid.

Archimedes, therefore, is the person who first made the application of Mathematics to Natural Philosophy. No individual, perhaps, ever laid the foundation of more great discoveries than that geometer, of whom Wallis has said with so much truth, "Vir stupendas sagacitatis, qui prima fundamenta posuit inventionum fere omnium, in quibus promovendis atas nostra gloriatur."

The mechanical inquiries, begun by the geometer of Syracuse, were extended by Ctesibius and Hero; by Anthemius of Tralles; and, lastly, by Pappus Alexandrinus. Ctesibius and Hero were the first who analyzed mechanical engines, reducing them all to combinations of five simple mechanical contrivances, to which they gave the name of Δωσμε, or Powers, the same which they retain at the present moment.

Even in mechanics, however, the success of these investigations was limited; and failed in those cases where the resolution of forces is necessary, that principle being then entirely unknown. Hence the force necessary to sustain a body on an inclined plane, is incorrectly determined by Pappus, and serves to mark a point to which the mechanical theories of antiquity did not extend.

In another department of physical knowledge, astronomy, the endeavours of the ancients were also accompanied with success. I do not here speak of their astronomical theories, which were, indeed, very defective, but of their discovery of the apparent motions of the heavenly bodies, from the observations begun by Hipparchus, and continued by Ptolemy. In this their success was great; and while the earth was supposed to be at rest, and while the instruments of observation had but a very limited degree of accuracy, a nearer approach to the truth was probably not within the power of human ingenuity. Mathematical reasoning was very skilfully applied; and no men whatever, in the same circumstances, are likely to have performed more than the ancient astronomers. They succeeded, because they were observers, and examined carefully the motions which they treated of. The philosophers, again, who studied the motion of terrestrial bodies, either did not observe at all, or observed so slightly, that they could obtain no accurate knowledge; and in general they knew just enough of the facts to be misled by them.

The opposite ways which the ancients thus took to study the Heavens and the Earth, observing the one, and dreaming, as one may say, over the other, though a striking inconsistency, is not difficult to be explained.

No information at all could be obtained in astronomy, without regular and assiduous observation, and without instruments capable of measuring angles, and of measuring time, either directly or indirectly. The steadiness and regularity of the celestial motions seemed to invite the most scrupulous attention. On the other hand, as terrestrial objects were always at hand, and spontaneously falling under men's view, it seemed unnecessary to take much trouble to become acquainted with them; and as for applying measures, their irregularity appeared to render every idea of such proceeding nugatory. The Aristotelian philosophy particularly favoured this prejudice, by representing the earth, and all things on its surface, as full of irregularity and confusion, while the principles of heat and cold, dryness and moisture, were in a state of perpetual warfare. The unfortunate division of motion into natural and violent, and the distinction, still more unfortunate, between the properties of motion and of body, in the heavens and on the earth, prevented all intercourse between the astronomer and the naturalist, and all trans-
ference of the maxims of the one to the speculations of the other.

Though, on account of this inattention to experiment, nothing like the true system of Natural Philosophy was known to the ancients, there are, nevertheless, to be found in their writings many brilliant conceptions, several fortunate conjectures, and gleams of the light which was afterwards to be so generally diffused.

Anaxagoras and Empedocles, for example, taught that the moon shines by light borrowed from the sun, and were led to that opinion, not only from the phases of the moon, but from its light being weak, and unaccompanied by heat. That it was a habitable body, like the earth, appears to be a doctrine as old as Orpheus; some lines, ascribed to that poet, representing the moon as an earth, with mountains and cities on its surface.

Democritus supposed the spots on the face of the moon to arise from the inequalities of the surface, and from the shadows of the more elevated parts projected on the plains. Every one knows how conformable this is to the discoveries made by the telescope.

Plutarch considers the velocity of the moon's motion as the cause which prevents that body from falling to the earth, just as the motion of a stone in a sling prevents it from falling to the ground. The comparison is, in a certain degree, just, and clearly implies the notion of centrifugal force; and gravity may also be considered as pointed at for the cause which gives the moon a tendency to the earth. Here, therefore, a foundation was laid for the true philosophy of the celestial motions; but it was laid without effect. It was merely the conjecture of an ingenious mind, wandering through the regions of possibility, guided by no evidence, and having no principle which could give stability to its opinions. Democritus, and the authors of that physical system which Lucretius has so beautifully illustrated, were still more fortunate in some of their conjectures. They taught that the Milky Way is the light of a great number of small stars, very close to one another; a magnificent conception, which the latest improvements of the telescope have fully verified. Yet, as if to convince us that they derived this knowledge from no pure or certain source, the same philosophers maintained, that the sun and the moon are bodies no larger than they appear to us to be.

Very just notions concerning comets were entertained by some of the ancients. The Chaldeans considered those bodies as belonging to the same order with the planets; and this was also the opinion of Anaxagoras, Pythagoras, and Democritus. The remark of Seneca on this subject is truly philosophical, and contains a prediction which has been fully accomplished: "Why do we wonder that comets, which are so rare a spectacle in the world, observe laws which to us are yet unknown, and that the beginning and end of motions, so seldom observed, are not yet fully understood?"—*Veniet tempus, quo ista qua nowc latent, in lucem dies extrahat, et longioris evis diligentia: ad inquisitionem tandem etas una non sufficit. Veniet tempus, quo posteri nostri tam aperta nos nescisse mirentur.*

It was, however, often the fate of such truths to give way to error. The comets, which these ancient philosophers had ranked so justly with the stars, were degraded by Aristotle into meteors floating in the earth's atmosphere; and this was the opinion concerning them which ultimately prevailed.

But, notwithstanding the above, and a few other splendid conceptions which shine through the obscurity of the ancient Physics, the system, taken on the whole, was full of error and inconsistency. Truth and falsehood met almost on terms of equality; the former, separated from its root, experience, found no preference above the latter; to the latter, in fact, it was generally forced to give way, and the dominion of error was finally established.

One ought to listen, therefore, with caution to the encomiums sometimes bestowed on the philosophy of those early ages. If these encomiums respected only the talents, the genius, the taste of the great masters of antiquity, we would subscribe to them without any apprehen-
sion of going beyond the truth. But if they extend to the methods of philosophizing, and the discoveries actually made, we must be excused for entering our dissent, and exchanging the language of panegyric for that of apology. The infancy of science could not be the time when its attainments were the highest; and before we suffer ourselves to be guided by the veneration of antiquity, we ought to consider in what real antiquity consists. With regard to the progress of knowledge and improvement, "we are more ancient than those who went before us." The human race has now more experience than in the generations that are past, and of course may be expected to have made higher attainments in science and philosophy. Compared with Natural Philosophy, as it now exists, the ancient Physics are rude and imperfect. The speculations contained in them are vague and unsatisfactory, and of little value, but as they elucidate the history of the errors and illusions to which the human mind is subject. Science was not merely stationary, but often retrograde; the earliest opinions were frequently the best; and the reasonings of Democritus and Anaxagoras were in many instances more solid than those of Plato and Aristotle. Extreme credulity disgraced the speculations of men who, however ingenious, were little acquainted with the laws of nature, and unprovided with the great criterion by which the evidence of testimony can alone be examined. Though observations were sometimes made, experiments were never instituted; and philosophers who were little attentive to the facts which spontaneously offered, did not seek to increase their number by artificial combinations. Experience, in those ages, was a light which darted a few tremulous and uncertain rays on some small portions of the field of science; but men had not acquired the power over that light which now enables them to concentrate its beams, and to fix them steadily on whatever object they wish to examine. This power is what distinguishes the modern Physics, and is the cause why later philosophers, without being more ingenious than their predecessors, have been infinitely more successful in the study of nature.

2. NOVUM ORGANUM.

The defects which have been ascribed to the ancient Physics were not likely to be corrected in the course of the middle ages. It is true, that during those ages a science of pure experiment had made its appearance in the world, and might have been expected to remedy the greatest of these defects, by turning the attention of philosophers to experience and observation. This effect, however, was far from being immediately produced; and none who professed to be in search of truth ever wandered over the regions of fancy, in paths more devious and eccentric, than the first experimenters in Chemistry. They had become acquainted with a series of facts so unlike to any thing already known, that the ordinary principles of belief were shaken or subverted, and the mind laid open to a degree of credulity far beyond any with which the philosophers of antiquity could be reproached. An unlooked-for extension of human power had taken place; its limits were yet unknown; and the boundary between the possible and the impossible was no longer to be distinguished. The adventurers in an unexplored country, given up to the guidance of imagination, pursued objects which the kindness, no less than the wisdom of nature, has rendered unattainable by man; and in their speculations peopled the air, the earth, and all the elements, with spirits and genii, the invisible agents destined to connect together all the facts which they knew, and all those which they hoped to discover. Chemistry, in this state, might be said to have an elective attraction for all that was most absurd and extravagant in the other parts of knowledge; alchemy was its immediate offspring, and it allied itself in succession with the dreams of the Cabalists, the Rosicrucians, and the Theosophers. Thus a science, founded in experiment, and destined one day to afford...
such noble examples of its use, exhibited for several ages little else than a series of illusory pursuits, or visionary speculations, while now and then a fact was accidentally discovered.

Under the influence of these circumstances arose Paracelsus, Van Helmont, Fludd, Cardan, and several others, conspicuous no less for the weakness than the force of their understandings; men who united extreme credulity, the most extravagant pretensions, and the most excessive vanity, with considerable powers of invention, a complete contempt for authority, and a desire to consult experience; but destitute of the judgment, patience, and comprehensive views, without which the responses of that oracle are never to be understood. Though they appealed to experience, and disclaimed subjection to the old legislators of science, they were in too great haste to become legislators themselves, and to deduce an explanation of the whole phenomena of nature from a few facts, observed without accuracy, arranged without skill, and never compared or confronted with one another. Fortunately, however, from the turn which their inquiries had taken, the ill done by them has passed away, and the good has become permanent. The reveries of Paracelsus have disappeared, but his application of Chemistry to Pharmacy has conferred a lasting benefit on the world. The Arcaeus of Van Helmont, and the army of spiritual agents with which the discovery of elastic fluids had filled the imagination of that celebrated empiric, are laughed at, or forgotten; but the fluids which he had the sagacity to distinguish, form, at the present moment, the connecting principles of the new Chemistry.

Earlier than any of the authors just named, but in a great measure under the influence of the same delusions, Roger Bacon appears to have been more fully aware than any of them of the use of experiment, and of mathematical reasoning, in physical and mechanical inquiries. But, in the thirteenth century, an appeal from the authority of the schools, even to nature herself, could not be made with impunity. Bacon, accordingly, incurred the displeasure both of the University and of the Church; and this forms one of his claims to the respect of posterity, as it is but fair to consider persecution inflicted by the ignorant and bigoted as equivalent to praise bestowed by the liberal and enlightened.

Much more recently, Gilbert, in his treatise on the Magnet, had given an example of an experimental inquiry, carried on with more correctness, and more enlarged views, than had been done by any of his predecessors. Nevertheless, in the end of the sixteenth century, it might still be affirmed, that the situation of the great avenue to knowledge was fully understood by none, and that its existence, to the bulk of philosophers, was utterly unknown.

It was about this time that Francis Bacon (Lord Verulam) began to turn his powerful and creative mind to contemplate the state of human knowledge, to mark its imperfections, and to plan its improvement. One of the considerations which appears to have impressed his mind most forcibly, was the vagueness and uncertainty of all the physical speculations then existing, and the entire want of connection between the sciences and the arts.

Though these two things are in their nature so closely united, that the same truth which is a principle in science becomes a rule in art, yet there was at that time hardly any practical improvement which had arisen from a theoretical discovery. The natural alliance between the knowledge and the power of man seemed entirely interrupted; nothing was to be seen of the mutual support which they ought to afford to one another; the improvement of art was left to the slow and precarious operation of chance, and that of science to the collision of opposite opinions.

"But whence," said Bacon, "can arise such vagueness and sterility in all the physical systems which have hitherto existed in the world? It is not certainly from any thing in nature itself; for the steadiness and regularity of the laws by which it is governed, clearly mark them out as objects of certain and precise knowledge. Neither can it arise from any want of ability in those who have pursued such inquiries, many of whom have been men of the highest talent and genius of the ages in which they lived; and it can, therefore, arise from nothing else but the perverseness and insufficiency of the methods
that have been pursued. Men have sought to make a world from their own conceptions, and to draw from their own minds all the materials which they employed; but if, instead of doing so, they had consulted experience and observation, they would have had facts, and not opinions, to reason about, and might have ultimately arrived at the knowledge of the laws which govern the material world."

"As things are at present conducted," he adds, "a sudden transition is made from sensible objects and particular facts to general propositions, which are accounted principles, and round which, as round so many fixed poles, disputation and argument continually revolve. From the propositions thus hastily assumed, all things are derived, by a process compendious and precipitate, ill suited to discovery, but wonderfully accommodated to debate. The way that promises success is the reverse of this. It requires that we should generalize slowly, going from particular things to those that are but one step more general; from those to others of still greater extent, and so on to such as are universal. By such means, we may hope to arrive at principles, not vague and obscure, but luminous and well defined, such as nature herself will not refuse to acknowledge."

Before laying down the rules to be observed in this inductive process, Bacon proceeds to enumerate the causes of error,—the Idols, as he terms them, in his figurative language, or false divinities, to which the mind had so long been accustomed to bow. He considered this enumeration as the more necessary, that the same idols were likely to return, even after the reformation of science, and to avail themselves of the real discoveries that might have been made, for giving a colour to their deceptions.

These idols he divides into four classes, to which he gives names, fantastical, no doubt, but, at the same time, abundantly significant:

<table>
<thead>
<tr>
<th>Idola Tribus</th>
<th>Idols of the Tribe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specus</td>
<td>of the Den</td>
</tr>
<tr>
<td>Fori</td>
<td>of the Forum</td>
</tr>
<tr>
<td>Theatri</td>
<td>of the Theatre</td>
</tr>
</tbody>
</table>

1. The Idols of the Tribe, or of the race, are the causes of error founded on human nature in general, or on principles common to all mankind. "The mind," he observes, "is not like a plain mirror, which reflects the images of things exactly as they are; it is like a mirror of an uneven surface, which combines its own figure with the figures of the object it represents."

Among the idols of this class, we may reckon the propensity which there is in all men to find in nature a greater degree of order, simplicity, and regularity, than is actually indicated by observation. Thus, as soon as men perceived the orbits of the planets to return into themselves, they immediately supposed them to be perfect circles, and the motion in those circles to be uniform; and to these hypotheses, so rashly and gratuitously assumed, the astronomers and mathematicians of all antiquity laboured incessantly to reconcile their observations.

The propensity which Bacon has here characterized so well, is the same that has been, since his time, known by the name of the spirit of system. The prediction, that the sources of error would return, and were likely to infest science in its most flourishing condition, has been fully verified with respect to this illusion, and in the case of sciences which had no existence at the time when Bacon wrote. When it was ascertained, by observation, that a considerable part of the earth's surface consists of minerals, disposed in horizontal strata, it was immediately concluded, that the whole exterior crust of the earth is composed, or has been composed, of such strata, continued all round without interruption; and on this, as on a certain and general fact, entire theories of the earth have been constructed.

There is no greater enemy which science has to struggle with than this propensity of the mind; and it is a struggle from which science is never likely to be entirely relieved; because, unfortunately, the illusion is founded on the same principle from which our love of knowledge takes its rise.

2. The Idols of the Den are those that spring

1 Novum Organum, lib. i. aph. 41.
from the peculiar character of the individual. Besides the causes of error which are common to all mankind, each individual, according to Bacon, has his own dark cavern or den, into which the light is imperfectly admitted, and in the obscurity of which a tutelary idol lurks, at whose shrine the truth is often sacrificed.

One great and radical distinction in the capacities of men is derived from this, that some minds are best adapted to mark the differences, others to catch the resemblances, of things. Steady and profound understandings are disposed to attend carefully, to proceed slowly, and to examine the most minute differences; while those that are sublime and active are ready to lay hold of the slightest resemblances. Each of these easily runs into excess; the one by catching continually at distinctions, the other at affinities.

The studies, also, to which a man is addicted, have a great effect in influencing his opinions. Bacon complains, that the chemists of his time, from a few experiments with the furnace and the crucible, thought that they were furnished with principles sufficient to explain the structure of the universe; and he censures Aristotle for having depraved his Physics so much with his Dialectics, as to render the former entirely a science of words and controversy. In like manner, he blames a philosopher of his own age, Gilbert, who had studied magnetism to good purpose, for having proceeded to form out of it a general system of philosophy. Such things have occurred in every period of science. Thus, electricity has been applied to explain the motion of the heavenly bodies; and, of late, galvanism and electricity together have been held out as explaining not only the affinities of Chemistry, but the phenomena of gravitation, and the laws of vegetable and animal life. It were a good caution for a man who studies nature, to distrust those things with which he is particularly conversant, and which he is accustomed to contemplate with pleasure.

3. The Idols of the Forum are those that arise out of the commerce or intercourse of society, and especially from language, or the means by which men communicate their thoughts to one another.

Men believe that their thoughts govern their words; but it also happens, by a certain kind of reaction, that their words frequently govern their thoughts. This is the more pernicious, that words, being generally the work of the multitude, divide things according to the lines most conspicuous to vulgar apprehensions. Hence, when words are examined, few instances are found in which, if at all abstract, they convey ideas tolerably precise and well defined. For such imperfections there seems to be no remedy, but by having recourse to particular instances, and diligently comparing the meanings of words with the external archetypes from which they are derived.

4. The Idols of the Theatre are the last, and are the deceptions which have taken their rise from the systems or dogmas of the different schools of philosophy. In the opinion of Bacon, as many of these systems as had been invented, so many representations of imaginary worlds had been brought upon the stage. Hence the name of idola theatri. They do not enter the mind imperceptibly, like the other three; a man must labour to acquire them, and they are often the result of great learning and study.

“Philosophy,” said he, “as hitherto pursued, has taken much from a few things, or a little from a great many; and, in both cases, has too narrow a basis to be of much duration or utility.” The Aristotelian philosophy is of the latter kind; it has taken its principles from common experience, but without due attention to the evidence or the precise nature of the facts; the philosopher is left to work out the rest from his own invention. Of this kind, called by Bacon the sophistical, were almost all the physical systems of antiquity.

When philosophy takes all its principles from a few facts, he calls it empirical,—such as was that of Gilbert, and of the chemists.

It should be observed, that Bacon does not charge the Physics of antiquity with being absolutely regardless of experiment. No system, indeed, however fantastical, has ever existed, to which that reproach could be applied in its full extent; because, without some regard to fact, no theory can ever become in the least degree plausible. The fault lies not, therefore, in the
absolute rejection of experience; but in the unskilful use of it; in taking up principles lightly from an inaccurate and careless observation of many things; or, if the observations have been more accurate, from those made on a few facts, unwarrantably generalized.

Bacon proceeds to point out the circumstances, in the history of the world, which had hitherto favoured these perverse modes of philosophizing: He observes, that the periods during which science had been cultivated were not many, nor of long duration. They might be reduced to three; the first with the Greeks; the second with the Romans; and the third with the western nations, after the revival of letters. In none of all these periods had much attention been paid to Natural Philosophy, the great parent of the sciences.

With the Greeks, the time was very short during which physical science flourished in any degree. The seven Sages, with the exception of Thales, applied themselves entirely to morals and politics; and in later times, after Socrates had brought down philosophy from the heavens to the earth, the study of nature was generally abandoned. In the Roman republic, the knowledge most cultivated, as might be expected among a martial and ambitious people, was such as had a direct reference to war and politics. During the empire, the introduction and establishment of the Christian religion drew the attention of men to theological studies, and the important interests which were then at stake left but a small share of talent and ability to be occupied in inferior pursuits. The vast hierarchy, which assumed the command both of the sword and the sceptre, while it occupied and enslaved the minds of men, looked with suspicion on sciences which could not easily be subjected to its control.

At the time, therefore, when Bacon wrote, it might truly be said, that a small portion, even of the learned ages, and of the abilities of learned men, had been dedicated to the study of Natural Philosophy. This served, in his opinion, to account for the imperfect state in which he found human knowledge in general; for he thought it certain, that no part of knowledge could attain much excellence without having its foundation laid in physical science.

He goes on to observe, that the end and object of knowledge had been very generally mistaken; that many, instead of seeking through it to improve the condition of human life, by new inventions and new resources, had aimed only at popular applause, and had satisfied themselves with the knowledge of words more than of things; while others, who were exceptions to this rule, had done still farther wrong, by directing their pursuits to objects imaginary and unattainable. The alchemists, for example, alternately the dupes of their own credulity and of their own imposture, had amazed and tormented the world with hopes which were never to be realized. Others, if possible more visionary, had promised to prolong life, to extinguish disease and infirmity, and to give man a command over the world of spirits, by means of mystic incantations. "All this," says he, "is the mere boasting of ignorance; for, when the knowledge of nature shall be rightly pursued, it will lead to discoveries that will as far excel the pretended powers of magic, as the real exploits of Caesar and Alexander exceed the fabulous adventures of Arthur of Britain, or Amadis of Gaul."

Again, the reverence for antiquity, and the authority of great names, have contributed much to retard the progress of science. Indeed, the notion of antiquity which men have taken up seems to be erroneous and inconsistent. It is the duration of the world, or of the human race, as reckoned from the extremity that is past, and not from the point of time which is present, that constitutes the true antiquity to which the advancement of science may be conceived to bear some proportion; and just as we expect more wisdom and experience in an old than in a young man, we may expect more knowledge of nature from the present than from any of the ages that are past.

"It is not to be esteemed a small matter in this estimate, that, by the voyages and travels of these later times, so much more of nature has

1 Novum Organum, lib. i. aph. 87.
been discovered than was known at any former period. It would, indeed, be disgraceful to mankind, if, after such tracts of the material world have been laid open, which were unknown in former times,—so many seas traversed,—so many countries explored,—so many stars discovered,—philosophy, or the intelligible world, should be circumscribed by the same boundaries as before."

Another cause has greatly obstructed the progress of philosophy, viz. that men inquire only into the causes of rare, extraordinary; and great phenomena, without troubling themselves about the explanation of such as are common, and make a part of the general course of nature. It is, however, certain, that no judgment can be formed concerning the extraordinary and singular phenomena of nature, without comparing them with those that are ordinary and frequent. The laws which are every day in action, are those which is it most important for us to understand; and this is well illustrated by what has happened in the scientific world since the time when Bacon wrote. The simple falling of a stone to the ground has been found to involve principles which are the basis of all we know in mechanical philosophy. Without accurate experiments on the descent of bodies at the surface of the earth, the objections against the earth’s motion could not have been answered, the inertia of body would have remained unknown, and the nature of the force which retains the planets in their orbits could never have been investigated. Nothing, therefore, can be more out of its place than the fastidiousness of those philosophers who suppose things to be unworthy of study, because, with respect to ordinary life, they are trivial and unimportant. It is an error of the same sort which leads men to consider experiment, and the actual application of the hands, as unworthy of them, and unbecoming the dignity of science.

"There are some," says Bacon, "who, delighting in mere contemplation, are offended with our frequent reference to experiments and operations to be performed by the hand, things which appear to them mean and mechanical; but these men do in fact oppose the attainment of the object they profess to pursue, since the exercise of contemplation, and the construction and invention of experiments, are supported on the same principles, and perfected by the same means."

After these preliminary discussions, the great restorer of philosophy proceeds, in the second book of the Novum Organum, to describe and exemplify the nature of the Induction, which he deems essential to the right interpretation of nature. The first object must be to prepare a history of the phenomena to be explained, in all their modifications and varieties. This history is to comprehend not only all such facts as spontaneously offer themselves, but all the experiments instituted for the sake of discovery, or for any of the purposes of the useful arts. It ought to be composed with great care; the facts accurately related, and distinctly arranged; their authenticity diligently examined; those that rest on doubtful evidence, though not rejected, being noted as uncertain, with the grounds of the judgment so formed. This last is very necessary; for facts often appear incredible, only because we are ill informed, and cease to appear marvellous, when our knowledge is further extended.

All such facts, however, as appear contrary to the ordinary course of our experience, though thus noted down and preserved, must have no weight allowed them in the first steps of investigation, and are to be used only when the general principle, as it emerges from the inductive process, serves to increase their probability. This record of facts is what Bacon calls Natural History; and it is material to take notice of the comprehensive sense in which that term is understood through all his writings. According to the arrangement of the sciences, which he has explained in his treatise on the Advancement of Knowledge, all learning is classed relatively to the three intellectual faculties of Memory, Reason, and Imagination. Under the

1 Novum Organum, lib. 1, aph. 119.
first of these divisions is contained all that is merely Narration, or History, of whatever kind it may be. Under the second are contained the different sciences, whether they respect the Intellectual or the Material world. Under the third are comprehended Poetry and the Fine Arts. It is with the first of these classes only that we are at present concerned. The first two divisions of it are Sacred and Civil History, the meaning of which is sufficiently understood. The third division is Natural History, which comprehends the description of the facts relative to inanimate matter, and to all animals, except man. Natural History is again subdivided into three parts: 1. The history of the phenomena of nature, which are uniform; 2. Of the facts which are anomalous or extraordinary; 3. Of the processes in the different arts.

We are not to wonder at finding the processes of the arts thus enrolled among the materials of Natural History. The powers which act in the processes of nature and in those of art are precisely the same, and are only directed, in the latter case, by the intention of man, toward particular objects. In art, as Bacon elsewhere observes, man does nothing more than bring things nearer to one another; or carry them farther off; the rest is performed by nature, and, on most occasions, by means of which we are quite ignorant.

Thus, when a man fires a pistol, he does nothing but make a piece of flint approach a plate of hardened steel, with a certain velocity. It is nature that does the rest;—that makes the small red-hot and fluid globules of steel, which the flint had struck off, communicate their fire to the gunpowder, and, by a process but little understood, set loose the elastic fluid contained in it; so that an explosion is produced, and the ball propelled with astonishing velocity. It is obvious that, in this instance, art only gives certain powers of nature a particular direction.

To the rules which have been given from Bacon, for the composition of Natural History, I may be permitted to add this other,—that theoretical language should, as much as possible, be avoided. Appearances ought to be described in terms which involve no opinion with respect to their causes. These last are the objects of separate examination, and will be best understood if the facts are given fairly, without any dependence on what should yet be considered as unknown. This rule is very essential where the facts are in a certain degree complicated; for it is then much easier to describe with a reference to theory than without it. It is only from a skilful physician that you can expect a description of a disease which is not full of opinions concerning its cause. A similar observation might be made with respect to agriculture; and with respect to no science more than geology.

The natural history of any phenomenon, or class of phenomena, being thus prepared, the next object is, by a comparison of the different facts, to find out the cause of the phenomenon, its forms, in the language of Bacon, or its essence. The form of any quality in body is something convertible with that quality; that is, where it exists, the quality is present, and where the quality is present, the form must be so likewise. Thus, if transparency in bodies be the thing inquired after, the form of it is something in which, wherever it is found, there is transparency; and, vice versa, wherever there is transparency, that which we have called the form is likewise present. Thus, if we observe that an object is transparent, the form, then, differs in nothing from the cause; only we apply the word cause where it is event or change that is the effect. When the effect or result is a permanent quality, we speak of the form or essence.

Two other objects, subordinate to forms, but often essential to the knowledge of them, are also occasionally subjects of investigation. These are the latent process, and the latent schematism; latens processus, et latens schematismus. The former is the secret and invisible progress by which sensible changes are brought about, and seems, in Bacon's conception, to involve the principle, since called the law of continuity, according to which, no change, however small, can be effected but in time. To know the relation between the time and the change effected in it, would be to have a perfect knowledge of the latent process. In the firing of a cannon, for example, the succession of events during the short interval between the application of the match and the expulsion of the ball, constitutes
a latent process of a very remarkable and complicated nature, which, however, we can now trace with some degree of accuracy. In mechanical operations, we can often follow this process still more completely. When motion is communicated from any body to another, it is distributed through all the parts of that other, by a law quite beyond the reach of sense to perceive directly, but yet subject to investigation, and determined by a principle which, though late in being discovered, is now generally recognised. The applications of this mechanical principle are perhaps the instances in which a latent, and, indeed, a very recondite process, has been most completely analyzed.

The latent schematism is that invisible structure of bodies, on which so many of their properties depend. When we inquire into the constitution of crystals, or into the internal structure of plants, &c. we are examining into the latent schematism. We do the same when we attempt to explain elasticity, magnetism, gravitation, &c. by any peculiar structure of bodies, or any arrangement of the particles of matter.\(^1\)

In order to inquire into the form or cause of any thing by induction, having brought together the facts, we are to begin with considering what things are thereby excluded from the number of possible forms. This exclusion is the first part of the process of induction: it confines the field of hypothesis, and brings the true explanation within narrower limits. Thus, if we were inquiring into the quality which is the cause of transparency in bodies; from the fact that the diamond is transparent, we immediately exclude rarity or porosity, as well as fluidity, from those causes, the diamond being a very solid and dense body.

Negative instances, or those where the given form is wanting, are also to be collected.

That glass, when pounded, is not transparent, is a negative fact, and of considerable importance when the form of transparency is inquired into; also, that collections of vapour, such as clouds and fogs, have not transparency, are negative facts of the same kind. The facts thus collect-

ed, both affirmative and negative, may, for the sake of reference, be reduced into tables. Bacon exemplifies his method on the subject of Heat; and, though his collection of facts be imperfect, his method of treating them is extremely judicious, and the whole disposition highly interesting.\(^2\) He here proposes, as an experiment, to try the reflection of the heat of opaque bodies.\(^3\) He mentions also the vitrum calendare, or thermometer, which was just then coming into use. His reflections, after finishing his enumeration of facts, show how sensible he was of the imperfect state of his own knowledge.\(^4\)

After a great number of exclusions have left but a few principles, common to every case, one of these is to be assumed as the cause; and, by reasoning from it synthetically, we are to try if it will account for the phenomena.

So necessary did this exclusive process appear to Bacon, that he says, "It may perhaps be competent to angels, or superior intelligences; to determine the form or essence directly, by affirmations from the first consideration of the subject. But it is certainly beyond the power of man, to whom it is only given to proceed at first by negatives, and, in the last place, to end in an affirmative, after the exclusion of every thing else."\(^5\)

The method of induction, as laid down here, is to be considered as applicable to all investigations where experience is the guide, whether in the moral or natural world. "Some may doubt whether we propose to apply our method of investigation to natural philosophy only; or to other sciences, such as logic, ethics, politics. We answer, that we mean it to be so applied. And as the common logic, which proceeds by the syllogism, belongs not only to natural philosophy, but to all the sciences, so our logic, which proceeds by induction, embraces every thing."\(^6\)

Though this process had been pursued by a person of much inferior penetration and sagacity to Bacon, he could not but have discovered that all facts, even supposing them truly and accurately recorded, are not of equal value in

1. *Novum Organum*, lib. ii. aph. 5, 6, &c.
the discovery of truth. Some of them show the thing sought for in its highest degree, some in its lowest; some exhibit it simple and uncombined, in others it appears confused with a variety of circumstances. Some facts are easily interpreted, others are very obscure, and are understood only in consequence of the light thrown on them by the former. This led our author to consider what he calls Prerogatives Instantiarum, the comparative value of facts as means of discovery, or as instruments of investigation. He enumerates twenty-seven different species, and enters at some length into the peculiar properties of each. I must content myself, in this sketch, with describing a few of the most important, subjoining, as illustrations, sometimes the examples which the author himself has given, but more frequently such as have been furnished by later discoveries in science.

I. The first place in this classification is assigned to what are called instantiae solitariae, which are either examples of the same quality existing in two bodies which have nothing in common but that quality, or of a quality differing in two bodies which are in all other respects the same. In the first instance, the bodies differ in all things but one; in the second, they agree in all but one. The hypotheses that in either case can be entertained, concerning the cause or form of the said quality, are reduced to a small number; for, in the first, they can involve none of the things in which the bodies differ; and, in the second, none of those in which they agree.

Thus, of the cause or form of colour now inquired into, instantiae solitariae are found in crystals, prisms of glass, drops of dew, which occasionally exhibit colour, and yet have nothing in common with the stones, flowers, and metals, which possess colour permanently, except the colour itself. Hence Bacon concludes, that colour is nothing else than a modification of the rays of light, produced, in the first case, by the different degrees of incidence; and, in the second, by the texture or constitution of the surfaces of bodies. He may be considered as very fortunate in fixing on these examples; for it was by means of them that Newton afterwards found out the composition of light.

Of the second kind of instantiae solitariae, Bacon mentions the white or coloured veins which occur in limestone or marble, and yet hardly differ in substance or in structure from the ground of the stone. He concludes, very justly, from this, that colour has not much to do with the essential properties of body.

II. The instantiae migrantes exhibit some nature or property of body, passing from one condition to another, either from less to greater, or from greater to less; arriving nearer perfection in the first case, or verging towards extinction in the second.

Suppose the thing inquired into were the cause of whiteness in bodies; an instantiae migrans is found in glass, which, when entire, is without colour, but, when pulverized, becomes white. The same is the case with water unbroken, and water dashed into foam. In both cases, the separation into particles produces whiteness. So also the communication of fluidity to metals by the application of heat, and the destruction of that fluidity by the abstraction of heat, are examples of both kinds of the instantiae migrantes. Instances of this kind are very powerful for reducing the cause inquired after into a narrow space, and for removing all the accidental circumstances. It is necessary, however, as Bacon very justly remarks, that we should consider not merely the case when a certain quality is lost, and another produced, but the gradual changes made in those qualities during their migration, viz. the increase of the one, and the corresponding diminution of the other. The quantity which changes proportionally to another, is connected with it either as cause and effect, or as a collateral effect of the same cause. When, again, we find two qualities which do not increase proportionally, they afford a negative instance, and assure us that the two are not connected simply as cause and effect.

The mineral kingdom is the great theatre of the instantiae migrantes, where the same nature is seen in all gradations, from the most perfect

1 Novum Organum, lib. ii. aph. 23.
state, till it become entirely evanescent. Such are the shells which we see so perfect in figure and structure in limestone, and gradually losing themselves in the finer marbles, till they can no longer be distinguished. The use, also, of one such fact to explain or interpret another, is nowhere so well seen as in the history of the mineral kingdom.

III. In the third place are the instantiae ostensive, which Bacon also calls elucscientia and predominantes. They are the facts which show some particular nature in its highest state of power and energy, when it is either freed from the impediments which usually counteract it, or is itself of such force as entirely to repress those impediments. For as every body is susceptible of many different conditions, and has many different forms combined in it, one of them often confines, depresses, and hides another entirely, so that it is not easily distinguished. There are found, however, some subjects in which the nature inquired into is completely displayed, either by the absence of impediments, or by the predominance of its own power.

Bacon instances the thermometer, or vitrum calendare, as exhibiting the expansive power of heat, in a manner more distinct and measurable than in common cases. To this example, which is well chosen, the present state of science enables us to add many others.

If the weight of the air were inquired into, the Torricellian experiment, or the barometer, affords an ostensive instance, where the circumstance which conceals the weight of the atmosphere in common cases, namely, the pressure of it in all directions, being entirely removed, that weight produces its full effect, and sustains the whole column of mercury in the tube. The barometer affords also an example of the instantia migrans, when the change is not total, but only partial or progressive. If it be the weight of the air which supports the mercury in the tube of the barometer, when that weight is diminished, the mercury ought to stand lower. On going to the top of a mountain, the weight of the incumbent air is diminished, because a shorter column of air is to be sustained; the mercury in the barometer ought therefore to sink, and it is found to do so accordingly.

These are instances in which the action of certain principles is rendered visible by the removal of all the opposing forces. One may be given where it is the distinct and decisive nature of the fact which leads to the result.

Suppose it were inquired, whether the present land had ever been covered by the sea. If we look at the stratified form of so large a portion of the earth's surface, we cannot but conclude it to be very probable that such land was formed at the bottom of the sea. But the decisive proof is afforded by the shells and corals, or bodies having the perfect shape of shells and corals, and of other marine exuviae, which are found imbedded in masses of the most solid rock, and often on the tops of very high mountains. This leaves no doubt of the formation of the land under the sea, though it does not determine whether the land, since its formation, has been elevated to its present height, or the sea depressed to its present level. The decision of that question requires other facts to be consulted.

IV. The instantia clandestina, which is, as it were, opposed to the preceding, and shows some power or quality just as it is beginning to exist, and in its weakest state, is often very useful in the generalization of facts. Bacon also gave to this the fanciful name of instantia crepusculi.

An example of this may be given from hydrostatics. If the suspension of water in capillary tubes be inquired into, it becomes very useful to view that effect when it is least, or when the tube ceases to be capillary, and becomes a vessel of a large diameter. The column is then reduced to a slender ring of water, which goes all round the vessel; and this, though now so inconsiderable, has the property of being independent of the size of the vessel, so as to be in all cases the same when the materials are the same. As there can be no doubt that this ring proceeds from the attraction of the sides, and of the part immediately above the water, so there can be no doubt that the capillary suspension, in part at least, is derived from the same cause. An effect of the opposite kind takes place when a glass vessel is filled with mercury.

V. Next to these may be placed what are called instantiae manipulares, or collective instances,
that is, general facts, or such as comprehend a
great number of particular cases. As human
knowledge can but seldom reach the most gene-
ral cause or form, such collective instances are
often the utmost extent to which our general-
ization can be carried. They have great value
on this account, as they likewise have on ac-
count of the assistance which they give to fur-
ther generalization.

Of this we have a remarkable instance in one
of the most important steps ever taken in any
part of human knowledge. The laws of Kepler
are facts of the kind now treated of, and consist
of three general truths, each belonging to the
whole planetary system; and it was by means
of them that Newton discovered the principle of
 gravitation. The first is, that the planets all
move in elliptical orbits, having the sun for their
common focus; the next, that about this focus
the radius vector of each planet describes equal
areas in equal times; the third and last, that
the squares of the periodic times of the planets
are as the cubes of their mean distances from
the sun. The knowledge of each of these was
the result of much research, and of the compa-
rison of a vast multitude of observations, inso-
much that it may be doubted if ever three truths
in science were discovered at the expense of so
much labour and patience, or with the exertion
of more ingenuity and invention in imagining
and combining observations. These discoveries
were all made before Bacon wrote, but he is
silent concerning them; for the want of mathe-
ematical knowledge concealed from his view some
of the most splendid and interesting parts of
science.

Astronomy is full of such collective instances,
and affords them, indeed, of the second and
third order, that is to say, two or three times
generalized. The astronomer observes nothing
but that a certain luminous disk, or perhaps
merely a luminous point, is in a certain position,
in respect of the planes of the meridian and the
horizon, at a certain moment of time. By com-
paring a number of such observations, he finds
that this luminous point moves in a certain plane,
with a certain velocity, and performs a revolu-
tion in a certain time. Thus, the periodic time
of a planet is itself a collective fact, or a single
fact expressing the result of many hundred ob-
servations. This holds with respect to each
planet, and with respect to each element, as it is
called, of the planet's orbit, every one of which
is a general fact, expressing the result of an in-
definite number of particulars. This holds still
more remarkably of the inferences which extend
to the distances of the planet from the earth, or
from the sun. The laws of Kepler are therefore
collective facts, of the second, or even a higher
order; or such as comprehend a great number
of general facts, each of which is itself a general
fact, including many particulars. It is much to
the credit of astronomy, that, in all this process,
no degree of truth or certainty is sacrificed; and
that the same demonstrative evidence is preserv-
ed from the lowest to the highest point. No-
things but the use of mathematical reasoning
could secure this advantage to any of the sciences.

VI. In the next place, may be ranked the in-
stances which Bacon calls analogous, or parallel.
These consist of facts, between which an analo-
gy or resemblance is visible in some particu-
lars, notwithstanding great diversity in all the
rest. Such are the telescope and microscope, in
the works of art, compared with the eye in the
works of nature. This, indeed, is an analogy
which goes much beyond the mere exterior; it
extends to the internal structure, and to the
principle of action, which is the same in the eye
and in the telescope,—to the latent schematism,
in the language of Bacon, as far as material
substance is concerned. It was the experiment
of the camera obscura which led to the discovery
of the formation of the image of external ob-
jects in the bottom of the eye by the action of
the crystalline lens, and the other humours of
which the eye is formed.

Among the instances of conformity, those are
the most useful which enable us to compare pro-
ductions of an unknown formation, with similar
productions of which the formation is well under-
stood. Such are basalt, and the other trap rocks,
compared with the lava thrown out from volca-
noes. They have a structure so exactly similar,
that it is hardly possible to doubt that their ori-
gin is the same, and that they are both produced
by the action of subterraneous fire. There are,
however, amid their similarity, some very re-
markable differences in the substances which they contain, the trap rocks containing calcareous spar, and the lava never containing any. On the supposition that they are both of igneous origin, is there any circumstance, in the conditions in which heat may have been applied to them, which can account for this difference? Sir James Hall, in a train of most philosophical and happily-contrived experiments, has explained the nature of those conditions, and has shown that the presence of calcareous spar, or the want of it, may arise from the greater or less compression under which the fusion of the basalt was performed. This has served to explain a great difficulty in the history of the mineral kingdom.

Comparative anatomy is full of analogies of this kind, which are most instructive, and useful guides to discovery. It was by remarking in the blood-vessels a contrivance similar to the valves used in hydraulic engines, for preventing the counter-current of a fluid, that Harvey was led to the discovery of the circulation of the blood. The analogies between natural and artificial productions are always highly deserving of notice.

The facts of this class, however, unless the analogy be very close, are apt to mislead, by representing accidental regularity as if it were constant. Of this we have an example in the supposed analogy between the colours in the prismatic spectrum and the divisions of the monochord. The colours in the prismatic spectrum do not occupy the same proportion of it in all cases; the analogy depends on the particular kind of glass, not on any thing that is common to all refraction. The tendency of man to find more order in things than there actually exists, is here to be cautiously watched over.

VII. Monadic, or singular facts, are the next in order. They comprehend the instances which are particularly distinguished from all those of the genus or species to which they belong. Such is the sun among the stars, the magnet among stones, mercury among metals, boiling fountains among springs, the elephant among quadrupeds. So also among the planets, Saturn is singular from his ring; the new planets are so likewise from their small size, from being extrazodiacal, &c.

Connected with these are the irregular and deviating instances, in which nature seems to depart from her ordinary course. Earthquakes, extraordinary tempests, years of great scarcity, winters of singular severity, &c. are of this number. All such facts ought to be carefully collected; and there should be added an account of all monstrous productions, and of every thing remarkable for its novelty and its rareness. Here, however, the most severe criticism must be applied; every thing connected with superstition is suspicious, as well as whatever relates to alchemy or magic.

A set of facts, which belongs to this class, consists of the instances in which stones have so often of late years been observed to fall from the heavens. Those stones are so unlike other atmospheric productions, and their origin must be so different from that of other minerals, that it is scarcely possible to imagine anything more anomalous, and more inconsistent with the ordinary course of our experience. Yet the existence of this phenomenon is so well authenticated by testimony, and by the evidence arising from certain physical considerations, that no doubt with respect to it can be entertained, and it must therefore be received, as making a part of the natural history of meteors. But as every fact, or class of facts, which is perfectly singular, must be incapable of explanation, and can only be understood when its resemblance to other things has been discovered; so at present we are unable to assign the cause of these phenomena, and have no right to offer any theory of their origin.

VIII. Another class of facts is composed of what Bacon calls instantiae comitatus, or examples of certain qualities which always accompany one another. Such are flame and heat,—flame being always accompanied by heat, and the same degree of heat in a given substance being always accompanied with flame. So also heat and expansion,—an increase of heat being accompanied with an increase of volume, except in a very few cases, and in circumstances very particular.

The most perfect instantia comitatus known, as being without any negative, is that of body and weight. Whatever is impenetrable and inert, is also heavy in a degree proportional to
its inertia. To this there is no exception, though we do not perceive the connection as necessary. Hostile instances, or those of perpetual separation, are the reverse of the former.

Examples of this are found in air, and the other elastic fluids, which cannot have a solid form induced on them by any known means, when not combined with other substances. So also in solids, transparency and malleability are never joined, and appear to be incompatible, though it is not obvious for what reason.

IX. Passing over several classes which seem of inferior importance, we come to the instantia crucis, the division of this experimental logic which is most frequently resorted to in the practice of inductive investigation. When, in such an investigation, the understanding is placed in equilibrio, as it were, between two or more causes, each of which accounts equally well for the appearances, as far as they are known, nothing remains to be done but to look out for a fact which can be explained by the one of these causes, and not by the other; if such a one can be found, the uncertainty is removed, and the true cause is determined. Such facts perform the office of a cross, erected at the separation of two roads, to direct the traveller which he is to take; and, on this account, Bacon gave them the name of instantia crucis.

Suppose that the subject inquired into were the motion of the planets, and that the phenomena which first present themselves, or the motion of these bodies in longitude, could be explained equally on the Ptolemaic and the Copernican system, that is, either on the system which makes the earth, or that which makes the sun, the centre of the planetary motions; a cautious philosopher would hesitate about which of the two he should adopt, and notwithstanding that one of them was recommended by its superior simplicity, he might not think himself authorized to give to it a decided preference above the other. If, however, he consider the motion of these bodies in latitude, that is to say, their digressions from the plane of the ecliptic, he will find a set of phenomena which cannot be reconciled with the supposition that the earth is the centre of the planetary motions, but which receive the most simple and satisfactory explanation from supposing that the sun is at rest, and is the centre of those motions. The latter phenomena would therefore serve as instantiae crucis, by which the superior credibility of the Copernican system was fully evinced.

Another example which I shall give of an instantia crucis is taken from Chemistry, and is, indeed, one of the most remarkable experiments which has been made in that science.

It is a general fact observed in Chemistry, that metals are always rendered heavier by calcination. When a mass of tin or lead, for instance, is calcined in the fire, though every precaution is taken to prevent any addition from the adhesion of ashes, coals, &c. the absolute weight of the mass is always found to be increased. It was long before the cause of this phenomenon was understood. There might be some heavy substance added, though what it was could not easily be imagined; or some substance might have escaped, which was in its nature light, and possessed a tendency upwards. Other phenomena, into the nature of which it is at present unnecessary to inquire, induced chemists to suppose, that in calcination a certain substance actually escapes, being present in the regulus, but not in the calx of the metal. This substance, to which they gave the name of phlogiston, was probably that which, by its escape, rendered the metal heavier, and must, therefore, be itself endowed with absolute levity.

The instantia crucis which extricated philosophers from this difficulty, was furnished by an experiment of the celebrated Lavoisier. That excellent chemist included a quantity of tin in a glass retort, hermetically sealed, and accurately weighed together with its contents; he then applied the necessary heat, and when the calcination of the tin was finished, he found the weight of the whole precisely the same as before. This proved that no substance, which was either light or heavy, in a sensible degree, had made its way through the glass. The experiment went still farther. When the retort was cooled and opened, the air rushed in; so that it was evident that a part of the air had disappeared, or had lost its elasticity. On weighing the whole apparatus, it was now found that its weight was increased by ten grains; so that ten

Diss. III. part I. 3n
grains of air had entered into the retort when it was opened. The calx was next taken out, and weighed separately, and it was found to have become heavier by ten grains precisely. The ten grains of air then which had disappeared, and which had made way for the ten grains that rushed into the retort, had combined with the metal during the process of calcination. The further prosecution of this very decisive experiment led to the knowledge of that species of air which combines with metals when they are calcined. The doctrine of phlogiston was of course exploded, and a creature of the imagination replaced by a real existence.

The principle which conducts to the contrivance of an experimentum crucis is not difficult to be understood. Taking either of the hypotheses, its consequences must be attempted to be traced, supposing a different experiment to be made. This must be done with respect to the other hypothesis, and a case will probably at last occur, where the two hypotheses would give different results. The experiment made in those circumstances will furnish an instantia crucis.

Thus, if the experiment of calcination be performed in a close vessel, and if phlogiston be the cause of the increase of weight, it must either escape through the vessel, or it must remain in the vessel after separation from the calx. If the former be the case, the apparatus will be increased in weight; if the latter, the phlogiston must make its escape on opening the vessel. If neither of these be the case, it is plain that the theory of phlogiston is insufficient to explain the facts.

The experimentum crucis is of such weight in matters of induction, that in all those branches of science where it cannot easily be resorted to, (the circumstances of an experiment being out of our power, and incapable of being varied at pleasure) there is often a great want of conclusive evidence. This holds of agriculture, medicine, political economy, &c. To make one experiment, similar to another in all respects but one, is what the experimentum crucis, and, in general, the process of induction, principally requires; but it is what, in the sciences just named, can seldom be accomplished. Hence the great difficulty of separating the causes, and allotting to each its due proportion of the effect. Men deceive themselves in consequence of this continually, and think they are reasoning from fact and experience, when, in reality, they are only reasoning from a mixture of truth and falsehood. The only end answered by facts so incorrectly apprehended, is that of making error more incorrigible.

Of the twenty-seven classes into which instantiae are arranged by the author of the Novum Organum, fifteen immediately address themselves to the Understanding; five serve to correct or to inform the Senses; and seven to direct the hand in raising the superstructure of Art on the foundation of Science. The examples given above are from the first of these divisions, and will suffice for a summary. To the five that follow next, the general name of instantiae lampadis is given, from their office of assisting or informing the senses.

Of these the instantiae januae assist the immediate action of the senses, and especially of sight. The examples quoted by Bacon are the microscope and telescope, (which last he mentions as the invention of Galileo) and he speaks of them with great admiration, but with some doubt of their reality.

The instantiae citantes enable us to perceive things which are in themselves insensible, or not at all the objects of perception. They cite or place things, as it were, before the bar of the senses, and from this analogy to judicial proceedings is derived the name of instantiae citantes. Such, to employ examples which the progress of science has unfolded since the time of Bacon, are the air-pump and the barometer for manifesting the weight and elasticity of air; the measurement of the velocity of light, by means of the eclipses of the satellites of Jupiter, and the aberration of the fixed stars; the experiments in electricity and galvanism, and in the greater part of pneumatic chemistry. In all these instances things are made known which before had entirely escaped the senses.

The instantiae viae are facts which manifest the continuous progress of nature in her operations. There is a propensity in men to view nature as it were at intervals, or at the ends of fixed periods, without regarding her gradual and un-
ceasing action. The desire of making observation easy is the great source of this propensity. Men wish for knowledge, but would obtain it at the least expense of time and labour. As there is no time, however, at which the hand of nature ceases to work, there ought to be none at which observation ceases to be made.

The instantiae persecutantes, or vellicantes, are those which force us to attend to things which, from their subtlety and minuteness, escape common observation.

Some of Bacon's remarks on this subtlety are such as would do credit to the most advanced state of science, and show how much his mind was fitted for distinguishing and observing the great and admirable in the works of nature. The last division contains seven classes, of which I mention only two. The experiments of this division are those most immediately tending to produce the improvement of art from the extension of science. "Now there are," says Bacon, "two ways in which knowledge, even when sound in itself, may fail of becoming a safe guide to the artist; and these are either when it is not sufficiently precise, or when it leads to more complicated means of producing an effect than can be employed in practice. There are therefore two kinds of experiments which are of great value in promoting the alliance between knowledge and power:—those which tend to give accurate and exact measures of objects, and those which disencumber the processes deducted from scientific principles, of all unnecessary operations."

In the instantiae radii we measure objects by lines and angles; in the instantiae curriculi, by time or by motion.

To the former of these classes are to be referred a number of instruments which now constitute the greater part of the apparatus of Natural Philosophy. Though Bacon had a just idea of their utility in general, he was unacquainted with most of them. The most remarkable at present are those that follow.

1. Astronomical instruments, or, more generally, all instruments for measuring lines and angles.

2. Instruments for measuring weight or force; such are the common balance, the hydrostatic balance, the barometer, the instruments used in England by Cavendish, and in France by Cœlomb, which measure small and almost insensible actions by the force of torsion.

These last rather belong to the class of the instantiae luctae, where force is applied as the measure of force, than to the instantiae radii.

3. The thermometer, newly invented in the time of Bacon, and mentioned by him under the name of Vitrum Calendare, an instrument to which we owe nearly all the knowledge we have of one of the most powerful agents in nature, viz. Heat.

4. The hygrometer, an instrument for measuring the quantity of humidity contained in the air; and in the construction of which, after repeated failures by the most skilful experimenters, the invention of Professor Leslie now promises success. Almost every one of these instruments, to which several more might be added, has brought in sight a new country; and has enriched science not only with new facts, but with new principles.

Among the remarks of Bacon on the experimenta radii, some are very remarkable for the extent of view which they display even in the infancy of physical science. He mentions the forces by which bodies act on one another at a distance, and throws out some hints at the attraction which the heavenly bodies exert on one another.

"Inquirendum est," says he, "si sit vis aliqua magnetica que operetur per consensum inter globum terræ et ponderosa, aut inter globum lunæ et aquas maris, aut inter celestium statum et planetas, per quam avocentur et attollantur ad sua apogea; hæc omnia operantur ad distantias admodum longinquas."

Under the head of the instantiae curriculi, or the measuring of things by time; after remarking that every change and every motion requires time, and illustrating this by a variety of instances, he has the following very curious anticipation of facts, which appeared then doubtful, but which subsequent discovery has ascertained:

1 Novum Organum, lib. ii. aph. 41.
2 Ibid. aph. 45.
"The consideration of those things produced in me a doubt altogether astonishing, viz. Whether the face of the serene and starry heavens be seen at the instant it really exists, or not till some time later; and whether there be not, with respect to the heavenly bodies, a true time and an apparent time, no less than a true place and an apparent place, as astronomers say, on account of parallax. For it seems incredible that the *species* or rays of the celestial bodies can pass through the immense interval between them and us in an instant, or that they do not even require some considerable portion of time."¹

The measurement of the velocity of light, and the wonderful consequences arising from it, are the best commentaries on this passage, and the highest eulogy on its author.

Such were the speculations of Bacon, and the rules he laid down for the conduct of experimental inquiries, before any such inquiries had yet been instituted. The power and compass of a mind which could form such a plan beforehand, and trace not merely the outline, but many of the most minute ramifications, of sciences which did not yet exist, must be an object of admiration to all succeeding ages. He is destined, if indeed any thing in the world be so destined, to remain an *instantia singularis* among men, and as he has had no rival in the times which are past, so is he likely to have none in those which are to come. Before any parallel to him can be found, not only must a man of the same talents be produced, but he must be placed in the same circumstances; the memory of his predecessor must be effaced, and the light of science, after being entirely extinguished, must be again beginning to revive. If a second Bacon is ever to arise, he must be ignorant of the first.

Bacon is often compared with two great men who lived nearly about the same time with himself, and who were both eminent reformers of philosophy, Descartes and Galileo.

Descartes flourished about forty years later than Bacon, but does not seem to have been acquainted with his writings. Like him, however, he was forcibly struck with the defects of the ancient philosophy, and the total inaptitude of the methods which it followed, for all the purposes of physical investigation. Like him, too, he felt himself strongly impelled to undertake the reformation of this erroneous system; but the resemblance between them goes no farther; for it is impossible that two men could pursue the same end by methods more diametrically opposite.

Descartes never proposed to himself any thing which had the least resemblance to induction. He began with establishing principles, and from the existence of the Deity and his perfections, he proposed to deduce the explanation of all the phenomena of the world, by reasoning *a priori*. Instead of proceeding upward from the effect to the cause, he proceeded continually downward from the cause to the effect. It was in this manner that he sought to determine the laws of motion, and of the collision of bodies, in which last all his conclusions were erroneous. From the same source he deduced the existence of a *plenum*, and the continual preservation of the same quantity of motion in the universe; a proposition which, in a certain sense, is true, but in the sense in which he understood it, is altogether false. Reasonings of the kind which he employed may possibly suit, as Bacon observed, with intelligences of a higher order than man, but to his case they are quite inapplicable. Of the fruit of this tree nature has forbidden him to eat, and has ordained that, with the sweat of his brow, and the labour of his hands, he should earn his knowledge as well as his subsistence.

Descartes, however, did not reject experiment altogether, though he assigned it a very subordinate place in his philosophy. By reasoning down from first principles, he tells us that he was always able to discover the effects; but the number of different shapes which those effects might assume was so great, that he could not determine, without having recourse to experiment, which of them nature had preferred to the rest. "We employ experiment," says he, "not as a reason by which any thing is proved, for we wish to deduce effects from their causes, and not conversely causes from their effects. We

¹ *Novum Organum*, lib. ii. aph. 46.
appeal to experience only, that out of innumerable effects which may be produced from the same cause, we may direct our attention to one rather than another.” It is wonderful, that Descartes did not see what a severe censure he was here passing on himself; of how little value the speculations must be that led to conclusions so vague and indefinite; and how much more philosophy is disgraced by affording an explanation of things which are not, than by not affording an explanation of things which are.

As a system of philosophy and philosophic investigation, the method of Descartes can, therefore, stand in no comparison with that of Bacon. Yet his Physics contributed to the advancement of science, but did so, much more by that which they demolished, than by that which they built up. In some particular branches the French philosopher far excelled the English. He greatly improved the science of optics, and in the pure mathematics, as has been already shown, he left behind him many marks of a great and original genius. He will, therefore, be always numbered among those who have essentially contributed to the advancement of knowledge, though nothing could be more perverse than his method of philosophizing, and nothing more likely to impede the progress of science, had not an impulse been at that time given to the human mind which nothing could resist.

Galileo, the other rival and contemporary of Bacon, is, in truth, one of those to whom human knowledge is under the greatest obligations. His discoveries in the theory of motion, in the laws of the descent of heavy bodies, and in the motion of projectiles, laid the foundation of all the great improvements which have since been made by the application of Mathematics to Natural Philosophy. If to this we add the invention of the telescope, the discoveries made by that instrument, the confirmations of the Copernican system which these discoveries afforded, and, lastly, the wit and argument with which he combated and exposed the prejudice and presumption of the schools, we must admit that the history of human knowledge contains few greater names than that of Galileo. On comparing him with Bacon, however, I have no hesitation in saying, that the latter has given indications of a genius of a still higher order. In this I know that I differ from a historian who was himself a philosopher, and whose suffrage, of consequence, is here of more than ordinary weight.

“The great glory of literature,” says Hume, “in this island, during the reign of James, was Lord Bacon. If we consider the variety of talents displayed by this man, as a public speaker, a man of business, a wit, a courtier, a companion, an author, a philosopher, he is justly entitled to great admiration. If we consider him merely as an author and a philosopher, the light in which we view him at present, though very estimable, he was yet inferior to his contemporary Galileo, perhaps even to Kepler. Bacon pointed out, at a distance, the road to philosophy; Galileo both pointed it out to others, and made himself considerable advances in it. The Englishman was ignorant of geometry; the Florentine revived that science, excelled in it, and was the first who applied it, together with experiment, to natural philosophy. The former rejected, with the most positive disdain, the system of Copernicus; the latter fortified it with new proofs, derived both from reason and the senses. Bacon’s style is stiff and rigid; his wit, though often brilliant, is also often unnatural and far-fetched. Galileo is a lively and agreeable, though somewhat a prolix writer.”

Though it cannot be denied that there is considerable truth in these remarks, yet it seems to me that the comparison is not made with the justness and discrimination which might have been expected from Hume, who appears studiously to have contrasted what is most excellent in Galileo with what is most defective in Bacon. It is true that Galileo showed the way in the application of mathematics and of geometry to physical investigation, and that the immediate utility of his performance was greater than that of Bacon’s, as it impressed more movement on the age in which he lived, example being always so much more powerful than precept. Bacon, indeed, wrote for an age more enlightened than

his own, and it was long before the full merit of his work was understood. But though Galileo was a geometer, and Bacon unacquainted with the mathematics,—though Galileo added new proofs to the system of the earth's motion, which Bacon rejected altogether,—yet is it certain, I think, that the former has more fellows or equals in the world of science than the latter, and that his excellence, though so high, is less unrivalled. The range which Bacon's speculations embraced was altogether immense. He cast a penetrating eye on the whole of science, from its feeblest and most infantile state, to that strength and perfection from which it was then so remote, and which it is perhaps destined to approach to continually, but never to attain. More substitutes might be found for Galileo than for Bacon. More than one could be mentioned, who, in the place of the former, would probably have done what he did; but the history of human knowledge points out nobody of whom it can be said, that, placed in the situation of Bacon, he would have done what Bacon did;—no man whose prophetic genius would have enabled him to delineate a system of science which had not yet begun to exist—who could have derived the knowledge of what ought to be from what was not, and who could have become so rich in wisdom, though he received from his predecessors no inheritance but their errors. I am inclined, therefore, to agree with D'Alembert, "that when one considers the sound and enlarged views of this great man, the multitude of the objects to which his mind was turned, and the boldness of his style, which unites the most sublime images with the most rigorous precision, one is disposed to regard him as the greatest, the most universal, and the most eloquent of philosophers." 1

3. REMARKS, &c.

It will hardly be doubted by any one who attentively considers the method explained in the Novum Organum, which we have now attempted to sketch, that it contains a most comprehensive and rigorous plan of inductive investigation. A question, however, may occur. How far has this method been really carried into practice by those who have made the great discoveries in Natural Philosophy, and who have raised physical science to its present height in the scale of human knowledge? Is the whole method necessary, or have not circumstances occurred, which have rendered experimental investigation easier in practice than it appears to be in theory? To answer these questions completely, would require more discussion than is consistent with the limits of this Dissertation: I shall, therefore, attempt no more than to point out the principles on which such an answer may be founded.

In a very extensive department of physical science, it cannot be doubted that investigation has been carried on, not perhaps more easily, but with a less frequent appeal to experience, than the rules of the Novum Organum would seem to require. In all the physical inquiries where mathematical reasoning has been employed, after a few principles have been established by experience, a vast multitude of truths, equally certain with the principles themselves, have been deduced from them by the mere application of geometry and algebra.

In mechanics, for example, after the laws of motion were discovered, which was done by experiment, the rest of the science, to a great extent, was carried on by reasoning from those laws, in the same manner that the geometer makes his discoveries by reasoning on the definitions, by help of a few axioms, or self-evident propositions. The only difference is, that, in the one case, the definitions and axioms are supplied solely from the mind itself, while, in the other, all the definitions and axioms which are not those of pure geometry, are furnished by experience. 8

Bacon certainly was not fully aware of the advantages that were thus to accrue to the physical sciences. He was not ignorant, that the introduction of mathematical reasoning into those sciences is not only possible, but that, un-

1 Discours Préliminaire de l'Encyclopédie.

2 The part of Mechanics which involves only statical considerations, or the equilibrium of forces, is capable of being treated by reasoning a priori entirely, without any appeal to experience. This will appear, when the subject of Mechanics is more particularly treated of.
Dissertation Third.

Under certain conditions, it may be attended with the greatest advantage. He knew also in what manner this application had been abused by the Platonists, who had attempted, by means of geometry, to establish the first principles of Physics, or had used them, in axiomatis constitutendiis, which is exactly the province belonging exclusively to experience. At the same time, he pointed out, with great precision, the place which the Mathematics may legitimately occupy, as serving to measure and compare the objects of physical inquiry. He did not, however, perceive beforehand, nor was it possible that he should, the vast extent to which the application of that science was capable of being carried. In the book De Augmentis, he has made many excellent remarks on this subject, full of the sagacity which penetrated so far into futurity, but, nevertheless, could only perceive a small part of the scene which the genius of Newton was afterwards to unfold.

Hence, the route which leads to many of the richest and most fertile fields of science, is not precisely that which Bacon pointed out; it is safer and easier; so that the voyager finds he can trust to his chart and compass alone, without constantly looking out, or having the sounding-line perpetually in his hand.

Another remark I must make on Bacon's method is, that it does not give sufficient importance to the instantiae radii, or those which furnish us with accurate measures of physical quantities. The experiments of this class are introduced as only subservient to practice; they are, however, of infinite value in the theoretical part of induction, or for ascertaining the causes and essences of the things inquired into. We have an instance of this in the discovery of that important truth in physical astronomy, that the moon is retained in her orbit by the force of gravity, or the same which, at the earth's surface, makes a stone fall to the ground. This proposition, however it might have been suspected to be true, could never have been demonstrated but by such observations and experiments as assigned accurate geometrical measures to the quantities compared. The semidiameter of the earth; the velocity of falling bodies at the earth's surface; the distance of the moon, and her velocity in her orbit;—all these four elements must have been determined with great precision, and afterwards compared together by certain theorems deduced from the laws of motion, before the relation between the force which retains the moon in her orbit, and that which draws a stone to the ground, could possibly be discovered. The discovery also, when made, carried with it the evidence of demonstration; so that here, as in many other cases, the instantiae radii are of the utmost importance in the theoretical part of Physics.

Another thing to be observed is, that, in many cases, the result of a number of particular facts, or the collective instance arising from them, can only be found out by geometry, which, therefore, becomes a necessary instrument in completing the work of induction. An example, which the science of optics furnishes, will make this clearer than any general description. When light passes from one transparent medium to another, it is refracted, that is, it ceases to go on in a straight line, and the angle which the incident ray makes with the superficies which bounds the two media, determines that which the refracted ray makes with the same superficies. Now, if we would learn any thing about the relation which these angles bear to one another, we must have recourse to experiment; and all that experiment can do is, for any particular angle of incidence, to determine the corresponding angle of refraction. This may be done in innumerable cases; but, with respect to the general rule which, in every possible case, determines the one of those angles from the other, or expresses the constant and invariable relation which subsists between them,—with respect to it, experiment gives no direct information. The methods of geometry must therefore be called in to our assistance, which, when a constant though unknown relation subsists between two angles, or two variable quantities of any kind, and when an indefinite number of values of those quantities are given, furnishes infallible means of discovering that unknown relation, either accurately, or at least by approximation. In this way it has been found, that, when the two media remain the same, the cosines of the angles above mentioned have a constant ratio to one another. Thus
it appears, that, after experiment has done its utmost, geometry must be applied before the business of induction can be completed. This can only happen when the experiments afford accurate measures of the quantities concerned, like the *instantia radii, curriculi,* &c.; and this advantage of admitting generalization with so much certainty is one of their properties, of which it does not appear that even Bacon himself was aware.

Again, from the intimate connection which prevails among the principles of science, the success of one investigation must often contribute to the success of another, in such a degree as to make it unnecessary to employ the complete apparatus of induction from the beginning. When certain leading principles have been once established, they serve, in new investigations, to narrow the limits within which the thing sought for is contained, and enable the inquirer to arrive more speedily at the truth.

Thus, suppose that, after the nature of the reflection and refraction of light, and particularly of the colours produced by the latter, had been discovered by experiment, the cause of the rainbow were to be inquired into. It would, after a little consideration, appear probable, that the phenomenon to be explained depends on the reflection and refraction of light by the rain falling from a cloud opposite to the sun. Now, since the nature of reflection and refraction are supposed known, we have the principles previously ascertained which are likely to assist in the explanation of the rainbow. We have no occasion, therefore, to enter on the inquiry, as if the powers to be investigated were wholly unknown. It is the combination of them only which is unknown, and our business is to seek so to combine them, that the result may correspond with the appearances. This last is precisely what Newton accomplished, when, by deducing from the known laws of refraction and reflection the breadth of the coloured arch, the diameter of the circle of which it is a part, and the relation of the latter to the place of the spectator and of the sun, he found all these to come out from his calculus, just as they are observed in nature. Thus he proved the truth of his solution by the most clear and irresistible evidence.

The strict method of Bacon is therefore only necessary where the thing to be explained is new, and where we have no knowledge, or next to none, of the powers employed. This is but rarely the case, at least in some of the branches of Physics; and, therefore, it occurs most commonly in actual investigation, that the inquirer finds himself limited, almost from the first outset, to two or three hypotheses, all, other suppositions involving inconsistencies which cannot for a moment be admitted. His business, therefore, is to compare the results of these hypotheses, and to consider what consequences may in any case arise from the one that would not arise from the other. If any such difference can be found, and if the matter is a subject of experiment, we have then an *instantia crucis* which must decide the question.

Thus, the *instantia crucis* comes in real practice to be the experiment most frequently appealed to, and that from which the most valuable information is derived.

In executing the method here referred to, the application of much reasoning, and frequently of much mathematical reasoning, is necessary, before any appeal to the experiment can be made, in order to deduce from each of the hypotheses an exact estimate of the consequences to which it leads. Suppose, for instance, that the law by which the magnetic virtue decreases in its intensity, as we recede from its poles, were to be inquired into. It is obvious that the number of hypotheses is here indefinite; and that we have hardly any choice but to begin with the simplest, or with that which is most analogous to the law of other forces propagated from a centre. Whatever law we assume, we must enter into a good deal of geometric reasoning, before a conclusion can be obtained, capable of being brought to the test of experience. The force itself, like all other forces, is not directly perceived, and its effects are not the result of its mere intensity, but of that intensity combined with the figure and magnitude of the body on which it acts; and, therefore, the calculus must be employed to express the measure of the effect, in terms of the intensity and the distance only. This being done, the hypothesis which gives results most nearly corresponding to the facts observed, when the mag-
net acts on the same body, at different distances, must be taken as the nearest approximation to the truth. We have here an instance of the use of hypothesis in inductive investigation, and, indeed, of the only legitimate use to which it can ever be applied.

It also appears that Bacon placed the ultimate object of philosophy too high, and too much out of the reach of man, even when his exertions are most skilfully conducted. He seems to have thought, that, by giving a proper direction to our researches, and carrying them on according to the inductive method, we should arrive at the knowledge of the essences of the powers and qualities residing in bodies; that we should, for instance, become acquainted with the essence of heat, of cold, of colour, of transparency. The fact however is, that, in as far as science has yet advanced, no one essence has been discovered, either as to matter in general, or as to any of its more extensive modifications. We are yet in doubt, whether heat is a peculiar motion of the minute parts of bodies, as Bacon himself conceived it to be; or something emitted or radiated from their surfaces; or lastly, the vibrations of an elastic medium, by which they are penetrated and surrounded. Yet whatever be the form or essence of heat, we have discovered a great number of its properties and its laws; and have done so, by pursuing with more or less accuracy the method of induction. We have also this consolation for the imperfection of our theoretical knowledge, that, in as much as art is concerned, or the possession of power over heat, we have perhaps all the advantages that could be obtained from a complete knowledge of its essence.

An equal degree of mystery hangs over the other properties and modifications of body; light, electricity, magnetism, elasticity, gravity, are all in the same circumstances; and the only advance that philosophy has made toward the discovery of the essences of these qualities or substances is, by exploring some theories, rather than by establishing any,—so true is Bacon's maxim, that the first steps in philosophy necessarily consist in negative propositions. Besides this, in all the above instances the laws of action have been ascertained; the phenomena have been reduced to a few general facts, and in some cases, as in that of gravity, to one only; and for aught that yet appears, this is the highest point which our science is destined to reach.

In consequence of supposing a greater perfection in knowledge than is ever likely to be attained, Bacon appears, in some respects, to have misapprehended the way in which it is ultimately to become applicable to art. He conceives that, if the form of any quality were known, we should be able, by inducing that form on any body, to communicate to it the said quality. It is not probable, however; that this would often lead to a more easy and simple process than that which art has already invented. In the case of colour, for example, though ignorant of its form, or of the construction of surface which enables bodies to reflect only light of a particular species, yet we know how to communicate that power from one body to another. Nor is it likely, though this structure were known with ever so great precision, that we should be able to impart it to bodies by any means so simple and easy, as by the common process of immersing them in a liquid of a given colour.

In some instances, however, the theories of Chemistry have led to improvements of art very conformable to the anticipations of the Novum Organum. A remarkable instance of this occurs in the process for bleaching, invented by Berthollet. It had been for some time known, that the combination of the chemical principle of oxygen with the colouring matter in bodies, destroyed or discharged the colour; and that, in the common process of bleaching, it was chiefly by the union of the oxygen of the air with the colouring matter in the cloth that this effect was produced. The excellent chemist just named conceived, therefore, that if the oxygen could be presented to the cloth in a dense state, and, at the same time, feebly combined with any other body, it might unite itself to the colouring matter so readily, that the process of bleaching would by that means be greatly accelerated. His skill in Chemistry suggested to him a way in which this might easily be done, by immersing the cloth in a liquid containing much oxygen in a loose state, or one in which it was
sightly combined with other substances; and the effect followed so exactly, that he was able to perform in a few hours what required weeks, and even months, according to the common process. This improvement, therefore, was a real gift from the sciences to the arts; and came nearly, though not altogether, up to the ideas of Bacon. I suspect not altogether, because the manner in which oxygen destroys the colour of bodies, or alters the structure of their surfaces, remains quite unknown.

It was natural, however, that Bacon, who studied these subjects theoretically, and saw nowhere any practical result in which he could confide, should listen to the inspirations of his own genius, and ascribe to philosophy a perfection which it may be destined never to attain. He knew, that from what it had not yet done, he could conclude nothing against what it might hereafter accomplish. But after his method has been followed, as it has now been, with greater or less accuracy, for more than two hundred years, circumstances are greatly changed; and the impediments which, during all that time, have not yielded in the least to any effort, are perhaps never likely to be removed. This may, however, be a rash inference; Bacon, after all, may be in the right; and we may be judging under the influence of the vulgar prejudice, which has convinced men in every age, that they had nearly reached the farthest verge of human knowledge. This must be left for the decision of posterity; and we should rejoice to think, that judgment will hereafter be given against the opinion which at this moment appears most probable.

SECTION III.

MECHANICS.

1. THEORY OF MOTION.

Before the end of the sixteenth century, mechanical science had never gone beyond the problems which treat of the equilibrum of bodies, and had been able to resolve these accurately, only in the cases which can be easily reduced to the lever. Guido Ubaldi, an Italian mathematician, was among the first who attempted to go farther than Archimedes and the ancients had done in such inquiries. In a treatise which bears the date of 1577, he reduced the pulley to the lever; but with respect to the inclined plane, he continued in the same error with Pappus Alexandrinus, supposing that a certain force must be applied to sustain a body, even on a plane which has no inclination.

Stevinus, an engineer of the Low Countries, is the first who can be said to have passed beyond the point at which the ancients had stopped, by determining accurately the force necessary to sustain a body on a plane inclined at any angle to the horizon. He resolved also a great number of other problems connected with the preceding, but, nevertheless, did not discover the general principle of the composition of forces, though he became acquainted with this particular case, immediately applicable to the inclined plane.

The remark, that a chain laid on an inclined plane, with a part of it hanging over at top, in a perpendicular line, will be in equilibrio, if the two ends of the chain reach down exactly to the same level, led him to the conclusion, that a body may be supported on such a plane by a force which draws in a direction parallel to it, and has to the weight of the body the same ratio that the height of the plane has to its length.

Though it was probably from experience that Stevinus derived the knowledge of this proposition, he attempted to prove the truth of it by reasoning a priori. He supposed the two ex-
tremities of the chain, when disposed as above, to be connected by a part similar to the rest, which, therefore, must hang down, and form an arch. If in this state, says he, the chain were to move at all, it would continue to move for ever, because its situation, on the whole, never changing, if it were determined to move at one instant, it must be so determined at every other instant. Now, such perpetual motion, he adds, is impossible; and therefore the chain, as here supposed, with the arch hanging below, does not move. But the force of the arch below draws down the ends of the chain equally, because the arch is divided in the middle or lowest point into two parts similar and equal. Take away these two equal forces, and the remaining forces will also be equal; that is, the tendency of the chain to descend along the inclined plane, and the opposite tendency of the part hanging perpendicularly down, are equal, or are in equilibrio with one another. Such is the reasoning of Stevinus, which, whether perfectly satisfactory or not, must be acknowledged to be extremely ingenious, and highly deserving of attention, as having furnished the first solution of a problem, by which the progress of mechanical science had been long arrested. The first appearance of his solution is said to have had the date of 1585; but his works, as we now see them, were collected after his death, by his countryman Albert Girard, and published at Leyden in 1634. Some discoveries of Stevinus in hydrostatics will be hereafter mentioned.

The person who comes next in the history of mechanics made a great revolution in the physical sciences. Galileo was born at Pisa in the year 1564. He early applied himself to the study of Mathematics and Natural Philosophy; and it is from the period of his discoveries that we are to date the joint application of experimental and geometrical reasoning to explain the phenomena of nature.

As early as 1592 he published a treatise, *della Scienza Mechanica*, in which he has given the theory, not of the lever only, but of the inclined plane and the screw; and has also laid down this general proposition, that mechanical engines make a small force equivalent to a great one, by making the former move over a greater space in the same time than the latter, just in proportion as it is less. No contrivance can make a small weight put a great one in motion, but such a one as gives to the small weight a velocity which is as much greater than that of the large weight, as this last weight is greater than the first. These general propositions, and their influence on the action of machinery, Galileo proceeded to illustrate with that clearness, simplicity, and extent of view, in which he was quite unrivalled; and hence, I think, it is fair to consider him as the first person to whom the mechanical principle, since denominated that of the *virtual velocities*, had occurred in its full extent. The object of his consideration was the action of machines in motion, and not merely of machines in *equilibrio*, or at rest; and he showed, that if the effect of a force be estimated by the weight it can raise to a given height in a given time, this effect can never be increased by any mechanical contrivance whatsoever.

In the same treatise, he lays it down as a postulate, *supposizione* that the effect of one heavy body to turn another round a centre of motion, is proportional to the perpendicular drawn from that centre to the vertical passing through the body, or in general to the direction of the force. This proposition he states without a demonstration, and passes by means of it to the oblique lever, and thence to the inclined plane. To speak strictly, however, the demonstrations with respect to both these last are incomplete, the preceding proposition being assumed in them without proof. It is probable that he satisfied himself of the truth of it, on the principle, that the distances of forces from the centre of motion must always be measured by lines making the same angles with their directions, and that of such lines the simplest are the perpendiculars. His demonstration is regarded by La Grange as quite satisfactory.

1 The edition of Albert Girard is entitled *Oeuvres Mathématiques de Stevins*, in folio. See livre i. *De la Statique*, théorème 11. Stevinus also wrote a treatise on Navigation, which was published in Flemish in 1586, and was afterwards honoured with a translation into Latin, by Grotius. The merit of Stevinus has been particularly noticed by La Grange. (*Mechanique Analytique*, tom. i. sect. i. § 5.)

2 *Mechanique Analytique*, tom. i. sect. i. § 6.
Galileo extended the theory of motion still farther. He had begun, while pursuing his studies at the University of Pisa, to make experiments on the descent of falling bodies, and discovered the fact, that heavy and light bodies fall to the ground from the same height in the same time, or in times so nearly the same that the difference can only be ascribed to the resistance of the air. From observing the vibrations of the lamps in the cathedral, he also arrived at this very important conclusion in mechanics, that the great and the small vibrations of the same pendulum are performed in the same time, and that this time depends only on the length of the pendulum. The date of these observations goes back as far as the year 1583.

These experiments drew upon him the displeasure of his masters, who considered it as unbecoming of their pupil to seek for truth in the Book of Nature, rather than in the writings of Aristotle, when elucidated by their commentaries; and from that moment began the persecutions with which the prejudice, the jealousy, and bigotry of his contemporaries continued to harass or afflict this great man throughout his whole life.

That the acceleration of falling bodies is uniform, or, that they receive equal increments of velocity in equal times, he appears first to have assumed as the law which they follow, merely on account of its simplicity. Having once assumed this principle, he showed, by mathematical reasoning, that the spaces descended through must be as the squares of the times, and that the space fallen through in one second is just the half of that which the body would have described in the same time with the velocity last acquired.

The knowledge which he already had of the properties of the inclined plane enabled him very readily to perceive, that a body descending on such a plane must be uniformly accelerated, though more slowly than when it falls directly, and is accelerated by its whole weight. By means of the inclined plane, therefore, he was able to bring the whole theory of falling bodies to the test of experiment, and to prove the truth of his original assumption, the uniformity of their acceleration.

His next step was to determine the path of a heavy body, when obliquely projected. He showed this path to be a parabola; and here, for the first time, occurs the use of a principle which is the same with the composition of motion in its full extent. Galileo, however, gave no name to this principle; he did not enunciate it generally, nor did he give any demonstration of it, though he employed it in his reasonings. The inertia of body was assumed in the same manner; it was, indeed, involved in the uniform acceleration of falling bodies; for these bodies did not lose in one minute the motion acquired in the preceding, but, retaining it, went on continually receiving more.

The theory of the inclined plane had led to the knowledge of this proposition, that if a circle be placed vertically, the chords of different arches terminating in the lowest point of the circle, are all descended through in the same space of time. This seemed to explain why, in a circle, the great and the small vibrations are of equal duration. Here, however, Galileo was under a mistake, as the motions in the chord and in the arch are very dissimilar. The accelerating force in the chord remains the same from the beginning to the end, but in the arch it varies continually, and becomes, at the lowest point, equal to nothing. The times in the chords, and in the arches, are therefore different, so that here we have a point marking the greatest distance in this quarter, to which the mechanical discoveries of Galileo extended. The first person who investigated the exact time of a vibration in an arch of a circle was Huygens, a very profound mathematician.

To this list of mechanical discoveries, already so important and extensive, we must add, that Galileo was the first who maintained the existence of the law of continuity, and who made use of it as a principle in his reasonings on the phenomena of motion.1

The vibrations of the pendulum having suggested to Galileo the means of measuring time

1 Opere di Galileo, tom. IV. dial. i. p. 32, Florence edition, and in many other parts.
accurately, it appears certain that the idea of applying it to the clock had also occurred to him, and of using the chronometer so formed for finding the longitude, by means of observations made on the eclipses of the satellites of Jupiter. How far he had actually proceeded in an invention which required great practical knowledge, and which afterwards did so much credit to Huygens, appears to be uncertain, and not now easy to be ascertained. But, that the project had occurred to him, and that he had taken some steps towards realizing it, is sufficiently established.

One forms, however, a very imperfect idea of this philosopher, from considering the discoveries and inventions, numerous and splendid as they are, of which he was the undisputed author. It is by following his reasonings, and by pursuing the train of his thoughts in his own elegant, though somewhat diffuse exposition of them, that we become acquainted with the fertility of his genius, with the sagacity, penetration, and comprehensiveness of his mind. The service which he rendered to real knowledge is to be estimated, not only from the truths which he discovered, but from the errors which he detected,—not merely from the sound principles which he established, but from the pernicious idols which he overthrew. His acuteness was strongly displayed in the address with which he exposed the errors of his adversaries, and refuted their opinions, by comparing one part of them with another, and proving their extreme inconsistency. Of all the writers who have lived in an age which was yet only emerging from ignorance and barbarism, Galileo has most entirely the tone of true philosophy, and is most free from any contamination of the times, in taste, sentiment, and opinion.

The discoveries of this great man concerning motion drew the attention of philosophers more readily, from the circumstance that the astronomical theories of Copernicus had directed their attention to the same subject. It had become evident, that the great point in dispute between his system and the Ptolemaic must be finally decided by an appeal to the nature of motion and its laws. The great argument to which the friends of the latter system naturally had recourse, was the impossibility, as it seemed to them to be, of the swift motion of the earth being able to exist, without the perception, nay, even without the destruction of its inhabitants. It was natural for the followers of Copernicus to reply, that it was not certain that these two things were incompatible; that there were many cases in which it appeared, that the motion common to a whole system of bodies did not affect the motion of those bodies relatively to one another; that the question must be more deeply inquired into; and that, without this, the evidence on opposite sides could not be fairly and accurately compared. Thus, it was at a very fortunate moment that Galileo made his discoveries in mechanics, as they were rendered more interesting by those which, at that very time, he himself was making in astronomy. The system of Copernicus had, in this manner, an influence on the theory of motion, and, of course, on all the parts of Natural Philosophy. The inertia of matter, or the tendency of body, when put in motion, to preserve the quantity and direction of that motion, after the cause which impressed it has ceased to act, is a principle which might still have been unknown, if it had not been forced upon us by the discovery of the motion of the earth.

The first addition which was made to the mechanical discoveries of Galileo was by Torricelli, in a treatise De Motu Gravium naturaliter descenduntum et projectorum. To this ingenious man we are indebted for the discovery of a remarkable property of the centre of gravity, and a general principle with respect to the equilibrium of bodies. It is this: If there be any number of heavy bodies connected together, and so circumstanced, that by their motion their centre of gravity can neither ascend nor descend, these bodies will remain at rest. This proposition often furnishes the means of resolving very difficult questions in mechanics.

Descartes, whose name is so great in philosophy and mathematics, has also a place in the history of mechanical discovery. With regard
to the action of machines, he laid down the same principle which Galileo had established,—that an equal effort is necessary to give to a weight a certain velocity, as to give to double the weight half of that velocity, and so on in proportion, the effect being always measured by the weight multiplied into the velocity which it receives. He could hardly be ignorant that this proposition had been already stated by Galileo, but he has made no mention of it. He indeed always affected a disrespect for the reasonings and opinions of the Italian philosopher, which has done him no credit in the eyes of posterity.

The theory of motion, however, has in some points been considerably indebted to Descartes. Though the reasonings of Galileo certainly involve the knowledge of the disposition which matter has to preserve its condition either of rest or of rectilineal and uniform motion, the first distinct enunciation of this law is found in the writings of the French philosopher. It is, however, there represented, not as mere inactivity, or indifference, but as a real force, which bodies exert in order to preserve their state of rest or of motion; and this inaccuracy affects some of the reasonings concerning their action on one another.

Descartes, however, argued very justly, that all motion being naturally rectilineal, when a body moves in a curve, this must arise from some constraint, or some force urging it in a direction different from that of the first impulse, and that if this cause were removed at any time, the motion would become rectilineal, and would be in the direction of a tangent, to the curve at the point where the deflecting force ceased to act.

Lastly, he taught that the quantity of motion in the universe remains always the same.

The reasoning by which he supported the first and second of these propositions is not very convincing; and though he might have appealed to experience for the truth of both, it was not in the spirit of his philosophy to take that method of demonstrating its principles. His argument was, that motion is a state of body, and that body or matter cannot change its own state. This was his demonstration of the first proposition, from which the second followed necessarily.

The evidence produced for the third, or the preservation of the same quantity of motion in the universe, is founded on the immutability of the Divine nature, and is an instance of the intolerable presumption which so often distinguished the reasonings of this philosopher. Though the immutability of the Divine nature will readily be admitted, it remains to be shown, that the continuance of the same quantity of motion in the universe is a consequence of it. This, indeed, cannot be shown; for that quantity, in the sense in which Descartes understood it, is so far from being preserved uniform, that it varies continually from one instant to another. It is nevertheless true, that the quantity of motion in the universe, when rightly estimated, is invariable, that is, when reduced to the direction of three axes at right angles to one another, and when opposite motions are supposed to have opposite signs. This is a truth now perfectly understood, and is a corollary to the equality of action and reaction, in consequence of which, whatever motion is communicated in one direction, is either lost in that direction, or generated in the opposite. This, however, is quite different from the proposition of Descartes, and if expressed in his language, would assert, not that the sum, but that the difference of the opposite motions in the universe remains constantly the same. When he proceeds, by help of the principle which he had thus mistaken, to determine the laws of the collision of bodies, his conclusions are almost all false, and have indeed such a want of consistency and analogy with one another as ought, in the eyes of a mathematician, to have appeared the most decisive indications of error. How this escaped the penetration of a man well acquainted with the harmony of geometrical truths, and the gradual transitions by which they always pass into one another, is not easily explained, and perhaps, of all his errors, is the least consistent with the powerful and systematic genius which he is so well known to have possessed.

Thus, the obligation which the theory of motion has to this philosopher, consists in his having pointed out the nature of centrifugal force, and ascribed that force to the true cause, the inertia of body, or its tendency to uniform and rectilineal motion.
The laws which actually regulate the collision of bodies remained unknown till some years later, when they were recommended by the Royal Society of London to the particular attention of its members. Three papers soon appeared, in which these laws were all correctly laid down, though no one of the authors had any knowledge of the conclusions obtained by the other two. The first of these was read to the Society, in November 1668, by Dr Wallis of Oxford; the next by Sir Christopher Wren in the month following; and the third by Huygens in January 1669. The equality of action and reaction, and the maxim, that the same force communicates to different bodies velocities which are inversely as their masses, are the principles on which these investigations are founded.

The ingenious and profound mathematician last mentioned is also the first who explained the true relation between the length of a pendulum and the time of its least vibrations, and gave a rule by which the time of the rectilineal descent, through a line equal in length to the pendulum, might from thence be deduced. He next applied the pendulum to regulate the motion of a clock, and gave an account of his construction, and the principles of it, in his *Horologium Oscillatorium*, about the year 1670, though the date of the invention goes as far back as 1656. Lastly, he taught how to correct the imperfection of a pendulum, by making it vibrate between cycloidal cheeks, in consequence of which its vibrations, whether great or small, became, not approximately, but precisely of equal duration.

Robert Hooke, a very celebrated English mechanician, laid claim to the same application of the pendulum to the clock, and the same use of the cycloidal cheeks. There is, however, no dispute as to the priority of Huygens's claim, the invention of Hooke being as late as 1670. Of the cycloidal cheeks, he is not likely to have been even the second inventor. Experiment could hardly lead any one to this discovery, and he was not sufficiently skilled in the Mathematics to have found it out by mere reasoning. The fact is, that though very original and inventive, Hooke was jealous and illiberal in the extreme; he appropriated to himself the inventions of all the world, and accused all the world of appropriating his.

It has already been observed, that Galileo conceived the application of the pendulum to the clock earlier, by several years, than either of the periods just referred to. The invention did great honour to him and to his two rivals; but that which argues the most profound thinker, and the most skilful mathematician of the three, is the discovery of the relation between the length of the pendulum and the time of its vibration, and this discovery belongs exclusively to Huygens. The method which he followed in his investigation, availing himself of the properties of the cycloid, though it be circuitous, is ingenious, and highly instructive.

An invention, in which Hooke has certainly the priority to any one, is the application of a spiral spring to regulate the balance of a watch. It is well known of what practical utility this invention has been found, and how much it has contributed to the solution of the problem of finding the longitude at sea, to which not only he, but Galileo and Huygens, appear all to have had an eye.

In what respects the theory of motion, Huygens has still another strong claim to our notice. This arises from his solution of the problem of finding the centre of oscillation of a compound pendulum, or the length of the simple pendulum vibrating in the same time with it. Without the solution of this problem, the conclusions respecting the pendulum were inapplicable to the construction of clocks, in which the pendulums used are of necessity compound. The problem was by no means easy, and Huygens was obliged to introduce a principle which had not before been recognised, that if the compound pendulum, after descending to its lowest point, were to be separated into particles distinct and unconnected with one another, and each left at liberty to continue its own vibration, the common centre of gravity of all those detached weights would ascend to the same height to which it would

1 *Montucla, tom. II. p. 418, 2d edit.*
have ascended had they continued to constitute one body. The above principle led him to the true solution; and his investigation, though less satisfactory than those which have been since

2. HYDROSTATICS.

While the theory of motion, as applied to solids, was thus extended, in what related to fluids it was making equal progress. The laws which determine the weight of bodies immersed in fluids, and also the position of bodies floating on them, had been discovered by Archimedes, and were further illustrated by Galileo. It had also been discovered by Stevinus, that the pressure of fluids is in proportion to their depth; and thus the two leading principles of hydrostatics were established. Hydraulics, or the motion of fluids, was a matter of more difficulty; and here the first step is to be ascribed to Torricelli, who, though younger than Galileo, was for some time his contemporary. He proved that water issues from a hole in the side or bottom of a vessel, with the velocity which a body would acquire by falling from the level of the surface to the level of the orifice. This proposition, now so well known as the basis of the whole doctrine of hydraulics, was first published by Torricelli at the end of his book De Motu Gravium et Projectorum; but it is not the greatest discovery which science owes to the friend and disciple of Galileo. The latter had failed in assigning the reason why water cannot be raised in pumps higher than thirty-three feet; but he had remarked, that if a pump is more than thirty-three feet in length, a vacuum will be left in it. Torricelli, reflecting on this, conceived, that if a heavier fluid than water were used, a vacuum might be produced, in a way far shorter and more compendious. He tried mercury, therefore, and made use of a glass tube about three feet long, open at one end, and close at the other, where it terminated in a globe. He filled this tube, shut it with his finger, and inverted it in a basin of mercury. The result is well known: he found that a column of mercury was suspended in the tube, an effect which he immediately ascribed to the pressure of the atmosphere. So disinterested was this philosopher, however, that he is said to have lamented that Galileo, when inquiring into the cause why water does not ascend in pumps above a certain height, had not discovered the true cause of the phenomenon. The generosity of Torricelli was perhaps rarer than his genius. There are more who might have discovered the suspension of mercury in the barometer, than who would have been willing to part with the honour of the discovery to a master or a friend.

This experiment opened the door to a multitude of new discoveries, and demolished a formidable idol, the horror of a vacuum, to which so much power had been long attributed, and before which even Galileo himself had condescended to bow.

The objections which were made to the explanation of the suspension of the mercury in the tube of the barometer, were overthrown by carrying that instrument to the top of Puy de Dôme, an experiment suggested by Pascal. The descent of the mercury showed, that the pressure which supported it was less there than at the bottom; and it was afterwards found, that the fall of the mercury corresponded exactly to the diminution of the length of the pressing column, so that it afforded a measure of that diminution, and, consequently, of the heights of mountains. The invention of the air-pump by Otto Guericke, burgomaster of Magdeburg, quickly followed that of the barometer by Torricelli, though it does not appear that the invention of the Italian philosopher was known to the German. In order to obtain a space entirely void of air, Otto Guericke filled a barrel with water, and having closed it exactly on all sides, began to draw out the water by a sucking-pump applied to the lower part of the vessel. He had proceeded but a very little way, when the air burst into the barrel with a loud noise, and its weight was proved by the failure of the experiment, as effectually as it could have been by its success. After some
other trials, which also failed, he thought of employing a sphere of glass, when the experiment succeeded, and a vacuum was obtained. This was about the year 1654.

The elasticity of the air, as well as its weight, now became known; its necessity to combustion, and the absorption of a certain proportion of it, during that process; its necessity for conveying sound;—all these things were clearly demonstrated. The necessity of air to the respiration of animals required no proof from experiment; but the sudden extinction of life, by immersion in a vacuum, was a new illustration of the fact.

The first considerable improvements made on the air-pump are due to Mr Boyle. He substituted to the glass globe of Otto Guericke a receiver of a more commodious form, and constructed his pump so as to be worked with much more facility. His experiments were farther extended,—they placed the weight and elasticity of the air in a variety of new lights,—they made known the power of air to dissolve water, &c. Boyle had great skill in contriving, and great dexterity in performing experiments. He had, indeed, very early applied himself to the prosecution of experimental science, and was one of the members of the small but distinguished body who, during the civil wars, held private meetings for cultivating natural knowledge, on the plan of Bacon. They met first in London, as early as 1645, afterwards at Oxford, taking the name of the Philosphic College. Of them, when Charles the Second ascended the throne, was formed the Royal Society of London, incorporated by letters patent in 1662. No one was more useful than Boyle in communicating activity and vigour to the new institution. A real lover of knowledge, he was most zealous in the pursuit of it; and having thoroughly imbibed the spirit of Bacon, was an avowed enemy to the philosophy of Aristotle.

SECTION IV.

ASTRONOMY.

1. ANCIENT ASTRONOMY.

It has already been remarked, that the ancients made more considerable advances in astronomy than in almost any other of the physical sciences. They applied themselves diligently to observe the heavens, and employed mathematical reasoning to connect together the insulated facts, which are the only objects of direct observation. The astronomer discovers nothing by help of his instruments, but that, at a given instant, a certain luminous point has a particular position in the heavens. The application of mathematics, and particularly of spherical trigonometry, enables him to trace out the precise track of this luminous spot; to discover the rate of its motion, whether varied or uniform; and thus to resolve the first great problem which the science of astronomy involves, viz. to express the positions of the heavenly bodies, relatively to a given plane in functions of the time. The problem, thus generally enunciated, comprehends all that is usually called by the name of descriptive or mathematical astronomy.

The explanation of the celestial motions, which naturally occurred to those who began the study of the heavens, was, that the stars are so many luminous points fixed in the surface of a sphere, having the earth in its centre, and revolving on an axis passing through that centre in the space of twenty-four hours. When it was observed that all the stars did not partake of this diurnal motion in the same degree, but that some were carried slowly towards the east, and that their paths estimated in that direction, after certain intervals of time, returned into themselves, it
was believed that they were fixed in the surfaces of spheres, which revolved westward more slowly than the sphere of the fixed stars. These spheres must be transparent, or made of some crystalline substance; and hence the name of the crystalline spheres, by which they are distinguished. This system, though it grew more complicated in proportion to the number and variety of the phenomena observed, was the system of Aristotle and Eudoxus, and, with a few exceptions, of all the philosophers of antiquity.

But when the business of observation came to be regularly pursued,—when Timocharis and Aristillus, and their successors in the Alexandrian school, began to study the phenomena of the heavens,—little was said of these orbs; and astronomers seemed only desirous of ascertaining the laws or the general facts concerning the planetary motions.

To do this, however, without the introduction of hypothesis, was certainly difficult, and probably was then impossible. The simplest and most natural hypothesis was, that the planets moved eastward in circles, and at a uniform rate. But when it was found that, instead of moving uniformly to the eastward, every one of them was subject to great irregularity, the motion eastward becoming at certain periods slower, and at length vanishing altogether, so that the planet became stationary, and afterwards acquiring a motion in the contrary direction, proceeded for a time toward the west, it was far from obvious how all these appearances could be reconciled with the idea of a uniform circular motion.

The solution of this difficulty is ascribed to Apollonius Pergæus, one of the greatest geometers of antiquity. He conceived, that in the circumference of a circle, having the earth for its centre, there moved the centre of another circle, in the circumference of which the planet actually revolved. The first of these circles was called the deferent, and the second the epicycle; and the motion in the circumference of each was supposed uniform. Lastly, it was conceived that the motion of the centre of the epicycle in the circumference of the deferent, and of the planet in that of the epicycle, were in opposite directions, the first being towards the east, and the second towards the west. In this way, the alterations from progressive to retrograde, with the intermediate stationary points, were readily explained; and Apollonius carried his investigation as far as to determine the ratio between the radius of the deferent and that of the epicycle, from knowing the stations and retrogradations of any particular planet.

An object, which was then considered as of great importance to astronomy, was thus accomplished, viz. the production of a variable motion, or one which was continually changing both its rate and its direction from two uniform circular motions, each of which preserved always the same quantity and the same direction.

It was not long before another application was made of the method of epicycles. Hipparchus, the greatest astronomer of antiquity, and one of the inventors in science most justly entitled to admiration, discovered the inequality of the sun's apparent motion round the earth. To explain or to express this irregularity, the same observer imagined an epicycle of a small radius with its centre moving uniformly in the circumference of a large circle, of which the earth was the centre, while the sun revolved in the circumference of the small circle with the same angular velocity as this last, but in a contrary direction.

As other irregularities in the motions of the moon and of the planets were observed, other epicycles were introduced; and Ptolemy, in his Almagest, enumerated all which then appeared necessary, and assigned to them such dimensions as enabled them to express the phenomena with accuracy. It is not to be denied that the system of the heavens became in this way extremely complicated; though, when fairly examined, it will appear to be a work of great ingenuity and research. The ancients, indeed, may be regarded as very fortunate in the contrivance of epicycles, because, by means of them, every inequality which can exist in the angular motion of a planet may be at least nearly represented. This I call fortunate, because, at the time when Apollonius introduced the epicycle, he had no idea of the extent to which his contrivance would go, as he could have none of the conclusions which the author of the Mécanique Céleste was to deduce from the principle of gravitation.
The same contrivance had another great advantage; it subjected the motions of the sun, the moon, and the planets, very readily to a geometrical construction, or an arithmetical calculation, neither of them difficult. By this means the predictions of astronomical phenomena, the calculation of tables, and the comparison of those tables with observation, became matters of great facility, on which facility, in a great measure, the progress of the science depended. It was on these circumstances, much more than on the simplicity with which it amused or deceived the imagination, that the popularity of this theory was founded,—the ascendant which it gained over the minds of astronomers, and the resistance which, in spite of facts and observations, it was so long able to make to the true system of the world.

It does not appear that the ancient astronomers ever considered the epicycles and deferents which they employed in their system as having a physical existence, or as serving to explain the causes of the celestial motions. They seem to have considered them merely as mathematical diagrams, serving to express or to represent those motions as geometrical expressions of certain general facts, which readily furnished the rules of astronomical calculation.

The language in which Ptolemy speaks of the epicycles is not a little curious, and very conformable to the notion, that he considered them as merely the means of expressing a general law. After laying down the hypothesis of certain epicycles, and their dimensions, it is usual with him to add, "these suppositions will save the phenomena." *Save* is the literal translation of the Greek word, which is always a part of the verb σώζειν, or some of its compounds. Thus, in treating of certain phenomena in the moon’s motion, he lays down two hypotheses, by either of which they may be expressed; and he concludes, "in this way the similitude of the ratios, and the proportionality of the times, will be saved (σωζόντας) on both suppositions." 1 It is plain, from these words, that the astronomer did not here consider himself as describing any thing which actually existed, but as explaining two artifices, by either of which, certain irregularities in the moon’s motion may be represented, in consistence with the principle of uniform velocity. The hypothesis does not relate to the explanation, but merely to the expression of the fact; it is first assumed, and its merit is then judged of synthetically, by its power to *save*, to reconcile, or to represent appearances. At a time when the mathematical sciences extended little beyond the elements, and when problems which could not be resolved by circles and straight lines could hardly be resolved at all, such artifices as the preceding were of the greatest value. They were even more valuable than the truth itself would have been in such circumstances; and nothing is more certain than that the real elliptical orbits of the planets, and the uniform description of areas, would have been very unreasonable discoveries at the period we are now treating of. The hypotheses of epicycles and of centres of uniform motion were well accommodated to the state of science, and are instances of a false system which has materially contributed to the establishment of truth.

1 *Mathematica Syntaxis*, lib. iv. p. 223 of the Paris edition.—Milton, the extent and accuracy of whose erudition can never be too much admired, had probably in view this phraseology of Ptolemy, when he wrote the following lines:

```
.......
He his fabric of the Heavens
Hath left to their disputes, perhaps to move
His laughter at their quaint opinions wide
Hereafter, when they come to model Heaven
And calculate the stars, how they will wield
The mighty frame, how build, unbuild, contrive
To *save appearances*, how gird the sphere
With centrick and eccentrick scribbled o’er,
Cycle and epicycle, orb in orb.
```

The obsolete verb to *save* is employed by Bacon, and many others of the old English writers, in the same sense with *σωζόντας* in the work of Ptolemy here referred to. "The schoolmen were like the astronomers, who, to *save* phenomena, framed to their conceit eccentricks and epicycles; so they, to *save* the practice of the church, had devised a great number of strange positions." (Bacon.)
2. COPERNICUS AND TYCHO.

On the revival of learning in Europe, astronomy was the first of the sciences which was regenerated. Such, indeed, is the beauty and usefulness of this branch of knowledge, that, in the thickest darkness of the middle ages, the study of it was never entirely abandoned. In those times of ignorance, it also derived additional credit from the assistance which it seemed to give to an imaginary and illusive science. Astrology, which has exercised so durable and extensive a dominion over the human mind, is coeval with the first observations of astronomy. In the middle ages, remarkable for the mixture of a few fragments of knowledge and truth in a vast mass of ignorance and error, it was assiduously cultivated, and, in conjunction with alchemy and magic, shared the favour of the people, and the patronage of the great. During the thirteenth and fourteenth centuries, it was taught in the universities of Italy, and professors were appointed, at Padua and Bologna, to instruct their pupils in the influence of the stars. Everywhere through Europe the greatest respect was shown for this system of imposture; and they who saw the deceit most clearly, could not always avoid the disgrace of being the instruments of it. Astronomy, however, profited by the illusion, and was protected for the great assistance which it seemed to afford to a science more important than itself.

Of those who cultivated astronomy, many were infected by this weakness, though some were completely superior to it. Alphonso, the King of Castile, was among the latter. He flourished about the middle of the thirteenth century, and was remarkable for such freedom of thought, and such boldness of language, as it required his royal dignity to protect. He applied himself diligently to the study of astronomy; he perceived the inaccuracy of Ptolemy's tables, and endeavoured to correct their errors by new tables of his own. These, in the course of the next age, were found to have receded from the heavens, and it became more and more evident that astronomers had not yet discovered the secret of the celestial motions.

Two of the men who, in the fifteenth century, contributed the most to the advancement of astronomical science, Purbach and Regiomontanus, were distinguished also for their general knowledge of the Mathematics. Purbach was fixed at Vienna by the patronage of the Emperor Frederick the Third, and devoted himself to astronomical observation. He published a new edition of the Almagest, and, though he neither understood Greek nor Arabic, his knowledge of the subject enabled him to make it much more perfect than any of the former translations. He is said to have been the first who applied the plummet to astronomical instruments; but this must not be understood strictly, for some of Ptolemy's instruments, the parallactic for instance, were placed perpendicularly by the plumb-line.

Regiomontanus was the disciple of Purbach, and is still more celebrated than his master. He was a man of great learning and genius, most ardent for the advancement of knowledge, and particularly devoted to astronomy. To him we owe the introduction of decimal fractions, which completed our arithmetical notation, and formed the second of the three steps by which, in modern times, the science of numbers has been so greatly improved.

In the list of distinguished astronomers, the name of Copernicus comes next, and stands at the head of those men who, bursting the fetters of prejudice and authority, have established truth on the basis of experience and observation. He was born at Thorn in Prussia, in 1473; he studied at the University of Cracow, being intended at first for a physician, though he afterwards entered into the church. A decided taste for astronomy led him early to the study of the science in which he was destined to make such an entire revolution; and as soon as he found himself fixed and independent, he became a diligent and careful observer.

It would be in the highest degree interesting to know by what steps he was led to conceive the bold system which removes the earth from the centre of the world, and ascribes to it a two-
fold motion. It is probable that the complication of so many epicycles and deferents as were necessary, merely to express the laws of the planetary motions, had induced him to think of all the possible suppositions which could be employed for the same purpose, in order to discover which of them was the simplest.

It appears extraordinary, that so natural a thought should have occurred, at so late a period, for the first, or nearly for the first time. We are assured by Copernicus himself, that one of the first considerations which offered itself to his mind, was the effect produced by the motion of a spectator, in transferring that motion to the objects observed, but ascribing to it an opposite direction. From this principle it immediately followed, that the rotation of the earth on an axis, from west to east, would produce the apparent motion of the heavens in the direction from east to west.

In considering some of the objections which might be made to the system of the earth's motion, Copernicus reasons with great soundness, though he is not aware of the full force of his own argument. Ptolemy had alleged, that if the earth were to revolve on its axis, the violence of the motion would be sufficient to tear it in pieces, and to dissipate the parts. This argument, it is evident, proceeds on a confused notion of a centrifugal force, the effect of which the Egyptian astronomer overrated, as much as he undervalued the firmness and solidity of the earth. Why, says Copernicus, was he not more alarmed for the safety of the heavens, if the diurnal revolution be ascribed to them, as their motion must be more rapid, in proportion as their magnitude is greater? The argument here suggested, now that we know how to measure centrifugal force, and to compare it with others, carries demonstrative evidence with it; because that force, if the diurnal revolution were really performed by the heavens, would be such as the forces which hold together the frame of the material world would be wholly unable to resist.

There are, however, in the reasonings of Copernicus, some unsound parts, which show, that the power of his genius was not able to dispel all the clouds which in that age hung over the human mind, and that the unfounded distinctions of the Aristotelian Physics sometimes afforded arguments equally fallacious to him and to his adversaries. One of his most remarkable physical mistakes was his misconception with respect to the parallelism of the earth's axis; to account for which, he thought it necessary to assume, in addition to the earth's rotation on an axis, and revolution round the sun, the existence of a third motion altogether distinct from either of the others. In this he was mistaken; the axis naturally retains its parallelism, and it would require the action of a force to make it do otherwise. This, as Kepler afterwards remarked, is a consequence of the inertia of matter; and, for that reason, he very justly accused Copernicus of not being fully acquainted with his own riches.

The first edition of the *Astronomia Instaurata*, the publication of which was solicited by Cardinal Schoenberg, and the book itself dedicated to the Pope, appeared in 1543, a few days before the death of the author. Throughout the whole book, the new doctrine was advanced with great caution, as if from a presentiment of the opposition and injustice which it was one day to experience. At first, however, the system attracted little notice, and was rejected by the greater part even of astronomers. It lay fermenting in secret with other new discoveries for more than fifty years, till, by the exertions of Galileo, it was kindled into so bright a flame as to consume the philosophy of Aristotle, to alarm the hierarchy of Rome, and to threaten the existence of every opinion not founded on experience and observation.

After Copernicus, Tycho Brahe was the most distinguished astronomer of the sixteenth century. An eclipse of the sun which he witnessed in 1560, when he was yet a very young man, by the exactness with which it answered to the prediction, impressed him with the greatest reverence for a science which could see so far and so distinctly into the future; and from that moment he was seized with the strongest desire of becoming acquainted with it. Here, indeed, was

1 *Astronomia Instaurata*, lib. i. cap. v.
called into action a propensity nearly allied both to the strength and the weakness of the mind of this extraordinary man; the same that attached him, on one hand, to the calculations of astronomy, and, on the other, to the predictions of judicial astrology.

In yielding himself up, however, to his love of astronomy, he found that he had several difficulties to overcome. He belonged to a class in society elevated, in the opinion of that age, above the pursuit of knowledge, and jealous of the privilege of remaining ignorant with impunity. Tycho was of a noble family in Denmark, so that it required all the enthusiasm and firmness inspired by the love of knowledge, to set him above the prejudices of hereditary rank, and the opposition of his relations. He succeeded, however, in these objects, and also in obtaining the patronage of the King of Denmark, by which he was enabled to erect an observatory, and form an establishment in the island of Huen, such as had never yet been dedicated to astronomy. The instruments were of far greater size, more skilfully contrived, and more nicely divided, than any that had yet been directed to the heavens. By means of them, Tycho could measure angles to ten seconds, which may be accounted sixty times the accuracy of the instruments of Ptolemy, or of any that had belonged to the school of Alexandria.

Among the improvements which he made in the art of astronomical observation, was that of verifying the instruments, or determining their errors by actual observation, instead of trusting, as had been hitherto done, to the supposed infallibility of the original construction.

One of the first objects to which the Danish astronomer applied himself, was the formation of a new catalogue of the fixed stars. That which was begun by Hipparchus, and continued by Ptolemy, did not give the places of the stars with an accuracy nearly equal to that which the new instruments were capable of reaching; and it was, besides, desirable to know whether the lapse of twelve centuries had produced any unforeseen changes in the heavens.

The great difficulty in the execution of this work arose from the want of a direct and easy method of ascertaining the distance of one heavenly body due east or west of another. The distance north or south, either from one another or from a fixed plane, that of the equator, was easily determined by the common method of meridian altitudes, the equator being a plane which, for any given place on the earth's surface, retains always the same position. But no plane extending from north to south, or passing through the poles, retains a fixed position with respect to an observer; and, therefore, the same way of measuring distances from such a plane cannot be applied. The natural substitute is the measure of time; the interval between the passage of two stars over the meridian, bearing the same proportion to twenty-four hours, that the arch which measures their distance perpendicular to the meridian, or their difference of right ascension, does to four right angles.

An accurate measure of time, therefore, would answer the purpose; but such a measure no more existed in the age of Tycho, than it had done in the days of Hipparchus or Ptolemy. These ancient astronomers determined the longitude of the fixed stars by referring their places to those of the moon, the longitude of which, for a given time, was known from the theory of her motions. Thus they were forced to depend on the most irregular of all the bodies in the heavens, for ascertaining the positions of the most fixed, those which ought to have been the basis of the former, and of so many other determinations. Tycho made use of the planet Venus instead of the moon; and his method, though more tedious, was more accurate than that of the Greek astronomers. His catalogue contained the places of 777 fixed stars.

The irregularities of the moon's motions were his next subjects of inquiry. The ancients had discovered the inequality of that planet depending on the eccentricity of the orbit, the same which is now called the equation of the centre.\footnote{The allowance made for any such equality, when the place of a planet is to be computed for a given time, is called an \textit{equation} in the language of astronomy.} Ptolemy had added the knowledge of another
inequality in the moon's motion, to which the name of the evection has been given, amounting to an increase of the former equation at the quarters, and a diminution of it at the times of new and full moon. Tycho discovered another inequality, which is greatest at the octants, and depends on the difference between the longitude of the moon and that of the sun. A fourth irregularity to which the moon's motion is subject, depending wholly on the sun's place, was known to Tycho, but included among the sun's equations. Besides, these observations made him acquainted with the changes in the inclination of the plane of the moon's orbit; and, lastly, with the irregular motion of the nodes, which, instead of being always retrograde at the same rate, are subject to change that rate, and even to become progressive according to their situation in respect of the sun. These are the only inequalities of the moon's motion known before the theory of Gravitation, and, except the first two, are all the discoveries of Tycho.

The atmospherical refraction, by which the heavenly bodies are made to appear more elevated above the horizon than they really are, was suspected before the time of this astronomer, but not known with certainty to exist. He first became acquainted with it by finding that the latitude of his observatory, as determined from observations at the solstices, and from observations of the greatest and least altitudes of the circumpolar stars, always differed about four minutes. The effect of refraction he supposed to be 34' at the horizon, and to diminish from thence upward, till at 45° it ceased altogether. This last supposition is erroneous, but at 45° the refraction is less than 1', and probably was not sensible in the altitudes measured with his instruments, or not distinguishable from the errors of observation. An instrument which he contrived on purpose to make the refraction distinctly visible, shows the scale on which his observatory was furnished. It was an equatorial circle of ten feet diameter, turning on an axis parallel to that of the earth. With the sights of this equatorial he followed the sun on the day of the summer solstice, and found, that as it descended towards the horizon, it rose above the plane of the instrument. At its setting, the sun was raised above the horizon by more than its own diameter.

The comet of 1570 was carefully observed by Tycho, and gave rise to a new theory of those bodies. He found the horizontal parallax to be 20', so that the comet was nearly three times as far off as the moon. He considered comets, therefore, as bodies placed far beyond the reach of our atmosphere, and moving round the sun. This was a severe blow to the Physics of Aristotle, which regarded comets as meteors generated in the atmosphere. His observation of the new star in 1572 was no less hostile to the argument of the same philosopher, which maintained, that the heavens are a region in which there is neither generation nor corruption, and in which existence has neither a beginning nor an end.

Yet Tycho, with this knowledge of astronomy, and after having made observations more numerous and accurate than all the astronomers who went before him, continued to reject the system of Copernicus, and to deny the motion of the earth. He was, however, convinced that the earth is not the centre about which the planets revolve; for he had himself observed Mars, when in opposition, to be nearer to the earth than the earth was to the sun; so that, if the planets were ranged as in the Ptolemaic system, the orbit of Mars must have been within the orbit of the sun. He therefore imagined the system still known by his name, according to which the sun moves round the earth, and is at the same time the centre of the planetary motions. It cannot be denied, that the phenomena purely astronomical may be accounted for on this hypothesis, and that the objections to it are rather derived from physical and mechanical considerations than from the appearances themselves. It is simpler than the Ptolemaic system, and free from its inconsistencies; but it is more complex than the Copernican, and in no respect affords a better explanation of the phenomena. The true place of the Tychonic system is between the two former; an advance beyond the one, and a step short of the other; and such, if the progress of discovery were always perfectly regular, is the place which it would have occupied in the history of the science. If Tycho had lived before Copernicus, his system
would have been a step in the advancement of knowledge; coming after him, it was a step backward.

It is not to his credit as a philosopher to have made this retrograde movement, yet he is not altogether without apology. The physical arguments in favour of the Copernican system, founded on the incongruity of supposing the greater body to move round the smaller, might not be supposed to have much weight, in an age when the equality of action and reaction was unknown, and when it was not clearly understood that the sun and the planets act at all on one another. The arguments which seem, in the judgment of Tycho, to have balanced the simplicity of the Copernican system, were founded on certain texts of Scripture, and on the difficulty of reconciling the motion of the earth with the sensations which we experience at its surface, or the phenomena which we observe, the same, in all respects, as if the earth were at rest. The experiments and reasonings of Galileo had not yet instructed men in the \textit{inertia} of matter, or in the composition of motion; and the followers of Copernicus reasoned on principles which they held in common with their adversaries. A ball, it was said by the latter, drop from the mast-head of a ship under sail, does not fall at the foot of the mast, but somewhat behind it; and in the same manner, a stone dropt from a high tower would not fall, on the supposition of the earth's motion, at the bottom of the tower, but to the west of it, the earth, during its fall, having gone eastward from under it. The followers of Copernicus were not yet provided with the true answer to this objection, viz. that the ball does actually fall at the bottom of the mast. It was admitted that it must fall behind it, because the ball was no part of the ship, and that the motion forward was not natural, either to the ship or to the ball. The stone, on the other hand, let fall from the top of the tower, was a part of the earth, and therefore the diurnal and annual revolutions which were natural to the earth were also natural to the stone; the stone would therefore retain the same motion with the tower, and strike the ground precisely at the bottom of it.

It must be confessed, that neither of these logicians had yet thoroughly awakened from the dreams of the Aristotelian metaphysics; but men were now in possession of the truth, which was finally to break the spell, and set the mind free from the fetters of prejudice and authority. Another charge, against which it is more difficult to defend Tycho, is his belief in the predictions of astrology. He even wrote a treatise in defence of this imaginary art, and regulated his conduct continually by its precepts. Credulity, so unworthy of a man deeply versed in real science, is certainly to be set down less to his own account than to that of the age in which he lived.

3. KEPLER AND GALILEO.

Kepler followed Tycho, and in his hands astronomy underwent a change only second to that which it had undergone in the hands of Copernicus. He was born in 1571. He early applied himself to study and observe the heavens, and was soon distinguished as an inventor. He began with taking a more accurate view of astronomical refraction than had yet been done, and he appears to have been the first who conceived that there must be a certain fixed law which determined the quantity of it, corresponding to every altitude, from the horizon to the zenith. The application of the principles of optics to astronomy, and the accurate distinction between the optical and real inequalities of the planets, are the work of the same astronomer. It was by the views thus presented that he was led to the method of constructing and calculating eclipses by means of projections, without taking into consideration the diurnal parallax. These are valuable improvements, but they were, however, obscured by the greatness of his future discoveries.

The planes of the orbits of the planets were naturally, in the Ptolemaic system, supposed to pass through the earth; and the reformation of Copernicus did not go so far as to change the notions on that subject which had generally been adopted. Kepler observed that the orbits of the planets are in planes passing through the sun,
and that, of consequence, the lines of their nodes all intersect in the centre of that luminary. This discovery contributed essentially to those which followed.

The oppositions of the planets, or their places when they pass the meridian at midnight, offer the most favourable opportunities for observing them, both because they are at that time nearest to the earth, and because their places seen from thence are the same as if they were seen from the sun. The true time of the opposition had however been, till now, mistaken by astronomers, who held it to be at the moment when the apparent place of the planet was opposite to the mean place of the sun. It ought, however, to have been, when the apparent places of both were opposed to one another. This reformation was proposed by Kepler, and, though strenuously resisted by Tycho, was finally received.

Having undertaken to examine the orbit of Mars, in which the irregularities are most considerable, Kepler discovered, by comparing together seven oppositions of that planet, that its orbit is elliptical; that the sun is placed in one of the foci; and that there is no point round which the angular motion is uniform. In the pursuit of this inquiry he found that the same thing is true of the earth's orbit round the sun: hence by analogy it was reasonable to think, that all the planetary orbits are elliptical, having the sun in their common focus.

The industry and patience of Kepler, in this investigation, were not less remarkable than his ingenuity and invention. Logarithms were not yet known, so that arithmetical computation, when pushed to great accuracy, was carried on at a vast expense of time and labour. In the calculation of every opposition of Mars, the work filled ten folio pages, and Kepler repeated each calculation ten times, so that the whole work for each opposition extended to one hundred such pages: seven oppositions thus calculated produced a large folio volume.

In these calculations the introduction of hypotheses was unavoidable, and Kepler's candour in rejecting them, whenever they appeared erroneous, without any other regret than for the time which they had cost him, cannot be sufficiently admired. He began with hypothesis, and ended with rejecting every thing hypothetical. In this great astronomer we find genius, industry, and candour, all uniting together as instruments of investigation.

Though the angular motion of the planet was not found to be uniform, it was discovered that a very simple law connected that motion with the rectilinear distance from the sun, the former being everywhere inversely as the square of the latter; and hence it was easy to prove, that the area described by the line drawn from the planet to the sun increased at a uniform rate, and, therefore, that any two such areas were proportional to the times in which they were described. The picture presented of the heavens was thus, for the first time, cleared of every thing hypothetical.

The same astronomer was perhaps the first person who conceived that there must be always a law capable of being expressed by arithmetic or geometry, which connects such phenomena as have a physical dependence on one another. His conviction of this truth, and the delight which he appears to have experienced in the contemplation of such laws, led him to seek, with great eagerness, for the relation between the periodical times of the planets and their distances from the sun. He seems, indeed, to have looked towards this object with such earnestness, that, while it was not attained, he regarded all his other discoveries as incomplete. He at last found, infinitely to his satisfaction, that in any two planets the squares of the times of the revolution are as the cubes of their mean distances from the sun. This beautiful and simple law had a value beyond what Kepler could possibly conceive; yet a sort of scientific instinct instructed him in its great importance. He has marked the year and the day when it became known to him; it was on the 8th of May 1618; and perhaps philosophers will agree that there are few days in the scientific history of the world which deserve so well to be remembered.

These great discoveries, however, were not much attended to by the astronomers of that period, or by those who immediately followed. They were but little considered by Gassendi,—they were undervalued by Riccioli,—and were
never mentioned by Descartes. It was an honour reserved for Newton to estimate them at their true value.

Indeed the discoveries of Kepler were at first so far from being duly appreciated, that they were objected to, not for being false, but for offering to astronomers, in the calculation of the place of a planet in its orbit, a problem too difficult to be resolved by elementary geometry. To cut the area of a semi-ellipses in a given ratio by a line drawn through the focus, is the geometrical problem into which he showed that the above inquiry ultimately resolved. As if he had been answerable for the proceedings of nature, the difficulty of this question was considered as an argument against his theory, and he himself seems somewhat to have felt it as an objection, especially when he found that the best solution he could obtain was no more than an approximation. With all his power of invention, Kepler was a mathematician inferior to many of that period; and though he displayed great ability in the management of this difficult investigation, his solution fell very far short of the simplicity which it was afterwards found capable of attaining.

In addition to all this, he rendered another very important service to the science of astronomy and to the system of Copernicus. Copernicus, it has been already mentioned, had supposed that a force was necessary to enable the earth to preserve the parallelism of its axis during its revolution round the sun. He imagined, therefore, that a third motion belonged to the earth; and that, besides turning on its axis and revolving round the sun, it had another movement by which its axis was preserved always equally inclined to the ecliptic. Kepler was the first to observe that this third motion was quite superfluous, and that the parallelism of the earth's axis, in order to be preserved, required nothing but the absence of all force, as it necessarily proceeded from the inertia of matter, and its tendency to persevere in a state of uniform motion. Kepler had a clear idea of the inertia of body; he was the first who employed the term; and, considering all motion as naturally rectilinear, he concluded that when a body moves in a curve, it is drawn or forced out of the straight line by the action of some cause, not residing in itself. Thus he prepared the way for physical astronomy, and in these ideas he was earlier than Descartes.

The discoveries of Kepler were secrets extorted from nature by the most profound and laborious research. The astronomical discoveries of Galileo, more brilliant and imposing, were made at a far less expense of intellectual labour. By this it is not meant to say that Galileo did not possess, and did not exert, intellectual powers of the very highest order; but it was less in his astronomical discoveries that he had occasion to exert them, than in those which concerned the theory of motion. The telescope, turned to the heavens for the first time, in the hands of a man far inferior to the Italian philosopher, must have unfolded a series of wonders to astonish and delight the world.

It was in the year 1609 that the news of a discovery, made in Holland, reached Galileo, viz. that two glasses had been so combined as greatly to magnify the objects seen through them. More was not told, and more was not necessary to awaken a mind abundantly alive to all that interested the progress either of science or of art. Galileo applied himself to try various combinations of lenses, and he quickly fell on one which made objects appear greater than when seen by the naked eye, in the proportion of three to one. He soon improved on this construction, and found one which magnified thirty-two times, nearly as much as the kind of telescope he used is capable of. That telescope was formed of two lenses; the lens next the object convex, the other concave; the objects were presented upright, and magnified in their lineal dimensions in the proportion just assigned.

Having tried the effect of this combination on terrestrial objects, he next directed it to the moon. What the telescope discovers on the ever-varying face of that luminar, is now well known, and needs not to be described; but the sensations which the view must have communicated to the philosopher who first beheld it, may be conceived more easily than expressed. To the immediate impression which they made upon the sense, to the wonder they excited in all who saw them, was added the proof, which, on re-
reflection, they afforded, of the close resemblance between the earth and the celestial bodies, whose divine nature had been so long and so erroneously contrasted with the ponderous and opaque substance of our globe. The earth and the planets were now proved to be bodies of the same kind, and views were entertained of the universe, more suitable to the simplicity and the magnificence of nature.

When the same philosopher directed his telescope to the fixed stars, if he was disappointed at finding their magnitudes not increased, he was astonished and delighted to find them multiplied in so great a degree, and such numbers brought into view, which were invisible to the naked eye. In Jupiter he perceived a large disk, approaching in size to the moon. Near it, as he saw it for the first time, were three luminous points ranged in a straight line, two of them on one side of the planet, and one on the other. This occasioned no surprise, for they might be small stars not visible to the naked eye, such as he had already discovered in great numbers. By observing them, however, night after night, he found these small stars to be four in number, and to be moons or satellites, accompanying Jupiter, and revolving round him, as the moon revolves round the earth.

The eclipses of these satellites, their conjunctions with the planet, their disappearance behind his disk, their periodic revolutions, and the very problem of distinguishing them from one another, offered, to an astronomer, a series of new and interesting observations.

In Saturn he saw one large disk, with two smaller ones very near it, and diametrically opposite, and always seen in the same places; but more powerful telescopes were required before these appearances could be interpreted.

The horned figure of Venus, and the gibbosity of Mars, added to the evidence of the Copernican system, and verified the conjectures of its author, who had ventured to say, that, if the sense of sight were sufficiently powerful, we should see Mercury and Venus exhibiting phases similar to those of the moon.

The spots of the sun derived an interest from their contrast with the luminous disk over which they seemed to pass. They were found to have such regular periods of return as could be derived only from the motion of the disk itself; and thus the sun's revolution on his axis, and the time of that revolution, were clearly ascertained.

This succession of noble discoveries, the most splendid, probably, which it ever fell to the lot of one individual to make, in a better age would have entitled its author to the admiration and gratitude of the whole scientific world, but was now viewed from several quarters with suspicion and jealousy. The ability and success with which Galileo had laboured to overturn the doctrines of Aristotle and the schoolmen, as well as to establish the motion of the earth and the immobility of the sun, had excited many enemies. There are always great numbers who, from habit, indolence, or fear, are the determined supporters of what is established, whether in practice or in opinion. To these the constitution of the universities of Europe, so entirely subjected to the church, had added a numerous and learned phalanx, interested to preserve the old systems, and to resist all innovations which could endanger their authority or their repose. The church itself was roused to action, by reflecting that it had staked the infallibility of its judgments on the truth of the very opinions which were now in danger of being overthrown. Thus was formed a vast combination of men, not very scrupulous about the means which they used to annoy their adversaries: the power was entirely in their hands, and there was nothing but truth and reason to be opposed to it.

The system of Copernicus, however, while it remained obscure, and known only to astronomers, created no alarm in the church. It had even been ushered into the world at the solicitation of a cardinal, and under the patronage of the Pope; but when it became more popular, when the ability and acuteness of Galileo were enlisted on its side, the consequences became alarming; and it was determined to silence by force an adversary who could not be put down by argument. His Dialogues contained a full exposition of the evidence of the earth's motion, and set forth the errors of the old, as well as the discoveries of the new philosophy, with great force of reasoning, and with the charms of the
most lively eloquence. They are written, indeed, with such singular felicity, that one reads them at the present day, when the truths contained in them are known and admitted, with all the delight of novelty, and feels one's self carried back to the period when the telescope was first directed to the heavens, and when the earth's motion, with all its train of consequences, was proved for the first time. The author of such a work could not be forgiven. Galileo, accordingly, was twice brought before the Inquisition. The first time a council of seven cardinals pronounced a sentence which, for the sake of those disposed to believe that power can subdue truth, ought never to be forgotten: "That to maintain the sun to be immovable, and without local motion, in the centre of the world, is an absurd proposition, false in philosophy, heretical in religion, and contrary to the testimony of Scripture. That it is equally absurd and false in philosophy to assert that the earth is not immovable in the centre of the world, and, considered theologically, equally erroneous and heretical."

These seven theologians might think themselves officially entitled to decide on what was heretical or orthodox in faith; but, that they should determine what was true or false in philosophy, was an insolent invasion of a territory into which they had no right to enter, and is a proof how ready men are to suppose themselves wise, merely because they happen to be powerful. At this time a promise was extorted from Galileo, that he would not teach the doctrine of the earth's motion, either by speaking or by writing. To this promise he did not conform. His third dialogue, published, though not till long afterwards, contained such a full display of the beauty and simplicity of the new system, and such an exposure of the inconsistencies of Ptolemy and Tycho, as completed the triumph of Copernicus.

In the year 1633, Galileo, now seventy years old, being brought before the Inquisition, was forced solemnly to disavow his belief in the earth's motion; and condemned to perpetual imprisonment, though the sentence was afterwards mitigated, and he was allowed to return to Florence. The Court of Rome was very careful to publish this second recantation all over Europe, thinking, no doubt, that it was administering a complete antidote to the belief of the Copernican system. The sentence, indeed, appears to have pressed very heavily on Galileo's mind, and he never afterwards either talked or wrote on the subject of astronomy. Such was the triumph of his enemies, on whom ample vengeance would have long ago been executed, if the indignation and contempt of posterity could reach the mansions of the dead.

Conduct like this, in men professing to be the ministers of religion and the guardians of truth, can give rise to none but the most painful reflections. That an aged philosopher should be forced, laying his hand on the sacred Scriptures, to disavow opinions which he could not cease to hold without ceasing to think, was as much a profanation of religion as a violation of truth and justice. Was it the act of hypocrites, who considered religion as a state engine, or of bigots, long trained in the art of believing without evidence, or even in opposition to it? These questions it were unnecessary to resolve; but one conclusion cannot be denied, that the indirect defenders of religion have often proved its worst enemies.

At length, however, by the improvements, the discoveries, and the reasonings, first of Kepler, and then of Galileo, the evidence of the Copernican system was fully developed, and nothing was wanting to its complete establishment but time sufficient to allow opinion to come gradually round, and to give men an opportunity of studying the arguments placed before them. Of the adherents of the old system, many had been too long habituated to it to change their views; but as they disappeared from the scene, they were replaced by young astronomers, not under the influence of the same prejudices, and eager to follow doctrines which seemed to offer so many new subjects of investigation. In the

1 He was thrown into prison previously to his trial, and attempts were made to render him obnoxious to the people. From the text of a priest who preached against him, we may judge of the wit and the sense with which this persecution was conducted: Vidi Galilei, quid si nus capem suscipientes. 2
next generation the systems of Ptolemy and Tycho had no followers.

It was not astronomy alone which was benefited by this revolution, and the discussions to which it had given rise. A new light, as already remarked, was thrown on the physical world, and the curtain was drawn aside which had so long concealed the great experiment, by which nature herself manifests, at every instant, the inertia of body, and the composition of forces. To reconcile the real motion of the earth with its appearance of rest and with our feeling of its immobility, required such an examination of the nature of motion as discovered, if not its essence, at least its most general and fundamental properties. The whole science of rational mechanics profited, therefore, essentially by the discovery of the earth's motion.

A great barrier to philosophic improvement had arisen from the separation so early made, and so strenuously supported in the ancient systems, between terrestrial and celestial substances, and between the laws which regulate motion on the earth and in the heavens. This barrier was now entirely removed; the earth was elevated to the rank of a planet; the planets were reduced to the condition of earths; and by this mutual approach, the same rules of interpretation became applicable to the phenomena of both. Principles derived from experiments on the earth, became guides for the analysis of the heavens; and men were now in a situation to undertake investigations, which the most Hardy adventurer in science could not before have dared to imagine. Philosophers had ascended to the knowledge of the affinities which pervade all nature, and which mark so strongly both the wisdom and unity of its author.

The light thus struck out darted its rays into regions the most remote from physical inquiry. When men saw opinions entirely disproved, which were sanctioned by all antiquity, and by the authority of the greatest names, they began to have different notions of the rules of evidence, of the principles of philosophic inquiry, and of the nature of the mind itself. It appeared that science was destined to be continually progressive; provided it was taken for an inviolable maxim, that all opinion must be ultimately amenable to experience and observation.

It was no slight addition to all these advantages, that, in consequence of the discussions from which Galileo had unhappily been so great a sufferer, the line was at length definitely drawn which was to separate the provinces of faith and philosophy from one another. It became a principle, recognised on all hands, that revelation, not being intended to inform men of those things which the unassisted powers of their own understanding would in time be able to discover, had, in speaking of such matters, employed the language and adopted the opinions of the times; and thus the magic circle, by which the priest had endeavoured to circumscribe the inquiries of the philosopher, entirely disappeared. The reformation in religion which was taking place about the same time, and giving such energy to the human mind, contributed to render this emancipation more complete, and to reduce the exorbitant pretensions of the Romish church. The prohibition against believing in the true system of the world either ceased altogether, or was reduced to an empty form, by which the affectation of infallibility still preserves the memory of its errors. 1

4. DESCARTES, HUYGENS, &c.

Descartes flourished about this period, and has the merit of being the first who undertook to give an explanation of the celestial motions, or who formed the great and philosophic conception of reducing all the phenomena of the universe to the same law. The time was now

1 The learned fathers who have, with so much ability, commented on the Principle of Newton, have prefixed to the third book this remarkable declaration: "Quo hac tertio libro telluris motus hypothesin assumit. Auctoris propositiones aliter explicari non poterat, nisi eadem facta hypothesin. Hinc alienam coeuli sumus gerere personam. Ceterum lati a summis Pontificibus contra telluris motum Decretis nos obsequir profiterur." There is an archness in the last sentence, that looks as if the authors wanted to convey meanings that would differ according to the orthodoxy of the readers.
arrived when, from the acknowledged assimilation of the planets to the earth, this might be undertaken with some reasonable prospect of success. No such attempt had hitherto been made, unless the crystalline spheres or homocentric orbs of the ancients are to be considered in that light. The conjectures of Kepler about a kind of animation, and of organic structure, which pervaded the planetary regions, were too vague and indefinite, and too little analogous to any thing known on the earth, to be entitled to the name of a theory. To Descartes, therefore, belongs the honour of being the first who ventured on the solution of the most arduous problem which the material world offers to the consideration of philosophy. For this solution he sought no other data than matter and motion, and with them alone proposed to explain the structure and constitution of the universe. The matter which he required, too, was of the simplest kind; possessing no properties but extension, impenetrability, and inertia. It was matter in the abstract, without any of its peculiar or distinguishing characters. To explain these characters was indeed a part of the task which he proposed to himself; and thus, by the simplicity of his assumptions, he added infinitely to the difficulty of the problem which he undertook to resolve.

The matter thus constituted was supposed to fill all space, and its parts, both great and small, to be endowed with motion in an infinite variety of directions. From the combination of these, the rectilinear motion of the parts became impossible; the atoms or particles of matter were continually diverted from the lines in which they had begun to move; so that circular motion and centrifugal force originated from their action on one another. Thus matter came to be formed into a multitude of vortices, differing in extent, in velocity, and in density; the more subtle parts constituting the real vortex, in which the denser bodies float, and by which they are pressed, though not equally, on all sides.

Thus the universe consists of a multitude of vortices, which limit and circumscribe one another. The earth and the planets are bodies carried round in the great vortex of the solar system; and by the pressure of the subtle matter, which circulates with great rapidity and great centrifugal force, the denser bodies, which have less rapidity and less centrifugal force, are forced down toward the sun, the centre of the vortex. In like manner, each planet is itself the centre of a smaller vortex, by the subtle matter of which the phenomena of gravity are produced, just as with us at the surface of the earth.

The gradation of smaller vortices may be continued in the same manner, to explain the cohesion of the grosser bodies, and their other sensible qualities. But I forbear to enter into the detail of a system which is now entirely exploded, and so inconsistent with the views of nature which have become familiar to every one, that such details can hardly be listened to with patience. Indeed the theory of vortices did not explain a single phenomenon in a satisfactory manner; nor is there a truth of any kind which has been brought to light by means of it. None of the peculiar properties of the planetary orbits were taken into the account; none of the laws of Kepler were considered; nor was any explanation given of those laws, more than of any other that might be imagined. The philosophy of Descartes could explain all things equally well, and might have been accommodated to the systems of Ptolemy or Tycho, just as well as to that of Copernicus. It forms, therefore, no link in the chain of physical discovery; it served the cause of truth only by exploding errors more pernicious than its own; by exhausting a source of deception, which might have misled other adventurers in science; and by leaving a striking proof how little advancement can be made in philosophy by pursuing any path but that of experiment and induction. Descartes was, nevertheless, a man of great genius, a deep thinker, of enlarged views, and entirely superior to prejudice. Yet, in as far as the explanation of astronomical phenomena is concerned, (and it was his main object) he did good only by showing in what quarter the attempt could not be made with success; he was the forlorn hope of the new philosophy, and must be sacrificed for the benefit of those who were to follow.

Gassendi, the contemporary and countryman
of Descartes, possessed great learning, with a very clear and sound understanding. He was a good observer, and an enlightened advocate of the Copernican system. He explained, in a very satisfactory manner, the connection between the laws of motion and the motion of the earth, and made experiments to show, that a body carried along by another acquires a motion which remains after it has ceased to be so carried. Gal- lund observed the transit of a planet over the disk of the sun,—that of Mercury, in 1631. Kepler had predicted this transit, but did not live to enjoy a spectacle which afforded so satisfactory a proof of the truth of his system, and of the accuracy of his astronomical tables.

The first transit of Venus which was observed, happened a few years later, in 1639, when it was seen in England by Horrox and his friend Crabtree, and by them only. Horrox, who was a young man of great genius, had himself calculated the transit, and foretold the time very accurately, though the astronomical tables of that day gave different results; and those of Kepler, in which he confided the most, were, in this instance, considerably in error. Horrox has also the merit of being among the first who rightly appreciated the discoveries of the astronomer just named. He had devoted much time to astronomical observation, and, though he died very young, he left behind him some preparations for computing tables of the moon, on a principle which was new, and which Newton himself thought worthy of being adopted in his theory of the inequalities of that planet.

The first complete system of astronomy in which the elliptic orbits were introduced, was the Astronomia Philolaica of Bullialdus, (Bouliau) published in 1645. They were introduced, however, with such hypothetical additions, as show that the idea of a centre of uniform motion had not yet entirely disappeared. It is an idea, indeed, which gives considerable relief to the imagination, and it besides leads to methods of calculation more simple than the true theory, and Bullialdus may have flattered himself that they were sufficiently exact. He conceives the elliptic orbit as a section of an oblique cone, the axis of which passes through the superior focus of the ellipse, while the planet moves in its circumference in such a manner, that a plane passing through it and through the axis shall be carried round with a uniform angular velocity. It is plain that the cone and its axis are mere fictions, arbitrarily assumed, and not even possessing the advantage of simplicity. The author himself departs from this hypothesis, and calculates the places of a planet, on the supposition that it moves in the circumference of an epicycle, and the epicycle in the circumference of an eccentric deferent, both angular motions being uniform, that of the planet in the epicycle being retrograde, and double the other. The figure thus described may be shown to be an ellipse, but the line drawn from the planet to the focus does not cut off areas proportional to the time.

An hypothesis advanced by Ward, bishop of Salisbury, was simpler and more accurate than that of the French astronomer. According to it, the line drawn from a planet to the superior focus of its elliptic orbit, turns with a uniform angular velocity round that point. In orbits of small eccentricity, this is nearly true, and almost coincides in such cases with Kepler's principle of the uniform description of areas. Dr Ward, however, did not consider the matter in that light; he assumed his hypothesis as true, guided, it would seem, by nothing but the opinion, that a centre of uniform motion must somewhere exist, and pleased with the simplicity thus introduced into astronomical calculation. It is indeed remarkable, as Montucla has observed, how little the most enlightened astronomers of that time seem to have studied or understood the laws discovered by Kepler. Riccioli, of whom we are just about to speak, enumerates all the suppositions that had been laid down concerning the velocities of the planets, but makes no mention of their describing equal areas in equal times round the sun. Even Cassini, great as he was in astronomy, cannot be entirely exempted from this censure.

Riccioli, a good observer, and a learned and diligent compiler, has collected all that was known in astronomy about the middle of the seventeenth century, in a voluminous work, the New Almagest. Without much originality, he was a very useful author, having had, as the
historian of astronomy remarks, the courage and the industry to read, to know, and to abridge every thing. He was, nevertheless, an enemy to the Copernican system, and has the discredit of having measured the evidence for and against that system, not by the weight, but by the number of the arguments. The pains which he took to prop the falling edifice of deferents and epicycles, added to his misapprehending and depreciating the discoveries of Kepler, subject him to the reproach of having neither the genius to discover truth, nor the good sense to distinguish it when discovered. He was, however, a priest and a Jesuit; he had seen the fate of Galileo; and his errors may have arisen from want of courage, more than from want of discernment.

Of the phenomena which the telescope in the hands of Galileo had made known, the most paradoxical were those exhibited by Saturn; sometimes attended by two globes, one on each side, without any relative motion, but which, at stated times, disappear for a while, and leave the planet single, like the other heavenly bodies. Nearly forty years had elapsed, without any further insight into these mysterious appearances, when Huygens began to examine the heavens with telescopes of his own construction, better and more powerful than any which had yet been employed. The two globes that had appeared, insulated, were now seen connected by a circular and luminous belt, going quite round the planet. At last, it was found that all these appearances resulted from a broad ring surrounding Saturn, and seen obliquely from the earth. The gradual manner in which this truth unfolded itself is very interesting, and has been given with the detail that it deserves by Huygens, in his Systema Saturnium.

The attention which Huygens had paid to the ring of Saturn, led him to the discovery of a satellite of the same planet. His telescopes were not powerful enough to discover more of them than one; he believed, indeed, that there were no more, and that the number of the planets now discovered was complete. The reasoning by which he convinced himself, is a proof how slowly men are cured of their prejudices, even with the best talents and the best information. The planets, primary and secondary, thus made up twelve, the double of six, the first of the perfect numbers. In 1671, however, Cassini discovered another satellite, and afterwards three more, making five in all, which the more perfect telescopes of Dr Herschell have lately augmented to seven.

To the genius of Huygens astronomy is indebted for an addition to its apparatus, hardly less essential than the quadrant and the telescope. An accurate measure of time is of use even in the ordinary business of life, but to the astronomer is infinitely valuable. The dates of his observations, and an accurate estimate of the time elapsed between them, are necessary, in order to make them lead to any useful consequences. Besides this, the only way of measuring with accuracy those arches in the heavens, which extend from east to west, or which are parallel to the equator, depends on the earth's rotation; because such an arch bears the same proportion to the entire circumference of a circle, that the time of its passage under the meridian bears to an entire day. The reckoning of time thus furnishes the best measure of position, as determined by arches parallel to the equator, whether on the earth or in the heavens.

Though the pendulum afforded a measure of time, in itself of the greatest exactness, the means of continuing its motion, without disturbing the time of its vibrations, was yet required to be found; and this, by means of the clock, Huygens contrived most ingeniously to effect. Each vibration of the pendulum, by means of an arm at right angles to it, allows the tooth of a wheel to escape, the wheel being put in motion by a weight. The wheel is so contrived, that the force with which it acts is just sufficient to restore to the pendulum the motion which it had lost by the resistance of the air, and the friction at the centre of motion. Thus the motion of the clock is continued without any diminution of its uniformity, for any length of time.

The telescope had not yet served astronomy in all the capacities in which it could be useful. Huygens, of whose inventive genius the history of science has so much to record, applied it to the measurement of small angles, forming it into the instrument which has since been called a micrometer. By introducing into the focus of the
telescope a round aperture of a given size, he contrived to measure the angle which that aperture subtended to the eye, by observing the time that a star placed near the equator required to traverse it. When the angle subtended by any other object in the telescope was to be measured, he introduced into the focus a thin piece of metal, just sufficient to cover the object in the focus. The proportion of the breadth of this plate to the diameter of the aperture formerly measured, gave the angle subtended by the image in the focus of the telescope. This contrivance is described in the Systema Saturnium, at the end.

The telescope has further contributed materially to the accuracy of astronomical observation, by its application to instruments used for measuring, not merely small angles, but angles of any magnitude whatever. The telescope here comes in place of the plain sights with which the index or allidad of an instrument used to be directed to an object, and this substitution has been accompanied with two advantages. The disk of a star is never so well defined to the naked eye as it is in the telescope. Besides, in using plain sights, the eye adapts itself to the farther off of the two, in order that its aperture may be distinctly seen. Whenever this adjustment is made, the object seen through the aperture necessarily appears indistinct to the eye, which is then adapted to a near object. This circumstance produces an uncertainty in all such observations, which, by the use of the telescope, is entirely removed.

But the greatest advantage arises from the magnifying power of the telescope, from which it follows, that what is a mere point to the naked eye, is an extended line which can be divided into a great number of parts when seen through the former. The best eye, when not aided by glasses, is not able to perceive an object which subtends an angle less than half a minute, or thirty seconds. When the index of a quadrant, therefore, is directed by the naked eye to any point in the heavens, we cannot be sure that it is nearer than half a minute on either side of that point. But when we direct the axis of a telescope, which magnifies thirty times, to the same object, we are sure that it is within the thirtieth part of half a minute, that is, within one second of the point aimed at. Thus the accuracy, ceteris paribus, is proportional to the magnifying power.

The application of the telescope, however, to astronomical instruments, was not introduced without opposition. Hevelius of Dantzic, the greatest observer who had been since Tycho Brahe, who had furnished his observatory with the best and largest instruments, and who was familiar with the use of the telescope, strenuously maintained the superiority of the plain sights. His principal argument was founded on this,—that, in plain sights, the line of collimation is determined in its position by two fixed points at a considerable distance from one another, viz. the centres of the two apertures of the sights, so that it remains invariable with respect to the index.

In the case of the telescope there was one fixed point, the intersection of the wires in the focus of the eye-glass; but Hevelius did not think that the other point, viz. the optical centre of the object-glass, was equally well defined. This doubt, however, might have been removed by a direct appeal to experiment, or to angles actually measured on the ground, first by an instrument, and then by trigonometrical operations. From thence it would soon have been discovered, that the centre of a lens is in fact a point defined more accurately than can be done by any mechanical construction.

This method of deciding the question was not resorted to. Hevelius and Hooke had a very serious controversy concerning it, in which the advantage remained with the latter. It should have been observed, that the French astronomer Picard was the first who employed instruments furnished with telescopic sights, about the year 1665. It appears, however, that Gascoigne, an English gentleman who fell at the battle of Marston-moor in 1644, had anticipated the French astronomer in this invention, but that it had remained entirely unknown. He had also anticipated the invention of the micrometer. The vast additional accuracy thus given to instruments formed a new era in the history of astronomical observations.

Though Galileo had discovered the satellites of Jupiter, their times of revolution, and even
some of their inequalities, it yet remained to define their motions with precision, and to construct tables for calculating their places. This task was performed by the elder Cassini, who was invited from Italy, his native country, by Louis the Fourteenth, and settled in France in 1669. His tables of the satellites had been published at Bologna three years before, and he continued to improve them, by a series of observations made in the observatory at Paris, with great diligence and accuracy.

The theory of the motions of these small bodies is a research of great difficulty, and had been attempted by many astronomers before Cassini, with very little success. The planes of the orbits, their inclinations to the orbit of Jupiter, and the lines in which they intersected that orbit, were all to be determined, as well as the times of revolution, and the distances of each from its primary. Add to this, that it is only in a few points of their orbits that they can be observed with advantage. The best are at the times of immersion into the shadow of Jupiter, and emersion from it. The same excellent astronomer discovered four satellites of Saturn, in addition to that already observed by Huygens. He also discovered the rotation of Jupiter and of Mars upon their axes.

The constant attention bestowed on the eclipses of the satellites of Jupiter, made an inequality be remarked in the periods of their return, which seemed to depend on the position of the earth relatively to Jupiter and the sun, and not, as the inequalities of that sort might have been expected to do, on the place of Jupiter in his orbit. From the opposition of Jupiter to the sun, till the conjunction, it was found that the observed emersion of the satellites from the shadow fell more and more behind the computed; the differences amounting near the conjunction to about fourteen minutes. When, after the conjunction, the immersions were observed, an acceleration was remarked, just equal to the former retardation; so that, at the opposition, the eclipse happened fourteen minutes sooner than by the calculation.

The first person who offered an explanation of these facts was Olaus Roemer, a Danish astronomer. He observed that the increase of the retardation corresponded nearly to the increase of the earth's distance from Jupiter, and conversely, the acceleration to the diminution of that distance. Hence it occurred to him, that it was to the time which light requires to traverse those distances that the whole series of phenomena was to be ascribed. This explanation was so simple and satisfactory, that it was readily received.

Though Roemer was the first who communicated this explanation to the world, yet it seems certain that it had before occurred to Cassini, and that he was prevented from making it known by a consideration which does him great honour. The explanation which the motion of light afforded, seemed not to be consistent with two circumstances involved in the phenomenon. If such was the cause of the alternate acceleration and retardation above described, why was it observed only in the eclipses of the first satellite, and not in those of the other three? This difficulty appeared so great to Cassini, that he suppressed the explanation which he would otherwise have given.

The other difficulty occurred to Maraldi. Why did not an equation or allowance of the same kind arise from the position of Jupiter, with respect to his aphelion, for, all other things being the same, his distance from the earth must be greater, as he was nearer to that point of his orbit? Both these difficulties have since been completely removed. If the aforesaid inequality was not for some time observed in any satellite but the first, it was only because the motions of the first are the most regular, and were the soonest understood; but it now appears that the same equation belongs to all the satellites. The solution of Maraldi's difficulty is similar; for the quantity of what is called the equation of the light, is now known to be affected by Jupiter's place in his orbit.

Thus every thing conspires to prove the reality of the motion of light, so singular on account of the immensity of the velocity, and the smallness of the bodies to which it is communicated.
3. ESTABLISHMENT OF ACADEMIES, &c.

About the middle of the seventeenth century were formed those associations of scientific men, which, under the appellation of Academies or Philosophical Societies, have contributed so much to the advancement of knowledge in Europe. The Academia del Cimento of Florence, founded in 1651, carried in its name the impression of the new philosophy. It was in the country of Galileo where the first institution for the prosecution of experimental knowledge might be expected to arise; and the monuments which it has left behind it, will ever create regret for the shortness of its duration.

England soon after showed the same example. It has been already remarked, that, during the civil wars, a number of learned and scientific men sought, in the retirement of Oxford, an asylum from the troubles to which the country was then a prey. They had met as early as 1645; most of them were attached to the royal cause; and after the restoration of Charles the Second, they were incorporated by a royal charter in 1662.

The first idea of this institution seems to have been suggested by the writings of Bacon, who, in recommending the use of experiment, had severely censured the schools, colleges, and academies of his own time, as adverse to the advancement of knowledge; and, in the Nova Atlantis, had given a most interesting sketch of the form of a society directed to scientific improvement. In Germany, the Academia Natura Curiosorum dates its commencement from 1652; and the historian of that institution ascribes the spirit which produced it to the writings of the philosopher just named. These examples, and a feeling that the union and co-operation of numbers were necessary to the progress of experimental philosophy, operated still more extensively. The Royal Academy of Sciences at Paris was founded in 1666, in the reign of Louis the Fourteenth, and during the administration of Colbert. The Institute of Bologna in Italy belongs nearly to the same period; but almost all the other philosophical associations, of which there are now so many, had their beginning in the eighteenth century.

Frequent communication of ideas, and a regular method of keeping up such communication, are evidently essential to works in which great labour and industry are to be employed, and to which much time must necessarily be devoted; when the philosopher must not always sit quietly in his cabinet, but must examine nature with his own eyes, and be present in the work-shop of the mechanic, or the laboratory of the chemist. These operations are facilitated by the institutions now referred to, which, therefore, are of more importance to the physical sciences than to the other branches of knowledge. They who cultivate the former are also fewer in number, and being, of course, farther separated, are less apt to meet together in the common intercourse of the world. The historian, the critic, the poet, finds everywhere men who can enter in some degree at least into his pursuits, who can appreciate his merit, and derive pleasure from his writings or his conversation. The ma-

1. "In moribus et institutis scholarum, academiarum, collegiorum, et simulhum conventuum, qua doctorum hominum sedibus et eruditionis cultura destinata sunt, omnia progressi scientiarum adversa inveniuntur. Lectiones enim et exercitia ita sunt disposita, ut alius a consuetudine facile cuiquam in mentem veniat cogitare aut contemplari. Si vero unus aut alter fortasse judicet libertate uti sustinuerit, sibi soli hanc operam imponere possit; ab aliorum autem consortio nihil capet utilitatis. Sib et hoc toleraverit, tamen in capessenda fortuna industria hanc et magnanimitatem sibi non leviter impedimento fore experienti. Studia enim hominum in ejusmodi locis in quorundam auctorum scripta, veluti in carceres conclusa sunt; a quibus si quis dissentiat, continuo ut homo turbidus, et rerum novarum cupidus, corripitur. In artibus autem et scientiae, tantum in metalis soliris, omnium novis operibus et ulterioribus progressibus circumstrepere dolent." (Novum Organum, lib. 1, cap. x.)

2. It would be gratifying to be able to observe, that the universities of Europe had contributed to the renovation of science. The fact is otherwise; they were often the fastnesses from which prejudice and error were latest in being expelled. They joined in persecuting the reformers of science. It has been seen, that the masters of the University of Paris were angry with Galileo for experimenting on the descent of bodies. Even the University of Oxford brought on itself the indelible disgrace of persecuting, in Friar Bacon, the first man who appears to have had a distinct view of the means by which the knowledge of the laws of nature must be acquired.
thematician, the astronomer, the mechanician, sees few men who have much sympathy with his pursuits, or who do not look with indifference on the objects which he pursues. The world, to him, consists of a few individuals, by the censures or approbation of whom the public opinion must be finally determined; with them it is material that he should have more frequent intercourse than could be obtained by casual encounter; and he feels that the society of men engaged in pursuits similar to his own is a necessary stimulus to his exertions. Add to this, that such societies become centres, in which information concerning facts is collected from all quarters. For all these reasons, the greatest benefit has resulted from the scientific institutions which, since the middle of the seventeenth century, have become so numerous in Europe.

The Royal Society of London is an association of men, who, without salaries or appointment from Government, defray, by private contribution, the expense of their meetings, and of their publications. This last is another important service which a society so constituted renders to science.

The demand of the public for memoirs in Mathematics and Natural Philosophy, many of them perhaps profound and difficult, is not sufficiently great to defray the expense of publication, if they come forward separately and unconnected with one another. In a collective state they are much more likely to draw the attention of the public; the form in which they appear is the most convenient both for the reader and the author; and if, after all, the sale of the work is unequal to the expense, the deficiency is made up from the funds of the society. An institution of this kind, therefore, is a patriotic and disinterested association of the lovers of science, who engage not only to employ themselves in discovery, but, by private contribution, to defray the expense of scientific publications.

The Academy of Sciences in Paris was not exactly an institution of the same kind. It consisted of three classes of members, one of which, the Pensionnaires, twenty in number, had salaries paid by Government, and were bound in their turn to furnish the meetings with scientific memoirs; and each of them also, at the beginning of every year, was expected to give an account of the work in which he was to be employed. This institution has been of incredible advantage to science. To detach a number of ingenious men from every thing but scientific pursuits; to deliver them alike from the embarrassments of poverty or the temptations of wealth; to give them a place and station in society the most respectable and independent, is to remove every impediment, and to add every stimulus to exertion. To this institution, accordingly, operating upon a people of great genius and indefatigable activity of mind, we are to ascribe that superiority in the mathematical sciences which, for the last seventy years, has been so conspicuous.

The establishment of astronomical observatories, as national or royal works, is connected in Europe with the institution of scientific or philosophical societies. The necessity of the former was, indeed, even more apparent than that of the latter. A science which has the heavenly bodies for its object, ought, as far as possible, to be exempted from the vicissitudes of the earth. As it gains strength but slowly, and requires ages to complete its discoveries, the plan of observation must not be limited by the life of the individual who pursues it, but must be followed out in the same place, year after year, to an unlimited extent. A perception of this truth, however indistinct, seems, from the earliest times, to have suggested the utility of observatories, to those sovereigns who patronized astronomy, whether they looked to that science for real or imaginary instruction. The circle of Ozymandias is the subject of one of the most ancient traditions in science, and has preserved the name of a prince which otherwise would have been entirely unknown. A building, dedicated to astronomy, made a conspicuous part of the magnificent establishment of the school of Alexandria. During the middle ages, in the course of the migrations of science toward the east, sumptuous buildings, furnished with astronomical instruments, rose successively in the plains of Mesopotamia, and among the mountains of Tartary. An observatory in the gardens
of the Caliph of Bagdad contained a quadrant of fifteen cubits\(^1\) in radius, and a sextant of forty.\(^2\) Instruments of a still larger size distinguished the observatory of Samarcand; and the accounts would seem incredible, if the ruins of Benares did not, at this moment, attest the reality of similar constructions.

On the revival of letters in Europe, establishments of the same kind were the first decisive indications of a taste for science. We have seen the magnificent observatory on which Tycho expended his private fortune, and employed the munificence of his patron, become a sad memorial (after the signal services which it had rendered to astronomy) of the instability of whatever depends on individual greatness. The observatories at Paris and London were secured from a similar fate, by being made national establishments, where a succession of astronomers were to devote themselves to the study of the heavens. The observatory at Paris was begun in 1667, and that at Greenwich in 1675. In the first of these, La Hire and Cassini, in the second, Flamsteed and Halley, are at the head of a series of successors who have done honour to their respective nations. If there be in Britain any establishment, in the success and conduct of which the nation has reason to boast, it is that of the Royal Observatory, which, in spite of a climate which so continually tries the patience, and so often disappoints the hopes of the astronomer, has furnished a greater number of observations to be completely relied on, than all the rest of Europe put together, and afforded the data for those tables in which the French mathematicians have expressed, with such accuracy, the past, the present, and the future condition of the heavens.

6. FIGURE AND MAGNITUDE OF THE EARTH.

The progress made during the seventeenth century, in ascertaining the magnitude and figure of the earth, is particularly connected with the establishments which we have just been considering. Concerning the figure of the earth, no accurate information was derived from antiquity, if we except that of the mathematical principle on which it was to be determined. The measurement of an arch of the meridian was attempted by Eratosthenes of Alexandria, in perfect conformity with that principle, but by means very inadequate to the importance and difficulty of the problem. By measuring the sun’s distance from the zenith of Alexandria on the solstitial day, and by knowing, as he thought he did, that on the same day the sun was exactly in the zenith of Syene, he found the distance in the heavens between the parallels of those places to be 7° 12', or a 50th part of the circumference of a great circle. Supposing, then, that Alexandria and Syene were in the same meridian, nothing more was required than to find the distance between them, which, when multiplied by 50, would give the circumference of the globe. The manner in which this was attempted by Eratosthenes, is quite characteristic of the infant state of the arts of experiment and observation. He took no trouble to ascertain whether Alexandria and Syene were due north and south of one another: the truth is, that the latter is considerably east of the former; so that, though their horizontal distance had been accurately known, a considerable reduction would have been necessary, on account of the distance of the one from the meridian of the other. It does not appear, however, that Eratosthenes was at any more pains to ascertain the distance than the bearing of the two places. He assumed the former just as it was commonly estimated; and, indeed, it appears that the distance was not measured till long afterwards, when it was done by the command of Nero.

It was in this way that the ancients made observations and experiments; the mathematical principles might be perfectly understood, but the method of obtaining accurate data for the application of those principles was not a subject of attention. The power of resolving the problem was the main object; and the actual solution was a matter of very inferior importance.

1 Twenty-two feet three inches.
2 Sixty feet five inches.
The slowness with which the art of making accurate experiments and observations has been matured, and the great distance it has kept behind theory, is a remarkable fact in the history of the physical sciences. It has been remarked, that mathematicians had found out the area of the circle, and calculated its circumference to more than a hundred places of decimals, before artists had divided an arch into minutes of a degree; and that many excellent treatises had been written on the properties of curves, before a straight line had been drawn of any considerable length, or measured with any tolerable exactness, on the surface of the globe.¹

The next measurement on record is that of the astronomers of Almamon, in the plains of Mesopotamia; and the manner of conducting the operation appears to have been far more accurate than that of the Greek philosophers; but, from a want of knowledge of the measures employed, it has conveyed no information to posterity.

The first arch of the meridian, measured in modern times with an accuracy any way corresponding to the difficulty of the problem, was by Snellius, a Dutch mathematician, who has given an account of it in a volume which he calls *Eratosthenes Batavus*, published in 1617.

The arch was between Bergen-op-Zoom and Alkmaar; its amplitude was 1° 11' 30", and the distance was determined by a series of triangles, depending on a base line carefully measured. The length of the degree that resulted was 55,021 toises, which, as afterwards found, is considerably too small. Certain errors were discovered, and when they were corrected, the degree came out 57,033 toises, which is not far from the truth. The corrections were made by Snellius himself, who measured his base over again, and also the angles of the triangles. He died, however, before he could publish the result.

Muschenbroek, who calculated the whole anew from his papers, came to the conclusion just mentioned, which, of course, was not known till long after the time when the measure was executed. No advantage, accordingly, was derived to the world from this measurement till its value was lost in that of other measurements still more accurately conducted.

A computation which, for the time, deserves considerable praise, is that of Norwood, in 1635, who measured the distance between London and York, taking the bearings as he proceeded along the road, and reducing all to the direction of the meridian, and to the horizontal plane. The difference of latitude he found, by observation of the solstices, to be 2° 28'; and from that and his measured distance, he concluded the degree to be 367,176 feet English, or 57,500 toises. This has been found to be a near approximation; yet his method was not capable of great accuracy, nor did he always execute it in the best manner. "Sometimes," says he, "I measured, sometimes I paced; and I believe I am within a scantling of the truth."

Fernel, a French physician, measured with a wheel from Paris to Amiens, which are nearly in the same meridian, and he determined the degree from thence to be 56,746 French toises; a result which falls short of the truth, though not very considerably.

These investigations, it is plain, could not but leave considerable uncertainty with respect to the magnitude of the earth. The Academy of Sciences became interested in the question, and the measurement of an arch in the meridian was undertaken under its auspices, and executed by the Abbé Picard, already known for his skill in the operations of practical geometry. He followed a method similar to that of Snellius, according to which, the distance between Amiens and Malvoisine was found from a series of triangles, and a base of 5663¼ toises. He determined the difference of latitude by means of a zenith sector of ten feet radius, and found it to be 1° 22' 55". The whole distance was 78,850 toises, whence the degree came out 57,060 toises. This was the first measurement of a degree of the meridian on which perfect reliance could be placed.

Hitherto no doubt had been entertained of the spherical figure of the earth, and, of consequence, of the equality of all the degrees of the meridian, so that if one was known, the whole circumference was determined. Men, with the preci-

pitation which they so often manifest, of assuming, without sufficient evidence, the conclusion which appears most simple, were no sooner satisfied that the earth was round, than they supposed it to be truly spherical. An observation soon occurred, which gave reason to suspect, that much more must be done before its figure or its magnitude could be completely ascertained.

With a view of observing the sun's altitude in the vicinity of the equator, where the distance from the zenith being inconsiderable, the effects of refraction must be of small account, it was agreed, by the same academy, to send an astronomer, M. Richer, to make observations at the island of Cayenne, in South America.

Richer observed the solstitial altitude of the sun at that place in 1672, and found the distance of the tropics to be 46° 57' 4", and therefore the obliquity of the ecliptic 23° 28' 32"; agreeing almost precisely with the determination of Cassini.

The most remarkable circumstance, however, which occurred in the course of this voyage, was, that the clock, though furnished with a pendulum of the same length which vibrated seconds at Paris, was found, at Cayenne, to lose two minutes and a half a-day nearly. This created great astonishment in France, especially after the accuracy of it was confirmed by the observations of Varin and Deshayes, who, some years afterwards, visited different places on the coasts of Africa and America, near the line, and found the necessity of shortening the pendulum, to make it vibrate seconds in those latitudes. The first explanation of this remarkable phenomenon was given by Newton, in the third book of his Principia, published in 1687, where it is deduced as a necessary consequence of the earth's rotation on its axis, and of the centrifugal force thence arising. That force changes both the direction and the intensity of gravity, giving to the earth an oblate spheroidal figure, more elevated at the equator than the poles, and making bodies fall, and pendulums vibrate, more slowly in low than in high latitudes.

This solution, however, did not, any more than the book in which it was contained, make its way very readily into France. The first explanation of the retardation of the pendulum, which was received there, was given by Huygens in 1690. Huygens deduced it also from the centrifugal force, arising from the earth's rotation, and the view which he took was simpler, though much less accurate than that of Newton. It had indeed the simplicity which often arises from neglecting one of the essential conditions of a problem; but it was nevertheless ingenious, and involved a very accurate knowledge of the nature of centrifugal force.—I am thus brought to touch on a subject which belongs properly to the second part of this Dissertation, for which the fuller discussion of it must of course be reserved.

SECTION V.

OPTICS.

1. OPTICAL KNOWLEDGE OF THE ANCIENTS.

On account of the rectilinear propagation of light, the phenomena of optics are easily expressed in the form of mathematical propositions, and seem, as it were, spontaneously to offer themselves to the study of geometers. Euclid, perceiving this affinity, began to apply the science which he had already cultivated with so much success, to explain the laws of vision, before a similar attempt had been made with respect to any other branch of terrestrial Physics, and at least fifty years before the researches of Archimedes had placed mechanics among the number of the mathematical sciences.

In the treatise ascribed to Euclid, there are,
however, only two physical principles which have completely stood the test of subsequent improvement. The first of these is the proposition just referred to, that a point in any object is seen in the direction of a straight line drawn from the eye to that point; and the second is, that when a point in an object is seen by reflection from a polished surface, the lines drawn from the eye and from the object to the point whence the reflection is made, are equally inclined to the reflecting surface. These propositions are assumed as true: they were, no doubt, known before the time of Euclid; and it is supposed that the discovery of them was the work of the Platonic school. The first of them is the foundation of Optics proper, or the theory of vision by direct light; the second is the foundation of Catoptrics, or the theory of vision by reflected light. Dioptrics, or vision by refracted light, had not yet become an object of attention.

Two other principles which Euclid adopted as postulates in his demonstrations, have not met with the same entire confirmation from experiment, and are indeed true only in certain cases, and not universally, as he supposed. The first of these is, that we judge of the magnitude of an object altogether by the magnitude of the optical angle, or the angle which it subtends at the eye. It is true that this angle is an important element in that judgment; and Euclid, by discovering this, came into the possession of a valuable truth; but by a species of sophistry, very congenial to the human mind, he extended the principle too far, and supposed it to be the only circumstance which determines our judgment of visible magnitude. It is, indeed, the only measure which we are furnished with directly by the eye itself; but there are few cases in which we form our estimate without first appealing to the commentary afforded by the sensations of touch, or the corrections derived from our own motion.

Another principle, laid down by the same geometrist, is in circumstances nearly similar to the preceding. According to it, the place of any point of an object seen by reflection is always the intersection of the reflected ray, with the perpendicular drawn from that point to the reflecting surface. The proof offered is obscure and defective; the proposition, however, is true, of plain speculums always, and of spherical as far as Euclid's investigations extended, that is, while the rays fall on the speculum with no great obliquity. His assumption, therefore, did not affect the truth of his conclusions, though it would have been a very unsafe guide in more general investigations. The book is in many other respects imperfect, the reasoning often unsound, and the whole hardly worthy of the great geometer whose name it bears. There is, however, no doubt that Euclid wrote on the subject of optics, and many have supposed that this treatise is a careless extract, or an unskilful abridgement of the original work.

Antiquity furnished another mathematical treatise on optics, that of the astronomer Ptolemy. This treatise, though known in the middle ages, and quoted by Roger Bacon, had disappeared, and was supposed to be entirely lost, till within these few years, when a manuscript on optics, professing to be the work of Ptolemy, and to be translated from the Arabic, was found in the King's Library at Paris. The most valuable part of this work is that which relates to refraction, from whence it appears that many experiments had been made on that subject, and the angles of incidence and refraction, for different transparent substances, observed with so much accuracy, that the same ratio, very nearly, of the sines of these angles, from air into water or into glass, is obtained from Ptolemy's numbers, which the repeated experiments of later times have shown to be true. The work, however, in the state in which it now appears, is very obscure, the reasoning often deficient in accuracy, and the mathematical part much less perfect than might have been expected. Modern writers, presuming partly on the reputation of Ptolemy, and partly guided by the authority of Roger Bacon, had ascribed to this treatise more merit than it appears to possess; and, of consequence, had allowed less to the Arabian author Alhazen, who comes next in the order of time, than of right belongs to him. Montucla, on the authority of Bacon, says, that Ptolemy ascribed the increase of the apparent magnitude of the heavenly bodies near the horizon, to the greater distance at which they are supposed to be, on ac-
That light, and Connoissance of it, author, to parent body an visible been confounded called afterwards, necessarily used in the sense of the philosophers. Aristotle defined light much as he had defined motion; the act or energy of a transparent body, in as much as it is transparent. The reason for calling light an act of a transparent body is, that, though a body may be transparent in power or capacity, it does not become actually transparent but by means of light. Light brings the transparency into action; it is, therefore, the act of a transparent body. In such miserable puerilities did the genius of this great man exhaust itself, owing to the unfortunate direction in which his researches were carried on.

In his further speculations concerning light, he denied it to be a substance; and his argument contains a singular mixture of the ingenious and the absurd. The time, he says, in which light spreads from one place to another is infinitely small, so that light has a velocity which is infinitely great. Now, bodies move with a velocity inversely as the quantities of matter which they contain; light, therefore, cannot contain any matter, that is, it cannot be material. That the velocity of light was infinitely great, seemed to him to follow from this, that its progress, estimated either in the direction of north and south or of east and west, appeared to be instantaneous. In the opinion of the Platonists, and of the greater part of the ancients, vision was performed by means of certain rays which proceeded from the eye to the object, though they did not become the instruments of conveying sensations to the mind, but in consequence of the presence of light. In this theory, we can now see nothing but a rude and hasty attempt to assimilate the sense of sight to that of touch, without inquiring sufficiently into the particular characters of either.

Epicurus, and the philosophers of his school, as we learn from Lucretius, entertained more correct notions of vision, though they were still far from the truth. They conceived vision to be performed in consequence of certain simulacra, or images continually thrown off from the surfaces of bodies, and entering the eye. This was the substitute in their philosophy for rays of light, and had at least the merit of representing that which is the medium of vision, or which forms the communication between the eye and external objects, as something proceeding from the latter. The idea of simulacra, or spectra, flying off continually from the surfaces of bodies, and entering the eye, was perhaps as near an approach to the true theory of vision as could be made before the structure of the eye was understood.

In the arts connected with optics, the ancients had made some progress. They were sufficiently acquainted with the laws of reflection to con-

1 *Connaissance des Tems,* 1816, p. 245, &c. The glimpses of truth, not destined to be fully discovered till many ages afterwards, which are found in the writings of the ancients, are always interesting. Ptolemy distinguishes what has since been called the virtual focus, which takes place in certain cases of reflection, from spherical specula. He remarks, that colours are confounded by the rapidity of motion, and gives the instance of a wheel painted with different colours, and turned quickly round.

2 Another Greek treatise on optics, that of Heliodorus of Larissa, has been preserved, and was first published by Erasmus Bartholinus at Paris, in 1657. It is a superficial work, which, to a good deal of obscure and unsound metaphysics, adds the demonstration of a few very obvious truths. The author holds the opinion, that vision is performed by the emission of something from the eyes; and the reason which he assigns is, that the eyes are convex, and more adapted to emit than to receive. His metaphysics may be judged of from this specimen. He has not been made mention of by any ancient author, and the time when he wrote is unknown. As he quotes, however, the writings of Ptolemy and Hero, he must have been later than the first century.

3 The truth of the mathematical proposition, that \(\frac{1}{\text{incl.}} = 0 \), was perceived by Aristotle. A strong intellect is always visible in the midst of his greatest errors.
struct mirrors both plane and spherical. They made them also conical; and it appears from Plutarch, that the fire of Vesta, when extinguished, was not permitted to be rekindled but by the rays of the sun, which were condensed by a conical speculum of copper. The mirrors with which Archimedes set fire to the Roman galleys have been subjects of much discussion, and the fact was long disbelieved, on the ground of being physically impossible. The experiments of Kircher and Buffon showed that this impossibility was entirely imaginary, and that the effect ascribed to the specula of the Greek geometry might be produced without much difficulty. There remains now no doubt of their reality. A passage from Aristophanes\(^1\) gives reason to believe that, in his time, lenses of glass were used for burning, by collecting the rays of the sun; but in a matter that concerns the history of science, the authority of a comic poet and a satirist would not deserve much attention, if it were not confirmed by more sober testimony. Pliny, speaking of rock crystal,\(^2\) says that a globe or ball of that substance was sometimes used by the physicians for collecting the rays of the sun, in order to perform the operation of cauterity. In another passage, he mentions the power of a glass globe filled with water, to produce a strong heat when exposed to the rays of the sun, and expresses his surprise that the water itself should all the while remain quite cold.

With respect to the power of glasses to magnify objects seen through them, or to render such objects more distinct, the ancients appear to have observed ill, and to have reasoned worse. "Literae, quamvis minute et obscure, per vitream pilam aqua plenam majores clarioresque cernuntur. Sidera ampliora per nubem adspicienti videntur; qua actes nostra in humido labor, nec apprehendere quod vult fideler potest."\(^3\) This passage, and the speculations concerning the rainbow in the same place, when they are considered as containing the opinions of some of the most able and best-informed men of antiquity, must be admitted to mark, in a very striking manner, the infancy of the physical sciences.

2. FROM ALHAZEN TO KEPLER.

An interval of nearly a thousand years divided Ptolemy from Alhazen, who, in the history of optical discovery, appears as his immediate successor. This ingenious Arabian lived in the eleventh century, and his merit can be more fairly, and will be more highly appreciated, now that the work of his predecessor has become known. The merit of his book on Optics was always admitted; but he was supposed to have borrowed much from Ptolemy, without acknowledging it; and the prejudices entertained in favour of a Greek author, especially of one who had been for so many years a legislator in science, gave a false impression, both of the genius and the integrity of his modern rival. The work of Alhazen is, nevertheless, in many respects, superior to that of Ptolemy, and in nothing more than in the geometry which it employs. The problem known by his name, to find the point in a spherical speculum, at which a ray coming from one given point shall be reflected to another given point, is very well resolved in his book, though a problem of so much difficulty, that Montucla hazards the opinion, that no Arabian geometer was ever equal to the solution of it.\(^4\) It is now certain, however, that the solution, from whatever quarter it came, was not borrowed from Ptolemy; in whose work no mention is made of any such question; and it may very well be doubted, whether, had this problem

1 Aristophanes Nubet, v. 766. edit. Bruck.
3 Seneca, Nat. Quast. lib. i. cap. vi.
4 Barrow, in his 9th lecture, says of this problem, that it may truly be called "**hypodoxis**, as hardly any one more difficult had then been attempted by geometers. He adds, that, after trying the analysis in many different ways, he had found nothing preferable to the solution of Alhazen, which he therefore gives, only freed from the prolixness and obscurity with which the original is chargeable. (Lectiones Opticæ, sect. 9, p. 65.) A very elegant solution of the same problem is given by Simson, at the end of his Conic Sections.
been proposed to him, the Greek geometer would have appeared to so much advantage as the Arabian.

The account which the latter gives of the augmentation of the diameters of the heavenly bodies near the horizon, has been already mentioned. He treated also of the refraction of light by transparent bodies, and particularly of the atmospheric refraction; but not with the precision of Ptolemy, whose optical treatise Delambre seems to think it probable that he had never seen. The anatomical structure of the eye was known to him; concerning the uses of the different parts he had only conjectures to offer; but on seeing single with two eyes, he made this very important remark, that, when corresponding parts of the retina are affected, we perceive but one image.

Prolixity and want of method are the faults of Alhazen. Vitello,¹ a learned Pole, commented on his works, and has very much improved their method and arrangement in a treatise published in 1720. He has also treated more fully of the subject of refraction, and reduced the results of his experiments into the form of a table, exhibiting the angles of refraction corresponding to the angles of incidence, which he had tried in water and glass. It was not, however, till long after this period that the law which connects these angles was discovered. The cause of refraction appeared to him to be the resistance which the rays suffer in passing into the denser medium of water or glass; and one can see in his reasoning an obscure idea of the resolution of forces. He also treats of the rainbow, and remarks, that the altitude of the sun and bow together always amount to 42 degrees. He next considers the structure of the eye, of which he has given a tolerably accurate description; and proves, as Alhazen had before done,⁴ that vision is not performed by the emission of rays from the eye.

Roger Bacon, distinguished for pursuing the path of true philosophy in the midst of an age of ignorance and error, belongs to the same period, and applied to the study of optics with peculiar diligence. It does not appear, however, that he added much to the discoveries of Alhazen and Ptolemy, with whose writings, particularly those of the former, he seems to have been well acquainted. In some things he was much behind the Arabian optician, as he supposed, with the ancients, that vision is performed by rays emitted from the eye. It must, however, be allowed, that the arguments employed on both sides of this question are so weak and inconclusive, as very much to diminish the merit of being right, and the demerit of being wrong. What is most to the credit of Bacon, is the near approach he appears to have made to the knowledge of lenses, and their use in assisting vision. Alhazen had remarked, that small objects, letters, for instance, viewed through a segment of a glass sphere, were seen magnified, and that it is the larger segment which magnifies the most. The spherical segment was supposed to be laid with its base on the letters, or other minute objects which were to be viewed. Bacon recommends the smaller segment, and observes, that the greater, though it magnify more, places the object farther off than its natural position, while the other brings it nearer. This shows sufficiently, that he knew how to trace the progress of the rays of light through a spherical transparent body, and understood, what was the thing least obvious, how to determine the place of the image. Smith, in his Optics, endeavours to show, that these conclusions were purely theoretical, and that Roger Bacon had never made any experiments with such glasses, notwithstanding that he speaks as if he had done so.⁵ This severe remark proceeds on some slight inaccuracy in Bacon's description, which, however, does not seem sufficient to authorize so harsh a conclusion. The probability appears rather to be, as Molinæus supposed, that Bacon had made experiments with such glasses, and was both practically and theoretically acquainted with their properties. At the same time, it must be acknowledged, that his credulity on many

¹ The name of this author is commonly written Vitello. He may be supposed to have known best the orthography of his own name.
² Alhazen, Opt. lib. 1.
³ Smith's Optics, vol. II. Remarks, sect. 76.
points, and his fondness for the marvellous, which, with every respect for his talents, it is impossible to deny, take something away from the force of his testimony, except when it is very expressly given. However that may be in the present case, it is probable that the knowledge of the true properties of these glasses, whether it was theoretical or practical, may have had a share in introducing the use of lenses, and in the invention of spectacles, which took place not long after.

It would be desirable to ascertain the exact period of an invention of such singular utility as this last; one that diffuses its advantages so widely, and that contributes so much to the solace and comfort of old age, by protecting the most intellectual of the senses against the general progress of decay. In the obscurity of a dark age, careless about recording discoveries of which it knew not the principle or the value, a few faint traces and imperfect indications serve only to point out certain limits within which the thing sought for is contained. Seeking for the origin of a discovery, is like seeking for the source of a river where innumerable streams have claims to the honour, between which it is impossible to decide, and where the only thing that can be known with certainty is the boundary by which they are all circumscribed. The reader will find the evidence concerning the invention of spectacles very fully discussed in Smith's Optics, from which the most probable conclusion is, that the date goes back to the year 1313, and cannot with any certainty be traced farther.

The lapse of more than two hundred years brings us down to Maurolycus, and to an age when men of science ceased to be so thinly scattered over the wastes of time. Maurolycus, whose knowledge of the pure mathematics has been already mentioned, was distinguished for his skill in optics. He was acquainted with the crystalline lens, and conceived that its office is to transmit to the optic nerve the species of external objects; and in this process he does not consider the retina as any way concerned. This theory, though so imperfect, led him nevertheless to form a right judgment of the defects of short-sighted and long-sighted eyes. In one of his first works, Theoremata de Lumine et Umbra, he also gives an accurate solution of a question proposed by Aristotle, viz. why the light of the sun, admitted through a small hole, and received on a plane at a certain distance from it, always illuminates a round space, whatever be the figure of the hole itself; whereas, through a large aperture, the illuminated space has the figure of the aperture. To conceive the reason of this, suppose that the figure of the hole is a triangle; it is plain that at each angle the illuminated space will be terminated by a circular arch, of which the centre corresponds to the angular point, and the radius to the angle subtended by the sun's semidiameter. Thus the illuminated space is rounded off at the angles; and when the hole is so small that the size of those roundings bears a large proportion to the distance of their centres, the figure comes near to a circle, and may be to appearance quite round. This is the true solution, and the same with that of Maurolycus. The same author appears also to have observed the caustic curve formed by reflection from a concave speculum.

A considerable step in optical discovery was made at this time by Baptista Porta, a Neapolitan, who invented the Camera Obscura, about the year 1560, and described it in a work entitled Magia Naturalis. The light was admitted through a small hole in the window-shutter of a dark room, and gave an inverted picture of the objects from which it proceeded, on the opposite wall. A lens was not employed in the first construction of this apparatus, but was afterwards used; and Porta went so far as to consider how the effect might be produced without inversion. He appears to have been a man of great ingenuity; and though much of the Magia Naturalis is directed to frivolous objects, it indicates a great familiarity with experiment and observation. It is remarkable, that we find mention made in it of the reflection of cold by a speculum, an experiment which, of late, has

1 *Smith's Optics*, vol. II. Remarks, sect. 75.
drawn so much attention, and has been supposed to be so entirely new. The cold was perceived by making the focus fall on the eye, which, in the absence of the thermometer, was perhaps the best measure of small variations of temperature. Porta’s book was extremely popular; and when we find it quickly translated into Italian, French, Spanish, and Arabic, we see how much the love of science was now excited, and what effects the art of printing was now beginning to produce. Baptista Porta was a man of fortune, and his house was so much the resort of the curious and learned at Naples, that it awakened the jealousy with which the court of Rome watched the progress of improvement. How grievous it is to observe the head of the Christian church in that and the succeeding age, like the Anarch old in Milton, reigning in the midst of darkness, and complaining of the encroachments which the realm of light was continually making on his ancient empire!

The constitution of the eye, and the functions of the different parts of which it consists, were not yet fully understood. Maurolycus had nearly discovered the secret; and it was but a thin, though to him an impenetrable veil, which still concealed one important part of the truth. This veil was drawn aside by the Neapolitan philosopher; but the complete discovery of the truth was left to Kepler, who, to the glory of finding out the true laws of the planetary system, added that of first analyzing the whole scheme of nature in the structure of the eye. He perceived the exact resemblance of this organ to the dark chamber, the rays entering the pupil being collected by the crystalline lens, and the other humours of the eye, into foci, which paint on the retina the inverted images of external objects. By another step of the process, to which our analysis can never be expected to extend, the mind perceives the images thus formed, and refers them at the same time to things without.

It seemed a great difficulty, that, though the images be inverted, the objects are seen erect; but when it is considered that each point in the object is seen in the direction of the line in which the light passes from it to the retina, through the centre of the eye, it will appear that the upright position of the object is a necessary consequence of this arrangement.

Kepler’s discovery is explained in his Paralipomena in Vitellionem, (Remarks on the Optics of Vitello) a work of great genius, abounding with new and enlarged views, though mixed occasionally with some unsound and visionary speculations. This book appeared in 1604. In the next article we shall have occasion to return to the consideration of other parts of Kepler’s optical discoveries.

3. FROM KEPLER TO THE COMMENCEMENT OF NEWTON’S OPTICAL DISCOVERIES.

The rainbow had, from the earliest times, been an object of interest with those who bestowed attention on optical appearances; but it is much too complicated a phenomenon to be easily explained. In general, however, it was understood to arise from light reflected by the drops of rain falling from a cloud opposite to the sun. The difficulty seemed to be, how to account for the colour, which is never produced in white light, such as that of the sun, by mere reflection. Maurolycus advanced a considerable step when he supposed that the light enters the drop, and acquires colour by refraction; but in tracing the course of the ray he was quite willed. Others supposed the refraction and the colour to be the effect of one drop, and the reflection of another; so that two refractions and one reflection were employed, but in such a manner as to be still very remote from the truth.

Antonio de Dominis, archbishop of Spalatro, had the good fortune to fall upon the true explanation. Having placed a bottle of water opposite to the sun, and a little above his eye, he saw a beam of light issue from the under side of the bottle, which acquired different colours, in the same order and with the same brilliancy as in the rainbow, when the bottle was a little

1 Caput v. De Modo Visionis.
raised or depressed. From comparing all the circumstances, he perceived that the rays had entered the bottle, and that, after two refractions from the convex part, and a reflection from the concave, they were returned to the eye tinged with different colours, according to the angle at which the ray had entered. The rays that gave the same colour made the same angle with the surface, and hence all the drops that gave the same colour must be arranged in a circle, the centre of which was the point in the cloud opposite to the sun. This, though not a complete theory of the rainbow, and though it left a great deal to occupy the attention, first of Descartes, and afterwards of Newton, was perfectly just, and carried the explanation as far as the principles then understood allowed it to go. The discovery itself may be considered as an anomaly in science, as it is one of a very refined and subtle nature, made by a man who has given no other indication of much scientific sagacity or acuteness. In many things his writings show great ignorance of principles of optics well known in his own time; so that Boscovich, an excellent judge in such matters, has said of him, "homo opticae rerum, supra id quod patiatur ea actus, imperitissimus." The book containing this discovery was published in 1611.1

A discovery of the same period, but somewhat earlier, will always be considered as among the most remarkable in the whole circle of human knowledge. It is the invention of the telescope, the work in which (by following unconsciously the plan of nature in the formation of the eye) man has come the nearest to the construction of a new organ of sense. For this great invention, in its original form, we are indebted to accident, or to the trials of men who had little knowledge of the principles of the science on which they were conferring so great a favour. A series of scientific improvements, continued for more than two hundred years, has continually added to the perfection of this noble instrument, and has almost entitled science to consider the telescope as its own production.

It will readily be believed, that the origin of such an invention has been abundantly inquired into. The result, however, as is usual in such cases, has not been quite satisfactory; and all that is known with certainty is, that the honour belongs to the town of Middleburg in Zealand, and that the date is between the last ten years of the sixteenth century and the first ten of the seventeenth. Two different workmen belonging to that town, Zachariah Jans and John Lappen, have testimonies in their favour, between which it is difficult to decide: the former goes back to 1590, the latter comes down to about 1610. It is not of much consequence to settle the priority in a matter which is purely accidental; yet one would not wish to forget or mistake the names of men whom even chance had rendered so great benefactors to science.

What we know with certainty is, that the account of the effect produced by this new combination of glasses being carried to Galileo in 1610, led that great philosopher to the construction of the telescope, and to the interesting discoveries already enumerated. By what principle he was guided to the combination, which consists of one convex and one concave lens, he has not explained, and we cannot now exactly ascertain. He had no doubt observed, that a convex lens, such as was common in spectacles, formed images of objects, which were distinctly seen when thrown on a wall or on a screen. He might observe also, that if the image, instead of falling on the screen, were made to fall on the eye, the vision was confused and indistinct. In the trials to remedy this indistinctness by means of another glass, it would be found that a concave lens succeeded when placed before the eye, the eye itself being also a little more advanced than the screen had been.

This instrument, though very imperfect, compared with those which have been since constructed, gave so much satisfaction, that it remained long without any material improvement. Descartes, whose treatise on Optics was written near thirty years after the invention of the telescope, makes no mention of any but such as is composed of a convex object-glass and a concave eye-glass. The theory of it, indeed, was given by Kepler in his Dioptrics, in 1611, when

1 De Radiis Lucis in Vitris perspectivis et Iride. Venetiis, 4to.
he also pointed out the astronomical telescope, or that which is composed of two convex lenses, and inverts the objects. He did not, however, construct a telescope of that kind, which appears to have been first done by Scheiner, who has given an account of it in the *Rosa Ursina*, in 1650, quoted by Montucla.†

After the invention of the telescope, that of the microscope was easy; and it is also to Galileo that we are indebted for this instrument, which discovers an immensity on the one side of man, scarcely less wonderful than that which the telescope discovers on the other. The extension and divisibility of matter are thus rendered to the natural philosopher almost as unlimited as the extension and the divisibility of space are to the geometer.

The theory of the telescope, now become the main object in optical science, required that the law of refraction should, if possible, be accurately ascertained. This had not yet been effected; and Kepler, whose *Dioptics* was the most perfect treatise on refraction which had yet appeared, had been unable to determine the general principle which connects the angles of incidence and refraction. In the case of glass, he had found by experiment, that those angles, when small, are nearly in the ratio of three to two; and on this hypothesis he had found the focus of a double convex lens, when the curvature of both sides is equal, to be the centre of curvature of the side turned toward the object,—a proposition which is known to coincide with experiment. From the same approximation he derived other conclusions, which were found useful in practice, in the cases where the angles just mentioned were very small.

The discovery of the true law of refraction was the work of Snellius, the same mathematician whose labours concerning the figure of the earth were before mentioned. In order to express this law, he supposed a perpendicular to the refracting surface, at the point where the refraction is made, and also another line parallel to this perpendicular at any given distance from it. The refracted ray, as it proceeds, will meet this parallel, and the incident ray is supposed to be produced, till it do so likewise. Now, the general truth which Snellius found to hold, whatever was the position of the incident ray, is, that the segments of the refracted ray and of the incident ray, intercepted by these parallels, had always the same ratio to one another. If either of the media were changed, that through which the incident ray, or that through which the refracted ray passed, this ratio would be changed; but while the media remained the same, the ratio continued unalterable. It is seldom that a general truth is seen at first under the most simple aspect: this law admits of being more simply expressed; for, in the triangle formed by the two segments of the rays, and by the parallel which they intersect, the said segments have the same ratio with the sines of the opposite angles, that is, with the sines of the angles of incidence and refraction. The law, therefore, comes to this, that, in the refraction of light by the same medium, the sine of the angle of incidence has to the sine of the angle of refraction always the same ratio. This last simplification did not occur to Snellius; it is the work of Descartes, and was first given in his *Dioptics*, in 1637, where no mention is made of Snellius, and the law of refraction appears as the discovery of the author. This naturally gave rise to heavy charges against the candour and integrity of the French philosopher. The work of Snellius had never been published, and the author himself was dead; but the proposition just referred to had been communicated to his friends, and had been taught by his countryman Professor Hortensius, in his lectures. There is no doubt, therefore, that the discovery was first made by Snellius; but whether Descartes derived it from him, or was himself the second discoverer, remains undecided. The question is one of those, where a man's conduct in a particular situation can only be rightly interpreted from his general character and behaviour. If Descartes had been uniformly fair and candid in his intercourse with others, one would have rejected with disdain a suspicion of the kind just mentioned. But the truth is, that he appears throughout a jealous and suspicious man, always inclined to depress

† Vol. II. p. 234. 2d edit.
and conceal the merit of others. In speaking of the inventor of the telescope, he has told minute-
ly all that is due to accident, but has passed carefully over all that proceeded from design, and has incurred the reproach of relating the origin of that instrument, without mentioning the name of Galileo. In the same manner, he omits to speak of the discoveries of Kepler, so nearly connected with his own; and in treating of the rainbow, he has made no mention of An-
tonio de Dominis. It is impossible that all this should not produce an unfavourable impression; and hence it is, that even the warmest admirers of Descartes do not pretend that his conduct to-
ward Snellius can be completely justified.

Descartes would have conceived his philoso-
phy to be disgraced if it had borrowed any gen-
eral principle from experience, and he therefore derived, or affected to derive, the law of refra-
tion from reasoning; or from theory. In this reasoning there were so many arbitrary supposi-
tions concerning the nature of light, and the action of transparent bodies, that no confidence can be placed in the conclusions deduced from it. It is indeed quite evident that, independent-
ly of experiment, Descartes himself could have put no trust in it; and it is impossible not to feel how much more it would have been for the credit of that philosopher to have fairly confessed that the knowledge of the law was from experiment, and that the business of theory was to deduce from thence some inferences with respect to the constitution of light and of transparent bodies. This I conceive to be the true method of philos-
ophizing, but it is the reverse of that which Descartes pursued on all occasions.

The weakness of his reasoning was perceived and attacked by Fermat, who, at the same time, was not very fortunate in the theory which he proposed to substitute for that of his rival. The latter had laid it down as certain, that light, of which he supposed the velocity infinite, or the propagation instantaneous, meets with less ob-
struction in dense than in rare bodies, for which reason, it is refracted toward the perpendicular, in passing from the latter into the former. This seemed to Fermat a very improbable supposi-
tion, and he conceived the contrary to be true, viz. that light in rare bodies has less obstruc-
tion, and moves with greater velocity, than in dense bodies. On this supposition, and appeal-
ing, not to physical, but to final causes, Fermat imagined to himself that he could deduce the true law of refraction. He conceived it to be a fact that light moves always between two points, so as to go from the one to the other in the least time possible. Hence, in order to pass from a given point in a rarer medium where it moves faster, to a given point in a denser medium where it moves slower, so that the time may be a minimum, it must continue longer in the for-
mer medium than if it held a rectilinear course; and the bending of its path, on entering the lat-
er, will therefore be toward the perpendicular. On instituting the calculus, according to his own doctrine of maxima and minima, Fermat found, to his surprise, that the path of the ray must be such, that the sines of the angles of incidence and refraction have a constant ratio to one an-
other. Thus did these philosophers, setting out from suppositions entirely contrary, and follow-
ing routes which only agreed in being quite un-
philosophical and arbitrary, arrive, by a very unexpected coincidence, at the same conclusion.

Fermat could no longer deny the law of refrac-
tion, as laid down by Descartes; but he was less than ever disposed to admit the justness of his reasoning.

Descartes proceeded from this to a problem which, though suggested by optical considera-
tions, was purely geometrical, and in which his researches were completely successful. It was well known that, in the ordinary cases of re-
fraction by spherical and other surfaces, the rays are not collected into one point, but have their foci spread over a certain surface, the sections of which are the curves called caustic curves; and that the focus of opticians is only a point in this surface, where the rays are more condensed, and, of course, the illumination more intense, than in other parts of it. It is plain, however, that if refraction is to be employed, either for the purpose of producing light or heat, it would be a great advantage to have all the rays which come from the same point of an object united accurately, after refraction, in the same point of the image. This gave rise to an inquiry into the figure which the superficies, separating two
transparent media of different refracting powers, must have, in order that all the rays diverging from a given point might, by refraction at the said superficies, be made to converge to another given point. The problem was resolved by Descartes in its full extent; and he proved that the curves, proper for generating such superficies by their revolution, are all comprehended under one general character, viz. that there are always two given points, from which, if straight lines be drawn to any point in the curve, the one of these, plus or minus, that which has a given ratio to the other, is equal to a given line.

It is evident, when the given ratio here mentioned is a ratio of equality, that the curve is a conic section, and the two given points its two foci. The curves, in general, are of the fourth or the second order, and have been distinguished by the name of the ovals of Descartes.

From this very ingenious investigation, no practical result of advantage in the construction of lenses has been derived. The mechanical difficulties of working a superficies into any figure but a spherical one are so great, that, notwithstanding all the efforts of Descartes himself and of many of his followers, they have never been overcome; so that the great improvements in optical instruments have arisen in a quarter entirely different.

Descartes gave also a full explanation of the rainbow,* as far as colour was not concerned; a part of the problem which remained for Newton to resolve. The path of the ray was traced, and the angles of the incident ray, with that which emerges after two refractions; and one reflection, were accurately determined. Descartes paid little attention to those who had gone before him, and, as already remarked, never once mentioned the archbishop of Spalatro. Like Aristotle, he seems to have formed the design of cutting off the memory of all his predecessors; but the invention of printing had made this a far more hopeless undertaking than it was in the days of the Greek philosopher.

After the publication of the Dioptrics of Descartes, in 1637, a considerable interval took place, during which optics, and indeed science in general, made but little progress, till the Optica Promota of James Gregory, in 1663, seemed to put them again in motion. The author of this work, a profound and inventive geometer, had applied diligently to the study of optics and the improvement of optical instruments. The Optica Promota embraced several new inquiries concerning the illumination and distinctness of the images formed in the foci of lenses, and contained an account of the reflecting telescope, still known by the name of its author. The consideration which suggested this instrument was the imperfection of the images formed by spherical lenses, in consequence of which, they are not in plane, but in curved surfaces. The desire of removing this imperfection led Gregory to substitute reflection for refraction in the construction of telescopes; and by this means, while he was seeking to remedy a small evil, he provided the means of avoiding a much greater one, with which he was not yet acquainted, viz. that which arises from the unequal refrangibility of light. The attention of Newton was about the same time drawn to the same subject, but with a perfect knowledge of the defect which he wanted to remove. Gregory thought it necessary that the specula should be of a parabolic figure; and the execution proved so difficult, that the instrument, during his own life, was never brought to any perfection. The specula were afterwards constructed of the ordinary spherical form, and the Gregorian telescope, till the time of Dr Herschel, was more in use than the Newtonian.

- Gregory was Professor of Mathematics at St Andrews, and afterwards for a short time at Edinburgh. His writings strongly mark the imperfect intercourse which subsisted at that time between this country and the Continent. Though the Optics of Descartes had been published twenty-five years, Gregory had not heard of the discovery of the law of refraction, and had found it out only by his own efforts;—happy in being able, by the fertility of his genius, to supply the defects of an insulated and remote situation.

A course of lectures on optics, delivered at

1 Cartesi Dioptrice, cap. viii.; Geometria, lib. ii.
2 Meteoræ, cap. viii.

DISS. III. PART I.
Cambridge in 1668, by Dr Barrow, and published in the year following, treated of all the more difficult questions which had occurred in that state of the science, with the acuteness and depth which are found in all the writings of that geometer. This work contains some new views in optics, and a great deal of profound mathematical discussion.

About this time Grimaldi, a learned Jesuit, the companion of Riccioli, in his astronomical labours, made known some optical phenomena which had hitherto escaped observation. They respected the action of bodies on light, and when compared with reflection and refraction, might be called, in the language of Bacon's philosophy, crepuscular instances, indicating an action of the same kind, but much weaker and less perceptible. Having stretched a hair across a sun-beam, admitted through a hole in the window-shutter of a dark chamber, he was surprised to find the shadow much larger than the natural divergence of the rays could have led him to expect.

Other facts of the same kind made known the general law of the diffraction or refraction of light, and showed that the rays are acted on by bodies, and turned out of their rectilinear course, even when not in contact, but at a measurable distance from the surfaces or edges of such bodies. Grimaldi gave an account of those facts in a treatise printed at Bologna in 1665.1

Optics, as indeed all the branches of Natural Philosophy, have great obligations to Huygens. The former was among the first scientific objects which occupied his mind; and his Dioptrics, though a posthumous work, is most of it the composition of his early youth. It is written with great perspicuity and precision, and is said to have been a favourite book with Newton himself. Though beginning from the first elements, it contains a full development of the matters of greatest difficulty in the construction of telescopes, particularly in what concerns the indistinctness arising from the imperfect focus into which rays are united by spherical lenses; and rules are deduced for constructing telescopes, which, though of different sizes, shall have the same degree of distinctness, illumination, &c. Huygens was, besides, a practical optician; he polished lenses and constructed telescopes with his own hands, and some of his object-glasses were of the enormous focal distance of 130 feet. To his Dioptrics is added a valuable treatise De Formandis Vitris.

In the history of optics, particular attention is due to his theory of light, which was first communicated to the Academy of Sciences of Paris, in 1678, and afterwards published, with enlargements, in 1690.2

Light, according to this ingenious system, consists in certain undulations communicated by luminous bodies to the ethereal fluid which fills all space. This fluid is composed of the most subtlest matter, is highly elastic, and the undulations are propagated through it with great velocity in spherical superficies proceeding from a centre. Light, in this view of it, differs from that of the Cartesian system, which is supposed to be without elasticity, and to convey impressions instantaneously; as a staff does from the object it touches to the hand which holds it.

It is not, however, in this general view that the ingenuity of the theory appears, but in its application to explain the equality of the angles of incidence and reflection; and, most of all, the constant ratio which subsists between the sines of the angles of incidence and of refraction. Few things are to be met with more simple and beautiful than this last application of the theory; but that which is most remarkable of all is, the use made of it to explain the double refraction of Iceland crystal. This crystal, which is no other than the calcareous spar of mineralogists, has not only the property of refracting light in the usual manner of glass, water, and other transparent bodies, but it has also another power of refraction, by which even the rays falling perpendicularly on the surface of the crystal are turned out of their course, so that a double image is formed of all objects seen through these crystals. This property belongs not only to calcareous spar, but, in a greater or less degree,
to all substances which are both crystallized and transparent.

The common refraction is explained by Huygens, on the supposition that the undulations in the luminous fluid are propagated in the form of spherical waves. The double refraction is explained on the supposition that the undulations of light, in passing through the calcareous spar, assume a spheroidal form; and this hypothesis, though it does not apply with the same simplicity as the former, yet admits of such precision, that a proportion of the axes of the spheroids may be assigned, which will account for the precise quantity of the extraordinary refraction, and for all the phenomena dependent on it, which Huygens had studied with great care, and had reduced to the smallest number of general facts. That these spheroidal undulations actually exist, he would, after all, be a bold theorist who should affirm; but, that the supposition of their existence is an accurate expression of the phenomena of double refraction, cannot be doubted. When one enunciates the hypothesis of the spheroidal undulations, he, in fact, expresses in a single sentence all the phenomena of double refraction. The hypothesis is therefore the means of representing these phenomena, and the laws which they obey, to the imagination or the understanding; and there is perhaps no theory in optics, and but very few in natural philosophy, of which more can be said. Theory, therefore, in this instance, is merely to be regarded as the expression of a general law; and in that light, I think, it is considered by Laplace.

To carry the theory of Huygens farther, and to render it quite satisfactory, a reason ought to be assigned why the undulations of the luminous fluid are spheroidal in the case of crystals, and spherical in all other cases. This would be to render the generalization more complete; and till that is done, and a connection clearly established between the structure of crystallized bodies and the property of double refraction, the theory will remain imperfect. The attention which at present is given to this most singular and interesting branch of optics, and the great number of new phenomena observed and classed under the head of the Polarisation of Light, make it almost certain that this object will be either speedily accomplished, or that science has here reached one of the immovable barriers by which the circle of human knowledge is to be for ever circumscribed.
PART SECOND.

FROM THE COMMENCEMENT OF NEWTON'S DISCOVERIES TO THE YEAR 1818.

In the former part of this sketch, the history of each division of the sciences was continued without interruption, from the beginning to the end. During the period, however, on which I am now to enter, the advancement of knowledge has been so rapid, and marked by such distinct steps, that several pauses or resting-places occur, of which it may be advisable to take advantage. Were the history of any particular science to be continued for the whole of the busy interval which this second part embraces, it would leave the other sciences too far behind, and would make it difficult to perceive the mutual action by which they have so much assisted the progress of one another. Considering some sort of subdivision, therefore, as necessary, and observing, in the interval which extends from the first of Newton's discoveries to the year 1818, three different conditions of the Physico-Mathematical sciences, well marked and distinguished by great improvements, I have divided the above interval into three corresponding parts. The first of these, reaching from the commencement of Newton's discoveries in 1663, to a little beyond his death, or to 1730, may be denominated, from the men who impressed on it its peculiar character, the period of NEWTON and LEIBNITZ. The second, which, for a similar reason, I call that of EULER and D'ALEMBERT, may be regarded as extending from 1730 to 1780; and the third, that of LAGRANGE and LAPLACE, from 1780 to 1818.

PERIOD FIRST.

SECTION I.

THE NEW GEOMETRY.

The seventeenth century, which had advanced with such spirit and success in combating prejudice, detecting error, and establishing truth, was destined to conclude with the most splendid series of philosophical discoveries yet recorded in the history of letters. It was about to witness, in succession, the invention of Fluxions, the discovery of the Composition of Light, and
of the Principle of Universal Gravitation,—all three within a period of little more than twenty years, and all three the work of the same individual. It is to the first of these that our attention at present is to be particularly directed.

The notion of Infinite Quantity had, as we have already seen, been for some time introduced into geometry, and having become a subject of reasoning and calculation, had, in many instances, after facilitating the process of both, led to conclusions from which, as if by magic, the idea of infinity had entirely disappeared, and left the geometer or the algebraist in possession of valuable propositions, in which were involved no magnitudes but such as could be readily exhibited. The discovery of such results had increased both the interest and extent of mathematical investigation.

It was in this state of the sciences that Newton began his mathematical studies; and, after a very short interval, his mathematical discoveries. The book next to the elements, which was put into his hands, was Wallis's *Arithmetic of Infinites*; a work well fitted for suggesting new views in geometry, and calling into activity the powers of mathematical invention. Wallis had effected the quadrature of all those curves in which the value of one of the co-ordinates can be expressed in terms of the other, without involving either fractional or negative exponents. Beyond this point, neither his researches nor those of any other geometer had yet reached, and from this point the discoveries of Newton began. The Savilian professor had himself been extremely desirous to advance into the new region, where, among other great objects, the quadrature of the circle must necessarily be contained; and he made a very noble effort to pass the barrier by which the undiscovered country appeared to be defended. He saw plainly, that if the equations of the curves which he had squared were ranged in a regular series, from the simpler to the more complex, their areas would constitute another corresponding series, the terms of which were all known. He further remarked, that, in the first of these series, the equation to the circle itself might be introduced, and would occupy the middle place between the first and second terms of the series, or between an equation to a straight line and an equation to the common parabola. He concluded therefore, that if, in the second series, he could interpolate a term in the middle, between its first and second terms, this term must necessarily be no other than the area of the circle. But when he proceeded to pursue this very refined and philosophical idea, he was not so fortunate; and his attempt toward the requisite interpolation, though it did not entirely fail, and made known a curious property of the area of the circle, did not lead to an indefinite quadrature of that curve! Newton was much more judicious and successful in his attempt. Proceeding on the same general principle with Wallis, as he himself tells us, the simple view which he took of the areas already computed, and of the terms of which each consisted, enabled him to discover the law which was common to them all, and under which the expression for the area of the circle, as well as of innumerable other curves, must needs be comprehended. In the case of the circle, as in all those where a fractional exponent appeared, the area was exhibited in the form of an infinite series.

The problem of the quadrature of the circle, and of so many other curves, being thus resolved, Newton immediately remarked, that the law of these series was, with a small alteration, the law for the series of terms which expresses the root of any binomial quantity whatsoever. Thus he was put in possession of another valuable discovery, the Binomial Theorem, and at the same time perceived that this last was in reality, in the order of things, placed before the other, and afforded a much easier access to such quadratures than the method of interpolation, which, though the first road, appeared now neither to be the easiest nor the most direct.

It is but rarely that we can lay hold with certainty of the thread by which genius has been

1 He entered at Trinity College, Cambridge, in June 1660. The date of his first discoveries is about 1663.
2 The interpolation of Wallis failed, because he did not employ literal or general exponents. His theorem, expressing the area of the entire circle by a fraction, of which the numerator and denominator are each the continued product of a certain series of numbers, is a remarkable anticipation of some of Euler's discoveries. (Calc. Int. tom. I. cap. viii.)
Dissertation Third. 519

guided in its first discoveries. Here we are proceeding on the authority of the author himself; for in a letter to Oldenburg, Secretary of the Royal Society of London, he has entered into considerable detail on this subject, adding, (so ready are the steps of invention to be forgotten) that the facts would have entirely escaped his memory, if he had not been reminded of them by some notes which he had made at the time, and which he had accidentally fallen on. The whole of the letter just referred to is one of the most valuable documents to be found in the history of invention.

In all this, however, nothing occurs from which it can be inferred that the method of fluxions had yet occurred to the inventor. His discovery consisted in the method of reducing the value of \(y \) the ordinate of a curve, into an infinite series of the integer powers of \(x \) the abscissa, by division, or the extraction of roots, that is, by the Binomial Theorem; after which, the part of the area belonging to each term could be assigned by the arithmetic of infinites, or other methods already known. He has assured us himself, however, that the great principle of the new geometry was known to him, and applied to investigation, as early as 1665 or 1666. Independently of that authority, we also know, on the testimony of Barrow, that soon after the period just mentioned there was put into his hands by Newton a manuscript treatise, the same which was afterwards published under the title of Analysis per Aequationes Numero Terminorum Infinitas, in which, though the instrument of investigation is nothing else than infinite series, the principle of fluxions, if not fully explained, is at least distinctly pointed out. Barrow strongly exhorted his young friend to publish this treasure to the world; but the modesty of the author, of which the excess, if not culpable, was certainly in the present instance very unfortunate, prevented his compliance. All this was previous to the year 1669; the treatise itself was not published till 1711, more than forty years after it was written.

For a long time, therefore, the discoveries of Newton were only known to his friends; and the first work in which he communicated anything to the world on the subject of fluxions was in the first edition of the Principia, in 1687, in the second Lemma of the second book, to which, in the disputes that have since arisen about the invention of the new analysis, reference has been so often made. The principle of the fluxionary calculus was there pointed out, but nothing appeared that indicated the peculiar algorithm, or the new notation, which is so essential to that calculus. About this Newton had yet given no information; and it was only from the second volume of Wallis's Works, in 1693, that it became known to the world. It was no less than ten years after this, in 1704, that Newton himself first published a work on the new calculus, his Quadrature of Curves, more than twenty-eight years after it was written.

These discoveries, however, even before the press was employed as their vehicle, could not remain altogether unknown in a country where the mathematical sciences were cultivated with zeal and diligence. Barrow, to whom they were first made known by the author himself, communicated them to Oldenburg, the Secretary of the Royal Society, who had a very extensive correspondence all over Europe. By him the series for the quadrature of the circle were made known to James Gregory, in Scotland, who had occupied himself very much with the same subject. They were also communicated to Leibnitz in Germany, who had become acquainted with Oldenburg in a visit which he made to England in 1673. At the time of that visit, Leibnitz was but little conversant with the Mathematics; but having afterwards devoted his great talents to

1. Commercium Epistolicum, No. 55.
2. Quadrature of Curves, Introduction.
4. Wallis says, that he had inserted in the English edition of his book, published in 1665, several extracts from Newton's Letters. "Omissis multis aliis initii notatu dignis, eo quod speraveris clarissimum virum voluisse tum illa, tum alla qua quid ipsum premis, addideras. Cun vero illud nomum fecerit, libet eorum nonnulla hic attingere, ne procerat." Among these last, is an account of the fluxionary notation, according to which the fluxions of flowing quantities are distinguished by points, and also of certain applications of this new algorithm, extracted from two letters of Newton, written in 1792. (Opera, tom. II. p. 390, &c.) There is no evidence of his notation having existed earlier than that date, though it be highly probable that it did.
the study of that science, he was soon in a condition to make new discoveries. He invented a method of squaring the circle, by transforming it into another curve of an equal area, but having the ordinate expressed by a rational fraction of the absciss, so that its area could be found by the methods already known. In this way he discovered the series, so remarkable for its simplicity, which gives the value of a circular arch in terms of the tangent. This series he communicated to Oldenburg in 1674; and received from him in return an account of the progress made by Newton and Gregory in the invention of series. In 1676, Newton described his method of quadratures at the request of Oldenburg, in order that it might be transmitted to Leibnitz, in the two letters already mentioned, as of such value, by recording the views which guided that great geometer in his earliest, and some of his most important discoveries. The method of fluxions is not communicated in these letters; nor are the principles of it in any way suggested; though there are, in the last letter, two sentences in transposed characters, which ascertain that Newton was then in possession of that method, and employed in speaking of it the same language in which it was afterwards made known. In the following year, Leibnitz, in a letter to Oldenburg, introduces differentials, and the methods of his calculus, for the first time. This letter, which is very important, clearly proves that the author was then in full possession of the principles of his calculus, and had even invented the algorithm and notation.

From these facts, and they are all that bear directly on the question concerning the invention of the infinitesimal analysis, if they be fairly and dispassionately examined, I think that no doubt can remain that Newton was the first inventor of that analysis, which he called by the name of Fluxions; but that, in the communications made by him, or his friends, to Leibnitz, there was nothing that could convey any idea of the principle on which that analysis was founded, or of the algorithm which it involved. The things stated were merely results; and though some of those relating to the tangents of curves might show the author to be in possession of a method of investigation different from infinite series, yet they afforded no indication of the nature of that method, or the principles on which it proceeded.

In what manner Newton’s communications in the two letters already referred to may have acted in stimulating the curiosity, and extending, or even directing, the views of such a man as Leibnitz, I shall not presume to decide (nor, even if such effect be admitted, will it take from the originality of his discoveries); but, that in the authenticated communications which took place between these philosophers there was nothing which could make known the nature of the fluxionary calculus, I consider as a fact most fully established.

Of the new or infinitesimal analysis, we are, therefore, to consider Newton as the first inventor, Leibnitz as the second; his discovery, though posterior in time, having been made independently of the other, and having no less claim to originality. It had the advantage also of being first made known to the world; an account of it, and of its peculiar algorithm, having been inserted in the first volume of the Acta Eruditorum, in 1684. Thus, while Newton’s discovery remained a secret, communicated only to a few friends, the geometry of Leibnitz was spreading with great rapidity over the Continent. Two most able coadjutors, the brothers James and John Bernoulli, joined their talents to those of the original inventor, and illustrated the new methods by the solution of a great variety of difficult and interesting problems. The reserve of Newton still kept his countrymen ignorant of his geometrical discoveries; and the first book that appeared in England on the new geometry was that of Craig, who professedly derived his knowledge from the writings of Leibnitz and his friends. Nothing, however, like rivalryship or hostility between these inventors had yet appeared; each seemed willing to admit the originality of the other’s discoveries; and Newton, in the passage of the Principia just referred to, gave a highly favourable opinion on the subject of the discoveries of Leibnitz.

1 Commercium Epistolicum, No. 66.
The quiet, however, that now prevailed between the English and German philosophers, was clearly of a nature to be easily disturbed. With the English was conviction, and, as we have seen, a well-grounded conviction, that the first discovery of the infinitesimal analysis was the property of Newton; but the analysis thus discovered was yet unknown to the public, and was in the hands of the inventor and his friends. With the Germans there was the conviction, also well founded, that the invention of their countryman was perfectly original; and they had the satisfaction to see his calculus everywhere adopted, and himself considered all over the Continent as the sole inventor. The friends of Newton could not but resist this latter claim; and the friends of Leibnitz, seeing that their master had become the great teacher of the new calculus, could not easily bring themselves to acknowledge that he was not the first discoverer. The tranquillity that existed under such circumstances, if once disturbed, was not likely to be speedily restored.

Accordingly, a remark of Fatio de Duillier, a mathematician, not otherwise very remarkable, was sufficient to light up a flame which a whole century has been hardly sufficient to extinguish. In a paper on the line of swiftest descent, which he presented to the Royal Society in 1699, was this sentence: "I hold Newton to have been the first inventor of this calculus, and the earliest, by several years, induced by the evidence of facts; and whether Leibnitz, the second inventor, has borrowed anything from the other, I leave to the judgment of those who have seen the letters and manuscripts of Newton." Leibnitz replied to this charge in the Leipsic Journal, without any asperity, simply stating himself to have been, as well as Newton, the inventor; neither contesting nor acknowledging Newton's claim to priority, but asserting his own to the first publication of the calculus.

Not long after this, the publication of Newton's Quadrature of Curves, and his Enumeration of the lines of the third order, (1705) afforded the same journalists an opportunity of showing their determination to retort the insinuations of Du-

Illyer, and to carry the war into the country of the enemy. After giving a very imperfect synopsis of the first of these books, they add: "Pro differentiis igitur Leibnitionis D. Newtonus adhibet, semperque adhibuit, fluxiones; quae sunt quam proxime ut fluentium augmenta, aequalibus temporis particulis quam minimus genita; isque, tum in suis Principiis Natura Mathematicis, tum in alii postea editis, eleganter est usus; quemadmodum Honoratus Fabrius in sua Synopsis Geometrica motuum progressus Cavalieriana methodo substituit."

In spite of the politeness and ambiguity of this passage, the most obvious meaning appeared to be, that Newton had been led to the notion of fluxions by the differentials of Leibnitz, just as Honoratus Fabri had been led to substitute the idea of progressive motion for the indivisibles of Cavalieri. A charge so entirely unfounded, so inconsistent with acknowledged facts, and so little consonant to declarations that had formerly come from the same quarter, could not but call forth the indignation of Newton and his friends, especially as it was known that these journalists spoke the language of Leibnitz and Bernoulli. In that indignation they were perfectly justified; but when the minds of contending parties have become irritated in a certain degree, it often happens that the injustice of one side is retaliated by an equal injustice from the opposite. Accordingly, Keill, who, with more zeal than judgment, undertook the defence of Newton's claims, instead of endeavouring to establish the priority of his discoveries by an appeal to facts and to dates that could be accurately ascertained, (in which he would have been completely successful) undertook to prove, that the communications of Newton to Leibnitz were sufficient to put the latter in possession of the principles of the new analysis, after which he had only to substitute the notion of differentials for that of fluxions. In support of a charge which it would have required the clearest and most irresistible evidence to justify, he had, however, nothing to offer but equivocal facts and overstrained arguments, such as could only convince those who were al-

1 Commercium Epistolicum, No. 79: Newtoni Opera, tom. IV. p. 577.
Leibnitz complained of Keill's proceeding to the Royal Society of London, which declined giving judgment, but appointed a commission of its members to draw up a full and detailed report of all the communications which had passed between Newton and Leibnitz, or their friends, on subjects connected with the new analysis, from the time of Collins and Oldenburg to the date of Keill's letter to Sir Hans Sloane in 1711, the same that was now complained of. This report forms what is called the Commercium Epistolicum; it was published by order of the Royal Society the year following, and contains an account of the facts, which, though in the main fair and just, does not give that impression of the impartiality of the reporters which the circumstances so imperiously demanded. Leibnitz complained of this publication, and alleged, that though nothing might be inserted that was not contained in the original letters, yet certain passages were suppressed which were favourable to his pretensions. He threatened an answer, which, however, never appeared. Some notes were added to the Commercium, which contain a good deal of asperity and unsupported insinuation. The Recensio, or review of it, inserted in the Philosophical Transactions for 1715, though written with ability, is still more liable to the same censure.

In the year (1713) which followed the publication of the Commercium Epistolicum, a paragraph was circulated among the mathematicians of Europe, purporting to be the judgment of a mathematician on the invention of the new analysis. The author was not named, but was generally understood to be John Bernoulli, of which, indeed, the terms in which Leibnitz speaks of the judgment leave no room to doubt. Bernoulli was without question well acquainted with the subject in dispute; he was a perfect master of the calculus; he had been one of the great instruments of its advancement; and, except impartiality, possessed every requisite for a judge. Without offence it might be said, that he could scarcely be accounted impartial. He had been a party in all that had happened. Warmly attached as he was to the one side, and greatly exasperated against the other, his temper had been more frequently ruffled, and his passions or prejudices more violently excited, than those of any other individual. With all his abilities, therefore, he was not likely to prove the fairest and most candid judge, in a cause that might almost be considered as his own. His sentence, however, is pronounced in calm and temperate language, and amounts to this, That there is no reason to believe that the fluxional calculus was invented before the differential.

The friends of Leibnitz hurt their own cause, by attempting to fix on Newton a charge of plagiarism, which was refuted by such a chain of evidence, by so many dates distinctly ascertained, and so many concessions of their own. A candid review of the evidence led to the conviction, that both Newton and Leibnitz were original inventors. When the English mathematicians accused Leibnitz of borrowing from Newton, they were, therefore, going much farther than the evidence authorized them, and were mistaking their own partialities for proofs. They maintained what was not true, but what, nevertheless, was not physically impossible, the discovery of Newton being certainly prior to that of Leibnitz. The German mathematicians, on the other hand, when they charged Newton with borrowing from Leibnitz, were maintaining what was not only false, but what involved an impossibility. This is the only part of the dispute, in which any thing that could be construed into mala fides can be said to have appeared. I am far, however, from giving it that construction; men of such high character, both for integrity and talents, as Leibnitz and Bernoulli, ought not to be lightly subjected to so cruel an imputation. Partiality, prejudice, and passion, are sufficient to account for much injustice, without a decided intention to do wrong.

In the state of hostility to which matters were now brought, the new analysis itself was had recourse to, as affording to either side abundant means of annoying its adversaries, by an inexhaustible supply of problems, accessible to those alone who were initiated in the doctrines, and
who could command the resources of that analysis. The power of resolving such problems, therefore, seemed a test whether this analysis was understood or not. Already some questions of this kind had been proposed in the Leipsic Journal, not as defiances, but as exercises in the new geometry. Such was the problem of the Catenaria, or the curve, which a chain of uniform weight makes when suspended from two points. This had been proposed by Bernoulli in 1690, and had been resolved by Huygens, Leibnitz, and himself.

A question had been proposed, also, concerning the line of swiftest descent, in 1697, or the line along which a body must descend, in order to go from one point to another not perpendicularly under it, in the least time possible. Though a straight line be the shortest distance between two points, it does not necessarily follow that the descent in that line will be most speedily performed; for, by falling in a curve that has at first a very rapid declivity, the body may acquire in the beginning of its motion so great a velocity, as shall carry it over a long line in less time than it would describe a short one, with a velocity more slowly acquired. This, however, is a problem that belongs to a class of questions of peculiar difficulty; and accordingly it was resolved only by a few of the most distinguished mathematicians. The solutions which appeared within the time prescribed were from Leibnitz, Newton, the two Bernoullis, and M. de l'Hopital. Newton's appeared in the Philosophical Transactions without a name; but the author was easily recognised. John Bernoulli, on seeing it, is said to have exclaimed, Ex ungue leonem!

The curve that has the property required is the cycloid: Newton has given the construction, but has not accompanied it with the analysis. He added afterwards the demonstration of a very curious theorem for determining the time of the actual descent. Leibnitz resolved the problem the same day that he received the programme in which it was proposed.

The problem of orthogonal trajectories, as it is called, had been long ago proposed in the Acta Eruditorum, with an invitation to all who were skilled in the new analysis to attempt the solution. The problem had not, at first, met with the attention it was supposed to deserve; but John Bernoulli, having resumed the consideration of it, found out what appeared a very perfect and very general solution; and the question was then (1716) proposed anew by Leibnitz, for the avowed purpose of trying the skill of the English mathematicians. The question is,—a system of curves described according to a known law being given, (all the hyperbolas, for instance, that are described between the same asymptotes, or all the parabolas that have the same directrix, and that pass through the same point, &c.) to describe a curve which shall cut them all at right angles. This may be considered as the first defiance professedly aimed at the English mathematicians. The problem was delivered to Newton on his return from the Mint, when he was much fatigued with the business of the day: he resolved it, however, the same evening; and his solution, though without a name, is given in the Philosophical Transactions for 1716.1

This solution, however, only gave rise to new quarrels; for hardly any thing so excellent could come from the one side, that it could meet with the entire approbation of the other. Newton's, indeed, was rather the plan or projet of an investigation, than an actual solution; and, in the general view which it took of the question, could hardly provide against all the difficulties that might occur in the application to particular cases. This was what Bernoulli objected to, and affected to treat the solution as of no value. Brook Taylor, Secretary of the Royal Society, and well known as one of the ablest geometers of the time, undertook the defence of it; but concluded with using language very reprehensible, and highly improper to be directed by one man of science against another. Having sufficiently, as he supposed, replied to Bernoulli and his friends, he adds, "if they are not satisfied with the solution, it must be ascribed to their own ignorance."2 It strongly marks the temper by which both sides were now animated, when a man like Taylor, eminent for profound

1 Vol. XXIX. p. 399.

2 Eorum imperitiae tribuendum est.
science, and, in general, very much disposed to do justice to the merits of others, should so forget himself as to reproach with ignorance of the calculus one of the men who understood it the best, and who had contributed the most to its improvement. The irritability and prejudices of Bernoulli admitted of no defence, and he might very well have been accused of viewing the solution of Newton through a medium disturbed by their action; but to suppose that he was unable to understand it, was an impertinence that could only react on the person who was guilty of it. Bernoulli was not exemplary for his patience; and it will be readily believed, that the incivility of Taylor was sufficiently revenged. It is painful to see men of science engaged in such degrading altercation; and I should be inclined to turn from so disagreeable an object, if the bad effects of the spirit thus excited were not such as must again obtrude themselves on the notice of the reader.

Taylor not long after came forward with an open defiance to the whole Continent, and proposed a problem, *Omnibus geometris non Anglis*, —a problem, of course, which he supposed that the English mathematicians alone were sufficiently enlightened to resolve. He selected one, accordingly, of very considerable difficulty,—the integration of a fluxion of a complicated form; which, nevertheless, admitted of being done in a very elegant manner, known, I believe, at that time to very few of the English mathematicians,—to Cotes, to himself, and perhaps one or two more. The selection, nevertheless, was abundantly injudicious; for Bernoulli, as long ago as 1702, had explained the method of integrating this, and such like formulas, both in the Paris *Mémoires* and in the Leipsic *Acts*. The question, accordingly, was no sooner proposed than it was answered in a manner the most clear and satisfactory; so the defiance of Taylor only served to display the address and augment the triumph of his adversary.

The last and most unsuccessful of these challenges was that of Keill, of whose former appearance in this controversy we have already had so much more reason to commend the zeal than the discretion. Among the problems in the mixed mathematics which had excited most attention, and which seemed best calculated to exercise the resources of the new analysis, was the determination of the path of a projectile in a medium which resists proportionally to the square of the velocity, that being nearly the law of the resistance which the air opposes to bodies moving with great velocity. The resistance of fluids had been treated of by Newton in the second book of the *Principia*, and he had investigated a great number of curious and important propositions relative to its effects. He had considered some of the simpler laws of resistance; but of the case just mentioned he had given no solution, and, after approaching as near as possible to it on all sides, had withdrawn without making an attack. A problem so formidable was not likely to meet with many who, even in the more improved state at which the calculus had now arrived, could hope to overcome its difficulties. Whether Keill had flattered himself that he could resolve the problem, or had forgotten, that when a man proposes a question of defiance to another, he ought to be sure that he can answer it himself, may be doubted; but this is certain, that, without the necessary preparation, he boldly challenged Bernoulli to produce a solution.

Bernoulli resolved the question in a very short time, not only for a resistance proportional to the square, but to any power whatsoever of the velocity; and by the conditions which he affixed to the publication of his solution, took care to expose the weakness of his antagonist. He repeatedly offered to send his solution to a confidential person in London, providing Keill would do the same. Keill never made any reply to a proposal so fair, that there could only be one reason for declining it. Bernoulli, of course, exulted over him cruelly, breaking out in a torrent of vulgar abuse, and losing sight of every maxim of candour and good taste.

Such, then, were the circumstances under which the infinitesimal analysis,—the greatest discovery ever made in the mathematical sciences,—was ushered into the world. Everywhere, as it became known, it enlarged the views, roused the activity, and increased the power of the geometer, while it directed the
warmest sentiments of his gratitude and admiration toward the great inventors. In one respect only its effects were different from those which one would have wished to see produced. It excited jealousy between two great men who ought to have been the friends of one another, and disturbed in both that philosophical tranquillity of mind, for the loss of which even glory itself is scarcely an adequate recompense.

In order to form a correct estimate of the magnitude and value of this discovery, it may be useful to look back at the steps by which the mathematical sciences had been prepared for it. When we attempt to trace those steps to their origin, we find the principle of the infinitesimal analysis making its first appearance in the method of exhaustions, as exemplified in the writings of Euclid and Archimedes. These geometres observed, and, for what we know, were the first to observe, that the approach which a rectilineal figure may make to one that is curvilinear, by the increase of the number of its sides, the diminution of their magnitude, and a certain enlargement of the angles they contain, may be such that the properties of the former shall coincide so nearly with those of the latter, that no real difference can be supposed between them without involving a contradiction; and it was in ascertaining the conditions of this approach, and in showing the contradiction to be unavoidable, that the method of exhaustions consisted. The demonstrations were strictly geometrical, but they were often complicated, always indirect, and of course synthetical, so that they did not explain the means by which they had been discovered.

At the distance of more than two thousand years, Cavalieri advanced a step farther, and, by the sacrifice of some apparent, though of no real accuracy, explained, in the method of indivisibles, a principle which could easily be made to assume the more rigid form of exhaustions. This was a very important discovery: though the process was not analytical, the demonstrations were direct, and, when applied to the same subjects, led to the same conclusions which the ancient geometers had deduced. By an indirect proof also, such as those geometers had adopted, it could always be shown that an absurdity followed from supposing the results deduced from the method of indivisibles to be other than rigorously true.

The method of Cavalieri was improved and extended by a number of geometers of great genius who followed him; Torricelli, Roberval, Fermat, Huygens, Barrow, who all observed the great advantage that arose from applying the general theorems concerning variable quantity to the cases where the quantities approached to one another infinitely near, that is, nearer than within any assigned difference. There was, however, as yet, no calculus adapted to these researches, that is, no general method of reasoning by help of arbitrary symbols. But we must go back a step in point of time, if we would trace accurately the history of this last improvement. Descartes, as has been shown in the former part of this outline, made a great revolution in the mathematical sciences, by applying algebra to the geometry of curves; or, more generally, by applying it to express the relations of variable quantity. This added infinitely to the value of the algebraic analysis, and to the extent of its investigations. The same great mathematician had observed the advantage that would be gained in the geometry of curves, by considering the variable quantities in one state of an equation as differing infinitely little from the corresponding quantities in another state of the same equation. By means grounded on this he had attempted to draw tangents to curves, and to determine their curvature; but it is seldom the destination of nature that a new discovery should be begun and perfected by the same individual; and, in these attempts, though Descartes did not entirely fail, he cannot be considered as having been successful.¹

At last came the two discoverers, Newton and Leibnitz, who completely lifted up the veil which their predecessors had been endeavouring to draw aside. They plainly saw, as Descartes indeed had done in part, that the infinitely small variations of the ordinate and absciss are closely con-

¹ Dissertation Third, Part I. p. 444.
nected with many properties of the curve, which have but a very remote dependence on the ordinates and abscissae themselves. Hence they inferred, that to obtain an equation expressing the relations of these variations to one another, was to possess the most direct access to the knowledge of those properties. They observed also, that when an equation of this kind was deduced from the general equation, it admitted of being brought to great simplicity, and of being resolved much more readily than the other. In effect, it assumed the form of a simple equation; but, in order to make this deduction in the readiest and most distinct way, the introduction of new symbols, or of a new algorithm, was necessary, the invention of which could cost but little to the creative genius of the men of whom I now speak. They appear, as has been already shown, to have made their discoveries separately;—Newton first,—Leibnitz afterwards, at a considerable interval, yet the earliest, by several years, in communicating his discoveries to the world.

Thus, though there had been for ages a gradual approach to the new analysis, there were in that progress some great and sudden advances which elevated those who made them to a much higher level than their predecessors. A great number of individuals co-operated in the work; but those who seem essential, and in the direct line of advancement, are Euclid, Cavalieri, Descartes, Newton, and Leibnitz. If any of the others had been wanting, the world would have been deprived of many valuable theorems, and many collateral improvements, but not of any general method essential to the completion of the infinitesimal analysis.

The views, however, of this analysis taken by the two inventors were not precisely the same. Leibnitz, considering the differences of the variable quantities as infinitely small, conceived that he might reject the higher powers of those differences without any sensible error; so that none of those powers but the first remained in the differential equation finally ob-

tained. The rejection, however, of the higher powers of the differentials was liable to objection, for it had the appearance of being only an approximation, and did not come up to the perfect measure of geometrical precision. The analysis, thus constituted, necessarily divided itself into two problems: the first is,—having given an equation involving two or more variable quantities, to find the equation expressing the relation of the differentials, or infinitely small variations of those quantities: the second is the converse of this,—having given an equation involving two or more variable quantities, and their differentials, to exterminate the differentials, and so to exhibit the variable quantities in a finite state. This last process is called integration in the language of the differential analysis, and the finite equation obtained is called the integral of the given differential equation.

Newton proceeded in some respects differently, and so as to preserve his calculus from the imputation of neglecting or throwing away anything merely because it was small. Instead of the actual increments of the flowing or variable quantities, he introduced what he called the fluxions of those quantities,—meaning, by fluxions, quantities which had to one another the same ratio which the increments had in their ultimate or evanescent state. He did not reject quantities, therefore, merely because they were so small that he might do so without committing any sensible error, but because he must reject them, in order to commit no error whatsoever. Fluxions were, with him, nothing else than measures of the velocities with which variable or flowing quantities were supposed to be generated; and they might be of any magnitude, providing they were in the ratio of those velocities, or, which is the same, in the ratio of the nascent or evanescent increments. The fluxions, therefore, and the flowing quantities or fluents of Newton, correspond to the differentials and the sums or integrals of Leibnitz; and though the symbols which denote fluxions are different from those used to express differentials, they answer

1 "I consider mathematical quantities in this place, not as consisting of small parts, but as described by a continued motion. Lines are described, and thereby generated, not by the apposition of parts, but by the continued motion of points; superficies by the motion of lines," &c. (Quadrature of Curves, Introduction.)
precisely the same purpose. The fluxionary and differential calculus may therefore be considered as two modifications of one general method, aptly distinguished by the name of the *infinitesimal analysis*.

By the introduction of this analysis, the domain of the mathematical sciences was incredibly enlarged in every direction. The great improvement which Descartes had made by the application of algebraic equations to define the nature of curve lines was now rendered much more efficient, and carried far beyond its original boundaries. From the equation of the curve the new analysis could deduce the properties of the tangents, and, what was much more difficult, could go back from the properties of the tangents to the equation of the curve. From the same equation it was able to determine the curvature at every point; it could measure the length of any portion of the curve or the area corresponding to it. Nor was it only to algebraic curves that those applications of the calculus extended, but to curves transcendental and mechanical, as in the instances of the catenaria, the cycloid, the elastic curve, and many others. The same sort of research could be applied to curve surfaces described according to any given law, and also to the solids contained by them.

The problems which relate to the *maxima* and *minima*, or the greatest and least values of variable quantities, are among the most interesting in the Mathematics: they are connected with the highest attainments of wisdom and the greatest exertions of power; and seem like so many immovable columns erected in the infinity of space, to mark the eternal boundary which separates the regions of possibility and impossibility from one another. For the solution of these problems, a particular provision seemed to be made in the new geometry.

When any function becomes either the greatest or the least, it does so by the velocity of its increase or of its decrease ceasing entirely, or, in the language of algebra, becoming equal to nothing. But when the velocity with which the function varies becomes nothing, the fluxion which is proportional to that velocity must become nothing also. Therefore, it is only necessary to take the fluxion of the given function, and by supposing it equal to nothing; an equation will be obtained in finite terms, (for the fluxion will entirely disappear) expressing the relation of the quantities when the function assigned is the greatest or the least possible.

Another kind of maximum or minimum, abounding also in interesting problems, is more difficult by far than the preceding, and, when taken generally, seems to be only accessible to the new analysis. Such cases occur when the function of the variable quantities which is to be the greatest or the least is not given, but is itself the thing to be found; as when it is proposed to determine the line by which a heavy body can descend in the least time from one point to another. Here the equation between the co-ordinates of the curve to be found is, of course, unknown, and the function of those co-ordinates, which denotes the time of descent, cannot therefore be algebraically expressed, so that its fluxion cannot be taken in the ordinary way, and thus put equal to nothing. The former rule, then, is not applicable in such cases, and it is by no means obvious in what manner this difficulty is to be overcome. The general problem exercised the ingenuity of both the Bernoullis, as it has since done of many other mathematicians of the greatest name. As there are in such problems always two conditions, according to the first of which a certain property is to remain constant, or to belong to all the individuals of the species, and, according to the second, another property is to be the greatest or the least possible; and as, in some of the simplest of such questions, the constant quantity is the circumference or perimeter of a certain curve, so problems of this kind have had the name of *isoperimetrical* given them; a term which has thus come to denote one of the most curious and difficult subjects of mathematical investigation.

The new analysis, especially according to the

1 The most simple problem of the kind is strictly and literally *isoperimetrical*, viz. of all curves having the same perimeter, to find that which has the greatest area. Elementary geometry had pronounced this curve to be the circle long before: there was any idea of an entire class of problems characterized by similar conditions. *Vitæ Pupill Alexandrini Collect. Math. lib. v. prop. 3. &c.*
view taken of it by Newton, is peculiarly adapted to physical researches, as the hypothesis of quantities being generated by continued motion comes there to coincide exactly with the fact. The momentary increments or the fluxions represent so precisely the forces by which the changes in nature are produced, that this doctrine seemed created for the express purpose of penetrating into the interior of things, and taking direct cognizance of those animating powers which, by their subtlety, not only elude the observation of sense, but the ordinary methods of geometrical investigation. The infinitesimal analysis alone affords the means of measuring forces, when each acts separately, and instantaneously under conditions that can be accurately ascertained. In comparing the effects of continued action, the variety of time and circumstance, and the continuance of effects after their causes have ceased, introduce so much uncertainty, that nothing but vague and unsatisfactory conclusions can be deduced. The analysis of infinites goes directly to the point; it measures the intensity or instantaneous effort of the force, and, of course, removes all those causes of uncertainty which prevailed when the results of continued action could alone be estimated. It is not even by the effects produced in a short time, but by effects taken in their nascent or evanescent state, that the true proportion of causes must be ascertained.

Thus, though the astronomers had proved that the planets describe ellipses round the sun as the common focus, and that the line from the sun to each planet sweeps over areas proportional to the time,—had not the geometer resolved the elliptic motion into its primary elements, and compared them in their state of evanescence, it would never have been discovered that these bodies gravitate to the sun with forces which are inversely as the square of their distances from the centre of that luminary. Thus, fortunately, the first discovery of Newton was the instrument which was to conduct him safely through all the intricacies of his future investigations.

The calculus, as already remarked, necessarily divides itself into two branches; one which, from the variable quantities, finds the relation of their fluxions or differentials; another which, from the relation of these last, investigates the relation of the variable quantities themselves. The first of these problems is always possible, and, in general, easy to be resolved; the second is not always possible, and when possible, is often very difficult, but in various degrees, according to the manner in which the differentials and the variable quantities are combined with one another.

If the function into which the differential stands multiplied consist of a single term, or an aggregate of terms, in each of which the variable quantity is raised to a power expounded by a number positive, negative, or fractional, the integration can be effected with ease, either in algebraic or logarithmic terms; and the calculus had not been long known before this problem was completely resolved.

The second case of this first division is,—when the given function is a fraction having a binomial or multinomial denominator, the terms of which contain any powers whatever of the variable magnitude, but without involving the radical sign. If the denominator contain only the simple power of the variable quantity, the integral is easily found by logarithms; if it be complex, it must be resolved either into simple or quadratic divisors, which, granting the solution of equations, is always possible, at least by approximation, and the given fraction is then found equal to an aggregate of simple fractions, having these divisors for their denominators, and of which the fluents can always be exhibited in algebraic terms, or in terms of logarithms and circular arches. This very general and important problem was resolved by J. Bernoulli as early as the year 1702.

The denominator is in this last case supposed rational; but if it be irrational, the integration requires other means to be employed. Here Leibnitz and Bernoulli both taught how, by substitutions, as in Diophantine problems, the irrationality might be removed, and the integration of course reduced to the former case. Newton employed a different method, and, in his Quadrature of Curves, found the fluents, by comparing the given fluxion with the formulas immediately derived from the expression of circular or hyperbolic areas. The integrations of
these irrational formulæ, whichever of the methods be employed, often admit of being effected with singular elegance and simplicity; but a general integration of all the formulæ of this kind, except by approximation, is not yet within the power of analysis.

The second general division of the problem of integration, viz. when the two variable quantities and their differentials are mixed together on each side of the equation, is a more difficult subject of inquiry than the preceding. It may indeed happen that an equation, which at first presents itself under this aspect, can, by the common rules of algebra, have the quantities so separated, that on each side of the sign of equality there shall be but one variable quantity with its fluxion; and when this is done, the integration is reduced to one of the cases already enumerated.

When such separation cannot be made, the problem is among the most difficult which the infinitesimal analysis presents, at the same time that it is the key to a vast number of interesting questions both in the pure and the mixed mathematics. The two Bernoullis applied themselves strenuously to the elucidation of it; and to them we owe all the best and most accurate methods of resolving such questions which appeared in the early history of the calculus, and which laid the foundation of so many subsequent discoveries. This is a fact which cannot be contested; and it must be acknowledged also, that on the same subject the writings of the English mathematicians were then, as they continue to be at this day, extremely defective. Newton, though he had treated of this branch of the infinitesimal analysis with his usual ingenuity and depth, had done so only in his work on Fluxions, which did not see the light till several years after his death, when, in 1736, it appeared in Colson’s Translation. But that work, even had it come into the hands of the public in the author’s lifetime, would not have remedied the defect of which I now speak. When the fluxionary equation could not be integrated by the simplest and most elementary rules, Newton had always recourse to approximations by infinite series, in the contrivance of which he indeed displayed great ingenuity and address. But an approximation, let it be ever so good, and converge ever so rapidly, is always inferior to an accurate and complete solution, if this last possess any tolerable degree of simplicity. The series which affords the approximation cannot converge always, or in all states of the variable quantity; and its utility, on that account, is so much limited, that it can hardly lead to any general result. Besides, it does not appear that these series can always be made to involve the arbitrary or indeterminate quantity, without which no fluent can be considered as complete. For these reasons, such approximations should never be resorted to till every expedient has been used to find an accurate solution. To this rule, however, Newton’s method does not conform, but employs approximation in cases where the complete integral can be obtained. The tendency of that method, therefore, however great its merit in other respects, was to give a direction to research which was not always the best, and which, in many instances, made it fall entirely short of the object it ought to have attained. It is true that many fluxionary equations cannot be integrated in any other way; but by having recourse to it indiscriminately, we overlook the cases in which the integral can be exactly assigned. Accordingly, Bernoulli, by following a different process, remarked entire classes of fluxionary or differential equations, that admitted of accurate integration. Thus he found, that differential equations, if homogeneous, however complicated, may always have the variable quantities separated, so as to come under one of the simpler forms already enumerated. By the introduction, also, of exponential equations, which had been considered in England as of little use, he materially improved this branch of the calculus.

To all these branches of analysis we have still another to add of indefinite extent, arising out of the consideration of the fluxions or differentials of the higher orders, each of these orders

1 Homogeneous equations, in the differential calculus, are those in which the sum of the exponents of the variable quantities is the same in all the terms.

Diss. III. Part II.
being deduced from the preceding, just as first fluxions are from the variable quantities to which they belong. To understand this, conceive the successive values of the first fluxions of any variable quantity to constitute a new series of variable quantities flowing with velocities, the measures of which form the fluxions of the second order, from which, in the same manner, are deduced fluxions of the third and of still higher orders. The general principles are the same as in the fluxions of the first order, but the difficulties of the calculus are greater, particularly in the integrations; for, to rise from second fluxions to the variable quantities themselves, two integrations are necessary; from third fluxions, three; and so on.

The tract which first made known the new analysis was that of Leibnitz, published, as already remarked, in the first volume of the *Acta Eruditorum* for 1684, where it occupies no more than six pages, and is the work of an author not yet become very familiar with the nature of his own invention. It was sufficient, however, to explain that invention to mathematicians; but, nevertheless, some years elapsed before it drew much attention. The Bernoullis were the first who perceived its value, and made themselves masters of the principles and methods contained, or rather suggested, in it. Leibnitz published many other papers in the *Acta Eruditorum* and the journals of the times, full of original views and important hints, thrown out very briefly, and requiring the elucidations which his friends just mentioned were always so willing and so able to supply. The number of literary and scientific objects which divided the attention of the author himself was so great, that he had not time to bestow on the illustration and development of the most important of his own discoveries; and the new analysis, for all that he has taught, would have been very little known, and very imperfectly unfolded, if the two excellent geometers just named had not come to his assistance. Their tracts were also, like his, scattered in the different periodic works of that time; and several years elapsed before any elementary treatise explained the general methods, and illustrated them by examples. The first book in which this was done, so far at least as concerned the differential or direct calculus, was the *Analyse des infiniment Petits* of the Marquis de l'Hopital, published in 1696; a work of great merit, which did much to diffuse the knowledge of the new analysis. It was well received at that time; and has maintained its character to the present day. The author, a man of genius, indefatigable and ardent in the pursuits of science, had enjoyed the *viva voce* instructions of John Bernoulli, on the subject of the new geometry, and therefore came forward with every possible advantage.

It was long after this before the works of the Bernoullis were collected together, those of James in two quarto volumes, and of John in four. In the third of these last volumes is a tract of considerable length, with the title of *Lectiones de Methodo Integralium*, written in 1691 and 1692, for the use of M. de l'Hopital, to whose book on the Differential Calculus it seems to have been intended as a sequel. It is a work of great merit; and affords a distinct view of many of the most general methods of integration, with their application to the most interesting problems; so that, though the earliest treatise on that subject, it remains at this day one of the best compends of the new analysis of which the mathematical world is in possession. Indeed the whole of the volumes just referred to are highly interesting, as containing the original germs of the new analysis, and as being the work of men always inspired by genius, sometimes warmed by opposition, and generally animated by the success which accompanied their researches.

But we must now look at the original works of the earliest inventor. Newton, besides his letters published in the *Commercium Epistolicum*, is the author of three tracts on the new analysis that have all been occasionally mentioned. None of them, however, appeared nearly so soon as a great number of the pieces which have just been enumerated. The *Quadrature of Curves,*

2. Those of James were published at Geneva in 1744; of John, at Lausanne and Geneva in 1742.
written as early as 1665 or 1666, did not appear till 1704; and though it be a treatise of great value, and containing very important and very general theorems concerning the quadrature of curves, it must be allowed that it is not well adapted to make known the spirit and the views of the infinitesimal analysis. After a short introduction, which is indeed analytical, and which explains the idea of a fluxion with great brevity and clearness, the treatise sets out with proposing to find any number of curves that can be squared; and here the demonstrations become all synthetical, without any thing that may be properly called analytical investigation. By synthetical demonstrations I do not mean reasonings where the algebraic language is not used, but reasonings, whatever language be employed, where the solution of the proposed question is first laid down, and afterwards demonstrated to be true. Such is the method pursued throughout this work; and it is wonderful how many valuable conclusions concerning the areas of curves, and their reduction to the areas of the circle and hyperbola, are in that manner deduced. But though truths can be very well conveyed in the synthetical way, the methods of investigating truth are not communicated by it, nor the powers of invention directed to their proper objects. As an elementary treatise on the new analysis, the Quadrature of Curves is therefore imperfect, and not calculated, without great study, to give to others any portion of the power which the author himself has exerted. The problem of finding fluents, though it be that on which the whole quadrature of curves depends, is entirely kept out of view, and never once proposed in the course of a work which, at the same time, is full of the most elaborate and profound reasonings.

Newton had a great fondness for the synthetical method, which is apparent even in the most analytical of his works. In his Fluxions, when he is treating of the quadrature of curves, he says, "After the area of a curve has been found and constructed, we should consider about the demonstration of the construction, that, laying aside all algebraical calculation as much as may be, the theorem may be adorned and made elegant, so as to become fit for public view." This is followed by two or three examples, in which the rule here given is very happily illustrated. When the analysis of a problem requires, like the quadrature of curves, the use of the inverse method of fluxions, the reversion of that analysis, or the synthetical demonstration, must proceed by the direct method, and therefore may admit of more simplicity than the others, so as, in the language of the above passage, to be easily adorned and made elegant.

The book of Fluxions is, however, an excellent work, entering very deeply into the nature and spirit of the calculus,—illustrating its application by well-chosen examples,—and only failing, as already said, by having recourse, for finding the fluents of fluxionary equations, too exclusively to the method of series, without treating of the cases in which exact solutions can be obtained.

Of the works that appeared in the early stages of the calculus, none is more entitled to notice than the Harmonia Mensurarum of Cotes. The idea of reducing the areas of curves to those of the circle and hyperbola, in those cases which did not admit of an accurate comparison with rectilinear spaces, had early occurred to Newton, and was very fully exemplified in his Quadrature of Curves. Cotes extended this method:—his work appeared in 1722, and gave the rules for finding the fluents of fractional expressions, whether rational or irrational, greatly generalized and highly improved by means of a property of the circle discovered by himself, and justly reckoned among the most remarkable propositions in geometry. It is singular that a work so profound and so useful as the Harmonia Mensurarum should never have acquired, even among the mathematicians of England, the popularity which it deserves; and that, on the Continent, it should be very little known, even after the excellent commentary and additions of Bishop Walmesley. The reasons perhaps are, that, in many parts, the work is obscure; that it does not explain the analysis which must have led to the formulae contained in the tables; and

that it employs an unusual language and notation, which, though calculated to keep in view the analogy between circular and hyperbolic areas, or between the measures of angles and of ratios, do not so readily accommodate themselves to the business of calculation as those which are commonly in use. Demoivre, a very skilful and able mathematician, improved the method of Cotes, and explained many things in a manner much more clear and analytical than had hitherto been done.

Another very original and profound writer of this period was Brook Taylor, who has already been often mentioned, and who, in his Method of Increments, published in 1715, added a new branch to the analysis of variable quantity. According to this method, quantities are supposed to change, not by infinitely small, but by finite increments, or such as may be of any magnitude whatever. There are here, therefore, as in the case of fluxions or differentials, two general questions: A function of a variable quantity being given, to find the expression for the finite increment of that function, the increment of the variable quantity itself being a finite magnitude. This corresponds to the direct method of fluxions; the other question corresponds to the inverse, viz. A function being given containing variable quantities, and their increments any way combined, to find the function from which it is derived. The author has considered both these problems, and in the solution of the second, particularly, has displayed much address. He has also made many ingenious applications of this calculus, both to geometrical and physical questions, and, above all, to the summation of series—a problem for the solution of which it is peculiarly adapted.

Taylor, however, was more remarkable for the ingenuity and depth, than for the perspicuity of his writings. Even a treatise on Perspective, of which he is the author, though in other respects excellent, has always been complained of as obscure; and it is no wonder if, on a new subject, and one belonging to the higher geometry, his writings should be still more exposed to that reproach. This fault was removed, and the whole theory explained with great clearness, by M. Nicole, of the Academy of Sciences of Paris, in a series of Mémoires from the year 1717 to 1727.

A single analytical formula in the Method of Increments has conferred a celebrity on its author, which the most voluminous works have not often been able to bestow. It is known by the name of Taylor's Theorem, and expresses the value of any function of a variable quantity in terms of the successive orders of increments, whether finite or infinitely small. If any one proposition can be said to comprehend in it a whole science, it is this: for from it almost every truth and every method of the new analysis may be deduced. It is difficult to say whether the theorem does most credit to the genius of the author, or the power of the language which is capable of concentrating such a vast body of knowledge in a single expression. Without an acquaintance with algebra, it is impossible, I believe, to conceive the manner in which this effect is produced.

By means of its own intrinsic merit, and the advantageous display of it made in the works now enumerated, the new analysis, long before the expiration of the period of which I am here treating, was firmly established all over Europe. It did not, however, exist everywhere in the same condition, nor under the same form; with the British and Continental mathematicians, it was referred to different origins; it was in different states of advancement; the notation and some of the fundamental ideas were also different. The authors communicated little with one another, except in the way of defiance or reproach; and, from the angry or polemical tone which their speculations often assumed, one could hardly suppose that they were pursuing science in one of its most abstract and incorporeal forms.

Though the algorithm employed, and the books consulted on the new analysis, were different, the mathematicians of Britain and of the Continent had kept pace very nearly with one another during the period now treated of, except in one branch, the integration of differential or of
fluxional equations. In this, our countrymen had fallen considerably behind, as has been already explained; and the distance between them and their brethren on the Continent continued to increase, just in proportion to the number and importance of the questions, physical and mathematical, which were found to depend on these integrations. The habit of studying only our own authors on these subjects, produced at first by our admiration of Newton and our dislike to his rivals, and increased by a circumstance very insignificant in itself, the diversity of notation, prevented us from partaking in the pursuits of our neighbours, and cut us off in a great measure from the vast field in which the genius of France, of Germany, and Italy, was exercised with so much activity and success. Other causes may have united in the production of an effect which the mathematicians of this country have had much reason to regret; but the evil had its origin in the spirit of jealousy and opposition, which arose from the controversies that have just passed under our review. The habits so produced continued long after the spirit itself had subsided.

It must not be supposed that so great a revolution in science as that which was made by the introduction of the new analysis could be brought about entirely without opposition, as in every society there are some who think themselves interested to maintain things in the condition wherein they have found them. The considerations are indeed sufficiently obvious, which, in the moral and political world, tend to produce this effect, and to give a stability to human institutions, often so little proportionate to their real value or to their general utility. Even in matters purely intellectual, and in which the abstract truths of arithmetic and geometry seem alone concerned, the prejudices, the selfishness, or vanity of those who pursue them, not unfrequently combine to resist improvement, and often engage no inconsiderable degree of talent in drawing back, instead of pushing forward, the machine of science. The introduction of methods entirely new must often change the relative place of the men engaged in scientific pursuits; and must oblige many, after descending from the stations they formerly occupied, to take a lower position in the scale of intellectual advancement. The enmity of such men, if they be not animated by a spirit of real candour and the love of truth, is likely to be directed against methods by which their vanity is mortified, and their importance lessened. Though such changes as this must have everywhere accompanied the ascendency acquired by the calculus, for the credit of mathematicians it must be observed, that no one of any considerable eminence has had the misfortune to enrol his name among the adversaries of the new science; and that Huygens, the most distinguished and most profound of the older mathematicians then living, was one of the most forward to acknowledge the excellence of that science, and to make himself master of its rules, and of their application.

Nevertheless, certain adversaries arose successively in Germany, France, and England, the countries in which the new methods first became known.

Nieuwentyt, an author commendable as a naturalist, and as a writer on morals, but a very superficial geometer, aimed the first blow at the Differential Calculus. He objected to the explanation of Leibnitz, and to the notion of quantities infinitely small. It seemed as if he were unwilling to believe in the reality of objects smaller than those discovered by his own microscope, and were jealous of any one who should come nearer to the limit of extension than he himself had done. Leibnitz thought his objections not undeserving of a reply; but the reply was not altogether satisfactory. A second was given with better success; and afterwards Hermann and Bernoulli each severally defeated an adversary, who was but very ill able to contend with either of them.

Soon after this, the calculus had to sustain an attack from two French academicians, which drew more attention than that of the Dutch naturalist. One of these, Rolle, was a mathematician of no inconsiderable acquirements, but
whose chief gratification consisted in finding out faults in the works of others. He founded his objections to the differential calculus, not on the score of principles or of general methods, but on certain cases which he had sought out with great industry, in which those methods seemed to him to lead to false and contradictory conclusions. On examination, however, it turned out, that in every one of those instances the error was entirely his own; that he had misapplied the rules; and that his eagerness to discover faults had led him to commit them. His errors were detected and pointed out with demonstrative evidence by Varignon, Saurin, and some others, who were among the first to perceive the excellence and to defend the solidity of the new geometry. These disputes were of consequence enough to occupy the attention of the Academy of Sciences during a great part of the year 1701.

The Abbé Gallois joined with Rolle in his hostility to the calculus; and though he added very little to the force of the attack, he kept the field after the other had retired from the combat. Fontenelle, in his Eloge on the Abbé, has given an elegant turn to the apology he makes for him. "His taste for antiquity made him suspicious of the geometry of infinites. He was, in general, no friend to any thing that was new, and was always prepared with a kind of ostracism to put down whatever appeared too conspicuous for a free state like that of letters. The geometry of infinites had both these faults, and particularly the latter."

After all these disputes were quieted in France, and the new analysis appeared completely victorious, it had an attack to sustain in England from a more formidable quarter. Berkeley, bishop of Cloyne, was a man of first-rate talents, distinguished as a metaphysician, a philosopher, and a divine. His geometrical knowledge, however, which, for an attack on the method of fluxions, was more essential than all his other accomplishments, seems to have been little more than elementary. The motive which induced him to enter on discussions so remotely connected with his usual pursuits, has been variously represented; but, whatever it was, it gave rise to the Analyst, in which the author professes to demonstrate, that the new analysis is inaccurate in its principles, and that if it ever lead to true conclusions, it is from an accidental compensation of errors that cannot be supposed always to take place. The argument is ingeniously and plausibly conducted, and the author sometimes attempts ridicule with better success than could be expected from the subject: thus, when he calls ultimate ratios the ghosts of departed quantities, it is not easy to conceive a witty saying more happily fastened on a mere mathematical abstraction.

The Analyst was answered by Jurin, under the signature of Philalethes; and to this Berkeley replied in a tract entitled A Defence of Free-thinking in Mathematics. Replies were again made to this; so that the argument assumed the form of a regular controversy; in which, though the defenders of the calculus had the advantage, it must be acknowledged that they did not always argue the matter quite fairly, nor exactly meet the reasoning of their adversary. The true answer to Berkeley was, that what he conceived to be an accidental compensation of errors was not at all accidental, but that the two sets of quantities that seemed to him neglected in the reasoning were in all cases necessarily equal, and an exact balance for one another. The Newtonian idea of a fluxion contained in it this truth, and so it was argued by Jurin and others, but not in a manner so logical and satisfactory as might have been expected. Perhaps it is not too much to assert, that this was not completely done till Lagrange's Theory of Functions appeared. Thus, if the author of the Analyst has had the misfortune to curl his name on the side of error, he has also had the credit of proposing difficulties of which the complete solution is only to be derived from the highest improvements of the calculus.

This controversy made some noise in England, but I do not think that it ever drew much attention on the Continent. The Analyst, I imagine, notwithstanding its acuteness, never crossed the Channel. Montucla evidently knows it only by report, and seems as little acquainted with the work as with its author, of whom he speaks very slightly; and supposes he has sufficiently described him by saying, that he has written a book against the existence of matter, and
another in praise of tar-water. But it is less from the opinions which men support than from the manner in which they support them, that their talents are to be estimated. If we judge by this criterion, we shall pronounce Berkeley to be a man of genius, whether he be employed in attacking the infinitesimal analysis, in disproving the existence of the external world, or in celebrating the virtues of tar-water.

SECTION II.

MECHANICS, GENERAL PHYSICS, &c.

The discoveries of Galileo, Descartes, and other mathematicians of the seventeenth century, had made known some of the most general and important laws which regulate the phenomena of moving bodies. The inertia, or the tendency of body, when left to itself, to preserve unchanged its condition either of motion or of rest; the effect of an impulse communicated to a body, or of two simultaneous impulses, had been carefully examined, and had led to the discovery of the composition of motion. The law of equilibrium, not in the lever alone, but in all the mechanical powers, had been determined; and the equality of action to re-action, or of the motion lost to the motion acquired, had not only been established by reasoning, but confirmed by experiment. The fuller elucidation and further extension of these principles were reserved for the period now treated of.

The development of truth is often so gradual, that it is impossible to assign the time when certain principles have been first introduced into science. Thus, the principle of virtual velocities, as it is termed, which is now recognised as regulating the equilibrium of all machines whatsoever, was perceived to hold in particular cases, long before its full extent or its perfect universality was understood. Galileo made a great step toward the establishment of this principle when he generalized the property of the lever, and showed, that an equilibrium takes place whenever the sums of the opposite momenta are equal, meaning by momentum the product of the force into the velocity of the point at which it is applied. This was carried farther by Wallis, who appears to have been the first writer who, in his Mechanica, published in 1669, founded an entire system of statics on the principle of Galileo, or the equality of the opposite momenta. The proposition, however, was first enunciated in its full generality, and with perfect precision, by John Bernoulli, in a letter to Varignon, so late as the year 1717. Varignon inserted this letter at the end of the second edition of his Projet d'une Nouvelle Mé-

1 Though Berkeley reasons very plausibly, and with considerable address, he hurts his cause by the comparison so often introduced between the mysteries of religion and what he accounts the mysteries of the new geometry. From this it is natural to infer, that the author is avenging the cause of religion on the infidel mathematician to whom his treatise is addressed; and an argument that is suspected to have any other object than that at which it is directly aimed, must always lose somewhat of its weight.

The dispute here mentioned did not take place till about the year 1734; so that I have here treated of it by anticipation, being unwilling to resume the subject of controversies which, though perhaps useful at first for the purpose of securing the foundations of science, are long since set to rest, and never likely to be revived.

The principle of virtual velocities may be thus enunciated: If a system of bodies be in a state of equilibrium, in consequence of the action of any forces whatever on certain points in the system; then, supposing the equilibrium to be for a moment destroyed, the small space moved over by each of these points will express the virtual velocity of the power applied to it; and if each force be multiplied into its virtual velocity, the sum of all the products where the velocities are in the same direction, will be equal to the sum of all those in which they are in the opposite.

The distinction between actual and virtual velocities was first made by Bernoulli, and is very essential to thinking as well as to speaking with accuracy on the nature of equilibriums.
canique, which was not published till 1725. The first edition of the same book appeared in 1687, and had the merit of deriving the whole theory of the equilibrium of the mechanical powers from the single principle of the composition of forces. At first sight, there appear in mechanics two independent principles of equilibrium; that of the lever, or of equal and opposite momenta, and that of the composition of forces. To show that these coincide, and that the one may be deduced from the other, is, therefore, doing a service to science; and this the ingenious author just named accomplished by help of a property of the parallelogram, which he seems to have been the first who demonstrated.

The Principia Mathematica of Newton, published also in 1687, marks a great era in the history of human knowledge, and had the merit of effecting an almost entire revolution in mechanics, by giving new powers and a new direction to its researches. In that work the composition of forces was treated independently of the composition of motion, and the equilibrium of the lever was deduced from the former, as well as in the treatise already mentioned. From the equality of action and re-action it was also inferred, that the state of the centre of gravity of any system of bodies is not changed by the action of those bodies on one another. This is a great proposition in the mechanics of the universe, and is one of the steps by which that science ascends from the earth to the heavens; for it proves that the quantity of motion existing in nature, when estimated in any one given direction, continues always of the same amount.

But the new applications of mechanical reasoning,—the reduction of questions concerning force and motion to questions of pure geometry, and the mensuration of mechanical action by its nascent effects,—are what constitute the great glory of the Principia, considered as a treatise on the theory of motion. A transition was there made from the consideration of forces acting at stated intervals, to that of forces acting continually,—and from forces constant in quantity and direction to those that converge to a point, and vary as any function of the distance from that point; the proportionality of the areas described about the centre of force, to the times of their description; the equality of the velocities generated in descending through the same distance by whatever route; the relation between the squares of the velocities produced or extinguished; and the sum of the accelerating or retarding forces, computed with a reference, not to the time during which, but to the distance over which they have acted. These are a few of the mechanical and dynamical discoveries contained in the same immortal work; a fuller account of which belongs to the history of physical astronomy.

The end of the seventeenth and the beginning of the eighteenth centuries were rendered illustrious, as we have already seen, by the mathematical discoveries of two of the greatest men who have ever enlightened the world. A slight sketch of the improvements which the theory of mechanics owes to Newton has been just given; those which it owes to Leibnitz, though not equally important, nor equally numerous, are far too conspicuous to be passed over in silence. So far as concerns general principles, they are reduced to three; the argument of the sufficient reason, the law of continuity, and the measurement of the force of moving bodies by the square of their velocities; which last being a proposition that is true or false according to the light in which it is viewed, I have supposed it placed in that which is most favourable.

With regard to the first of these, the principle of the sufficient reason, according to which, nothing exists in any state without a reason determining it to be in that state rather than in any other,—though it be true that this proposition was first distinctly and generally announced by the philosopher just named, yet is it certain that, long before his time, it had been employed by others in laying the foundations of science. Archimedes and Galileo had both made use of it; and perhaps there never was any attempt to place the elementary truths of science on a solid foundation, in which this principle had not been employed. We have an example of its application in the proof usually given, that a body in motion cannot change the direction of its motion, abstraction being made from all other bodies, and from all external action; for it is evi-
dent, that no reason exists to determine the change of motion to be in one direction more than another, and we therefore conclude that no such change can possibly take place. Many other instances might be produced where the same principle appears as an axiom of the clearest and most undeniable evidence. Wherever, indeed, we can pronounce with certainty that the conditions which determine two different things, whether magnitudes or events, are in two cases precisely the same, it cannot be doubted that these events or magnitudes are in all respects identical.

However sound this principle may be in itself, the use which Leibnitz sometimes made of it has tended to bring it into discredit. He argued, for example, that of the particles of matter no two can possess exactly the same properties, or can perfectly resemble one another, otherwise the Supreme Being could have no reason for employing one of them in a particular position more than another, so that both must necessarily be rejected. To argue thus, is to suppose that we completely understand the manner in which motives act on the mind of the Divinity; a postulate that seems but ill suited to the limited sphere of the human understanding. But, if Leibnitz has misapplied his own principle, and extended its authority too far, this affords no ground for rejecting it when we are studying the ordinary course of nature, and arguing about the subjects of experiment and observation. In fact, therefore, the sciences which aspire to place their foundation on the solid basis of necessary truth, are much indebted to Leibnitz for the introduction of this principle into philosophy.

Another principle of great use in investigating the laws of motion, and of change in general, was brought into view by the same author, —the law of continuity,—according to which, nothing passes from one state to another without passing through all the intermediate states. Leibnitz considers himself as the first who made known this law; but it is fair to remark, that, in as much as motion is concerned, it was distinctly laid down by Galileo, and ascribed by him to Plato. But, though Leibnitz was not the first to discover the law of continuity, he was the first who regarded it as a principle in philosophy, and used it for trying the consistency of theories, or of supposed laws of nature, and the agreement of their parts with one another. It was in this way that he detected the error of Descartes’s conclusions concerning the collision of bodies, showing, that though one case of collision must necessarily graduate into another, the conclusions of that philosopher did by no means pass from one to another by such gradual transition. Indeed, for the purpose of such detections, the knowledge of this law is extremely useful; and I believe few have been much occupied in the investigations either of the pure or mixed mathematics, who have not often been glad to try their own conclusions by the test which it furnishes.

Leibnitz considered this principle as known a priori; because if any saltus were to take place, that is, if any change were to happen without the intervention of time, the thing changed must be in two different conditions at the same individual instant, which is obviously impossible. Whether this reasoning be quite satisfactory or not, the conformity of the law to the facts generally observed, cannot but entitle it to great authority in judging of the explanations and theories of natural phenomena.

It was the usual error, however, of Leibnitz and his followers, to push the metaphysical principles of science into extreme cases, where they lead to conclusions to which it was hardly possible to assent. The Academy of Sciences at Paris having proposed as a prize question the Investigation of the Laws of the Communication of Motion, John Bernoulli presented an Essay on the subject, very ingenious and profound; in which, however, he denied the existence of hard bodies, because, in the collision of such bodies,
a finite change of motion must take place in an instant; an event which, on the principle just explained, he maintained to be impossible. Though the Essay was admired, this conclusion was objected to; and D’Alembert, in his *Éloge* on the author, remarks, that, even in the collision of elastic bodies, it is difficult to conceive how, among the parts which first come into contact, a sudden change, or a change per saltum, can be avoided. Indeed it can only be avoided by supposing that there is no real contact, and that bodies begin to act upon one another when their surfaces, or what seems to be their surfaces, are yet at a distance.

Maclaurin and some others are disposed, on account of the argument of Bernoulli, to reject the law of continuity altogether. This, however, I cannot help thinking, is to deprive ourselves of an auxiliary that, under certain restrictions, may be very useful in our researches, and is often so, even to those who profess to reject its assistance. It is admitted that the law of continuity generally leads right; and if it sometimes lead wrong, the true business of philosophy is to define when it may be trusted to as a safe guide, and what, on the other hand, are the circumstances which render its indications uncertain.

The discourse of Bernoulli, just referred to, brought another new conclusion into the field, and began a controversy among the mathematicians of Europe, which lasted for many years. It was a new thing to see geometers contending about the truths of their own science, and opposing one demonstration to another. The spectacle must have given pain to the true philosopher, but may have afforded consolation to many who had looked with envy on the certainty and quiet prevailing in a region from which they found themselves excluded.

Descartes had estimated the force of a moving body by the quantity of its motion, or by the product of its velocity into its mass. The mathematicians and philosophers who followed him did the same, and the product of these quantities was the measure of force universally adopted. No one indeed had ever thought of questioning the conformity of this measure to the phenomena of nature, when, in 1686, Leibnitz announced in the Leipsic Journal the demonstration of a great error committed by Descartes and others, in estimating the force of moving bodies. In this paper the author endeavoured to show, that the force of a moving body is not proportional to its velocity simply, but to the square of its velocity; and he supported this new doctrine by very plausible reasoning. A body, he says, projected upward against gravity, with a double velocity, ascends to four times the height; with the triple velocity, to nine times the height; and so on, the height ascended to be always as the square of the velocity. But the height ascended to is the effect, and is the natural measure of the force; therefore the force of a moving body is as the square of its velocity. Such was the first reasoning of Leibnitz on this subject,—simple, and apparently conclusive; nor should it be forgotten that, during the long period to which the dispute was lengthened out, and notwithstanding the various shapes which it assumed, the reasonings on his side were nothing more than this original argument, changed in its form, or rendered more complex by the combination of new circumstances, so as to be more bewildering to the imagination, and more difficult either to apprehend or to refute.

John Bernoulli was at first of a different opinion from his friend and master, but came at length to adopt the same; which, however, appears to have gone no farther till the discourse was submitted to the *Academy of Sciences*, as has been already mentioned. The mathematical world could not look with indifference on a question which seemed to affect the vitals of mechanical science, and soon separated into two parties, in the arrangement of which, however, the effects of national predilection might easily be discovered. Germany, Holland, and Italy, declared for the *vis viva*; England stood firm for the old doctrine; and France was divided between the two opinions. No controversy,
Dissertation Third.

Perhaps, was ever carried on by more illustrious disputants: Maclaurin, Stirling, Desaguliers, Jurin, Clarke, Mairan, were engaged on the one side; on the opposite were Bernoulli, Hermann, Poleni, S'Gravesande, Muschenbroeck; and it was not till long after the period to which this part of the Dissertation is confined, that the debate could be said to be brought to a conclusion. That I may not, however, be obliged to break off a subject of which the parts are closely connected together, I shall take the liberty of transgressing the limits which the consideration of time would prescribe, and of now stating, as far as my plan admits of it, all that respects this celebrated controversy.

A singular circumstance may be remarked in the whole of the dispute. The two parties who adopted such different measures of force, when any mechanical problem was proposed concerning the action of bodies, whether at rest or in motion, resolved it in the same manner, and arrived exactly at the same conclusions. It was therefore evident, that, however much their language and words were opposed, their ideas or opinions exactly agreed. In reality, the two parties were not at issue on the question; their positions, though seemingly opposite, were not contradicted to one another; and after debating for nearly thirty years, they found out this to be the truth. That the first men in the scientific world should have disputed so long with one another, without discovering that their opposition was only in words,—and that this should have happened, not in any of the obscure and tortuous tracks through which the human mind must grope its way in anxiety and doubt, but in one of the clearest and straightest roads, where it used to be guided by the light of demonstration,—is one of the most singular facts in the history of human knowledge.

The degree of acrimony and illiberality which were sometimes mixed in this controversy was not very creditable to the disputants, and proved how much more men take an interest in opinions as being their own, than as being simply in themselves either true or false. The dispute, as conducted by S'Gravesande and Clarke, took this turn, especially on the part of the latter, who, in the schools of theology having sharpened both his temper and his wit, accompanied his reasonings with an insolence and irritability peculiarly ill suited to a discussion about matter and motion. His paper on this subject, in the Philosophical Transactions, contains many just and acute remarks, accompanied with the most unfair representation of the argument of his antagonists, as if the doctrine of the *vis viva* were a matter of as palpable absurdity as the denial of one of the axioms of geometry. Now, the truth is, that the argument in favour of living forces is not at all liable to this reproach. One of the effects produced by a moving body is proportional to the square of the velocity, while another is proportional to the velocity simply; and, according to which of these ways the force itself is to be measured, may involve the propriety or impropriety of mathematical language, but cannot be charged with absurdity or contradiction. Absurdity, indeed, was a reproach that neither side had any right to cast on the other.

A Dissertation of Mairan, on the Force of moving Bodies, in the Memoirs of the Academy of Sciences for 1728, is one of those in which the common measure of force is most ably supported. Nevertheless, for a long time after this, the opinions on that subject in France continued still to be divided. In the list of the disputants we should hardly expect to find a lady included, if we did not know that the name of Madame du Chastelet, along with those of Hypatia and Agnesi, was honourably enrolled in the annals of mathematical learning. Her writings on this

2 In all the arguments for the *vis viva*, this learned metaphysicist saw nothing but a conspiracy formed against the Newtonian philosophy. "An extraordinary instance," says he, "of the maintenance of the most palpable absurdity we have had of late years in very eminent mathematicians, Leibnitz, Bernoulli, Hermann, S'Gravesande, who, in order to raise a dust of opposition against the Newtonian philosophy, some years back insisted with great eagerness on a principle which subverts all science, and which may easily be made appear, even to an ordinary capacity, to be contrary to the necessary and essential nature of things." This passage may serve as a proof of the spirit which prevailed among the philosophers of that time, making them ascribe such illiberal views to one another, and distorting so entirely both their own reasoning and those of their adversaries. The spirit awakened by the discovery of fluxions had not yet subsided.
subject are full of ingenuity, though, from the fluctuation of her opinions, it seems as if she had not yet entirely exchanged the caprice of fashion for the austerity of science. About the same time Voltaire engaged in the argument, and in a Memoir, presented to the Academy of Sciences in 1741, contended that the dispute was entirely about words. His reasoning is, on the whole, sound; and the suffrage of one who united the character of a wit, a poet, and a philosopher, must be of great importance in a country where the despotism of fashion extends even to philosophical opinion.

The controversy was now drawing to a conclusion, and in effect may be said to have been terminated by the publication of D’Alembert’s Dynamique in 1743. I am not certain, however, that all the disputants acquiesced in this decision, at least till some years later. Dr Reid, in an Essay on Quantity, in the Philosophical Transactions for 1748, has treated of this controversy, and remarked, that it had been dropped rather than concluded. In this I confess I differ from the learned author. The controversy seemed fairly ended, the arguments exhausted, and the conclusion established, that the propositions maintained by both sides were true, and were not opposed to one another. Though the mathematical sciences cannot boast of never having had any debates, they can say that those that have arisen have always been brought to a satisfactory termination.

The observations with which I am to conclude the present sketch, are not precisely the same with those of the French philosopher, though they rest nearly on the same foundation.

As the effects of moving bodies, or the changes they produce, may vary considerably with accidental circumstances, we must, in order to measure their force, have recourse to effects which are uniform, and not under the influence of variable causes. First, we may measure the force of one moving body by its effect upon another moving body; and here there is no room for dispute, nor any doubt that the forces of such bodies are as the quantities of matter multiplied into the simple power of the velocities, because the forces of bodies in which these products are equal, are well known, if opposed, to destroy one another. Thus one effect of moving bodies affords a measure of their force, which does not vary as the square, but as the simple power of the velocity.

There is also another condition of moving bodies which may be expected to afford a simple and general measure of their force. When a moving body is opposed by pressure, by a vis mortua, or a resistance like that of gravity, the quantity of such resistance required to extinguish the motion, and reduce the body to rest, must serve to measure the force of that body. It is a force which, by repeated impulses, has annihilated another; and these impulses, when properly collected into one sum, must evidently be equal to the force which they have extinguished. It happens, however, that there are two ways of computing the amount of these retarding forces, which lead to different results, both of them just, and neither of them to be assumed to the exclusion of the other.

Suppose the body, the force of which is to be measured, to be projected perpendicularly upward with any velocity; then, if we would compute the quantity of the force of gravity which is employed in reducing it to rest, we may either inquire into the retardation which that force produces during a given time, or while the body is moving over a given space. In other words, we may either inquire how long the motion will

1 Madame du Chastelet, in a Dissertation on Fire, published in 1740, took the side of Mairan, and bestowed great praise on his discourse on the Force of moving Bodies. Having, however, afterwards become a convert to the philosophy of Leibnitz, she espoused the cause of the vis viva, and wrote against Mairan. At this time too she drew up a compend of the Leibnitzian philosophy for the use of her son, which displays ingenuity and acuteness, and is certainly such a present as very few mothers have ever been in a condition to make to their children. Soon afterwards the same lady, having become a Newtonian, returned to her former opinion about the force of moving bodies, and in the end, gave to her countrymen an excellent translation of the Prinicipia of Newton, with a commentary on a part of it, far superior to any other that has yet appeared.

2 *Doutes sur la Miseure des Forces Motrices: Œuvres de Voltaire*, tom. XXXIX. p. 91. 8vo edit. 1785.

2 Two very valuable papers that appeared at this late period of the dispute are found in the *Philosophical Transactions*; one by Desaguliers, in 1733, full of excellent remarks and valuable experiments; another by Jurin, in 1745, containing a very full state of the whole controversy.
continue, or how far it will carry the body before it be entirely exhausted. If the length of the time that the uniform resistance must act before it reduce the body to rest be taken for the effect, and consequently for the measure of the force of the body, that force must be proportional to the velocity, for to this the time is confessedly proportional. If, on the other hand, the length of the line which the moving body describes, while subjected to this uniform resistance, be taken for the effect and the measure of the force, the force must be as the square of the velocity, because to that quantity the line in question is known to be proportional. Here, therefore, are two results, or two values of the same thing, the force of a moving body, which are quite different from one another; an inconsistency which evidently arises from this, that the thing denoted by the term *force* is too vague and indefinite to be capable of measurement, unless some further condition be annexed. This condition is no other than a specification of the work to be performed, or of the effect to be produced by the action of the moving body. Thus, when to the question concerning the force of the moving body you add that it is to be employed in putting in motion another body which is itself free to move, no doubt remains that the force is as the velocity multiplied into the quantity of matter. So also, if the force of the moving body is to be opposed by a resistance like that of gravity, the length of time that the motion may continue is one of its measurable effects, and that effect is, like the former, proportional to the velocity. There is a third effect to be considered, and one which always occurs in such an experiment as the last,—the height to which the moving body will ascend. This limitation gives to the force a definite character, and it is now measured by the square of the velocity. In fact, therefore, it is not a precise question to ask, What is the measure of the force of a moving body? You must, in addition, say, How is the moving body to be employed, or in which of its different capacities is it that you would measure its effect? In this state of the question there is no ambiguity, nor any answer to be given but one. Hence it was that the mathematicians and philosophers who differed so much about the general question of the force of moving bodies, never differed about the particular applications of that force. It was because the condition necessary for limiting the vagueness and ambiguity of the data, in all such cases, was fully supplied.

In the argument, therefore, so strenuously maintained on the force of moving bodies, both sides were partly in the right and both partly in the wrong. Each produced a measure of force which was just in certain circumstances, and thus far had truth on his side: but each argued that his was the only true measure, so that all others ought to be rejected; and here each of them was in error. Hence, also, it is not an accurate account of the controversy to say that it was about words merely: the disputants did indeed misunderstand one another; but their error lay in ascribing generality to propositions that were true only in particular cases, to which indeed the ambiguity and vagueness of the word *force* materially contributed. It does not appear, however, that any good would now accrue from changing the language of dynamics. If, as has been already said, to the question, How are we to measure the force of a moving body? be added the nature of the effect which is to be produced, all ambiguity will be avoided.

It is, I think, only further necessary to observe, that when the resistance opposed to the moving body is not uniform but variable, according to any law, it is not simply either the time or the space which is proportional to the velocity or to the square of the velocity, but functions of those quantities. These functions are obtained from the integration of certain fluxionary expressions, in which the measures above described are applied, the resistance being regarded as uniform for an infinitely small portion of the time or of the space.

Many years after the period I am now treating of, the controversy about the *vis viva* seemed to revive in England, on the occasion of an Essay on Mechanical Force, by the late Mr Smeaton, an able engineer, who, to great practical skill, and much experience, added no inconsiderable knowledge of the Mathematics.

The reality of the *vis viva*, then, under certain conditions, is to be considered as a matter
completely established. Another inquiry concerning the nature of this force, which also gave rise to considerable debate, was, whether, in the communication of motion, and in the various changes through which moving bodies pass, the quantity of the *vis viva* remains always the same. It had been observed, in the collision of elastic bodies, that the *vis viva*, or the sum made up by multiplying each body into the square of its velocity, and adding the products together, was the same after collision that it was before it; and it was concluded with some precipitation, by those who espoused the Leibnitian theory, that a similar result always took place in the real phenomena of nature. Other instances were cited; and it was observed, that a particular view of this principle which presented itself to Huygens, had enabled him to find the centre of oscillation of a compound pendulum, at a time when the state of mechanical science was scarcely prepared for so difficult an investigation. The proposition, however, is true only when all the changes are gradual, and rigorously subjected to the law of continuity. Thus, in the collision of bodies imperfectly elastic, (a case which continually occurs in nature) the force which, during the recoil, accelerates the separation of the bodies, does not restore to them the whole velocity they had lost; and the *vis viva*, after the collision, is always less than it was before it. The cases in which the whole amount of the *vis viva* is rigorously preserved, may always be brought under the thirty-ninth proposition of the first book of the *Principia*, where the principle of this theory is placed on its true foundation.

So far as general principles are concerned, the preceding are the chief mechanical improvements which belong to the period so honourably distinguished by the names of Newton and Leibnitz. The application of these principles to the solution of particular problems would afford materials for more ample discussion than suits the nature of an historical outline. Such problems as that of finding the centre of oscillation,—the nature of the catenarian curve,—the determination of the line of swiftest descent,—the retardation produced to motion in a medium that resists according to the square of the velocity, or indeed according to any function of it,—the determination of the elastic curve, or that into which an elastic spring forms itself when a force is applied to bend it;—all these were problems of the greatest interest, and were now resolved for the first time; the science of mechanics being sufficient, by means of the composition of forces, to find out the fluxionary or differential equations which expressed the nature of the gradual changes which in all these cases were produced, and the calculus being now sufficiently powerful to infer the properties of the finite from those of the infinitesimal quantities.

The doctrine of Hydrostatics was cultivated in England by Cotes. The properties of the atmosphere, or of elastic fluids, were also experimentally investigated; and the barometer, after the ingenuity of Pascal had proved that the mercury stood lower the higher up into the atmosphere the instrument was carried, was at length brought to be a measure of the height of mountains. Mariotte appears to have been the first who proposed this use of it, and who discovered that, while the height from the ground increases in arithmetical, the density of the atmosphere and the column of mercury in the barometer decrease in geometrical progression. Halley, who seems also to have come of himself to the same conclusion, proved its truth by strict geometrical reasoning, and showed that logarithms are easily applicable on this principle to the problem of finding the height of mountains. This was in the year 1685. Newton two years afterwards gave a demonstration of the same, extended to the case when gravity is not constant, but varies as any power of the distance from a given centre.

To the assiduous observations and the indefatigable activity of Halley, the natural history of the atmosphere, of the ocean, and of magnetism, are all under the greatest obligations. For the purpose of inquiring into these objects, this ardent and philosophical observer relinquished the quiet of academical retirement, and, having gone to St Helena, by a residence of a year in that island, not only made an addition to the catalogue of the stars, of 360 from the southern hemisphere, but returned with great acquisitions both of nautical and meteorological knowledge.
His observations on evaporation were the foundation of two valuable papers on the origin of fountains; in which, for the first time, the sufficiency of the vapour taken up into the atmosphere, to maintain the perennial flow of springs and rivers, was established by undeniable evidence. The difficulty which men found in conceiving how a precarious and accidental supply like that of the rains can sufficiently provide for a great and regular expenditure like that of the rivers, had given rise to those various opinions concerning the origin of fountains, which had hitherto divided the scientific world. A long residence on the summit of an insulated rock, in the midst of a vast ocean, visited twice every year by the vertical sun, would have afforded to an observer less quick-sighted than Halley, an opportunity of seeing the work of evaporation carried on with such rapidity and copiousness as to be a subject of exact measurement. From this extreme ease, he could infer the medium quantity, at least by approximation; and he proved that, in the Mediterranean, the humidity daily raised up by evaporation is three times as great as that which is discharged by all the rivers that flow into it. The origin of fountains was no longer questioned; and of the multitude of opinions on that subject, which had hitherto perplexed philosophers, all but one entirely disappeared. 1

Beside the voyage to St Helena, Halley made two others; the British government having been enlightened and liberal enough to despise professional etiquette, where the interests of science were at stake, and to intrust to a Doctor of Laws the command of a ship of war, in which he traversed the Atlantic and Pacific Oceans in various directions, as far as the 53d degree of south latitude, and returned with a collection of facts and observations for the improvement of geography, meteorology, and navigation, far beyond that which any individual traveller or voyager had hitherto brought together.

The variation of the compass was long before this time known to exist, but its laws had never yet been ascertained. These Halley now determined from his own observations, combined with those of former navigators, in so far as to trace, on a nautical chart, the lines of the same variation over a great part both of the Atlantic and Pacific Oceans, affording to the navigator the ready means of correcting the errors which the deviation of the needle from the true meridian was calculated to produce. In his different traverses he had four times intersected the line of no variation, which seemed to divide the earth into two parts, the variations on the east side being towards the west, and on the west side towards the east. These lines being found to change their position in the course of time, the place assigned to the magnetic poles could not be permanent. Any theory, therefore, which could afford an explanation of their changes, must necessarily be complex and difficult to be established. The attempt of Halley to give such an explanation, though extremely ingenious, was liable to great objections; and while it has shared the fate of most of the theories which have been laid down before the phenomena had been sufficiently explored, the general facts which he established have led to most of the improvements and discoveries which have since been made respecting the polarity of the needle.

Besides the conclusion just mentioned, Dr Halley derived from his observations a very complete history of the winds which blow in the tropical regions, viz. the trade-wind and the monsoons, together with many interesting facts concerning the phenomena of the tides. The chart which contained an epitome of all these facts was published in 1701.

The above are only a part of the obligations which the sciences are under to the observations and reasonings of this ingenious and indefatigable inquirer. Halley was indeed one of the ablest and most accomplished men of his age. A scholar well versed in the learned languages, and a geometer profoundly skilled in the ancient analysis, he restored to their original elegance some of the precious fragments of that analysis, which time happily had not entirely defaced. He was well acquainted also with the algebraical and fluxionary calculus, and was both in theory and practice a profound and laborious

1 Philosophical Transactions, 1697, vol. XVI. p. 366.
astronomer. Finally, he was the friend of Newton, and often stimulated, with good effect, the tardy purposes of that great philosopher. Few men, therefore, of any period, have more claims than Halley on the gratitude of succeeding ages.

The invention of the thermometer has been already noticed; and the improvements made on that instrument about this period laid the foundation of many future discoveries. The discovery of two fixed temperatures, each marked by the same expansion of the mercury in the thermometer, and the same condition of the fluid in which it is immersed, was made about this time. The differences of temperature were thus subjected to exact measurement; the phenomena of heat became, of course, known with more certainty and precision; and that substance or virtue, to which nothing is impenetrable, and which finds its way through the rarest and the densest bodies apparently with the same facility,—which determines so many of our sensations, and of which the distribution so materially influences all the phenomena of animal and vegetable life,—came now to be known, not indeed in its essence, but as to all the characters in which we are practically or experimentally concerned. The treatise on Fire, in Boerhaave's *Chemistry*, is a great advance beyond any thing on that subject hitherto known, and touches, notwithstanding many errors and imperfections, on most of the great truths which time, experience, and ingenuity, have since brought into view.

It was in this period also that electricity may be said first to have taken a scientific form. The power of amber to attract small bodies after it has been rubbed, is said to have been known to Thales, and is certainly made mention of by Theophrastus. The observations of Gilbert, a physician of Colchester, in the end of the sixteenth century, though at the distance of two thousand years, made the first addition to the transient and superficial remarks of the Greek naturalist, and afford a pretty full enumeration of the bodies which can be rendered electrical by friction. The Academia del Cimento, Boyle, and Otto Guericke, followed in the same course; and the latter is the first who mentions the crackling noise and faint light which electricity sometimes produced. These, however, were hardly perceived, and it was by Dr Wall, as described in the *Philosophical Transactions*, that they were first distinctly observed. By a singularly fortunate anticipation, he remarks of the light and crackling, that they seemed in some degree to represent thunder and lightning.

After the experiments of Hauksbee in 1709, by which the knowledge of this mysterious substance was considerably advanced, Wheeler and Gray, who had discovered that one body could communicate electricity to another without rubbing, being willing to try to what distance the electrical virtue might be thus conveyed, employed, for the purpose of forming the communication, a hempen rope, which they extended to a considerable length, supporting it from the sides by threads, which, in order to prevent the dissipation of the electricity, they thought it proper to make as slender as possible. They employed silk threads with that view, and found the experiment to succeed. Thinking that it would succeed still better if the supports were made still more slender, they tried very fine metallic wire, and were surprised to find that the hempen rope, thus supported, conveyed no electricity at all. It was therefore as being *silk*, and not as being *small*, that the threads had served to retain the electricity. This accident led to the great distinction of substances conducting and not conducting electricity. An extensive field of inquiry was thus opened, a fortunate accident having supplied an *instantia crucis*, and enabled these experimenters to distinguish between what was essential and what was casual in the operation they had performed. The history of electricity, especially in its early stages, abounds with facts of this kind; and no man who would study the nature of inductive science, and the rules for the interpretation of nature, can employ himself better than in tracing the progress of these discoveries. He will

find abundant reason to admire the ingenuity as well as the industry of the inquirers, but he will often find accident come in very oppor-

SECTION III.

OPTICS.

The invention of the telescope and the microscope, the discoveries made concerning the properties of light and the laws of vision, added to the facility of applying mathematical reasoning as an instrument of investigation, had long given a peculiar interest to optical researches. The experiments and inquiries of Newton on that subject began in 1666, and soon made a vast addition both to the extent and importance of the science. He was at that time little more than twenty-three years old; he had already made some of the greatest and most original discoveries in the pure mathematics; and the same young man, whom we have been admiring as the most profound and inventive of geometers, is to appear, almost at the same moment, as the most patient, faithful, and sagacious interpreter of nature. These characters, though certainly not opposed to one another, are not often combined; but to be combined in so high a degree, and in such early life, was hitherto without example.

In hopes of improving the telescope, by giving to the glasses a figure different from the spherical, he had begun to make experiments, and had procured a glass prism, in order, as he tells us, to try with it the celebrated phenomena of colours. These trials led to the discovery of the different refrangibility of the rays of light, and are now too well known to stand in need of a particular description.

Having admitted a beam of light into a dark chamber, through a hole in the window-shutter, tunedly to the assistance of both. The experiments of Wheeler and Gray are described in the Transactions for 1729.

and made it fall on a glass prism, so placed as to cast it on the opposite wall, he was delighted to observe the brilliant colouring of the sun’s image, and not less surprised to observe its figure, which, instead of being circular, as he expected, was oblong in the direction perpendicular to the edges of the prism, so as to have the shape of a parallelogram, rounded at the two ends, and nearly five times as long as it was broad.

When he reflected on these appearances, he saw nothing that could explain the elongation of the image, but the supposition that some of the rays of light, in passing through the prism, were more refracted than others; so that rays which were parallel when they fell on the prism, diverged from one another after refraction, the rays that differed in refrangibility differing also in colour. The spectrum, or solar image, would thus consist of a series of circular images, partly covering one another, and partly projecting one beyond another, from the red or least refrangible rays, in succession, to the orange, yellow, green, blue, indigo, and violet, the most refrangible of all.

It was not, however, till he tried every other hypothesis which suggested itself to his mind by the test of experiment, and proved its fallacy, that he adopted this as a true interpretation of the phenomena. Even after these rejections, his explanation had still to abide the sentence of an experimentum crucis.

Having admitted the light and applied a prism
as before, he received the coloured spectrum on a board at the distance of about twelve feet from the first, and also pierced with a small hole. The coloured light which passed through this second hole was made to fall on a prism, and afterwards received on the opposite wall. It was then found that the rays which had been most refracted, or most bent from their course by the first prism, were most refracted also by the second, though no new colours were produced. "So," says he, "the true cause of the length of the image was detected to be no other than that light consists of rays differently refrangible, which, without any respect to a difference in their incidence, were, according to their degrees of refrangibility, transmitted towards divers parts of the wall." 1

It was also observed, that when the rays which fell on the second prism were all of the same colour, the image formed by refraction was truly circular, and of the same colour with the incident light. This is one of the most conclusive and satisfactory of all the experiments.

When the sun's light is thus admitted, first through one aperture, and then through another at some distance from the first, and is afterwards made to fall on a prism, as the rays come only from a part of the sun's disk, the spectrum has nearly the same length as before, but the breadth is greatly diminished; in consequence of which, the light at each point is purer, it is free from penumbra, and the confines of the different colours can be more accurately traced. It was in this way that Newton measured the extent of each colour; and taking the mean of a great number of measures, he assigned the following proportions, dividing the whole length of the spectrum, exclusive of its rounded terminations, into 360 equal parts: of these the

<table>
<thead>
<tr>
<th>Colour</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>45</td>
</tr>
<tr>
<td>Orange</td>
<td>27</td>
</tr>
<tr>
<td>Yellow</td>
<td>48</td>
</tr>
<tr>
<td>Green</td>
<td>60</td>
</tr>
<tr>
<td>Blue</td>
<td>60</td>
</tr>
<tr>
<td>Indigo</td>
<td>40</td>
</tr>
<tr>
<td>Violet</td>
<td>80</td>
</tr>
</tbody>
</table>

Between the divisions of the spectrum, thus made by the different colours, and the divisions of the monochord by the notes of music, Newton conceived that there was an analogy, and indeed an identity of ratios; but experience has since shown that this analogy was accidental, as the spaces occupied by the different colours do not divide the spectrum in the same ratio, when prisms of different kinds of glass are employed.

Such were the experiments by which Newton first "untwisted all the shining robe of day," and made known the texture of the magic garment which nature has so kindly spread over the surface of the visible world. From them it followed, that colours are not qualities which light derives from refraction or reflection, but are original and connate properties connected with the different degrees of refrangibility that belong to the different rays. The same colour is always joined to the same degree of refrangibility; and conversely, the same degree of refrangibility to the same colour.

Though the seven already enumerated are primary and simple colours, any of them may also be produced by a mixture of others. A mixture of yellow and blue, for instance, makes green; of red and yellow, orange; and, in general, if two colours which are not very far asunder in the natural series be mixed together, they compound the colour that is in the middle between them.

But the most surprising composition of all, Newton observes, is that of whiteness; which is not produced by one sort of rays, but by the mixture of all the colours in a certain proportion, namely, in that proportion which they have in the solar spectrum. This fact may be said to be made out both by analysis and composition. The white light of the sun can be separated, as we have just seen, into the seven simple colours; and if these colours be united again, they form white. Should any of them have been wanting, or not in its due proportion, the white produced is defective.

It appeared, too, that natural bodies, of whatever colour, if viewed by simple and homogeneous light, are seen of the colour of that light, and of no other. Newton tried this very satisfac-

1 Philosophical Transactions, vol. VI. (1672) No. 80, p. 3975.
Dissertation Third.

Tory experiment on bodies of all colours, and found it to hold uniformly; the light was never changed by the colour of the body that reflected it.

Newton, thus furnished with so many new and accurate notions concerning the nature and production of colour, proceeded to apply them to the explanation of phenomena. The subject which naturally offered itself the first to this analysis was the rainbow, which, by the grandeur and simplicity of its figure, added to the brilliancy of its colours, in every age has equally attracted the attention of the peasant and of the philosopher. That two refractions and one reflection were at least a part of the machinery which nature employed in the construction of this splendid arch, had been known from the time of Antonio de Dominis; and the manner in which the arched figure is produced had been shown by Descartes; so that it only remained to explain the nature of the colour and its distribution. As the colours were the same with those exhibited by the prism, and succeeded in the same order, it could hardly be doubted that the cause was the same. Newton showed the truth of his principles by calculating the extent of the arch, the breadth of the coloured bow, the position of the secondary bow, its distance from the primary, and by explaining the inversion of the colours. 1 There is not, perhaps, in science any happier application of theory, or any in which the mind rests with fuller confidence.

Other meteoric appearances seemed to be capable of similar explanations, but the phenomena being nowhere so regular or so readily subjected to measurement as those of the rainbow, the theory cannot be brought to so severe a test, nor the evidence rendered so satisfactory.

But a more difficult task remained—to explain the permanent colour of natural bodies. Here, however, as it cannot be doubted that all colour comes from the rays of light, so we must conclude that one body is red and another violet, because the one is disposed to reflect the red or least refrangible rays, and the other to reflect the violet or the most refrangible. Every body manifests its disposition to reflect the light of its own peculiar colour, by this, that if you cast on it pure light, first of its own colour, and then of any other, it will reflect the first much more copiously than the second. If cinnabar, for example, and ultramarine blue be both exposed to the same red homogeneous light, they will both appear red, but the cinnabar strongly luminous and resplendent, and the ultramarine of a faint obscure red. If the homogeneal light thrown on them be blue, the converse of the above will take place.

Transparent bodies, particularly fluids, often transmit light of one colour and reflect light of another. Halley told Newton, that, being deep under the surface of the sea in a diving-bell, in a clear sunshine day, the upper side of his hand, on which the sun shone darkly through the water and through a small glass window in the diving-bell, appeared of a red colour, like a damask rose, while the water below, and the under part of his hand, looked green. 2

But, in explaining the permanent colour of bodies, this difficulty always presents itself:—Suppose that a body reflects red or green light, what is it that decomposes the light, and separates the red or the green from the rest? Refraction is the only means of decomposing light, and separating the rays of one degree of refrangibility, and of one colour, from those of another. This appears to have been what led Newton to study the colours produced by light passing through thin plates of any transparent substance. The appearances are very remarkable, and had already attracted the attention both of Boyle and of Hooke; but the facts observed by them remained insulated in their hands, and unconnected with other optical phenomena.

It probably had been often remarked, that when two transparent bodies, such as glass, of which the surfaces were convex in a certain degree, were pressed together, a black spot was formed at the contact of the two, which was surrounded with coloured rings, more or less regular, according to the form of the surfaces. In order to analyze a phenomenon that seemed in itself not a little curious, Newton proposed to make the experiment with surfaces of a regular

1 Optics, book i. part ii. prop. 9.
2 Ibid. book i. part ii. prop. 10.
curvature, such as was capable of being measured. He took two object-glasses, one a plano-convex for a fourteen feet telescope, the other a double convex for one of about fifty feet, and upon this last he laid the other with its plane side downwards, pressing them gently together. At their contact in the centre was a pellucid spot, through which the light passed without suffering any reflection. Round this spot was a coloured circle or ring, exhibiting blue, white, yellow, and red. This was succeeded by a pellucid or dark ring, then a coloured ring of violet, blue, green, yellow, and red, all copious and vivid except the green. The third coloured ring consisted of purple, blue, green, yellow, and red. The fourth consisted of green and red; those that succeeded became gradually more dilute, and ended in whiteness. It was possible to count as far as seven.

The colours of these rings were so marked by peculiarities in shade and vivacity, that Newton considered them as belonging to different orders; so that an eye accustomed to examine them, on any particular colour of a natural object being pointed out, would be able to determine to what order in this series it belonged.

Thus we have a system of rings or zones surrounding a dark central spot, and themselves alternately dark and coloured, that is, alternately transmitting the light and reflecting it. It is evident that the thickness of the plates of air interposed between the glasses, at each of those rings, must be a very material element in the arrangement of this system. Newton therefore undertook to compute their thickness. Having carefully measured the diameters of the first six coloured rings, at the most lucid part of each, he found their squares to be as the progression of odd numbers 1, 3, 5, 7, &c. The squares of the distances from the centre of the dark spot to each of these circumferences were, therefore, in the same ratio, and consequently the thickness of the plates of air, or the intervals between the glasses, was as the numbers 1, 3, 5, 7, &c.

When the diameters of the dark or pellucid rings which separated the coloured rings were measured, their squares were found to be as the even numbers 0, 2, 4, 6; and, therefore, the thickness of the plates through which the light was wholly transmitted was as the same numbers. A great many repeated measurements assured the accuracy of these determinations.

As the curvature of the convex glass on which the flat surface of the plano-convex rested was known, and as the diameters of the rings were measured in inches, it was easy to compute the thickness of the plates of air, which corresponded to the different rings.

An inch being divided into 178000 parts, the distance of the lenses for the first series, or for the luminous rings, was $\frac{1}{178000}$, $\frac{3}{178000}$, $\frac{5}{178000}$, &c.

For the second series $\frac{2}{178000}$, $\frac{4}{178000}$, &c.

When the rings were examined by looking through the lenses in the opposite direction, the central spot appeared white, and, in other rings, red was opposite to blue, yellow to violet, and green to a compound of red and violet; the colours formed by the transmitted and the reflected light being what is now called complementary, or nearly so, of one another; that is, such as, when mixed, produce white.

When the fluid between the glasses was different from air, as when it was water, the succession of rings was the same; the only difference was, that the rings themselves were narrower.

When experiments on thin plates were made in such a way that the plate was of a denser body than the surrounding medium, as in the case of soap-bubbles, the same phenomena were observed to take place. These phenomena Newton also examined with his accustomed accuracy, and even bestowed particular care on having the soap-bubbles as perfect and durable as their frail structure would admit. In the eye of philosophy no toy is despicable, and no occupation frivolous, that can assist in the discovery of truth.

To the different degrees of tenuity, then, in transparent substances, there seemed to be attached the powers of separating particular colours from the mass of light, and of rendering them visible sometimes by reflection, and, in other cases, by transmission. As there is reason to think, then, that the minute parts, the mere particles of all bodies, even the most opaque, are transparent, they may very well be
conceived to act on light after the manner of the
thin plates, and to produce each, according to
its thickness and density, its appropriate colour,
which, therefore, becomes the colour of the sur-
face. Thus the colours in which the bodies
round us appear everywhere arrayed, are redu-
cible to the action of the parts which constitute
their surfaces on the refined and active fluid
which pervades, adorns, and enlightens the
world.

But the same experiments led to some new
and unexpected conclusions, that seemed to
reach the very essence of the fluid of which we
now speak. It was impossible to observe, with-
out wonder, the rings alternately luminous and
dark that were formed between the two plates
of glass in the preceding experiments, and deter-
mined to be what they were by the different
thickness of the air between the plates, and hav-
ing to that thickness the relations formerly ex-
pressed. A plate of which the thickness was
equal to a certain quantity multiplied by an odd
number, gave always a circle of the one kind;
but if the thickness of the plate was equal to the
same quantity multiplied by an even number, the
circle was of another kind, the light, in the first
case, being reflected, in the second transmitted.
Light penetrating a thin transparent plate, of
which the thickness was \(m, 3m, 5m, \ldots \) was de-
composed and reflected; the same light penetra-
ting the same plate, but of the thickness 0, 2m,
4m, was transmitted, though, in a certain degree,
also decomposed. The same light, therefore,
was transmitted or reflected, according as the
second surface of the plate of air through which
it passed was distant from the first by the inter-
vals 0, 2, 4m, or \(m, 3m, 5m \); so that it becomes
necessary to suppose the same ray to be success-
ively disposed to be transmitted and to be re-
lected at points of space separated from one
another by the same interval \(m \). This constitutes
what Newton called fits of easy transmission and
easy reflection, and forms one of the most singu-
lar parts of his optical discoveries. It is so un-
like any thing which analogy teaches us to ex-
pect, that it has often been viewed with a degree
of incredulity, and regarded as at best but a con-
jecture introduced to account for certain optical
phenomena. This, however, is by no means a
just conclusion; for it is, in reality, a necessary
inference from appearances accurately observed,
and is no less entitled to be considered as a fact
than those appearances themselves. The diffi-
culty of assigning a cause for such extraordinary
alternations cannot be denied, but does not entitle
us to doubt the truth of a conclusion fairly de-
duced from experiment. The principle has been
confirmed by phenomena that were unknown to
Newton himself, and possesses this great and
unequivocal character of philosophic truth, that
it has served to explain appearances which were
not observed till long after the time when it
first became known.

We cannot follow the researches of Newton
into what regards the colours of thick plates,
and of bodies in general. We must not, how-
ever, pass over his explanation of refraction,
which is among the happiest to be met with in
any part of science, and has the merit of con-
necting the principles of optics with those of
dynamics.

The theory from which the explanation we
speak of is deduced is, that light is an eman-
ation of particles, moving in straight lines with
incredible velocity, and attracted by the particles
of transparent bodies. When, therefore, light
falls obliquely on the surface of such a body, its
motion may be resolved into two, one parallel
to that surface, and the other perpendicular to
it. Of these, the first is not affected by the at-
traction of the body, which is perpendicular to
its own surface; and, therefore, it remains
the same in the refracted that it was in the incident
ray. But the velocity perpendicular to the sur-
face is increased by the attraction of the body,
and, according to the principles of dynamics,
(39th, book i. Princip.) whatever be the
quantity of this velocity, its square, on entering
the same transparent body, will always be aug-
mented by the same quantity. But it is easy to
demonstrate that, if there be two right-angled
triangles, with a side in the one equal to a side
in the other, the hypotenuse of the first being
given, and the squares of their remaining sides
differing by a given space, the sines of the angles
opposite to the equal sides must have a given
ratio to one another. This amounts to the same with saying, that, in the case before us, the sine of the angle of incidence is to the sine of the angle of refraction in a given ratio. The explanation of the law of refraction thus given is so highly satisfactory, that it affords a strong argument in favour of the system which considers light as an emanation of particles from luminous bodies, rather than the vibrations of an elastic fluid. It is true that Huygens deduced from this last hypothesis an explanation of the law of refraction, on which considerable praise was bestowed in the former part of this Dissertation. It is undoubtedly very ingenious, but does not rest on the same solid and undisputed principles of dynamics with the preceding, nor does it leave the mind so completely satisfied. Newton, in his *Principia*, has deduced another demonstration of the same optical proposition from the theory of central forces.

The different refrangibility of the rays of light forms no exception to the reasoning above. The rays of each particular colour have their own particular ratio subsisting between the sines of incidence and refraction; or, in each, the square that is added to the square of the perpendicular velocity has its own value, which continues the same while the transparent medium is the same.

Light, in consequence of these views, became, in the hands of Newton, the means of making important discoveries concerning the internal and chemical constitution of bodies. The square that is added to that of the perpendicular velocity of light in consequence of the attractive force of the transparent substance, is properly the measure of the quantity of that attraction, and is the same with the difference of the squares of the velocities of the incident and the refracted light. This is readily deduced, therefore, from the ratio of the angle of incidence to that of refraction; and when this is done for different substances, it is found that the above measure of the refracting power of transparent bodies is nearly proportional to their density, with the exception of those which contain much inflammable matter in their composition, or sulphur as it was then called, which is always accompanied with an increase of refracting power.

Thus, the refracting power, ascertained as above, when divided by the density, gives quotients not very different from one another, till we come to the inflammable bodies, where a great increase immediately takes place. In air, for instance, the quotient is 5208, in rock-crystal 5450, and the same nearly in common glass. But in spirit of wine, oil, amber, the same quotients are 10121, 12607, 13654. Newton found in the diamond, that this quotient is still greater than any of the preceding, being 14556. Hence he conjectured, what has since been so fully verified by experiment, that the diamond, at least in part, is an inflammable body. Observing, also, that the refracting power of water is great for its density, the quotient, expounding it as above, being 7845, he concluded, that an inflammable substance enters into the composition of that fluid,—a conclusion which has been confirmed by one of the most certain but most unexpected results of chemical analysis. The views thus suggested by Newton have been successfully pursued by future inquirers, and the action of bodies on light is now regarded as one of the means of examining into their internal constitution.

I should have before remarked, that the alternate disposition to be easily reflected and easily transmitted serves to explain the fact, that all transparent substances reflect a portion of the incident light. The reflection of light from the surfaces of opaque bodies, and from the anterior surfaces of transparent bodies, appears to be produced by a repulsive force exerted by those surfaces at a determinate but very small distance, in consequence of which there is stretched out over them an elastic web, through which the particles of light, notwithstanding their incredible velocity, are not always able to penetrate. In the case of a transparent body, the light, which, when it arrives at this outwork, as it may be

1 *Optics*, book ii. part iii. prop. 10.
2 *Princip. Math. lib. i. prop. 24.* Also *Optics*, book i. part i. prop. 6.
3 Ibid.
4 A velocity that enables light to pass from the sun to the earth in 9' 13", as is deduced from the eclipses of Jupiter's satellites.
called, is in a fit of easy reflection, obeys of course the repulsive force, and is reflected back again. The particles, on the other hand, which are in the state which disposes them to be transmitted, overcome the repulsive force, and, entering into the interior of the transparent body, are subjected to the action of its attractive force, and obey the law of refraction already explained. If these rays, however, reach the second surface of the transparent body (that body being supposed denser than the medium surrounding it) in a direction having a certain obliquity to that surface, the attraction will not suffer the rays to emerge into the rarer medium, but will force them to return back into the transparent body. Thus, the reflection of light at the second surface of a transparent body is produced, not by the repulsion of the medium in which it was about to enter, but by the attraction of that which it was preparing to leave.

The first account of the experiments from which all these conclusions were deduced, was given in the Philosophical Transactions for 1672, and the admiration excited by their brilliancy and their novelty may easily be imagined. Among the men of science, the most enlightened were the most enthusiastic in their praise. Huygens, writing to one of his friends, says of them, and of the truths they were the means of making known, "Quorum respectu omnia huc usque edita jejuna sunt et prorsus puerilia." Such were the sentiments of the person who, of all men living, was the best able to judge, and had the best right to be fastidious, in what related to optical experiments and discoveries. But all were not equally candid with the Dutch philosopher; and though the discovery now communicated had every thing to recommend it which can arise from what is great, new, and singular; though it was not a theory or a system of opinions, but the generalization of facts made known by experiments; and though it was brought forward in the most simple and unpretending form, a host of enemies appeared, each eager to obtain the unfortunate pre-eminence of being the first to attack conclusions which the unanimous voice of posterity was to confirm. In this contention, the envy and activity of Hooke did not fail to give him the advantage; and he communicated his objections to Newton's conclusions concerning the refrangibility of light in less than a month after they had been read in the Royal Society. He admitted the accuracy of the experiments themselves, but denied that the cause of the colour is any quality residing permanently in the rays of light, any more than that the sounds emitted from the pipes of an organ exist originally in the air. An imaginary analogy between sound and light seems to have been the basis of all his optical theories. He conceived that colour is nothing but the disturbance of light by pulses propagated through it; that blackness proceeds from the scarcity, whiteness from the plenty, of undisturbed light; and that the prism acts by exciting different pulses in this fluid, which pulses give rise to the sensations of colour. This obscure and unintelligible theory (if we may honour what is unintelligible with the name of a theory) he accompanied with a multitude of captious objections to the reasonings of Newton, whom he was not ashamed to charge with borrowing from him without acknowledgement. To all this Newton replied, with the solidity, calmness, and modesty, which became the understanding and the temper of a true philosopher.

The new theory of colours was quickly assailed by several other writers, who seem all to have had a better apology than Hooke for the errors into which they fell. Among them one of the first was Father Pardies, who wrote against the experiments, and what he was pleased to call the hypothesis, of Newton. A satisfactory and calm reply convinced him of his mistake, which he had the candour very readily to acknowledge. A countryman of his, Mariotte, was more difficult to be reconciled, and, though very conversant with experiment, appears never to have succeeded in repeating the experiments of Newton. Desaguliers, at the request of the latter, repeated the experiments doubted of before the Royal Society, where Monmort, a countryman and a friend of Mariotte, was present. MM. Linus and Luceas, both of Liege, object-
ed to Newton's experiments as inaccurate; the first, because, on attempting to repeat them, he had not obtained the same results; and the second, because he had not been able to perceive that a red object and a blue required the focal distance to be different when they were viewed through a telescope. Newton replied with great patience and good temper to both.

The series was closed in 1727, by the work of an Italian author, Rizetti, who, in like manner, called in question the accuracy of experiments which he himself had not been able to repeat. Newton was now no more; but Desaguliers, in consequence of Rizetti's doubts, instituted a series of experiments which seemed to set the matter entirely at rest. These experiments are described in the Philosophical Transactions for 1728.

An inference which Newton had immediately drawn from the discoveries above described was, that the great source of imperfection in the refracting telescope was the different refrangibility of the rays of light, and that there were stronger reasons than either Mersenne or Gregory had suspected, for looking to reflection for the improvement of optical instruments. It was evident, from the different refrangibility of light, that the rays coming from the same point of an object, when decomposed by the refraction of a lens, must converge to different foci; the red rays, for example, to a point more distant from the lens, and the violet to one nearer by about a fifty-fourth part of the focal distance. Hence it was not merely from the aberration of the rays caused by the spherical figure of the lens that the imperfection of the images formed by refraction arose, but from the very nature of refraction itself. It was evident, at the same time, that in a combination of lenses with opposite figures, one convex, for instance, and another concave, there was a tendency of the two contrary dispersions to correct one another. But it appeared to Newton, on examining different refracting substances, that the dispersion of the coloured rays never could be corrected except when the refraction itself was entirely destroyed; for he thought he had discovered that the quantity of the refraction and of the dispersion in different substances bore always the same proportion to one another. This is one of the few instances in which his conclusions have not been confirmed by subsequent experiment; and it will, accordingly, fall under discussion in another part of this Dissertation.

Having taken the resolution of constructing a reflecting telescope, he set about doing so with his own hands. There was, indeed, at that time, no other means by which such a work could be accomplished; the art of the ordinary glass-grinder not being sufficient to give to metallic specula the polish which was required. It was on this account that Gregory had entirely failed in realizing his very ingenious optical invention.

Newton, however, himself possessed excellent hands for mechanical operations, and could use them to better purpose than is common with men so much immersed in deep and abstract speculation. It appears, indeed, that mechanical invention was one of the powers of his mind which began to unfold itself at a very early period. In some letters subjoined to a Memoir drawn up after his death by his nephew Conduit, it is said, that, when a boy, Newton used to amuse himself with constructing machines, mills, &c. on a small scale, in which he displayed great ingenuity; and it is probable that he then acquired that use of his hands which is so difficult to be learned at a later period. To this, probably, we owe the neatness and ingenuity with which the optical experiments above referred to were contrived and executed,—experiments of so difficult a nature, that any error in the manipulation would easily defeat the effect, and appears actually to have done so with many of those who objected to his experiments.[]

1 The Memoir of Conduit was sent to Fontenelle when he was preparing the Eloge on Newton, but he seems to have paid little attention to it, and has passed over the early part of his life with the remark, that one may apply to him what Lucan says of the Nile, that it has not been "permitted to mortals to see that river in a feeble state." If the letters above referred to had formed a part of this communication, I think the Secretary of the Academy would have sacrificed a fine comparison to an instructive fact. In other respects Conduit's Memoir did not convey much information that could be of use. His instructions to Fontenelle are curious enough; he bids him be sure to state, that Leibnitz had borrowed the Differential Calculus from the Method of Fluxions. He conjured him in another place not to omit to mention, that Queen
He succeeded perfectly in the construction of his telescope; and his first communication with Oldenburg, and the first reference to his optical experiments, is connected with the construction of this instrument, and mentioned in a letter dated the 11th January 1672. He had then been proposed as a member of the Royal Society by the bishop of Sarum, and he says, "If the honour of being a member of the Society shall be conferred on me, I shall endeavour to testify my gratitude by communicating what my poor and solitary endeavours can effect toward the promoting its philosophical designs." Such was the modesty of the man who was to effect a greater revolution in the state of our knowledge of nature than any individual had yet done, and greater, perhaps, than any individual is ever destined to bring about. Success, however, never altered the temper in which he began his researches.

Newton, after considering the reflection and refraction of light, proceeded, in the third and last book of his Optics, to treat of its inflection, a subject which, as has been remarked in the former part of this Dissertation, was first treated of by Grimaldi. Newton having admitted a ray of light through a hole in a window-shutter into a dark chamber, made it pass by the edge of a knife, or, in some experiments, between the edges of two knives, fixed parallel and very near to one another; and, by receiving the light on a sheet of paper at different distances behind the knives, he observed the coloured fringes which had been described by the Italian optician, and, on examination, found that the rays had been acted on in passing the knife-edges both by repulsive and attractive forces, and had begun to be so acted on in a sensible degree when they were yet distant by 1/30 of an inch of the edges of the knives. His experiments, however, on this subject were interrupted, as he informs us, and do not appear to have been afterwards resumed. They enabled him, however, to draw this conclusion, that the path of the ray, in passing by the knife-edge, was bent in opposite directions, so as to form a serpentine line, convex and concave toward the knife, according to the repulsive or attractive forces which acted at different distances; that it was also reasonable to conclude, that the phenomena of the refraction, reflection, and inflection of light were all produced by the same force variously modified, and that they did not arise from the actual contact or collision of the particles of light with the particles of bodies.

The third book of the Optics concludes with those celebrated Queries which carry the mind so far beyond the bounds of ordinary speculation, though still with the support and under the direction either of direct experiment or close analogy. They are a collection of propositions relative chiefly to the nature of the mutual action of light and of bodies on one another, such as appeared to the author highly probable, yet wanting such complete evidence as might entitle them to be admitted as principles established. Such enlarged and comprehensive views, so many new and bold conceptions, were never before combined with the sobriety and caution of philosophical induction. The anticipation of future discoveries, the assemblage of so many facts from the most distant regions of human research, all brought to bear on the same points, and to elucidate the same questions, are never to be sufficiently admired. At the moment when they appeared, they must have produced a wonderful sensation in the philosophic world, unless, indeed, they advanced too far before the age, and contained too much which the comment of time was yet required to elucidate.

It is in the Queries that we meet with the ideas of this philosopher concerning the Elastic Ether, which he conceived to be the means of

Caroline used to delight much in the conversation of Newton, and nothing could do more honour to Newton than the commendation of a Queen, the Minerva of her age. Fontenelle was too much a philosopher and a man of the world, and had himself approached too near to the persons of princes, to be of Mr Condillac's opinion, or to think that the approbation of the most illustrious princess could add dignity to the man who had made the three greatest discoveries yet known, and in whose hands the sciences of Geometry, Optics, and Astronomy, had all taken new forms. If he had been called to write the Eloge of the Queen of England, he would, no doubt, have remarked her relish for the conversation of Newton.

On the whole, the Eloge on Newton has great merit, and, to be the work of one who was at bottom a Cartesian, is a singular example of candour and impartiality.

conveying the action of bodies from one part of the universe to another, and to which the phenomena of light, of heat, of gravitation, are to be ascribed. Here we have his conclusions concerning that polarity or peculiar virtue residing in the opposite sides of the rays of light, which he deduced from the enigmatical phenomena of doubly-refracting crystals. Here, also, the first step is made toward the doctrine of elective attractions or of chemical affinity, and to the notion, that the phenomena of chemistry, as well as of cohesion, depend on the alternate attractions and repulsions existing between the particles of bodies at different distances. The comparison of the gradual transition from repulsion to attraction at those distances, with the positive and negative quantities in algebra, was first suggested here, and is the same idea which the ingenuity of Boscovich afterwards expanded into such a beautiful and complete system. Others who have attempted such flights had ended in mere fiction and romance: it is only for such men as Bacon or Newton to soar beyond the region of poetical fiction, still keeping sight of probability, and alighting again safe on the terra firma of philosophic truth.

SECTION IV.

ASTRONOMY.

The time was now come when the world was to be enlightened by a new science, arising out of the comparison of the phenomena of motion as observed in the heavens, with the laws of motion as known on the earth. Physical astronomy was the result of this comparison; a science embracing greater objects, and destined for a higher flight, than any other branch of natural knowledge. It is unnecessary to observe, that it was by Newton that the comparison just referred to was instituted, and the riches of the new science unfolded to mankind.

This young philosopher, already signalized by great discoveries, had scarcely reached the age of twenty-four, when a great public calamity forced him into the situation where the first step in the new science is said to have been suggested; and that, by some of those common appearances in which an ordinary man sees nothing to draw his attention, nor even the man of genius, except at those moments of inspiration when the mind sees farthest into the intellectual world. In 1666, the plague forced him to retire from Cambridge into the country; and, as he sat one day alone, in a garden, musing on the nature of the mysterious force by which the phenomena at the earth's surface are so much regulated, he observed the apples falling spontaneously from the trees, and the thought occurred to him,—since gravity is a tendency not confined to bodies on the very surface of the earth, but reaching to the tops of trees, to the tops of the highest buildings, nay, to the summits of the most lofty mountains, without its intensity or direction suffering any sensible change, why may it not reach to a much greater distance, and even to the moon itself? And, if so, may not the moon be retained in her orbit by gravity,

1 The optical works of Newton are not often to be found all brought together into one body. The first part of them consists of the papers in the Philosophical Transactions, which gave the earliest account of his discoveries, and which have been already referred to. They are in the form of Letters to Oldenburg, the Secretary of the Society, as are also the answers to Hooke and the others who objected to these discoveries; the whole forming a most interesting and valuable series, which Dr Horsley has published in the fourth volume of his edition of Newton's works, under the title of Letters relating to the Theory of Light and Colours. The next work, in point of time, consists of the Lectiones Opticae, or the optical lectures which the author delivered at Cambridge. The Optics, in three books, is the last and most complete, containing all the reasoning concerning optical phenomena above referred to. The first edition was in 1704; the second, with additions, in 1717. Newton's Opera, tom. IV. Horsley's edition.
and forced to describe a curve like a projectile at the surface of the earth? 1

Here another consideration very naturally occurred. Though gravity be not sensibly weakened at the small distances from the surface to which our experiments extend, it may be weakened at greater distances, and at the moon may be greatly diminished. To estimate the quantity of this diminution, Newton appears to have reasoned thus: If the moon be retained in her orbit by her gravitation to the earth, it is probable that the planets are, in like manner, carried round the sun by a power of the same kind with gravity, directed to the centre of that luminary. He proceeded, therefore, to inquire by what law the tendency or gravitation of the planets to the sun must diminish, in order that, describing, as they do, orbits nearly circular round the sun, their times of revolution and their distances may have the relation to one another which they are known to have from observation, or from the third law of Kepler.

This was an investigation which, to most even of the philosophers and mathematicians of that age, would have proved an insurmountable obstacle to their further progress; but Newton was too familiar with the geometry of evanescent or infinitely small quantities, not to discover very soon that the law now referred to would require the force of gravity to diminish exactly as the square of the distance increased. The moon, therefore, being distant from the earth about sixty semidiameters of the earth, the force of gravity at that distance must be reduced to the 3600th part of what it is at the earth’s surface. Was the deflection of the moon then from the tangent of her orbit, in a second of time, just the 3600th part of the distance which a heavy body falls in a second at the surface of the earth? This was a question that could be precisely answered, supposing the moon’s distance known, not merely in semidiameters of the earth, but in feet, and her angular velocity, or the time of her revolution in her orbit, to be also known.

In this calculation, however, being at a distance from books, he took the common estimation of the earth’s circumference that was in use before the measurement of Norwood or of the French Academicians, according to which a degree is held equal to 60 English miles. This being in reality a very erroneous supposition, the result of the calculation did not represent the force as adequate to the supposed effect; whence Newton concluded that some other cause than gravity must act on the moon, and on that account he laid aside, for the time, all further speculation on the subject. It was in the true spirit of philosophy that he so readily gave up an hypothesis, in which he could not but feel some interest, the moment he found it at variance with observation. He was sensible that nothing but the exact coincidence of the things compared could establish the conclusion he meant to deduce, or authorize him to proceed with the superstructure, for which it was to serve as the foundation.

It appears, that it was not till some years after this that his attention was called to the same subject, by a letter from Dr Hooke, proposing, as a question, To determine the line in which a body let fall from a height descends to the ground, taking into consideration the motion of the earth on its axis. This induced him to resume the subject of the moon’s motion; and the measure of a degree by Norwood having now furnished more exact data, he found that his calculation gave the precise quantity for the moon’s momentary deflection from the tangent of her orbit, which was deduced from astronomical observation. The moon, therefore, has a tendency to descend toward the earth, from the same cause that a stone at its surface has; and if the descent of the stone in a second be diminished in the ratio of 1 to 3600, it will give the quantity by which the moon descends in a second, below the tangent to her orbit; and thus is obtained an experimental proof of the fact, that gravity decreases as the square of the distance increases. He had already found that the times of the planetary revolutions, supposing their orbits to be circular, led to the same conclusion; and he now proceeded, with a view to the solution of Hooke’s problem, to inquire what their orbits must be, supposing the centripetal

1 PEMBERTON’s View of Newton's Philosophy, Pref.
force to be inversely as the square of the distance, and the initial or projectile force to be any whatsoever. On this subject, Pemberton says, he composed (as he calls it) a dozen propositions, which probably were the same with those in the beginning of the Principia,—such as the description of equal areas in equal times, about the centre of force, and the ellipticity of the orbits described under the influence of a centripetal force that varied inversely as the squares of the distances.

What seems very difficult to be explained is, that after having made trial of his strength, and of the power of the instruments of investigation which he was now in possession of, and had entered by means of them on the noblest and most magnificent field of investigation that was ever yet opened to any of the human race, he again desisted from the pursuit, so that it was not till several years afterwards that the conversation of Dr Halley, who made him a visit at Cambridge, induced him to resume and extend his researches.

He then found, that the three great facts in astronomy, which form the laws of Kepler, gave the most complete evidence to the system of gravitation. The first of them, the proportionality of the areas described by the radius vector to the times in which they are described, is the peculiar character of the motions produced by an original impulse impressed on a body, combined with a centripetal force continually urging it to a given centre. The second law, that the planets describe ellipses, having the sun in one of the foci, common to them all, coincides with this proposition, that a body under the influence of a centripetal force, varying as the square of the distance inversely, and having any projectile force whatever originally impressed on it, must describe a conic section having one focus in the centre of force, which section, if the projectile force does not exceed a certain limit, will become an ellipse. The third law, that the squares of the periodic times are as the cubes of the distances, is a property which belongs to the bodies describing elliptic orbits under the conditions just stated. Thus the three great truths to which the astronomy of the planets had been reduced by Kepler, were all explained in the most satisfactory manner, by the supposition that the planets gravitate to the sun with a force which varies in the inverse ratio of the squares of the distances. It added much to this evidence, that the observations of Cassini had proved the same laws to prevail among the satellites of Jupiter.

But did the principle which appeared thus to unite the great bodies of the universe act only on those bodies? Did it reside merely in their centres, or was it a force common to all the particles of matter? Was it a fact that every particle of matter had a tendency to unite with every other? Or was that tendency directed only to particular centres? It could hardly be doubted that the tendency was common to all the particles of matter. The centres of the great bodies had no properties as mathematical points; they had none but what they derived from the material particles distributed around them. But the question admitted of being brought to a better test than that of such general reasoning as the preceding. The bodies between which this tendency had been observed to take place were all round bodies, and either spherical or nearly so; but whether great or small, they seemed to gravitate toward one another according to the same law. The planets gravitated to the sun, the moon to the earth, the satellites of Jupiter toward Jupiter; and gravity, in all these instances, varied inversely as the squares of the distances. Were the bodies ever so small,—were they mere particles—provided only they were round, it was therefore safe to infer, that they would tend to unite with forces inversely as the squares of the distances. It was probable, then, that gravity was the mutual tendency of all the particles of matter toward one another; but this could not be concluded with certainty, till it was found whether great spherical bodies, composed of particles gravitating according to this law, would themselves gravitate according to the same. Perhaps no man of that age but Newton himself was fit to undertake the solution of this problem. His analysis, either in the form of fluxions or in that of prime and ultimate ratios, was able to reduce it to the quadrature of curves; and he then found, no doubt infinitely to his satisfaction, that the law was the same for the sphere as
for the particles which compose it; that the gravitation was directed to the centre of the sphere, and was as the quantity of matter contained in it, divided by the square of the distance from its centre. Thus a complete expression was obtained for the law of gravity, involving both the conditions on which it must depend, the quantity of matter in the gravitating bodies, and the distance at which the bodies were placed. There could be no doubt that this tendency was always mutual, as there appeared nowhere any exception to the rule that action and re-action are equal; so that if a stone gravitated to the earth, the earth gravitated equally to the stone; that is to say, the two bodies tended to approach one another with velocities which were inversely as their quantities of matter. There appeared to be no limit to the distance to which this action reached; it was a force that united all the parts of matter to one another; and if it appeared to be particularly directed to certain points, such as the centres of the sun or of the planets, it was only on account of the quantity of matter collected and distributed uniformly round those points, through which, therefore, the force resulting from the composition of all those elements must pass either accurately or nearly.

A remarkable inference was deduced from this view of the planetary motions, giving a deep insight into the constitution of our system in a matter that seems the most recondite, and the farthest beyond the sphere which necessarily circumscribes human knowledge. The quantity of matter, and even the density of the planets, was determined. We have seen how Newton compared the intensity of gravitation at the surface of the earth with its intensity at the moon; and by a computation somewhat similar, he compared the intensity of the earth's gravitation to the sun with the moon's gravitation to the earth, each being measured by the contemporaneous and momentary deflection from a tangent to the small arch of its orbit. A more detailed investigation showed, that the intensity of the central force in different orbits is as the mean distance divided by the square of the periodic time; and the same intensity being also as the quantities of matter divided by the squares of the distances, it follows that these two quotients are equal to one another, and that, therefore, the quantities of matter are as the mean distances divided by the squares of the periodic times. Supposing, therefore, in the instance just mentioned, that the ratio of the mean distance of the sun from the earth to the mean distance of the moon from the earth is given (which it is from astronomical observation); as the ratio of their periodic lines is also known, the ratio of the quantity of matter in the sun to the quantity of matter in the earth, of consequence, is found; and the same holds good for all the planets which have satellites moving round them. Nothing certainly can be more unexpected than that the quantities of matter in bodies so remote should admit of being compared with one another, and with the earth. Hence also their mean densities, or mean specific gravities, became known. For, from their distances and the angles they subtended, both known from observation, their magnitudes or cubical contents were easily inferred; and the densities of all bodies are, as their quantities of matter, divided by their magnitude. The Principia Philosophiae Naturalis, which contained all these discoveries, and established the principle of universal gravitation, was given to the world in 1687, an era, on that account, for ever memorable in the history of human knowledge.

The principle of gravity, which was thus fully established, and its greatest and most extensive consequences deduced, was not now mentioned for the first time, though for the first time its existence as a fact was ascertained, and the law it observes was discovered. Besides some curious references to weight and gravity, contained in the writings of the ancients, we find something more precise concerning it in the writings of Copernicus, Kepler, and Hooke.

Anaxagoras is said to have held that "the heavens are kept in their place by the rapidity

1 If \(M \) and \(M' \) are the masses of two spheres, and \(x \) the distance of their centres, \(\frac{M + M'}{x^2} \) is the accelerating force with which they tend to unite; but the velocity of the approach of \(M \) will be \(\frac{M'}{x^2} \), and of \(M' \) \(\frac{M}{x^2} \).
of their revolution, and would fall down if that rapidity were to cease."

Plutarch, in like manner, says the moon is kept from falling by the rapidity of her motion, just as a stone whirled round in a sling is prevented from falling to the ground.

Lucretius, reasoning probably after Democritus, holds, that the atoms would all, from their gravity, have long since united in the centre of the universe, if the universe were not infinite, so as to have no centre.

An observation of Pythagoras, supposed to refer to the doctrine of gravity, though in reality extremely vague, has been abundantly commented on by Gregory and Maclaurin. A musical string, said that philosopher, gives the same sound with another of twice the length, if the latter be straitened by four times the weight that straitens the former; and the gravity of a planet is four times that of another which is at twice the distance. These are the most precise notices, as far as I know, that exist in the writings of the ancients concerning gravity as a force acting on terrestrial bodies, or as extending even to those that are more distant. They are the reveries of ingenious men who had no steady principles deduced from experience and observation to direct their inquiries, and who, even when in their conjectures they hit on the truth, could hardly distinguish it from error.

Copernicus, as might be expected, is considerably more precise. "I do not think," says he, "that gravity is anything but a natural competence of the parts (of the earth) given by the providence of the Supreme Being, that, by uniting together, they may assume the form of a globe. It is probable that this same affection belongs to the sun, the moon, and the fixed stars, which are all of a round form."

The power which Copernicus here speaks of has nothing to do, in his opinion, with the revolutions of the earth or the planets in their different orbits. It is merely intended as an explanation of their globular forms; and the consideration that does the author most credit is that of supposing the force to belong, not to the centre, but to all the parts of the earth.

Kepler, in his immortal work on the Motions of Mars, treats of gravity as a force acting naturally from planet to planet, and particularly from the earth to the moon. "If the moon and the earth were not retained by some animal or other equivalent force each in its orbit, the earth would ascend to the moon by a 54th part of the interval between them, while the moon moved over the remaining 53 parts, that is, supposing them both of the same density." This passage is curious, as displaying a singular mixture of knowledge and error on the subject of the planetary motions. The tendency of the earth and moon being mutual, and producing equal quantities of motion in those bodies, bespeaks an accurate knowledge of the nature of that tendency, and of the equality, at least in this instance, between action and re-action. Then, again, the idea of an animal force, or some other equally unintelligible power, being necessary to carry on the circular motion, and to prevent the bodies from moving directly toward each other, is very strange; considering that Kepler knew the inertia of matter, and ought therefore to have understood the nature of centrifugal force, and its power to counteract the mutualgravitations of the two bodies. In this respect the great astronomer, who was laying the foundation of all that is known of the heavens, was not so far advanced as Anaxagoras and Plutarch;—so slow and unequal are the steps by which science advances to perfection. The mutual gravity of the earth and moon is not supposed by Kepler to have any concern in the production of their circular motions; yet he holds the tides to be produced by the gravitation of the waters of the sea toward the moon.

The length to which Galileo advanced in this direction, and the point at which he stopped,
Dissertation Third.

are no less curious to be remarked. Though so well acquainted with the nature of gravity on the earth's surface, the object of so many of his researches and discoveries,—and though he conceived it to exist in all the planets, nay, in all the celestial bodies, and to be the cause of their round figure, he did not believe it to be a power that extended from one of those bodies to another. He seems to have thought that gravity was a principle which regulated the domestic economy of each particular body, but had nothing to do with their external relations; so that he censured Kepler for supposing that the phenomena of the tides are produced by the gravitation of the waters of the ocean to the moon.¹

Hooke did not stop short in the same unaccountable manner, but made a nearer approach to the truth than any one had yet done. In his attempt to prove the motion of the earth, published in 1674, he lays it down as the principle on which the celestial motions are to be explained, that the heavenly bodies have an attraction or gravitation toward their own centres, which extends to other bodies within the sphere of their activity; and that all bodies would move in straight lines, if some force like this did not act on them continually, and compel them to describe circles, ellipses, or other curve lines. The force of gravity, also, he considered as greatest nearest the body; though the law of its variation he could not determine. These are great advances;—though, from his mention of the sphere of activity, from his considering the cause as residing in the centre, and from his ignorance of the law which it observed, it is evident that, besides great vagueness, there was much error in his notions about gravity. Hooke, however, whose candour and uprightness bore no proportion to the strength of his understanding, was disingenuous enough, when Newton had determined that law, to lay claim himself to the discovery.

This is the farthest advance that the knowledge of the cause of the celestial motions had made before the investigations of Newton: it is the precise point at which this knowledge had stopped, having met with a resistance which required a mathematician armed with all the powers of the new analysis to overcome. The doctrine of gravity was yet no more than a conjecture, of the truth or falsehood of which the measurements and reasonings of geometry could alone determine.

Thus, then, we are enabled accurately to perceive in what Newton's discovery consisted. It was in giving the evidence of demonstration to a principle which a few sagacious men had been sufficiently sharp-sighted to see obscurely or inaccurately, and to propose as a mere conjecture. In the history of human knowledge, there is hardly any discovery to which some gradual approaches had not been made before it was completely brought to light. To have found out the means of giving certainty to the thing asserted, or of disproving it entirely, and, when the reality of the principle was found out, to measure its quantity, to ascertain its laws, and to trace their consequences with mathematical precision,—in this consists the great difficulty and the great merit of such a discovery as that which is now before us. In this Newton had no competitor: envy was forced to acknowledge that he had no rival, and consoled itself with supposing that he had no judge.

Of all the physical principles that have yet been made known, there is none so fruitful in consequences as that of gravitation; but the same skill that had directed Newton to the discovery was necessary to enable him to trace its consequences.

The mutual gravitation of all bodies being admitted, it was evident, that while the planets were describing their orbits round the greatest and most powerful body in the system, they must mutually attract one another; and thence, in their revolutions, some irregularities, some deviations from the description of equal areas in equal times, and from the laws of the elliptic motion, might be expected. Such irregularities, however, had not been observed at that time in the motion of any of the planets, except the moon, where some of them were so conspicuous as to have been known to Hipparchus and

¹ Dialogue iv.: Opere, tom. IV. p. 325. Padova, 1744, 4 tom. 4to.
Ptolemy. Newton, therefore, was very naturally led to inquire what the different forces were, which, according to the laws just established, could produce irregularities in the case of the moon’s motion. Beside the force of the earth, or rather of the mutual gravitation of the moon and earth, the moon must be acted on by the sun; and the same force which was sufficient to bend the orbit of the earth into an ellipse, could not but have a sensible effect on the orbit of the moon. Here Newton immediately observed, that it is not the whole of the force which the sun exerts on the moon that disturbs her motion round the earth, but only the difference between the force just mentioned and that which the sun exerts on the earth; for it is only that difference that affects the relative positions of the two bodies. To have exact measures of the disturbing forces, he supposed the entire force of the sun on the moon to be resolved into two, of which one always passed through the centre of the earth, and the other was always parallel to the line joining the sun and earth,—consequently, to the direction of the force of the sun on the earth. The former of these forces being directed to the centre of the earth, did not prevent the moon from describing equal areas in equal times round the earth. The effect of it on the whole, however, he showed to be, to diminish the gravity of the moon to the earth by about one 358th part, and to increase her mean distance in the same proportion, and her angular motion by about a 179th.

From the moon thus gravitating to the centre of the earth, not by a force that is altogether inversely as the square of the distance, but by such a force diminished by a small part that varies simply as the distance, it was found, from a very subtile investigation, that the dimensions of the elliptic orbit would not be sensibly changed, but that the orbit itself would be rendered movable, its longer axis having an angular and progressive motion, by which it advanced over a certain arc during each revolution of the moon. This afforded an explanation of the motion of the apsides of the lunar orbit which had been observed to go forward at the rate of 3° 4’ nearly, during the time of the moon’s revolution, in respect of the fixed stars.

This was a new proof of the reality of the principle of gravitation, which, however, was rendered less conclusive by the consideration that the exact quantity of the motion of the apsides observed did not come out from the diminution of the moon’s gravity as above assigned. There was a sort of cloud, therefore, which hung over this point of the lunar theory, to dissipate which required higher improvements in the calculus than it was given to the inventor himself to accomplish. It was not so with respect to another motion to which the plane of the lunar orbit is subject, a phenomenon which had been long known in consequence of its influence on the eclipses of the sun and moon. This was the retrogradation of the line of nodes, amounting to 3° 10’ every day. Newton showed that the second of the forces into which the solar action is moved being exerted, not in the plane of the moon’s orbit, but in that of the ecliptic, inclined to the former at an angle somewhat greater than five degrees, its effect must be to draw down the moon to the plane of the ecliptic sooner than it would otherwise arrive at it; in consequence of which, the intersection of the two planes would approach, as it were, toward the moon, or move in a direction opposite to that of the moon’s motion, or become retrograde. From the quantity of the solar force, and the inclination of the moon’s orbit, Newton determined the mean quantity of this retrogradation, as well as the irregularities to which it is subject, and found both to agree very accurately with observation.

Another of the lunar inequalities,—that discovered by Tycho, and called by him the Variation, which consists in the alternate acceleration and retardation of the moon in each quarter of her revolution,—was accurately determined from theory, such as it is found by observation; and the same is true as to the annual equation, which had been long confounded with the equation of time. With regard to the other inequalities, it does not appear that Newton attempted an exact determination of them, but satisfied himself with this general truth, that the principle of the sun’s disturbing force led to the supposition of inequalities of the same kind with those actually observed, though whether of the same exact quantity it must be difficult to deter-
mine. It was reserved, indeed, for a more perfect state of the calculus to explain the whole of those irregularities, and to deduce their precise value from the theory of gravity. Theory has led to the knowledge of many inequalities, which observation alone would have been unable to discover.

While Newton was thus so successfully occupied in tracing the action of gravity among those distant bodies, he did not, it may be supposed, neglect the consideration of its effects on the objects which are nearer us, and particularly on the figure of the earth. We have seen that, even with the limited views and imperfect information which Copernicus possessed on this subject, he ascribed the round figure of the earth and of the planets to the force of gravity residing in the particles of these bodies. Newton, on the other hand, perceived that, in the earth, another force was combined with gravity, and that the figure resulting from that combination could not be exactly spherical. The diurnal revolution of the earth, he knew, must produce a centrifugal force, which would act most powerfully on the parts most distant from the axis. The amount of this centrifugal force is greatest at the equator; and being measured by the momentary recess of any point from the tangent, which was known from the earth’s rotation, it could be compared with the force of gravity at the same place, measured in like manner by the descent of a heavy body in the first moment of its fall. When Newton made this comparison, he found that the centrifugal force at the equator is the 289th part of gravity, diminishing continually as the cosine of the latitude, on going from thence toward the poles, where it ceases altogether. From the combination of this force, though small, with the force of gravity, it follows, that the line in which bodies actually gravitate, or the plumb line, cannot tend exactly to the earth’s centre, and that a true horizontal line, such as is drawn by levelling, if continued from either pole, in the plane of a meridian all round the earth, would not be a circle, but an ellipse, having its greatest axis in the plane of the equator, and its least in the direction of the axis of the earth’s rotation. Now, the surface of the ocean itself actually traces this level as it extends from the equator to either pole. The terraqueous mass which we call the globe must therefore be what geometers call an oblate spheroid, or a solid generated by the revolution of the elliptic meridian about its shorter axis.

In order to determine the proportion of the axes of this spheroid, a problem, it will readily be believed, of no ordinary difficulty, Newton conceived, that if the waters at the pole and at the equator were to communicate by a canal through the interior of the earth, one branch reaching from the pole to the centre, and the other at right angles to it from the centre to the circumference of the equator, the water in this canal must be in equilibrio, or the weight of fluid in the one branch just equal to that in the other. Including, then, the consideration of the centrifugal force which acted on one of the branches but not on the other, and considering, too, that the figure of the mass being no longer a sphere, the attraction must not be supposed to be directed to the centre, but must be considered as the result of the action of all the particles of the spheroid on the fluid in the canals,—by a very subtle process of reasoning, Newton found that the longer of the two canals must be to the shorter as 230 to 229. This, therefore, is the ratio of the radius of the equator to the polar semiaxis, their difference amounting, according to the dimensions then assigned to the earth, to about 17 $\frac{1}{10}$ English miles. In this investigation the earth is understood to be homogeneous, or everywhere of the same density.

It is very remarkable, that though the ingenious and profound reasoning on which this conclusion rests is not entirely above objection, and assumes some things without sufficient proof, yet, when these defects were corrected in the new investigations of Maclaurin and Clairaut, the conclusion, supposing the earth homogeneous, remained exactly the same. The sagacity of Newton, like the Genius of Socrates, seemed sometimes to inspire him with wisdom from an invisible source. By a profound study of nature, her laws, her analogies, and her resources, he seems to have acquired the same sort of tact or feeling in matters of science, that experienced engineers and other artists sometimes acquire in matters of practice, by which they are often di-
rected right, when they can scarcely describe in words the principle on which they proceed.

From the figure of the earth thus determined, he showed that the intensity of gravity at any point of the surface is inversely as the distance of that point from the centre; and its increase, therefore, on going from the equator to the poles, is as the square of the sine of the latitude, the same ratio in which the degrees of the meridian increase. As the intensity of gravity diminished on going from the poles to the equator, or from the higher to the lower latitudes, it followed that a pendulum of a given length would vibrate slower when carried from Europe into the torrid zone. The observations of the two French astronomers Varin and De Hayes, made at Cayenne and Martinique, had already confirmed this conclusion.

The problem which Newton had thus resolved enabled him to resolve one of still greater difficulty. The precession, that is, the retrogradation, of the equinoctial points, had been long known to astronomers; its rate had been measured by a comparison of ancient and modern observations, and found to amount nearly to 50' annually, so as to complete an entire revolution of the heavens in 25,920 years. Nothing seemed more difficult to explain than this phenomenon, and no idea of assigning a physical or mechanical cause for it had yet occurred, I believe, to the boldest and most theoretical astronomer. The honour of assigning the true cause was reserved for the most cautious of philosophers. He was directed to this by a certain analogy observed between the precession of the equinoxes and the retrogradation of the moon's nodes, a phenomenon to which his calculus had been already successfully applied. The spheroidal shell or ring of matter which surrounds the earth, as we have just seen, in the direction of the equator, being one half above the plane of the ecliptic and the other half below, is subjected to the action of the solar force, the tendency of which is to make this ring turn on the line of its intersection with the ecliptic, so as ultimately to coincide with the plane of that circle.

This, accordingly, would have happened long since, if the earth had not revolted on its axis. The effect of the rotation of the spheroidal ring from west to east, at the same time that it is drawn down toward the plane of the ecliptic, is to preserve the inclination of these two planes unchanged, but to make their intersection move in a direction opposite to that of the diurnal rotation, that is, from east to west, or contrary to the order of the signs.

The calculus in its result justified this general conclusion: 10° appeared the part of the effect due to the moon's attraction, 40° to the attraction of the sun; and I know not if there be anything respecting the constitution of our system, in which this great philosopher gave a stronger proof of his sagacity and penetration, than in the explanation of this phenomenon. The truth, however, is, that his data for resolving the problem were in some degree imperfect, all the circumstances were not included, and some were erroneously applied, yet the great principle and scope of the solution were right, and the approximation very near to the truth. "Il a été bien servi par son génie," says the eloquent and judicious historian of astronomy; "l'inspiration de cette faculté divine lui a fait appercevoir des déterminations qui n'étoient pas encore accessibles; soit qu'il eût des preuves qu'il a supprimées, soit qu'il eût dans l'esprit une sorte d'estime, une espece de balance pour apprécier certaines vérités, en pesant les vérités prochaines, et jugeant les unes par les autres." 1

1 Princip. lib. iii. prop. 20.

2 BAILLY, Histoire de l'Astronomie Moderne, tome II. livre xii. sect. 28.
The doctrines of Plato and Aristotle were never more perfect than when they came from the hands of their respective authors; and a legion of commentators, with all their efforts, did nothing but run round perpetually in the same circle. Even Descartes, though he had recourse to physical principles, and tried to fix his system on a firmer basis than the mere abstractions of the mind, left behind him a work which not only could not be improved, but was such, that every addition attempted to be made destroyed the equilibrium of the mass, and pulled away the part to which it was intended that it should be attached. The philosophy of Newton has proved susceptible of continual improvement; its theories have explained facts quite unknown to the author of it; and the exertions of Lagrange and Laplace, at the distance of a hundred years, have perfected a work which it was not for any of the human race to begin and to complete.

Newton next turned his attention to the phenomena of the Tides, the dependence of which on the moon, and in part also on the sun, was sufficiently obvious even from common observation. That the moon is the prime ruler of the tide, is evident from the fact, that the high-water, at any given place, occurs always nearly at the moment when the moon is on the same meridian, and that the retardation of the tide from day to day is the same with the retardation of the moon in her diurnal revolution. That the sun is also concerned in the production of the tides is evident from this, that the highest tides happen when the sun, the moon, and the earth are all three in the same straight line; and that the lowest, or neap tides, happen when the lines drawn from the sun and moon to the earth make right angles with one another. The eye of Newton, accustomed to generalize and to penetrate beyond the surface of things, saw that the waters of the sea revolving with the earth are nearly in the condition of a satellite revolving about its primary, and are liable to the same kind of disturbance from the attraction of a third body. The fact in the history of the tides which seems most difficult to be explained, received, on this supposition, a very easy solution. It is known that high-water always takes place in the hemisphere where the moon is, and in the opposite hemisphere where the moon is not, nearly at the same time. This seems, at first sight, very unlike an effect of the moon's attraction; for, though the water in the hemisphere where the moon is, and which therefore is nearest the moon, may be drawn up toward that body, the same ought not to happen in the opposite hemisphere, where the earth's surface is most distant from the moon. But if the action of the moon disturb the equilibrium of the ocean, just as the action of one planet disturbs the motion of a satellite moving round another, it is exactly what might be expected. It had been shown that the moon, in conjunction with the sun, has her gravitation to the earth diminished; and when in opposition to the sun has it diminished very nearly by the same quantity. The reason is, that at the conjunction, or the new moon, the moon is drawn to the sun more than the earth is; and that, at the opposition, or full moon, the earth is drawn toward the sun more than the moon nearly by the same quantity: the relative motion of the two bodies is therefore affected the same way in both cases, and the gravity of the moon to the earth, or her tendency to descend toward it, is in both cases lessened.

It is plain that the action of the moon on the waters of the ocean must be regulated by the same principle. In the hemisphere where the moon is, the water is more drawn toward the moon than the mass of the earth is, and its gravity being lessened, the columns toward the middle of the hemisphere lengthen, in consequence of the pressure of the columns which are at a distance from the middle point, of which the weight is less diminished, and toward the horizon must even be increased. In the opposite hemisphere, again, the mass of the earth is more drawn to the moon than the waters of that hemisphere, and their relative tendencies are changed in the same direction, and nearly by the same quantity. If the action of the moon on all the parts of the earth, both sea and land, were the same, no tide whatever would be produced.

Thus, the same analysis of the force of gravity which explained the inequalities of the moon,
were shown by Newton to explain those inequalities in the elevation of the waters of the ocean to which we give the name of tides. On the principle also explained in this analysis it is that the attraction of the sun and moon conspire to elevate the waters of the ocean, whether these luminaries be in opposition or conjunction. In both cases the solar and lunar tides are added together, and the tide actually observed is their sum. At the quadratures, or the first and third quarters, these two sides are opposed to one another, the high water of the lunar tide coinciding with the low water of the solar, and conversely, so that the tide actually observed is the difference of the two.

The other phenomena of the tides were explained in a manner not less satisfactory; and it only remained to inquire, whether the quantity of the solar and lunar forces were adequate to the effect thus ascribed to them. The lunar force there were yet no data for measuring; but a measure of the solar force, as it acts on the moon, had been obtained, and it had been shown that in its mean quantity it amounted to \(\frac{7}{10}\) of the force which retains the moon in its orbit. This last is \(\frac{9}{700}\) of the force of gravity at the earth's surface; and, therefore, the force with which the sun disturbs the moon's motion is \(\frac{7}{17}\times\frac{9}{700}\) of gravity at the earth's surface. This is the solar disturbing force on the moon when distant sixty semidiameters from the earth's centre; but on a body only one semidiameter distant from that centre, that is, on the water of the ocean, the disturbing force would be sixty times less, and thus is found to be no more than \(\frac{1}{60}\) of gravity at the earth's surface.

Now, this being the mean force of the sun, is that by which he acts on the waters, 90 degrees distant from the point to which he is vertical, where it is added to the force of gravity, and tends to increase the weight and lower the level of the waters. At the point where the sun is vertical, the force to raise the water is about double of this; and, therefore, the whole force tending to raise the level of the high above that of the low water is three times the preceding, or about the \(\frac{27}{100}\) of gravity. Small as this force is, when it is applied to every particle of the ocean, it is capable of producing a sensible effect. The manner in which Newton estimates this effect can only be considered as affording an approximation to the truth. In treating of the figure of the earth, he had shown that the centrifugal force, amounting to \(\frac{1}{27}\) of gravity, was able to raise the level of the ocean more than seventeen miles, or, more exactly, 85,472 French feet. Hence, making the effect proportional to the forces, the elevation of the waters produced by the solar force will come out 1'92 foot.

But, from the comparison of the neap and spring tides, that is, of the difference and the sum of the lunar and solar forces, it appears that the force of the moon is to that of the sun as 4:48 to 1. As the solar force raises the tide 1'92 foot, the lunar will raise it 8'63 feet; so that the two together will produce a tide of 10½ French feet, which agrees not ill with what is observed in the open sea, at a distance from land.

The calculus of Newton stopped not here. From the force that the moon exerts on the waters of the ocean, he found the quantity of matter in the moon to that in the earth as 1 to 39:78, or, in round numbers, as 1 to 40. He also found the density of the moon to the density of the earth as 11 to 9.

Subsequent investigations, as we shall have occasion to remark, have shown that much was yet wanting to a complete theory of the tides; and that even after Maclaurin, Bernoulli, and Euler* had added their efforts to those of Newton, there remained enough to give full employment to the calculus of Laplace. As an original deduction, and as a first approximation, that of which I have now given an account will be for ever memorable.

The motion of Comets yet remained to be discussed. They had only lately been acknow-

1 Newton, Princip. lib. iii. prop. 36, 37.
2 See the solutions of these three mathematicians in the Commentary of Le Seur and Jacquier on the third book of the Principia.
ledged to belong to the heavens, and to be placed beyond the region of the earth's atmosphere; but with regard to their motion, astronomers were not agreed. Kepler believed them
to move in straight lines; Cassini thought they
moved in the planes of great circles, but with little curvature. Hevelius had come much nearer the truth: he had shown the curvature of their paths to be different in different parts, and to be greatest when they were nearest the sun; and a parabola having its vertex in that point seemed to him to be the line in which the comet moved. Newton, convinced of the universality of the principle of gravitation, had no doubt that the orbit of the comet must be a conic section, having the sun in one of its foci, and might either be an ellipse, a parabola, or even an hyperbola, according to the relation between the force of projection and the force tending to the centre. As the eccentricity of the orbit on every supposition must be great, the portion of it that fell within our view could not differ much from a parabola; a circumstance which rendered the calculation of the comet's place, when the position of the orbit was once ascertained, more easy than in the case of the planets. Thus far theory proceeded; and observation must then determine with what degree of accuracy this theory represented the phenomena. From three observations of the comet the position of the orbit could be determined, though the geometric problem was one of great difficulty. Newton gave a solution of it; and it was by this that his theory was to be brought to the test of experiment. If the orbit thus determined was not the true one, the places of the comet calculated on the supposition that it was, and that it described equal areas in equal times about the sun, could not agree with the places actually observed. Newton showed, by
the example of the remarkable comet then visible, (1680) that this agreement was as great as could reasonably be expected; thus adding another proof to the number of those already brought to support the principle of universal gravitation. The comets descend into our system from all different quarters in the heavens, and therefore the proofs that they afforded went
to show, that the action of gravity was confined to no particular region of the heavens.

Thus far Newton proceeded in ascertaining the existence, and in tracing the effects, of the principle of gravitation, and had done so with a success of which there had been no instance in the history of human knowledge. At the same time that it was the most successful, it was the most difficult research that had yet been undertaken. The reasonsings upward from the facts to the general principle, and again down from that principle to its effects, both required the application of a mathematical analysis which was but newly invented; and Newton had not only the difficulties of the investigation to encounter, but the instrument to invent, without which the investigation could not have been conducted. Every one who considers all this will readily join in the sentiment with which Baily closes a eulogy as just as it is eloquent:

"Si, comme Platon l'a pensé, il existait dans la nature une échelle d'êtres et de substances intelligentes jusqu'à l'Être Suprême, l'espèce humaine, dépendant ses droits, aurait une foule de grands hommes à présenter; mais Newton, suivi de ses vérités pure, montrerait le plus haut degré de force de l'esprit humain, et suffirait seul pour lui assigner sa vraie place."

1 Histoire de l'Astronomie Moderne, tome II. livre xii. sect. 49.
to the satellites of Jupiter, showing that the squares of their periodic times were as the cubes of their distances from the centre of the body round which they revolved. The imaginary apparatus of cycles and epicycles,—the immobility of the earth,—the supposed essential distinction between celestial and terrestrial substances, those insuperable obstacles to real knowledge, which the prejudice of the ancients had established as physical truths, were entirely removed; and Bacon had taught the true laws of philosophizing, and pointed out the genuine method of extracting knowledge from experiment and observation. The leading principles of mechanics were established; and it was no unimportant circumstance, that the Vortices of Descartes had exhausted one of the sources of error, most seducing on account of its simplicity.

All this had been done when the genius of Newton arose upon the earth. Never till now had there been set before any of the human race so brilliant a career to run, or so noble a prize to be obtained. In the progress of knowledge, a moment had arrived more favourable to the development of talent than any other, either later or earlier, and in which it might produce the greatest possible effect. But, let it not be supposed, while I thus admit the influence of external circumstances on the exertions of intellectual power, that I am lessening the merit of this last, or taking any thing from the admiration that is due to it. I am, in truth, only distinguishing between what it is possible and what it is impossible for the human mind to effect. With all the aid that circumstances could give, it required the highest degree of intellectual power to accomplish what Newton performed. We have here a memorable, perhaps a singular instance, of the highest degree of intellectual power, united to the most favourable condition of things for its exertion. Though Newton's situation was more favourable than that of the men of science who had gone before him, it was not more so than that of those men who pursued the same objects at the same time with himself, placed in a situation equally favourable.

When one considers the splendour of Newton's discoveries, the beauty, the simplicity, and grandeur of the system they unfolded, and the demonstrative evidence by which that system was supported, one could hardly doubt that, to be received, it required only to be made known, and that the establishment of the Newtonian philosophy all over Europe would very quickly have followed the publication of it. In drawing this conclusion, however, we should make much too small an allowance for the influence of received opinion, and the resistance that mere habit is able, for a time, to oppose to the strongest evidence. The Cartesian system of vortices had many followers in all the countries of Europe, and particularly in France. In the universities of England, though the Aristotelian Physics had made an obstinate resistance, they had been supplanted by the Cartesian, which became firmly established about the time when their foundation began to be sapped by the general progress of science, and particularly by the discoveries of Newton. For more than thirty years after the publication of those discoveries, the system of vortices kept its ground; and a translation from the French into Latin of the Physics of Rohault, a work entirely Cartesian, continued at Cambridge to be the text for philosophical instruction. About the year 1718, a new and more elegant translation of the same book was published by Dr Samuel Clarke, with the addition of notes, in which that profound and ingenious writer explained the views of Newton on the principal objects of discussion; so that the notes contained virtually a refutation of the text: they did so, however, only virtually, all appearance of argument and controversy being carefully avoided. Whether this escaped the notice of the learned Doctors or not, is uncertain; but the new translation, from its better Latinity, and the name of the editor, was readily admitted to all the academical honours which the old one had enjoyed. Thus, the stratagem of Dr Clarke completely succeeded; the tutor might prelect from the text, but the pupil would sometimes look into the notes; and error is never so sure of being exposed as when the truth is placed close to it, side by side, without any thing to alarm prejudice, or awaken from its lethargy the dread of innovation. Thus, therefore, the Newtonian philosophy first entered the Univer-
sity of Cambridge under the protection of the

1

Cartesian. If such were the obstacles to its progress that
the new philosophy experienced in a country that
was proud of having given birth to its
author, we must expect it to advance very slow-
ly indeed among foreign nations. In France,
we find the first astronomers and mathematici-
cans, such men as Cassini and Maraldi, quite un-
acquainted with it, and employed in calculating
the paths of the comets they were observing, on
hypotheses the most unfounded and imaginary;
long after Halley, following the principles of
Newton, had computed tables from which the
motions of all the comets that ever had appeared,
or ever could appear, might be easily deduc-
ed. Fontenelle, with great talents and enlarged
views, and, as one may say, officially informed
of the progress of science all over Europe, con-
tinued a Cartesian to the end of his days.
Mairan in his youth was a zealous defender of
the vortices, though he became afterwards one
of the most strenuous supporters of the doctrine
of gravitation.

A Memoir of the Chevalier Louville, among
those of the Academy of Sciences for 1720, is
the first in that collection, and, I believe, the
first published in France, where the elliptic
motion of the planets is supposed to be produced by
the combination of two forces, one projectile
and the other centripetal. Maupertuis soon after
went much farther: in his elegant and philoso-
phic treatise, Figure des Astres, published about
1730, he not only admitted the existence of at-
traction as a fact, but even defended it, when
considered as an universal property of body,
against the reproach of being a metaphysical ab-
surdity. These were considerable advances, but
they were made slowly; and it was true, as Vol-
taire afterwards remarked, that though the au-
тор of the Principia survived the publication
of that great work nearly forty years, he had
not, at the time of his death, twenty followers
out of England.

We should do wrong, however, to attribute
this slow conversion of the philosophic world
entirely to prejudice, inertness, or apathy. The
evidence of the Newtonian philosophy was of a
nature to require time in order to make an im-
pression. It implied an application of mathe-
matical reasoning which was often difficult: the
doctrine of prime and ultimate ratios was new
to most readers, and could be familiar only to
those who had studied the infinitesimal analysis.
The principle of gravitation itself was con-
sidered as difficult to be admitted. When pre-
sented indeed as a mere fact, like the weight
of bodies at the earth's surface, or their tendency
to fall to the ground, it was free from objection;
and it was in this light only that Newton wish-
ed it to be considered. But though this appears
to be the sound and philosophical view of the
subject, there has always appeared a strong de-
sire in those who speculated concerning gravita-
tion to go farther, and to inquire into the cause
of what, as a mere fact, they were sufficiently
disposed to admit. If you said that you had no
explanation to give, and were only desirous of
having the fact admitted, they alleged that
this was an unsatisfactory proceeding,—that it
was admitting the doctrine of occult causes,—that
it amounted to the assertion, that bodies acted
in places where they were not,—a proposition
that, metaphysically considered, was undoubted-

1 The Universities of St Andrews and Edinburgh were. I believe, the first in Britain where the Newtonian philosophy
was made the subject of the academical prelections. For this distinction they are indebted to James and David Gregory,
the first in some respects the rival, but both the friends of Newton. Whiston bewails in the anguish of his heart the dif-
ference in this respect between those universities and his own. David Gregory taught in Edinburgh for several years
prior to 1690, when he removed to Oxford; and Whiston says, "He had already caused several of his scholars to keep
acts, as we call them, upon several branches of the Newtonian philosophy, while we at Cambridge (poor wretches) were ig-
nominiously studying the fictitious hypotheses of the Cartesian." (Warton's Memoirs of his own Life.) I do not, how-
ever, mean to say, that from this date the Cartesian philosophy was expelled from those universities. The Physics of Ro-
hault were still in use as a text, at least occasionally, to a much later period than this; and a great deal, no doubt, depend-
ed on the character of the individual professors. Keill introduced the Newtonian philosophy in his lectures at Oxford
in 1697; but the instructions of the tutors, which constitute the real and efficient system of the university, were not cast in
that mould till long afterwards. The publication of S'Gravesande's Elements proves that the Newtonian philosophy was
taught in the Dutch universities before the date of 1720.

2 "Vocem attractionem hic generaliter uarugo pro corporum constu quocunque accedendi ad invicem; sic conatus iste fiat ab actione
corporum, vel se mutuo potestium, vel per spiritus emissus se invicem agitantum; sic est ab actione aetheris, aut aeris, medive conjunctae,
seu corporae seu incorporati, ortatur, corpora invitantia in se invicem utcumque impellentia." (Principia Math. lib. i. schol. ad finem
prop. 69.)
ly absurd. The desire to explain gravitation is indeed so natural, that Newton himself felt its force, and has thrown out, at the end of his Optics, some curious conjectures concerning this general affection of body, and the nature of that elastic ether to which he thought that it was perhaps to be ascribed. "Is not this medium (the ether) much rarer within the dense bodies of the sun, stars, and planets, than in the empty celestial spaces between them? And, in passing from them to great distances, does it not grow denser and denser perpetually, and thereby cause the gravity of those great bodies to one another, every body endeavouring to go from the denser parts of the medium to the rarer?"

Notwithstanding the highest respect for the author of these conjectures, I cannot find any thing like a satisfactory explanation of gravity in the existence of this elastic ether. It is very true that an elastic fluid, of which the density followed the inverse ratio, of the distance from a given point, would urge the bodies immersed in it, and impervious to it, toward that point with forces inversely as the squares of the distances from it; but what could maintain an elastic fluid in this condition, or with its density varying according to this law, is a thing as inexplicable as the gravity which it was meant to explain. The nature of an elastic fluid must be, in the absence of all inequality of pressure, to become everywhere of the same density. If the causes that produce so marked and so general a deviation from this rule be not assigned, we can only be said to have substituted one difficulty for another.

A different view of the matter was taken by some of the disciples and friends of Newton, but which certainly did not lead to any thing more satisfactory. That philosopher himself had always expressed his decided opinion that gravity could not be considered as a property of matter; but Mr Cotes, in the preface to the second edition of the Principia, maintains that gravity is a property which we have the same right to ascribe to matter, that we have to ascribe to it extension, impenetrability, or any other property. This is said to have been inserted without the knowledge of Newton,—a freedom which it is difficult to conceive that any man could use with the author of the Principia. However that be, it is certain that these difficulties have been always felt, and had their share in retarding the progress of the philosophy to which they seemed to be inseparably attached.

There were other arguments of a less abstruse nature, and more immediately connected with experiment, which, for a time, resisted the progress of the Newtonian philosophy, though they contributed, in the end, very materially to its advancement. Nothing, indeed, is so hostile to the interests of truth, as facts inaccurately observed; of which we have a remarkable example in the measurement of an arch of the meridian across France, from Amiens to Perpignan, though so large as to comprehend about seven degrees, and though executed by Cassini, one of the first astronomers in Europe. According to that measurement, the degrees seemed to diminish on going from south to north, each being less by about an 800th part than that which immediately preceded it toward the south. From this result, which is entirely erroneous, the conclusion first deduced was correct, the error in the reasoning, by a very singular coincidence,
having corrected the error in the data from which it was deduced. Fontenelle argued that, as the degrees diminished in length on going toward the poles, the meridian must be less than the circumference of the equator, and the earth of course swelled out in the plane of that circle, agreeably to the facts that had been observed concerning the retardation of the pendulum when carried to the south. This, however, was the direct contrary of the conclusion which ought to have been drawn, as was soon perceived by Cassini and by Fontenelle himself. The degrees growing less as they approached the pole, was an indication of the curvature growing greater, or of the longer axis of the meridian being the line that passed through the poles, and that coincided with the axis of the earth. The figure of the earth must, therefore, be that of an oblong spheroid, or one formed by the revolution of an ellipsis about its longer axis. This conclusion seemed to be strengthened by the prolongation of the meridian from Amiens northward to Dunkirk in 1718, as the same diminution was observed; the medium length of the degree between Paris and Dunkirk being 56970 toises, no less than 137 less than the mean of the degrees toward the south. All this seemed quite inconsistent with the observations on the pendulum, as well as with the conclusions which Newton had deduced from the theory of gravity. The Academy of Sciences was thus greatly perplexed, and uncertain to what side to incline. In these circumstances, J. Cassini, whose errors were the cause of all the difficulty, had the merit of suggesting the only means by which the question concerning the figure of the earth was likely to receive a satisfactory solution,—the measurement of two degrees, the one under the equator, and the other as near to the pole as the nature of the thing would admit. But it was not till considerably beyond the limits of the period of which I am now treating, that these measures were executed, and that the increase of the degrees toward the poles, or the oblateness of the earth's figure, was completely ascertained. Cassini, on resuming his own operations, discovered, and candidly acknowledged, the errors in his first measurement; and thus the objections which had arisen in this quarter against the theory of gravity became irresistible arguments in its favour. This subject will occupy much of our attention in the history of the second period, till which the establishment of the Newtonian philosophy on the Continent cannot be said to have been accomplished.

In addition to these discoveries in physical astronomy, this period affords several on the descriptive parts of the science, of which, however, I can only mention one, as far too important to be passed over in the most general outline. It regards the apparent motion in the fixed stars, known by the name of the Aberration, and is the discovery of Dr Bradley, one of the most distinguished astronomers of whom England has to boast. Bradley and his friend Molyneux, in the end of the year 1725, were occupied in searching for the parallax of the fixed stars by means of a zenith sector, constructed by Graham, the most skilful instrument maker of that period. The sector was erected at Kew; it was of great radius, and furnished with a telescope twenty-four feet in length, with which they proposed to observe the transits of stars near the zenith, according to a method that was first suggested by Hooke, and pursued by him so far as to induce him to think that he had actually discovered the parallax of \(\gamma \) Draconis, the bright star in the head of the dragon, on which he made his observations. They began their observations of the transits of the same star on the 3d of December, when the distance from the zenith at which it passed was carefully marked. By the observations of the subsequent days the star seemed to be moving to the south; and about the beginning of March in the following year, it had got 20' to the south, and was then nearly stationary. In the beginning of June it had come back to the same situation where it was first observed, and from thence it continued its motion northward till September, when it was about 20' north of the point where it was first seen, its whole change of declination having amounted to 40'.

1 Mémoires de l'Académie des Sciences, 1718, p. 245.
2 Phil. Trans. vol. XXXV. p. 697.
This motion occasioned a good deal of surprise to the two observers, as it lay the contrary way to what it would have done if it had proceeded from the parallax of the star. The repetition of the observations, however, confirmed their accuracy; and they were afterwards pursued by Dr Bradley, with another sector constructed also by Graham, of a less radius, but still of one sufficiently great to measure a star's zenith distance to half a second. It embraced a larger arch, and admitted of the observations being extended to stars that passed at a more considerable distance from the zenith.

Even with this addition the observations did not put Bradley in possession of the complete fact, as they only gave the motion of each star in declination, without giving information about what change might be produced in its right ascension.

Had the whole fact, that is, the motion in right ascension as well as in declination, been given from observation, it could not have been long before the cause was discovered. With such information, however; as Dr Bradley had, that discovery is certainly to be regarded as a great effort of sagacity. He has not told us the steps by which he was led to it; only we see that, by the method of exclusion, he had been careful to narrow the field of hypothesis, and had assured himself that the phenomenon was not produced by any nutation of the earth's axis,—by any change in the direction of the plumb-line, or by refraction of any kind. All these causes being rejected, it occurred to him that the appearances might arise from the progressive motion of light combined with the motion of the earth in its orbit. He reasoned somewhat in this manner. If the earth were at rest, it is plain that a telescope, to admit a ray of light coming from a star, to pass along its axis, must be directed to the star itself. But, if the earth, and of course the telescope, be in motion, it must be inclined forward, so as to be in the diagonal of a parallelogram, the sides of which represent the motion of the earth and the motion of light; or in the direction of those motions, and in the ratio of their velocities. It is with the telescope just as with the vane at the mast-head of a ship; when the ship is at anchor, the vane takes exactly the direction of the wind; when the ship is under weigh, it places itself in the diagonal of a parallelogram, of which one side represents the velocity of the ship, and the other the velocity of the wind. If, instead of the vane, we conceive a hollow tube, movable in the same manner, the case will become more exactly parallel to that of the telescope. The tube will take such a position that the wind may blow through it without striking against the sides, and its axis will then be the diagonal of the parallelogram just referred to.

The telescope, therefore, through which a star is viewed, and by the axis of which its position is determined, must make an angle with the straight line drawn to the star, except when the earth moves directly upon the star, or directly from it. Hence it follows, that if the star be in the pole of the ecliptic, the telescope must be pointed forward, in the direction of the earth's motion, always by the same angle; so that the star would be seen out of its true place by that angle, and would appear to describe a circle round the pole of the ecliptic, the radius of which subtended, at the earth, an angle, of which the sine is to unity as the velocity of the earth to the velocity of light. If the star be anywhere between the plane of the ecliptic and the pole, its apparent path will be an ellipse, the longer axis of which is the same with the diameter of the former circle, and the shorter equal to the same quantity, multiplied by the sine of the star's latitude. If the star be in the plane of the ecliptic, this shorter axis vanishes, and the apparent path of the star is a straight line, equal to the axis just mentioned.

Bradley saw that Roemer's observation concerning the time that light takes to go from the sun to the earth gave a ready expression for the velocity of light compared with that of the earth. The proportion, however, which he assumed as best suited to his observations was somewhat different; it was that of 10813 to 1, which made the radius of the circle of aberration 20°, and the transverse axis of the ellipse in every case, or the whole change of position, 40°. It was the shorter axis which Bradley had actually observed in the case of γ Draconis,
that star being very near the solstitial colure, so that its changes of declination and of latitude are almost the same. In order to show the truth of his theory, he computed the aberration of different stars, and, on comparing the results with his observations, the coincidence appeared almost perfect, so that no doubt remained concerning the truth of the principle on which he had founded his calculations. He did not explain the rules themselves: Clairaut published the first investigation of these in the *Memoirs of the Academy of Sciences* for 1737. Simpson also gave a demonstration of them in his *Essays*, published in 1740.

It has been remarked, that the velocity of light, as assumed by Bradley, did not exactly agree with that which Roemer had assigned; supposing the total amount of the aberration $40\frac{1}{2}''$, it gave the time that light takes to come from the sun to the earth $8' 13''$; but it is proper to add, that since the time of this astronomer, the velocity of light deduced from the eclipses of Jupiter's satellites has been found exactly the same.

It is remarkable that the phenomenon thus discovered by Bradley and Molyneux, when in search of the parallax of the fixed stars, is in reality as convincing a proof of the earth's motion in its orbit as the discovery of that parallax would have been. It seems, indeed, as satisfactory as any evidence that can be desired. One only regrets, in reflecting on this discovery, that the phenomenon of the aberration was not foreseen, and that, after being predicted from theory, it had been ascertained from observation. As the matter stands, however, the discovery both of the fact and the theory is highly creditable to its author.

In the imperfect outline which I have now sketched of one of the most interesting periods in the history of human knowledge, much has been omitted, and many great characters passed over, lost, as it were, in the splendour of the two great luminaries which marked this epocha. Newton and Leibnitz are so distinguished from the rest even of the scientific world, that we can only compare them with one another, though, in fact, no two intellectual characters, who both reached the highest degree of excellence, were ever more dissimilar.

For the variety of his genius, and the extent of his research, Leibnitz is perhaps altogether unrivalled. A lawyer, an historian, an antiquary, a poet, and a philologist,—a mathematician, a metaphysician, a theologian, and, I will add, a geologist, he has in all these characters produced works of great merit, and in some of them of the highest excellence. It is rare that original genius has so little of a peculiar direction, or is disposed to scatter its efforts over so wide a field. Though a man of great inventive powers, he occupied much of his time in works of mere labour and erudition, where there was nothing to invent, and not much of importance to discover. Of his inventive powers as a mathematician we have already spoken; as a metaphysician, his acuteness and depth are universally admitted: but metaphysics is a science in which there are few discoveries to be made; and the man who searches in it for novelty, is more likely to find what is imaginary than what is real. The notion of the *Monads*, those unextended units, or simple essences, of which, according to this philosopher, all things corporeal and spiritual, material or intellectual, are formed, will be readily allowed to have more in it of novelty than truth. The *pre-established harmony* between the body and the mind, by which two substances incapable of acting on one another are so nicely adjusted from the beginning, that their movements for ever correspond, is a system of which no argument can do more than prove the possibility. And, amid all the talent and acuteness with which these doctrines are supported, it seems to argue some unsoundness of understanding, to have thought that they could ever find a place among the established principles of human knowledge.

Newton did not aim at so wide a range. Fortunately for himself and for the world, his genius was more determined to a particular point, and its efforts were more concentrated. Their direction was to the accurate sciences, and they
soon proved equally inventive in the pure and in the mixed mathematics. Newton knew how to transfer the truths of abstract science to the study of things actually existing; and, by returning in the opposite direction, to enrich the former by ideas derived from the latter. In experimental and inductive investigation he was as great as in the pure mathematics, and his discoveries as distinguished in the one as in the other. In this double claim to renown, Newton stands yet unrivalled; and though, in the pure mathematics, equals may perhaps be found, no one, I believe, will come forward as his rival both in that science and in the philosophy of nature. His caution in adopting general principles, his dislike to what was vague or obscure, his rejection of all theories from which precise conclusions cannot be deduced, and his readiness to relinquish those that depart in any degree from the truth, are, throughout, the characters of his philosophy, and distinguish it very essentially from the philosophy of Leibnitz. The characters now enumerated are most of them negative; but without the principles on which they are founded, invention can hardly be kept in the right course. The German philosopher was not furnished with them in the same degree as the English, and hence his great talents have run very frequently to waste.

It may be doubted also, whether Leibnitz's great metaphysical acuteness did not sometimes mislead him in the study of nature, by inclining him to those reasonings which proceed, or affect to proceed, continually from the cause to the effect. The attributes of the Deity were the axioms of his philosophy; and he did not reflect that this foundation, excellent in itself, lies much too deep for a structure that is to be raised by so feeble an architect as man; or, that an argument, which sets out with the most profound respect to the Supreme Being, usually terminates in the most unwarrantable presumption. His reasonings from first causes are always ingenious; but nothing can prevent the substitution of such causes for those that are physical and efficient, from being one of the worst and most fatal errors in philosophy.

As an interpreter of nature, therefore, Leibnitz stands in no comparison with Newton. His general views in physics were vague and unsatisfactory; he had no great value for inductive reasoning; it was not the way of arriving at truth which he was accustomed to take; and hence, to the greatest physical discovery of that age, and that which was established by the most ample induction, the existence of gravity as a fact in which all bodies agree, he was always incredulous, because no proof of it, a priori, could be given.

As to who benefited human knowledge the most, no question, therefore, can arise; and if genius is to be weighed in this balance, it is evident which scale must preponderate. Except in the pure mathematics, Leibnitz, with all his talents, made no material or permanent addition to the sciences. Newton, to equal inventions in mathematics added the greatest discoveries in the philosophy of nature; and, in passing through his hands, Mechanics, Optics, and Astronomy, were not merely improved, but renovated. No one ever left knowledge in a state so different from that in which he found it. Men were instructed not only in new truths, but in new methods of discovering truth; they were made acquainted with the great principle which connects together the most distant regions of space, as well as the most remote periods of duration; and which was to lead to future discoveries, far beyond what the wisest or most sanguine could anticipate.
Dissertation Fourth;

Exhibiting a General View

Of the

Progress of Mathematical and Physical Science,

Chiefly

During the Eighteenth Century.

By John Leslie, Esq.

Professor of Natural Philosophy in the University of Edinburgh;
Corresponding Member of the Royal Institute of France.
DISSEMINATION FORTH

EXHIBITING A GENERAL VIEW

OF THE PROGRESS OF MATHEMATICAL AND PHYSICAL SCIENCE

DURING THE PRESENT CENTURY.

By JOHN HODGSON, M.A.

CORRESPONDING MEMBER OF THE ROYAL INSTITUTION OF LONDON.
Dissertation Fourth.

Introduction.

The progress of Mathematical and Physical Science during the brilliant period which closed with Newton and Leibnitz, has been treated with fidelity and sustained interest by the hand of a master, whose calm judgment weighed impartially the different claims of discovery, whose powers of illustration could expand the fine results, and whose luminous eloquence was commensurate with the dignity of the subject. To resume the Discourse, and continue it through the course of the eighteenth century, is a task of increasing difficulty, which would require vigorous resolution, patient research, and skilful selection. The materials are ample, indeed, but they are likewise multifarious, and often lie scattered among the countless volumes of the Transactions of Learned Societies. The picture to be delineated is not less imposing, and has far greater extent and variety of outline, while it exhibits more elaboration in its details.

Scientific discovery had, during this latter period, continued to advance with accelerated progression; and the triumphs of penetrating ingenuity, if not so transcendant, were equally conspicuous, more diversified, and were spread over a much wider surface. Observation was directed with greater skill and attention, and the delicate art of experimenting better understood, and more generally practised. The investigation of some intricate phenomena called forth the resources of a refined calculus; and this new Geometry, the most powerful instrument ever wielded by human genius, was then cultivated, especially on the Continent of Europe, with enthusiastic ardour and astonishing success.

Newton, the glory of our island, had no competitor save Leibnitz in mathematical invention; but his sublime discoveries in the highest walks of science—in Optics and Astronomy—gave him a pre-eminence far above the most towering rival. Yet such is the slow progress of innovation, even among the learned, that, for the space of nearly half a century, his Theory of Light was generally slighted, and the system of Universal Attraction treated as a mere fanciful hypothesis. The Principia, which crowned the exertions of the creator of philosophical science, was admired and imperfectly under-
stood by a few of his countrymen, but had to undergo the ordeal of a rigorous and sometimes unfriendly examination by foreigners. Averse from the bustle and contention of letters, he delighted to pursue his profound researches in perfect seclusion, and had appeared satisfied with registering the grand series of discoveries in that concentrated form which best accorded with the tone of his mighty intellect. When afterwards persuaded reluctantly to publish those brief compositions, he could not submit to the drudgery of retracing his steps, or of expanding his demonstrations, and bringing them nearer the reach of his contemporaries. Newton was nine years in possession of the Method of Fluxions before Leibnitz struck into a similar path; nor did he give it to the world till an equal time more had elapsed. The rapid mind of the German philosopher had framed his Calculus with less regard to elegance and strict logic, but clothed it in a simpler and more definite notation or algorithm, which, from its aptness to improvement, has in the sequel conferred a decided superiority. The diversified occupations of Leibnitz allowed him to work only at intervals on his great invention; but he found most able and zealous coadjutors in the two Bernoullis, who laboured in promoting the new calculus with uncommon ingenuity, indefatigable activity, and even a contentious emulation. The Higher Analysis had by such exertions already acquired greater extension on the Continent than the Method of Fluxions at its first publication in England; and our mathematicians were hence unprepared to follow many of the abstruse and abbreviated demonstrations inserted in the Principia. The Differential and Integral Calculus having thus made such rapid advances abroad, continued for a long time afterwards to maintain a preponderating ascendancy. The marks of the Fluxionary Method, consisting in mere dots, and therefore not susceptible of variation or improvement, sensibly though indirectly checked the tide of invention in England; and perhaps the splendour of Newton's fame had some influence for a season in overdazzling the lustre of native talent. As a parallel instance, it may be remarked that nothing pre-eminent in science was produced by the French, for half a century after the epoch of Descartes.

The immediate successors of Newton were still imperfectly prepared to rise to the sublimity of their great master, or to scan the vast superstructure which his genius had reared. Yet was more scientific invention displayed by them than had appeared at any former period in England; and nothing but the comparison with transcendant powers of intellect could tend to depress their just merits. By their zealous efforts the System of the Universe was consolidated, and its outworks enlarged. Cotes, who was snatched away at an early age, discovered the beautiful theorems of Trinomial Factors, and multiplied the resources of integration by skillful applications of Logarithms and Circular Arccs. Brook Taylor laid the foundation of the Method of Increments or Finite Differences, solved some of the most intricate problems in Dynamics; and in this arduous department he successfully entered the lists with the celebrated Bernoullis. De Motvre and Stirling particularly distinguished themselves, by extending and applying the Doctrine of Series, a most important branch of the Fluxionary Calculus. In the great astronomical discoveries, England still led the way. Bradley, who has been justly styled the modern Hipparchus, combined the habits of accurate observation with the talent of acute discernment and felicitous invention. His analysis of the Aberration of Light furnished the first incontrovertible proof of our Solar System; while his fine detection of the Nutation of the Earth's Axis confirmed the Theory of Universal Attraction. Simpson, but above all Maclaurin, the elegant expounder of the Principia, likewise materially contributed, by their various mathematical researches, to the advancement of the science of Physical Astronomy. Nor was England less indebted to the ingenuity and exquisite skill of her artists, who now constructed instruments of a delicacy far surpassing any former attempts, and during the last century furnished for the most part the Observatories on the Continent.

Though France had for a very long time produced nothing in science of much originality or importance, the munificence of her government
continued to encourage philosophical pursuits; and now, by directing the mensuration of the Meridian at the most distant points,—within the Arctic Circle, and under the Equator,—it procured accurate data for determining the true figure of our Planet. It was the more precise measure of a degree of latitude ascertained by Picard, that had at last enabled Newton to subject to the test of calculation his grand idea of extending the power of gravitation from the earth's surface, after the simplest law of decrease, to the orbit of the moon. But the satisfaction was reserved for the successors of our immortal chief, to see his determination of the oblate form of the earth, arising from the mutual attraction of all its particles, modified by the influence of centrifugal force, fully confirmed by a close investigation of the results of the skilful and laborious observations brought home by the French astronomers. Nothing, indeed, contributed so much to exalt the character of the Newtonian Philosophy on the Continent as those scientific expeditions; while the credit of the system of Descartes, which bears no such scrutiny, rapidly declined. Mathematicians, invited to a rich field of discovery, were eager to examine the Principia through all its details; and the progress which the New Calculus had made, provided them with instruments for this dissection. The profound author had left indeed several parts unfinished; of some of the more difficult problems he had merely sketched the solution; and he had commonly supplied the defects of his analytical procedure by the exercise of wonderful sagacity and penetration.

Maupertuis was the first mathematician of any note that ventured publicly in France to espouse the Newtonian Philosophy. But perhaps no writer contributed more effectively to promote its diffusion and popular reception than Voltaire, whose universal talent ranged through the sphere of human knowledge, and whose easy and simple style gave transparency to his conceptions. The French, at length awakened from the Cartesian dreams, and directed into the path of inductive philosophy, again put forth their inventive powers. The fine genius of Clairaut and D'Alembert early soared to the highest distinction in scientific research. Both these illustrious men showed, from their infancy, the strongest disposition for mathematical studies, which they cultivated with the most ardent and persevering application, and displayed in their profound investigations all the rich and varied stores of original invention.

Clairaut began his labours with a capital extension of the Theory of Curve Lines. But, in his riper years, he directed the whole force of his ingenuity and analytical skill to explore the depths of Physical Astronomy. He deduced the figure of the earth strictly from the principle of universal attraction, with the admission only of the very simplest conditions. But not content with mere speculation, he sought the practical solution of that problem, and therefore eagerly joined the Academicians who were dispatched to measure a degree of latitude within the Arctic Circle. After achieving this grand operation, he resumed with vigour the examination of the Newtonian System, and concentrated his utmost exertions in resolving the arduous problem of the three bodies, or in determining the influence of a planet or the sun to modify the motion and orbit of another planet or satellite. The Integral Calculus furnishes yet no direct or absolute solution. It became necessary to proceed by a train of successive approximations, simplifying and condensing the computation by the judicious rejection of the small excrescences. But the first result was most perplexing, and seemed to betray an evident imperfection in the great Law of Gravitation. Not discouraged, however, by this repulse, the persevering analyst pushed his calculations still farther, and collecting the minor terms of the series, at last arrived at a conclusion entirely conformable with observation, and thus established beyond all dispute the harmony of the Theory of Attraction.

But Clairaut did not rest satisfied with speculative conclusions, however beautiful; he sought to embody his formulae in real numbers; and availing himself of the aid of some expert calcu-

1 The question especially selected was the annual change of the position of the axis of the moon's elliptical path about the earth, occasioned by solar attraction.
lators, he soon produced a set of Lunar Tables, much more accurate than had been yet attained. Encouraged by such eminent success, he now directed his inquiries to the more distant objects of our system. The comet, whose return was predicted by the sagacity of Halley, did not appear at the time assigned, and astronomers began to feel uneasy at their disappointment. From this state of inquietude they were soon relieved by the soaring investigation of Clairaut, who found that the disturbing influence of Jupiter and Saturn would retard for several months the advance of the distant stranger, and computed with surprising nearness, from his imperfect data, the time of the comet's actual appearance. But excessive application and the solicitations of society preyed on a languid frame, and premature death tore away that brilliant genius in the midst of his career of triumph and applause.

D'Alembert, who rose to still higher celebrity, and contributed to distinguish the character of the age in which he lived, closely followed in this research, though by a different path; encountered similar difficulties, obtained the same partial result, but finally arrived at a like satisfactory conclusion. He carried his acuteness and penetration into all the abstruse departments of physics, and marked his progress by originality of conception. The success of this most ingenious philosopher would have been more complete, if he had confined his views to the pursuits of abstract science. But he wanted that patience to which Newton, with innate modesty, ascribed all his advantages. In discussing the most arduous questions, D'Alembert advanced generally by new paths, and displayed great resources and much versatility of talent. He would seldom retouch his formulæ, or seek to mould them into simplicity and elegance, and never submitted to the labour of reducing them to actual application. Ambitious to excel in literature as in science, he transferred into his miscellaneous compositions the same strict logic and nice discrimination which guided his analytical researches, and likewise contracted a corresponding style, remarkable for the qualities of precision and clearness, but possessing no warmth or elevation.

The last of the three illustrious men who, by separate roads, arrived at the same conclusions, and thus concurred in fixing the true system of the world, was Leonard Euler, born near Bâle in Switzerland, and educated under the Bernoullis, but who, patronised by foreign courts, passed a very long and most laborious life at St Petersburg and Berlin. He was indisputably the greatest analyst that has ever appeared, displaying infinite address, perspicacity, and elegance in his mode of investigation, and pursuing or transforming the most intricate calculations with such astonishing readiness and rapidity, as if they seemed only mere pastimes to recreate his invention. But the supremacy of Euler was confined to his unrivalled skill in applying analysis; he attained little eminence in philosophy and general science, and showed no relish for the charms of literature. His improvements and discoveries, however, during a life of assiduous and unremitting labour in every branch of the Calculus, form a monument of the most stupendous magnitude.

Our island, after the decease of Maclaurin, produced none to compete with the great mathematicians of the Continent, except Thomas Simpson, whose native talent had struggled through indigence and a neglected education. He solved with commendable neatness and brevity several of the difficult questions of Physical Astronomy; but he was deficient in taste and method, and only followed tardily and at a distance those masters in science. For a long period afterwards the inventive genius of England appeared to slumber. The learned were content with merely commenting on the Principia, but rarely borrowing a few scattered lights from abroad. The current of investigation was diverted into other channels, or absorbed among humbler objects. In the meanwhile, a new and brilliant science, beyond the dominion of Mechanical Philosophy, had been gradually forming, to which our experimenters contributed their full share. Electricity captivated its numerous cultivators by surprising and splendid displays; but though it engaged the imagination, it afforded little exercise to the judgment, and was not fitted to call forth the higher mental energies. The application of English talent was now
mainly directed to the improvement and extension of the mechanical arts, though perhaps few nations in Europe have less availed themselves of the results of abstract science towards aiding and correcting the operations of practice.

In the career of the sublimer sciences, the Continent for a long time afterwards maintained its ascendancy, which was secured by the very superior skill displayed in managing the integral calculus, with its improved and refined notation. But a succession of minor discoveries continued to expand and consolidate every department of Natural Philosophy. Daniel Bernoulli, the most amiable, if not the most ingenious of that shining family, embraced with candour the doctrine of Newton, and likewise evinced, in all his physical researches, a considerable share of the sagacity and singular address which so eminently distinguished that great master. The attention of Lambert was diverted to a wide variety of pursuits, and his original and excursive mind shed new lights on every subject it explored. He conjoined analytical skill with the talent of experimental research. But unfortunately he contented himself in operating with rude instruments, and commonly trusted to the probability of rectifying such imperfect results by the help of combined calculations. If Mayer had not the same reach and versatility of genius, he possessed that inciting ardour and unconquerable perseverance which enabled his discrimination to erect a durable monument. Adopting the clear formulæ of Euler for the several elements of the moon's motions, he deduced the indeterminate co-efficients from a strict and most laborious comparison of Bradley's observations, and by thus piecing and adjusting the numerical quantities, he framed a body of Lunar Tables, which has long been regarded as a standard of excellence. It is thus that England has generally supplied the means which rendered the conclusions of the Continental mathematicians really available. The reflecting instrument of Hadley, the achromatic glass of Dolland, and the dividing machine of Ramsden, have, in succession, mightily contributed to the progress of practical astronomy. The numerous observations of Bradley and Maskelyne furnished the correct data which guided Lagrange, Laplace, and Gauss, through all their profound researches, to the discovery of the cyclical and reciprocating motions of the heavenly bodies. The various disturbing causes incessantly in operation are, after the lapse of certain vast periods, again renewed and repeated in the same order of succession, and thus preserve the fine harmony, and maintain the permanent stability, of the Universal System.

The British mathematicians had long neglected the cultivation of the Higher Analysis, and were perhaps the more disposed to overlook its pre-eminent advantages, from observing the course of their brethren on the Continent, who, on various occasions, after magnificent displays of the powers of calculation, but either from their incomplete integrations or the defective statement of the physical principles, arrived merely at the same imperfect conclusions that had been discovered before by much simpler means. Our island has at last resumed its proper station in the loftiest departments of science. Emancipated from the trammels of a narrow notation, the more aspiring votaries pursue with ardour the most refined calculus; while they guide its application and avoid its abuse by the infusion of that spirit of purity and elegance derived from the discipline of the ancient geometry. Among the illustrious few whom foreign nations would adopt with distinction, we may cite the gifted individual who, rivalling the fame of Lagrange and Laplace, has, in his beautiful solution of the problem of the Attraction of Spheroids, struck out a new and direct path, which completely throws into the shade their very laborious and perplexed trains of investigation.

Having traced the great outline, it only remains to sketch the plan of this Dissertation. I shall arrange Mathematical and Physical Science under the two great heads—of Pure or Speculative Science—and that of Applicate or Practical Science; each of these again to be classed in subordinate divisions. Pure Mathematical Science includes Geometry, Arithmetic, Algebra, and the Higher Calculus. Its applications are very numerous and diversified; but without pursuing the details, our attention will be mainly directed to the progress of general and pervading principles.
Physical Science occupies a confined space till it receives the accession of Mathematics, with which it becomes always the more blended in proportion as it improves and expands. Pure Physics at present appears limited to Magnetism and Electricity, which have yet drawn scarcely any aid from the disquisitions of Geometry. The infusion of Mathematics into Physics, and the application of Physical Science to the Practical Arts, led to the most wonderful results, which have aroused the ingenuity and vastly multiplied the productive industry of the eighteenth century. Applicate Physical Science embraces Dynamics, Hydrostatics, Pneumatics, Optics, Electricity, Magnetism, the Doctrine of Heat, Meteorology, Geography, and Astronomy. In discussing these important subjects, separately or inclusively, incidental lights will be reflected on General Mechanics and the Elements of Naval Architecture.

SECTION I.

SPECULATIVE MATHEMATICS.

I. GEOMETRY.

Pure Geometry is in strictness limited to the mere equality of lines, angles, and spaces, whether superficial or solid. It owes its main extension to the principle of comparison or the doctrine of proportion, which is really but an application of Arithmetic, the idea of Number being transferred to Quantity or Magnitude by a process of subdivision. Such concert has produced the most perfect of abstract sciences, and erected the noblest monument of the genius and invention of the ancient Greeks. That acute people nearly completed the Elements of Geometry; and carrying their speculations beyond the properties of the Circle, they investigated the Sections of the Cone, and traced the character of some of the Higher Curves. The demonstrations left by the Greek Geometers are models of accuracy, clearness, and elegance—admirably calculated for training the minds of youth to habits of close reasoning and luminous arrangement. The circumspection of those great instructors of mankind in distinguishing the several cases, and marking the limitations of a proposition, though frequently bordering on proximity, might serve to warn the rapid cultivator of Algebra against indulging the tendency to hasty generalization which has given rise to the various paradoxes, and even palpable absurdities, that still disfigure the excellence of the modern art. The method of Geometrical Analysis, which investigates the construction of a problem, by remounting from its conditions along a chain of dependence to some known property, affords decidedly the best exercise and initiatory discipline for the student in Mathematics. It imbues the mind with a taste and elegance which insensibly extend their influence over the culture of the other sciences. The most curious and difficult portion, however, of the Greek Geometry, has unfortunately been transmitted to us in a mutilated and imperfect state, which has often tortured the skill of commentators and mathematicians to restore it. Soon after the revival of letters, the principal works of the Greek Geometers were translated in Italy by Commandine; but of Apollonius' Conics several books are wanting, and some parts of the Collections of Pappus exhibit only detached fragments. Near the close of the sixteenth century, and early in the seventeenth, Vieta, from a few scattered hints, restored the lost Tract on Tangencies, Fermat framed some beautiful separate demonstrations, and Snellius reproduced the Plane Loci, but in a tasteless shape. Soon afterwards Viviani, the surviving disciple of Galileo, supplied the fifth book of Apollonius, and with such remarkable
success, that on comparing his production with an Arabic version just then discovered, he appeared to have surpassed his original. Huygens\(^1\) afterwards gave, in the purest taste, some specimens of the Ancient Geometry. A Collection of the Mathematical Treatises of the Greeks respecting the Art of War was now published in a magnificent folio from the Royal Press at Paris. But a more extensive undertaking was planned by our oriental traveller Bernard, to print at Oxford a complete series of the Greek Geometers, filling up the blanks from the inspection of Arabic Manuscripts. In pursuance of this scheme, Dr David Gregory\(^2\) edited Euclid, and

Dr Halley\(^3\) Apollonius, while he restored likewise the Tracts on the Section of Ratio and of Space. After an interval of fourscore years, Torrelli's\(^4\) elegant edition of Archimedes, purchased in Italy, has issued from the same press. Every lover of science would rejoice to see a portion of those ample funds that have been provided at Oxford for the encouragement of such expensive works, appropriated to the republication of Pappus' Mathematical Collections, of which several manuscripts exist far more complete than the copy printed by Commandine.

The relish for the Ancient Geometry has been

\(^1\) Born at the Hague in 1629, and son of the Lord of Zuylichen, Secretary to the Prince of Orange; completed his mathematical studies at Leyden under Schooten, and printed a beautiful tract on the Circle and Hyperbola in 1651. But after visiting different countries, he published in 1658 his original and immortal work entitled \textit{Horologium Oscillatorium}. Having successfully applied the pendulum and the spiral spring to regulate the motions of clocks and watches, he was anxious to accommodate those instruments to the finding of the longitude at sea. For that purpose he visited England, where he was treated with distinction; but returning in 1663 through France, he was induced by the Minister Colbert to accept of a large pension, and fix his abode at Paris. There he resided till his health became impaired, and in 1661 he retired to the calmer enjoyment of his native country. The same pursuits, however, engaged his attention, till his death at the Hague on the 5th of June 1695.

\(^2\) He was one of the clearest writers and most elegant geometers of modern times, and his powers of invention have seldom been surpassed. The finished works of Huygens have been collected at two several times into three quarto volumes.

\(^3\) Nephew to the famous James Gregory, born at Aberdeen in 1661, completed his education at Edinburgh, and was appointed Professor of Mathematics in that University in 1683, the office having been suffered to remain vacant for eight years after the death of his uncle. In 1691 he had sufficient interest to obtain the Savilian professorship at Oxford, and had the honourary degree of Doctor in Physick conferred on him by the University. He published his Elements of Astronomy in 1702, and in the following year brought out his Edition of Euclid. He had made some progress in preparing the Conics of Apollonius, but fell a sacrifice in 1710 to an attack of malignant small-pox, at Maidenhead, where he chanced to stop at the inn, on his return from a visit to Bath. He possessed some learning, but his genius was of a very inferior order to that of his uncle.

\(^4\) Edmund Halley, born in London October 29, 1656, the son of a substantial citizen—educated at St Paul's school, and sent to Oxford in 1673—sailed for the island of St Helena in November 1676, and returned with his catalogue of fixed stars after an absence of two years—elected immediately fellow of the Royal Society, and deputed by that learned body in 1679 to visit Hevelius, at Dantzic, and examine his observatory—spent the years 1680 and 1681 in France and Italy. In 1684, having turned his attention to Kepler's problem, he tried, as some other mathematicians about this time had done, to construct a geometrical demonstration of it. He soon perceived how help as he was expected in this investigation from Hooke or Wren, he had recourse to Newton, who astonished him at Cambridge by the store of his grand discoveries, condensed into eight general propositions. He overcame the scruples of the modest philosopher, and prevailed with him to arrange the materials of the \textit{Principia}, of which he superintended the publication in 1687, having written the preface and some elegant recommendatory verses. Halley now gave a geometrical construction of the higher equations, computed the effects of evaporation in the Mediterranean, and formed tables of life annuities. For the purpose of improving Nautical Science, he had the command of the Paramour Pink, with which he sailed from England on the 24th November 1698, traversed the Atlantic, and crossed the Equinoctial Line; but his crew growing sick and mutinous, he was obliged to return in the following June. Invested with fuller powers, he set sail again in September, and spent twelve months in exploring both hemispheres, and during the year after his return, he delineated and published his famous magnetic chart. He was next employed on a survey of the British Channel, and then sent by the English Government to assist her ally the Emperor of Germany in forming a harbour at the bottom of the Adriatic. On his return he was appointed, in November 1703, Savilian Professor of Geometry at Oxford, having been thwarted before in a similar canvass by clerical influence. He now set about recovering the works of Apollonius; studied as much Arabic as enabled him to translate the tract on the Section of Ratio, and he restored the other tract on the Section of Space from the hints left by Pappus. These pieces, in a small octavo volume, appeared in 1706; but four years afterwards came forth, in a splendid folio, his edition of the Conics, with the eighth book restored, and the additional treatise of Serenus. In 1719 Halley was appointed astronomer royal, and resided at Greenwich during the rest of his life, devoting his advanced age to the careful and assiduous observation of the Heavens. He completed even his projected task of embracing a lunar period of eighteen years. A paralytic disorder seized him in 1727, from which he partially recovered, but his strength declined insensibly, and he expired on the 14th of January 1742. Few philosophers have contributed more largely to the advancement of useful knowledge. Ingenuity, ardour, indefatigable perseverance, learning, and general information, were possessed by Dr Halley in a most eminent degree; and having mingled in the active scenes of life, he had the rare advantage of conjointing the love of study with the habits of social intercourse.

\(^5\) Born in 1721 at Verona, where he died in 1781. He studied at Padua, and became a great linguist, a good mathematician, and an excellent critical scholar. Being in easy circumstances, he devoted his whole time to literary pursuits, and carried his admiration of the Ancient Geometry almost to a pitch of bigotry.
PRELIMINARY DISSERTATIONS.

longer preserved in Italy and in England than over the rest of Europe. But no person ever cultivated that fine science with more assiduity, perseverance, and success, than our countryman Dr Robert Simson of Glasgow, the learned and critical editor of Euclid’s Elements. In this department he concentrated his whole efforts, and appears, from his familiarity with the ancient mode of demonstration, to have inhaled the very spirit of the Greeks. In 1749, he published his Restoration of the books of Apollonius on Plane Loci, which by its fulness and peculiar elegance leaves scarcely a shadow of regret for the loss of the original. Simson pursued his researches in the Ancient Analysis through a long life, and not only restored various fragments, but threw light on some very difficult and abstruse questions connected with it. A posthumous volume, printed in 1776, at the expense of Earl Stanhope, besides many fine geometrical speculations, contains the first satisfactory exposition of Porisms, of which the definition advanced by Pappus had been commonly regarded as an incomprehensible enigma. But from the unvarying tenor of his studies, the Scotch professor became a rigorist for the Ancient Analysis, and rejected with disdain the most obvious improvements in the form of exhibition. It deserves remark, that mathematical demonstration, being addressed to the eye rather than to the ear, must attain its greatest perspicuity when the successive steps of reasoning are seized at a glance. This is effected by adopting the symbols of Algebraic Notation, the most concise and perfect of all written characters; nor is the beauty and logical accuracy of the procedure in any degree impaired by such a transparent covering.

Dr Matthew Stewart of Edinburgh, who had been the pupil of Dr Simson, and possessed a
much richer invention, was likewise an able and zealous promoter of the Greek Geometry, which he directed besides to the investigation of certain difficult parts of Physical Astronomy. But though managed with sufficient address, the instrument he employed was hardly fitted for exploring the more abstruse and recondite problems, which often require all the concentrated powers of the Modern Analysis. The conclusions at which he arrived display much elegance, though merely approximative, and devoid of the precision that is indispensable in the present advanced state of Astronomical Science.

I need not stop to notice the attempts of other English mathematicians, to restore some fragments of Apollonius. After the principal demonstration was obtained, there could be little difficulty in evolving its different phases, and modifying it to the several cases. Playfair's elucidation of the nature of Porisms is entitled to higher distinction.

It has often been matter of surprise, that the Greeks should have spent so much ingenuity, and set such a high value on the Geometrical Construction of Problems. But the application of Geometry served them in some measure the purpose of calculation, and became a sort of substitute for the tedious and laborious operations of their imperfect system of Arithmetic. Accustomed, as we are, to the extreme facility of computing by help of the Arabic ciphers, we can form no adequate conception of the toil of working with alphabetic numerals, though the Greeks had made some capital improvements in their system of notation. They could extract laboriously the Square Root of a number, but never attained the extraction of the Cube Root, which it appears was first discovered many centuries afterwards by the Arabians. Hence undoubtedly the solicitude of the Greeks to solve, by a Geometrical, or even a Mechanical Construction, the famous Delian Problem, or the Duplication of the Cube.

It would seem that, in finding the square root, the Greek mathematicians must have employed certain methods of abbreviation which are not explained. Archimedes, in his famous Quadrature of the Circle, to which he approximated by measuring the successive inscribed and circumscribing polygons, having occasion repeatedly to extract the square root, expressed the value by fractions, and yet with such felicity as always to adopt the lowest integral numerator and denominator. He thus discovered that the circumference of a circle is less than $3\frac{1}{2}$ times and greater than $3\frac{7}{10}$ times its diameter, or that their ratio lies between the ratios 7 to 22 and of 71 to 223. This approximation within the limits of the 200th and 4000th parts, might be sufficient for ordinary practice. But Apollonius and Ptolemy afterwards approached a hundred times nearer. Yet no farther advances were made in solving that important problem, which required the most refined address, till the lapse of near a thousand years, when the Arabians became possessed of the denary system of notation, and carried the expression for the circumference of a circle to ten decimal places. But this elaborate result was imperfectly known to the writers of science in Europe; and Vieta, Adrianus Romanus, and others, exerted their ingenuity and patience in extending the earlier solution. The simplest and most elegant is that of 113 to 355, an approximation differing scarcely by the ten millionth part from the truth, which was discovered about the year 1585 by the elder Adrian Metius, a military engineer in Holland. His compatriots Van Keulen and Snellius, in the next century, pushed the expression for the circumference of the circle to 35 figures. But the progress of the higher analysis opened more easy and rapid modes of approximation. In the early part of the eighteenth century, Sharp and Ma-

This ratio, it may be observed, is easily derived from the limits assigned by Archimedes, for $71 + 7 \times 6 = 113$, and $223 + 22\times6 = 355$.

1 Abraham Sharp, born at Little Horton, in the West Riding of Yorkshire, in 1661, was apprenticed to a merchant at Manchester; but preferring the study of mathematics, he supported himself by teaching a school in Liverpool. Here he engaged as amanuensis to Flamsteed, and became his assistant when the Royal Observatory was erected at Greenwich in 1672. His services were most eminent in every department. He constructed optical and astronomical instruments, observed stars, calculated tables, and delineated celestial charts. His peculiar neatness of execution is displayed in a small geometrical work which he published in 1717. About that time he seems to have retired to his native village, where he led the life of a hermit, but esteemed for his quiet and beneficent disposition. He died in 1742.
computed in England the quadrature of the circle to 75 and 100 places of decimals, and Lagny in France advanced to 128 figures. But these labours were outdone by Vega, an officer of artillery in the Austrian service, who amused his leisure during a campaign, in employing one of Euler's formulae to derive the length of a quadrant from the tangents of fractional arcs, carried the expression to 140 decimal places. This was the luxury of calculation; and though no doubt superfluous, it might at least convince any judicious person of the impossibility of stating the ratio of the diameter to the circumference in finite terms. Yet the squaring of the circle is a problem which has at all times fascinated the attention and bewildered the reason of many superficial or antiquated students in Geometry. The incommensurability of the circle, which James Gregory had attempted to prove in 1661, was finally demonstrated a century afterwards by Lambert, from an ingenious transformation of the known series for the quadrant arc in terms of its tangent or the radius. The same ingenious mathematician likewise proposed several neat geometrical constructions, for approximating to the length of arcs of a circle still more nearly than the methods given by Fermat, Gregory, Huygens, and others.

Elementary Plane Geometry rests on the combined properties of the straight line and the circle. Many important additions have been made to the digest of Euclid; and several eminent mathematicians of the eighteenth century have corrected, simplified, and essentially improved the only valuable portion of the large work. Some 1

1 John Machin, elected professor of Astronomy in Gresham College in 1713, and became secretary of the Royal Society. He had the reputation of being an able mathematician, yet his essay on the Laws of the Moon's Motion, in which he attempted to rectify the Principia, was but a superficial performance. He died in 1751.

2 This excellent mathematician, who published in 1794 a complete collection of Logarithmic Tables and Analytical Formulæ, was eight years afterwards robbed and barbarously murdered by a miller, in whose house he lodged, and his body thrown into the Danube.

3 It may be sufficient perhaps to notice the Elements of Geometry by Thomas Simpson, and the similar treatises in the French language by Clairaut and Legendre. These productions all unite clearness with precision; and excluding whatever appears superfluous, they still comprise the whole series of connected propositions. Simpson's unpretending volume is neat and very brief, yet sufficiently perspicuous. The Geometry of Clairaut is still shorter, but has an air of originality, being designed to show the road of induction, or to guide the learner through his efforts at the solution of geometric problems, to discover the great elementary truths. He followed the same plan, and with more complete success, in his excellent Elements of Algebra. But the Geometry by Legendre claims much higher merit, and is perhaps the best on the whole that has yet appeared. It was vain, however, to expect perfection: the steps of his demonstrations are sometimes incomplete, and his entire separation of the problems is at least a very questionable improvement. The notes he has added are valuable, but appear disproportioned to the text, and certainly too profound for beginners. This elegant geometer attempted to found the comparison of triangles on abstract considerations derived from the common theory of functions. But such reasonings a priori are fallacious, involving unperceived some metaphysical assumptions.

The works not mentioned might suffice for the instruction of practical or professional men; but the pursuit of a liberal education aspires to greater attainments. The main object is to sharpen the faculty of perception, and invigorate by due exercise the tone of the intellectual powers. For contributing to that effect, the fulness and circumpection of the ancient mode of demonstration are admirably calculated. It seemed, therefore, an estimable task to select the scattered wrecks of the Greek Analysis, and dispose them into a form accessible to ordinary students. The beauty of the propositions concerning Loci was particularly striking.

It would be preposterous, however, to hold up the Elements of Euclid as a standard of instruction in Geometry for the present day. They were composed before the invention of Trigonometry, and probably designed chiefly as an introduction to the Pythagorean Philosophy. Hence the large portion of them devoted to the relations of numbers, and the properties of the regular polygons and solids. By common consent, therefore, the greater part of the system is now laid aside, and the other books are commonly altered or curtained in practice. Many trivial propositions occur in the third book; several of the fourth have little interest; and it may be that extravagant praise which several mathematicians have lavished on the Doctrine of Propportion contained in the fifth book, to know that it really cannot be taught. But the language employed in that celebrated compilation, for want of appropriate technical terms, is often vague and indistinct. The word angle, for instance, has no less than three different significations; and other examples of a like confusion might be easily cited. In some cases, the demonstrations of Euclid are imperfect or inconclusive. Thus, the reasoning in the twenty-fourth proposition of the first book applies only to the particular position of the figure; an objection first started by Thomas Simpson, to the great annoyance of his critical nameake. But similar oversight was made in the demonstration of the seventh proposition of the same book, which fails if the figure be changed. Both these propositions are only of consequence as auxiliaries in the train of combination. But of the fundamental property of parallel lines, the demonstration rests on the mere assumption of an intricate axiom. In a few cases the reasoning is unnecessarily complicated, from the peculiar conceptions of the author. Thus, the noted fifth proposition of the first book is of that description. Its demonstration implies the reversed application, at least mentally, of the isosceles triangle; but Euclid evades or disguises the process, by producing the sides of the triangle, and forming two interwoven triangles, which are virtually adapted by inversion, and the annexed triangles being then taken away, the equality of the angles at the base hence follows. But the last is the only step wanted, and the other two were evidently superfluous. This stumbling proposition has been called the Post Annorum; and no wonder that the beginner should feel puzzled at seeing such a parade of argument end in so plain a result.
remarkable propositions, derived from sources beyond the usual scope of Geometry, are yet assimilated with that science. Of such accessions, one of the most beautiful is the late curious and unexpected discovery of Gauss, that, besides the ordinary regular polygons, a numerous class more complex, including the next polygon of seventeen sides, are capable of being inscribed within a circle, by a mere geometrical construction. 1

In solving the common problems, the straight line and the circle are generally combined, which requires the application of both the ruler and the compasses. Schooten effected by the ruler alone several simple constructions, of use particularly in castrametation. But the late Masehroni 2 of Bergamo, in a small work which appeared in 1795, made a beautiful addition to Elementary Geometry, by the solution of a variety of problems, especially those concerning the inscription of the regular polygons, with the help exclusively of compasses. Such speculations, however, are in a great measure extraneous to the science.

The theory of Lines of the Second Order forms one of the finest speculations of the more advanced geometry. These curves were derived from the Section of the Cone; but the clearest and most philosophical way of treating them is by considering their description on a plane. The distinguishing property of the foci was known to Apollonius, but the advantage of its application overlooked. The Parabola forms the intermediate transition of the Ellipse to the Hyperbola, the remote focus stretching farther out, till it vanishes into indefinite space, again to re-appear on the opposite side. The features of the Parabola are therefore not strictly included in the phases of the Ellipse and Hyperbola. The more comprehensive relation of the distances of any point in the curve from a focus and the directrix is mentioned by Pappus, but the beauty of that locus was not perceived till Boscovich, in 1752, deduced the properties of those lines from it in a string of corollaries, more ingenious than elegant. This essay was compressed and methodized by Thomas Newton in 1794; and in the same year Walker, a respectable mathematician, unaware of what had been already done, produced a work on a similar plan, of which the first part occupied a quarto volume, composed indeed after the manner of the ancients, but so exceedingly prolix in diction as to have very few readers.

An elegant mode of investigating curves of the second or higher orders, is to consider them as generated by the conditional intersection of angles or lines turning about fixed points or poles. The property had been stated generally in the Prineipia, but was expanded in 1720 by Maclaurin in his Geometria Organica. The intersections of Polar Radiants were discussed by Brackenridge in 1733. The subject has been again revived, and prosecuted with great ingenuity and research, by the celebrated Carnot, under the denomination of Transversals.

No part of Geometry has been more improved in the course of the last century than Trigonometry, which is not only simplified but much extended in its application. The theory of planes and solids has likewise been cultivated with eminent success. As the position of a point on a plane is assigned by referring it to two co-ordinate lines, so the place of a point in space may be determined by its distances from three planes which are mutually perpendicular. The properties of a line of single curvature may be derived from the equation of its co-ordinates; the properties of a curved surface can likewise be deduced from its triple shades, or the perpendicular projections on the three planes. Such is the process employed by Monge 3 in his Descriptive

1 Gauss found that the expression for the multiple cosine is always decomposable into binomial factors, and hence concluded that any regular polygon, the number of whose sides is a prime, and denoted by 2^k + 1, may be inscribed in a circle by mere Elementary Geometry. These numbers form the series 3, 5, 17, 257, 65537, &c. of which the first two only were known before.

2 Born in 1750; died at Paris, July 14, 1800. His tract on the Compasses happening to fall into the hands of General Bonaparte during his first triumphant campaign in Italy, this extraordinary man was so struck with its ingenuity, that, on his return to Paris, he communicated, in conversation, some of the propositions to the members of the Institute. The book was immediately translated into French, and the author promoted to a place of trust and emolument in the Italian Republic.

3 Gaspard Monge, born in 1746 at Beaune, and educated at the Jesuits' seminary at Lyons. His uncommon talent for drawing procured him admission into the Military School at Mezieres, where he soon became assistant teacher. Disgusted.

Diss. IV. 5 E
Geometry, which may be considered as the completion of the analytical method of Descartes. It furnishes direct and general solutions of several important problems, especially of those relating to the intersection of planes and the construction of solids. Descriptive Geometry comprehends also the theory of Perspective, which was founded by Ubaldi, and long afterwards recast and simplified by Brook Taylor, and rendered still more practical by Lambert.

2. ARITHMETIC.

To express large numbers by continued additions being impossible, it soon became necessary to arrange them on a scale of ascending progression. The simplest mode was evidently to repeat the same root of the scale; and as men in the earlier periods of society used to reckon with the ten fingers of both hands, they were led by Nature herself to frame the Denary System of Numeration. If they had likewise formed marks for a Digital Notation, they would have completed the bases of Arithmetic. But unfortunately the Alphabetic Characters had been introduced before distinct symbols were contrived to represent numbers. The letters designed merely for written language, came hence among all nations to be employed besides in numeral notation, though hardly manageable, and ill adapted to any regular system of arrangement. In the application of those characters the ancient Greeks showed great ingenuity, by distinguishing them into three classes, appropriated to the ascending progression of units, tens, and hundreds. In this way they reached the term of a thousand, and by employing as an auxiliary the capital M, they could indicate myriads or ten thousands. The triple series of thousands up to a million were more easily denoted, however, by placing a dash under the successive sections of letters. But Archimedes indicated a mode of obtaining almost unbounded extension of this system, by decomposing the elements of the notation into periods of ascending myriads. Apollonius simplified the plan, by adopting a thousand as the root of the progressive scale. Had he proceeded only a little farther, and rejected the letters, except the first class denoting digits, he would have rendered his notation perfect, and have achieved one of the most useful and prolific discoveries ever made. Ptolemy afterwards advanced much nearer to this ultimate object, by employing, in his Trigonometrical Tables, the descending Sexagesimal Scale, suggested by the subdivision of the circumference of a circle into degrees, of which sixty, or the root of this scale, correspond nearly to the length of the radius. It would seem, however, that, during the interval between Archimedes and Ptolemy, the Greek Arithmetic had received some essential improvements in practice; for the Sicilian geometer, by a very tedious and operose process, of which he gives merely the results, was content with stating the ratio of the diameter to the circumference of a circle as intermediate between that of 7 to 22 and of 71 to 223, differing therefore by a 1200th part from the truth; whereas the chords computed by the astronomer of Alexandria for every half degree of the semicircle are correct to the last place, and consequently never deviate by a 300,000th part of the whole.

with the tedious and operose methods of calculation then practised among engineers, he sought to shorten the road by recurring to general principles and the aid of Geometry. Thinking closely on that subject, he matured a regular system, which has changed the theory of planes and solids. The ardour of his pursuits was infused into his pupils, and the frequent communications he made to learned societies rapidly extended his fame. In 1780 he was conjoined with Bosuet as acting professor of Hydrodynamics at the Louvre, a place erected by the patriotic minister Turgot, which required him to reside at Paris only during half the year. But three years afterwards, on being appointed to succeed Bezout as Examiner of the Marine, he fixed his permanent abode in the capital, and engaged in the experiments and discussions of the philosophers. He became a warm partisan of the Revolution, and contributed his utmost efforts to promote the various plans adopted by its leaders. But he deserved praise for the great concern he took in founding the Polytechnic School, an institution eventually productive of the very best effects. Having accompanied Bonaparte to Egypt, he returned with the fruit of his observations to share in the fortunes of that wonderful man. He resumed with lustre the place of professor, and continued to delight the numerous pupils by his kind attention and the clearness and expansion of his oral discourses. But on the second return of the Bourbons in 1815, he felt the weight of their vengeance. The Institute was remodelled, and the Polytechnic School suppressed. This sad reverse preyed on his spirits, and produced alienation of mind; in which melancholy state he languished for some time, and expired on the 20th July 1818.
The Romans, who cared only about objects of vulgar ambition, overlooked the refined mode of Greek Notation, and remained satisfied with their own very clumsy and involved system, which could with difficulty represent a large number, but was absolutely disqualified for serving in any way the purposes of calculation. They were obliged therefore to have recourse to counters, and by help of the Abacus, or decimal board, they performed the ordinary operations of summing accounts. This humble expedient was practised in Europe till the seventeenth century, and is still used by the traders throughout the Chinese Empire, its application being there facilitated by the prevalence of the decimal subdivision of weights, measures, and coins.

The discovery of the Denary Notation, so beautiful and simple in its application, is commonly referred to India, though neither the place nor the date of its origin has been ascertained. It was unknown to the Arabian astronomers till near the close of the eleventh century of our era, and even at this period its expressions appear sometimes intermingled with the alphabetic numerals. But the advantages of the system were soon perceived; and the Tables of Sines and Tangents calculated by those laborious mathematicians are now found, from examination of the manuscripts belonging to the University of Leyden, to be correct to the tenth decimal figure. The Arabians transmitted the new system of notation to the flourishing colony of their countrymen in Spain, whence it was slowly communicated to the several Christian States over Europe. This change was effected chiefly by the calendars or perpetual almanacs compiled in the Moorish seminaries, and eagerly purchased by the various monasteries and convents throughout Christendom. Yet the Arabic ciphers appear to have remained unknown in every part of Europe beyond Spain, before the middle of the fourteenth century; nor in mercantile transactions were they commonly adopted till near two centuries later. It is a singular circumstance that the advantages of employing the descending progression in the nicer calculations were not sooner perceived, especially after the use which Ptolemy had made of sexagesimals. Stevinus was the first who distinctly introduced the practice of decimal fractions in 1585, though Regiomontanus had made a great step towards that improvement, which Ramus even indirectly employed. To count downwards might seem as easy as to reckon upwards. But the mode of denoting the ranks of decimals was then most cumbrous, the successive numerals, like the indices in Algebra, being inclosed in small circles. Bayer in 1619 proposed to substitute for these complex marks an accent repeated. It was our illustrious countryman Napier, however, that brought the notation of decimals to its ultimate simplicity, having proposed in his Rhabdologia, printed ten years earlier, to reject entirely the marks placed over the fractions, and merely to set a point at the end of the units. But his sublime invention of Logarithms about this epoch eclipsed every minor improvement, and as far transcended the denary notation, as this had surpassed the numeral system of the Greeks.

Various speculations have been framed regarding the properties of the different arithmetical scales. Leibnitz fancied important advantages to accrue from the adoption of the Binary Scale, which operates with extreme facility, and requires only a single character besides the zero. This progression mounts so slowly, however, that it cannot express a large number without employing a multitude of terms. But the Duodenary Notation, which is partially admitted in the uncial subdivisions, would evidently answer the best for general practice. It proceeds faster than the Denary Scale, and is less subject to be affected by fractions, since its root has no fewer than four divisors, while ten admits only of two. Still these advantages would not compensate for its want of conformity with the train of ordinary language. The Decimal Arithmetic would soon generally supersede the use of every other kind of fractions, if it were likewise in practice combined with an extensive decimal subdivision of weights and measures.

The curious or mystical properties of numbers have at all times fixed the attention of mankind. Square numbers, denoting the sides of a right-angled triangle, were sought for by the Pythagoreans, who gave a very simple rule
to compute them. 1 Perfect numbers, or such as may be composed by the addition of their aliquot parts, could not fail to excite admiration; and Euclid produced an elegant theorem for discovering them. It is remarkable that these numbers should appear frequent at first in the series, and afterwards occur only at wide intervals. Thus, below 10,000, there are four perfect numbers; but the last of the succeeding four includes no fewer than nineteen ciphers. 2 The moderns have advanced farther, and imagined what are called Amicable numbers, on all which subjects Euler has shown his ingenuity and unrivalled analytical skill.

It is less a matter of speculation, while it is of considerable consequence in the practice of calculation, to assign the Prime Numbers, or such as admit of no division, and to resolve the Composite Numbers into their several factors. No general method has yet been devised for the investigation of Primes, though by the researches of Bachet and Fermat in the seventeenth century, and of Euler, Lagrange, Legendre, and Gauss, in the eighteenth, they are now reduced to certain constant forms, which may facilitate their discovery. By an extension of the method called the Sieve of Eratosthenes, a sort of mechanical process, the prime numbers are separated from the ordinary progression. In this way several authors have constructed tables of Primes, and of Composite Numbers, with their various factors or divisors. Lindenau proceeded to a hundred thousand, but Cherac has lately carried the enumeration as high as ten millions.

The formation of Magic Squares, by which the numbers in their natural order are disposed in cells, so that each column gives an equal sum, remounts to high antiquity. They have been regarded in the east as charms or talismans, of great potency in the tide of human affairs. The digital squares from 3 to 9 were dedicated to the seven stars, including the sun and moon, which in the astrological visions were believed to rule the successive days of the week. 3 The people of Siam had learned a very simple method of filling up those squares; but some European Mathematicians have since amused themselves with such arithmetical curiosities. Stifels, in his Arithmetica Integra, incidentally treated of Magic Squares, yet without naming them. He was immediately followed in a small arithmetical treatise by Adam Riese; but the French seem to have directed most attention to those scientific recreations. From the latter part of the 17th till beyond the middle of the 18th century, a succession of ingenious persons were at pains to improve and extend the construction. Frenicle, Poignard, Delahire, Ons-en-Bray, and Rallier des Ourmes, are entitled to particular notice.

The construction of Magic Squares belongs to the class of problems styled Indeterminate, which depend on variable combinations, and therefore admit of very numerous answers. Thus, Frenicle, who successfully studied this subject near the beginning of the last century, showed that the first sixteen of the natural numbers could be formed into a Magic Square in not fewer than 880 different ways. Analysts have since tried to narrow those changes, and augment the difficulty of the investigation, by annexing other conditions. Dr Franklin produced, by dint of perseverance, what he called a Magic Square of Squares, and a Magical Circle. De la Hire 4 treated the formation of Magic Squares with such copious detail as to leave very little to be done by his successors. Yet several eminent mathematicians have occasionally reverted to this amusing subject. Even the great Euler has not disdained to direct his transcendant skill in algebraic analysis to the solution of

1 See notes to the Elements of Geometry. Euler has demonstrated that every number whatever consists of not more than four squares. An example may be given of the composition of numbers between 10 and 20: 10 = 9 + 1, 11 = 9 + 1 + 1, 12 = 9 + 1 + 1 + 1, 13 = 9 + 4, 14 = 9 + 4 + 1, 15 = 9 + 4 + 1 + 1, 17 = 16 + 1, 18 = 16 + 1 + 1, 19 = 16 + 1 + 1 + 1, 20 = 16 + 4.

2 It may gratify the curious to see the series 6, 28, 496, 8128, 33550336, 8589869056, 137438691328, and 2305843008139952128. These numbers are obtained by multiplying the 1, 2, 4, 6, 12, 16, 18, and 30 powers of 2 by its 2, 3, 5, 7, 13, 17, 19, and 31 powers diminished by unit.

3 The first in modern times who noticed Magic Squares was Agrippa of Nettesheim, who gave in his books de Occulta Philosophia, printed in 1533, the Sigilla Jovis, Martis, Solis, Veneris, Mercurii, and Lunae.

4 Born at Paris in 1640, and died in 1718, a man of some attainments, and great application—well acquainted with the details of surveying, and of practical astronomy.
Another portion of Arithmetic, not merely curious, but of material importance in the application of that science, has been much cultivated during the eighteenth century. If both the terms of a proper fraction be divided by the numerator, there will result an equivalent fraction, having unit for its numerator, and an integer, conjointed with another fraction of smaller terms, for its denominator. But this new fraction may be again broken down in the same way, and the process of decomposition renewed successively, till a fraction with an integral denominator is at length obtained. This mode of resolution is therefore the very same as what is employed in finding a common measure or divisor, only the several quotients are here preserved. When the original fraction is expressed by rational numbers, its decomposition must always terminate; but if the numerator and denominator be mutually incommensurable, the process of evolving their elements will never draw to a conclusion. The fractions which thence arise may simply repeat, or they may circulate at short intervals or periods, or they may succeed each other without any sort of order whatever. But it is evident that such progressive subdivision must approach constantly nearer to the true value, and that the resulting fractions, if successively recombined, will exhibit a series of approximations.

The fractions of this kind were first noticed by Lord Brounker, who proposed one of them to express the ratio of the diameter to the circumference of a circle, which Dr Wallis afterwards investigated. Huygens perceived the utility of employing such fractions to represent approximate ratios, and in this way he found convenient small numbers to represent the teeth of the wheels and pinions of his Planetarium. But the subject appears to have lain neglected till 1737, when Euler explored it with his usual depth and felicity, in a distinct memoir published in the Petersburg Transactions. He may consequently be regarded as the real founder of the Theory of Continued Fractions, to which indeed he gave the appellation they have since retained. It was a favourite speculation of that great analyst, who resumed the subject at different times, and widely extended its application. Euler showed how to convert any quadratic equation into a Continued Fraction, and demonstrated that the expression for an irrational square root consists of terms which either repeat or circulate in regular periods. A cube root may likewise be expressed by a Continued Fraction, but its terms can have no sort of order in their sequence. As these Fractions, in approaching to their ultimate value, oscillate continually between excess and defect, they are always capable of being changed into Converging Series, affected by the alternate signs of plus and minus, and the transformation may be reversed. By this method the very ingenious Lambert converted the series of Gregory and Leibnitz for the length of a quadrant into a Continued Fraction, whose terms have a regular and incessant circulation, and hence proved (what had only been presumed before) that the Circle is incommensurable. But he was enabled to proceed still farther, and to establish, that even the square of the number

1 Cornelius Capito printed, in 1707, at Glückstadt, a short treatise on Magic Squares, in which he proposed to vary their construction no fewer than a million times. But the latest and completest work on this curious subject was compiled by the late Professor Moilveide of Leipsie, the ingenious editor of Klügel’s valuable Mathematisches Wörterbuch.

2 Born in 1620, and died in 1664: an able mathematician, but an unprincipled courtier.

3 This very remarkable man was born November 23, 1616, at Ashford in Kent—educated at Cambridge—became chaplain to Lady Vere in 1643, and was then led to cultivate the art of deciphering, in which he acquired such skill, as to be afterwards frequently employed by the Long Parliament in examining intercepted dispatches. Through that interest he was appointed to a sequestered church in London, and chosen in 1644 one of the scribes to the Westminster Assembly of Divines. But his austere occupation did not divert him from the nobler pursuits of philosophy and science; and being appointed by the Parliamentary commissioners in 1649, Savilian Professor of Geometry at Oxford, he continued regularly to discharge the duties of that office. He had afterwards some hot disputes with Hobbes, who, though a most ingenious metaphysician, unfortunately mistook his own blunders for discoveries in Mathematics. Wallis maintained a large correspondence with men of science, and assiduously contributed to the progress of philosophical discovery during that active period. The moderation of his character assured him the possession of the places he held at the Restoration; and though he found leisure to compose a very learned philosophical grammar of the English language, and sometimes indulged his early taste for controversial divinity, he devoted the greater part of his long life to the laborious cultivation and extension of the various departments of Mathematical Science. His works are voluminous, and display great erudition, talents for deep research, and originality of conception. He died on the 28th October 1703, and was succeeded in the chair by Dr Halley.
expressing the circumference is likewise irrational. 1

Lagrange has since recommended and explained the application of Continued Fractions to the solution of numerical equations. These fractions may be readily changed into Recurring Series, 2 which, in the case of small roots, are often beautifully simple and remarkably convergent. But sometimes they betray the opposite tendency to diverge; and the great object of Lagrange was to remove that defect. Euler, in several of his last memoirs and opuscules, directed them to indeterminate problems, to the finding of maxima and minima, and to the development and integration of certain analytical formulae. Nothing can exceed the beauty of some of these speculations.

It is a singular fact, that though Continued Fractions had their origin in this island, they were afterwards almost wholly overlooked by our mathematicians. Scarce thirty years have passed away since the attention of the curious was again recalled to them. But an acquaintance with the transformation of those fractions would prove extremely useful to practical men, by furnishing a variety of short approximations, which are easily remembered and readily applied. Ordinary computations in mensuration, in the comparison of different weights and measures, and in several standard proportions, might thus be much abbreviated without any sensible inaccuracy. The method proposed by Lambert for decomposing fractions into progressions that have their denominators formed by successive multipliers, could be employed in a similar way; but its application is somewhat difficult and intricate. 3

To facilitate the operations of arithmetic, tables have been digested of the powers and products of numbers. The most astonishing work of that kind, including all the multipliers from one to one thousand, was produced by Hervart, Chancellor of Bavaria, in 1610, only four years before the invention of Logarithms, the want of which it could in some faint degree have supplied. But tables of products in a less unwieldy shape are still occasionally used for abridging the labour of calculation. A notable improvement has been lately introduced by the substitution of Quarter Squares, grounded on the known property that the product of any two numbers is equal to the fourth part of the excess of the square of their sum above the square of their difference. A single page might comprise as many of those numbers as, by simple addition and subtraction, would exhibit an extent of products equal to those contained in Hervart's enormous folio. 4

It would be a great improvement in elementary education to introduce into the schools a more extended multiplication table, including at least all the products of the numbers from 1 to 25. A very useful practice has been adopted lately in the north of Germany, to accustom learners to the readiness of mental calculation. 5

1 The area of a circle having unit for its diameter is expressed by the alternating series 1 - \(\frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9}, \&c. \) which was converted by Euler into the continued fraction

\[
\frac{1}{1 + \frac{1}{2 + \frac{9}{2 + \frac{25}{2 + \frac{49}{2 + \&c.}}}}}
\]

of the odd numbers. This extension never stops, and consequently the fraction is not reducible to finite terms. The square of the expression runs into a similar infinitude.

2 It deserves to be mentioned that Girard first gave the simple recurring series which expresses the parts of a line divided into extreme and mean ratio. It is formed by the continued addition of the two preceding terms. Thus 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \&c. The square of each number in this series differs from the product of the two numbers which inclose it, only by unit alternately in excess and defect: Thus \(\frac{3^2}{2} = 64 = 5 \times 13 - 1, 13^2 = 169 = 8 \times 21 + 1. \)

3 For an explication of Lambert's method of decomposing fractions, see Philosophy of Arithmetic.

4 A large table of multiplication, from 1 to 10,000, and a specimen of quarter squares, extending to a million, may be seen in the treatise quoted above.

5 It is called Kopfrechnung or calculating by the head. Three works are current on this subject, those of Biermann, Heuss, and Köhler—published between 1790 and 1810.
3. **ALGEBRA.**

Algebra derives its immense superiority over the ancient analysis from the very complete system of notation which it has at length attained. Each step of an investigation being now registered in the clearest and most precise manner, the mind is relieved from the fatigue of carrying forward the whole of a continuous chain of reasoning. It can rest at any place, and again resume the process of deduction with the greatest facility. But this perfection of pictured language has been the result of a series of slow and successive improvements. Diophantus, who, soon after the Christian era, composed a large treatise on the resolution of certain arithmetical problems, a portion of which work is preserved, made the first attempt towards an abbreviated form of analysis. The symbols he used were, however, exceedingly few, being the initials or terminations of the ordinary words, only somewhat modified. It deserves remark, that Diophantus viewing a number as composed from another by the addition or subtraction of a third, he termed this last one abundant or deficient, and gave a rule for the multiplication of those affected numbers, similar to what is now applied to the signs plus and minus. His treatise passed into the hands of the Arabians, who studied the numerical properties with much ardour, but made no advances in refining or simplifying the form of notation. From them again this higher species of arithmetic was transplanted into Italy, probably during the fourteenth century, by Leonard, a merchant of Pisa, who had travelled long in the East. A series of works on Arithmetic and Geometry were published between the years 1470 and 1487 by Pacioli, a Minorite Friar, who in 1494 brought out his *Arte Maggiore*, or what he says was vulgarly called the *Regola de la Cosa*, or *Algebra* and *Almucabala*; the first appellation derived from the Italian *Cosa*, denoting the Thing sought, and the other borrowed from the Arabic words expressing Resolution and Composition. After the appearance of this elementary digest, Algebra was cultivated in Italy, during the first half of the sixteenth century, with great industry and success. Ferreo, Tartalea, and especially Cardan, made rapid advances in the new science. This ingenious though very singular person not only gave the solution of Cubic Equations which bears his name, but discovered the leading properties of equations in general, distinguishing their roots into the true and the fictitious; and besides improved the notation by employing frequently the letters of the alphabet. The Italians, however, still used contracted words for symbols, and the initials *p.* and *m.* for the signs of *plus* and *minus*. In 1572, Bombelli of Bologna, retaining this embarrassed mode of writing, composed a regular summary of Algebra, which he enriched with Ferrari's rule for resolving biquadratic equations. In the meanwhile the knowledge of the analytic art had penetrated into Germany, where it received its capital improvement in notation from the systematic genius of that people. The change was chiefly effected by the industry of Stifels,¹ a Protestant minister and zealous follower of Luther, who in 1544 published his *Arithmetica Integra*. In that remarkable work he first introduced the symbols + and − for *plus* and *minus*, and the character √ (or a contracted R) for *Radix* or root; and he represented unknown quantities by the capital letters *A, B, C, &c.* and intimated the successive powers and their reciprocals by an ascending and descending series of *exponents*. Nor was his merit confined to algebraic writing; the en-

¹ Born at Ealingen, in Saxony, in 1569, and died at Jena in 1567. Though a profound and inventive mathematician, he seems to have imbibed all the wild enthusiasm of that convulsed period. Captivated perhaps by the wonderful properties of numbers, he fancied, as other ingenious persons have since done, that he could interpret the visions of the Apocalypse, and foretell the end of the world. He was so imprudent as to place that awful dissolution very near hand. Early in the morning of the day predicted in the year 1653, he assembled his trembling flock in a wide open field, where he endeavoured to season their minds for the tremendous change by fervid prayers and pathetic exhortations. The sky was lowering, the darkness thickened, a portentous silence prevailed, and the preacher rolled his thunders with overpowering energy. But the clouds soon passed away, the sun shone forth in his wonted splendour, and all nature smiled. The populace recovered their agitated spirits; and now breathing rage and disdain, they chased the unlucky prophet home with valleys of stones.
thusiasm of the age seems to have roused the spirit of invention in him; and Stifels anticipated some of the later discoveries, pointed out the nature of Logarithms, explained the properties of figurate numbers, and showed how the co-efficients of the powers of a binomial quantity may be derived from the columns of what has been since called the arithmetical triangle. Scheubel a few years afterwards pursued the same path, yet without adding any thing material to the science. In this state it made its way at last into England, where Recorde, an ingenious though unfortunate man, printed the Cossic Art at London in 1553. He was the first to propose the sign = for equality, but made no other advances; and during a period of most active enterprise, till the close of the century, Algebra was not cultivated at all in this country.

In the meanwhile France continued the pursuit of the mathematical sciences. Ramus had revived those abstract studies; but Vieta, who succeeded him, and flourished between the years 1570 and 1600, rose by his numerous discoveries to much higher eminence; a lawyer by profession, yet a man of great learning, and gifted with profound and original genius, conjoined with the most indefatigable application. Vieta introduced the literal or specious Algebra, and thus rendered its procedure quite general, by employing the Roman capitals always to denote numbers, the vowels being appropriated to unknown quantities. He likewise traced various distinctions, and framed several significant terms, which are still retained. But while he improved the analytical symbols, he greatly extended the theory of equations, and cultivated with success the prolific and important subject of angular sections.

Flanders at this period equally displayed the spirit of invention. Stevin of Bruges, born about the middle of the sixteenth century, was an engineer eminently skilled both in the theory and practice of his profession, possessing great original powers of mind. He reduced Statics and Hydrostatics to their simplest principles; and in his Arithmetic or Algebra, printed in 1585, he extended the range of calculation by several fine improvements and discoveries. Marking the unknown quantity with a small circle, he denoted its power by inserting the index; and was enabled, by prefixing a fraction, to represent also the roots. But, besides improving and simplifying the symbols, he enriched the analytic art by his inventions, and gave a general method for the resolution of numerical equations. The works of Stevin were, in 1625, collected and expanded by his countryman Girard, a man likewise of most original conception, who eagerly promoted the objects of science. Four years afterwards this editor produced a small tract exclusively his own, and full of new and ingenious deductions. He there gave a very complete theory of equations, distinguishing them into their several orders, and proving that they had always a corresponding number of roots; he showed how these roots are successively combined in forming the co-efficients of the several terms; and finally anticipated the remarkable rule discovered by Newton, to find the sums of their different powers. Girard was possessed of fancy as well as invention; and his fondness for philological speculation led him to frame new terms, and to adopt certain modes of expression which are not always strictly logical. Though he stated well the contrast of the signs plus and minus, in reference to mere geometrical position, he first introduced the very inaccurate phrases of greater and less than nothing, and began the unfortunate appellation of impossible quantities.

It is indeed the reproach of modern analysis to be clothed in such loose and figurative language, which has created mysticism, paradox, and misconception. The Algebraist, confident in the accuracy of his results, whenever they

1 Robert Recorde, born of a good family in Wales, about the year 1506—studied at Oxford, and elected a fellow there in 1531. He embraced the medical profession, but taught mathematics at both universities, and afterwards in London, where between the years 1551 and 1557 he published several elementary treatises on Geometry and Algebra, with quaint titles. But Recorde was unfortunate, and having been thrown into the Fleet for debt, he died a prisoner in 1556.

2 Albert Girard published his edition of Stevin's Arithmetic in 1625, and his own discoveries in Algebra in a small quarto at Amsterdam in 1629. He died in 1633, and his widow the year after put forth his complete collection of Stevin's works.
become significant, hastens through the successive steps to a conclusion, without stopping to mark the conditions and restrictions implicated in the problem. This rapidity of operation, though in many respects most advantageous, yet affords less mental exercise than the cautious and guarded procedure of the Greeks. It will not be deemed foreign to the scope of this discourse, to remark, that the signs plus and minus confer no distinctive character, but merely indicate that the number to which they are prefixed, is to be annexed to some other number, or disjoined from it. The terms additive and subtractive would express correctly their whole import. The rules for the involution of those signs are derived from the consideration of the properties of compounds, arising from the addition or multiplication, for instance, of the binomials \(a \pm b\) and \(c \pm d\). The operation proceeds by detail; but the real meaning of the notation may be suspended, and it becomes significant only after the several members have been recombined. A number, in strict language, is altogether devoid of quality, and can be reckoned neither positive or affirmative, nor negative, which designations are accidents, and not attributes. In proposing these terms, Vieta did not, therefore, discriminate the precise nature of the symbols; and his powerful example has continued to infect the language and darken the conceptions of algebraists. A disposition has also prevailed in modern times, of hastening to general conclusions, although the data be limited or imperfect. Such careless deductions are but awkwardly amended, by the adoption of expedients more like the fictions of lawyers than the reasonings of sound logicians. The introduction of equal and impossible roots of equations served only to restrict the ordinary rules, which had been made too general, representing the number of roots as always equal to the index of the highest power. The involution or repeated multiplication of binomials will produce the successive orders of expressions, which pass into equations on the supposition that any one of them vanishes or has its parts mutually balanced. But the converse of this proposition will not always hold true, That every compound expression is resolvable into as many binomial factors as the index of its highest power signifies. Several forms even of the quadratic or cubic expressions resist all binomial decomposition. But it is a property demonstrated, that every higher expression whatever may be resolved into binomial or trinomial factors, or into simple or quadratic elements. Impossible quantities are thus merely the symbolical exhibition of the binomial factors of a quadratic or trinomial expression which is irreducible; and

1 This distinction might perhaps have satisfied the scruples of the late venerable Baron Maseres, who wrote an express treatise against the abuse of the Negative Sign, which he came to view with a sort of aversion as the main source of the incorrect language and vague conception so prevalent among algebraists. Though not quite entitled to the rank of a discoverer, that excellent person reserves a place in the history of Mathematics, for his valuable contributions, and his zeal and unwearyed exertions to promote accurate science. He was an able geometer, a profound constitutional lawyer, a man of sound and most extensive learning, and of very general information. But he possessed the higher qualities of our nature, and combined liberality of sentiment and unbending integrity with the feelings of a kind, generous, and social disposition. His Elements of Trigonometry was the completest treatise in English at the period of its appearance. He afterwards improved the solutions of cubic and biquadratic equations, and illustrated the methods of approximating to the resolution of equations in general. But the most important service he rendered to mathematical science consists in reprinting at great expense, and chiefly for distribution, the series of original authors in logarithms, with ample annotations, in six large quarto volumes. From his anxiety to be perspicuous, he was apt to fall into the opposite extreme of tiresome prolixity.

The grandfather of Maseres was an officer in the French guards, born in the district of Bearn, and a Hugonot, who, on the revocation of the Edict of Nantes, retired to Holland, and transferring his services to the Prince of Orange, accompanied the Preserver of our liberties into England, and fought by his side in Ireland. The grandson having embraced the profession of the law, was soon after the peace of 1763, probably on account of his intimate acquaintance with French language and customs, appointed Attorney General of Quebec, where he resided till 1770. At leaving his charge, he visited Boston and New York, while that agitation was fermenting which burst into open revolt. Soon after his return to England, he published in successive volumes his Canadian Freeholder, in which he refuted the despicable maxims of Lord Mansfield, and earnestly recommended conciliatory measures with our American colonies. But it was a time of infatuation and disaster. Maseres by his firmness gave mortal offence to the courtiers, and never obtained any promotion, farther than the small sinecure office of Cursitor Baron of Exchequer. But fortune had abundantly provided for all his wants, and he enjoyed unbroken health, and the renovating pleasures of study and social intercourse. The Baron had composed a full and learned treatise on Life Annuities, and matured a plan for securing small pensions from Government to such of the poorer classes as should make certain contributions during the vigour of their days. This he embodied in a Bill which passed the Commons, but was lost in the House of Lords, through the influence of the Bishops, who seem to have considered pensions as a right appendage to their splendid ecclesiastic establishment. He died at Reigate in May 1824, at the very advanced age of 93.
the mark of impossibility is removed, either by a change of the signs, or by a recombination that restores those factors to their primitive binomial form. Such notation may indicate the limits of a problem, and seems to originate in neglecting the previous statement of the limitations. In reference to Geometry, the impossible expressions intimate the transition of the circle into the equilateral hyperbola, or of ares into logarithms.

The publication of the Geometry of Descartes in 1637 is justly deemed an epoch in the history of analytical science. The capacious mind of the author seized on all the preceding discoveries, and moulded them with his original inventions into a regular and comprehensive system. He gave rapidity to the writing of Algebra by the introduction of small characters, and rendered the distinction more palpable between known and unknown quantities, by the appropriation of the initial and final letters of the alphabet. He adopted the notation of the integral exponents or indices, as reduced to its simplest form by Herigon; and this apparently very slight improvement led, in the sequel, to the most important results. Though the index was at first merely a contraction for the repeating of the same letter in the involution of powers, yet it acquired a most extensive import when it came to be treated abstractly as a number. The prefixing of the subtractive sign changed the expression into its reciprocal, and the substituting of a fraction converted it into the symbol of evolution or the extraction of roots. Nothing can better illustrate the efficiency of a systematic notation, as an instrument for enabling the intellect to pursue and generalize its deductions, than the successive modifications which analogy suggested in the marking of exponents, during the short period from Descartes to Newton.

But the French philosopher effected a revolution in scientific procedure, by applying (what his countryman Vieta had only partially attempted before) the symbols and calculations of Algebra to the solution of geometrical problems. By referring curve lines to co-ordinates or mutual perpendiculars, he expressed their relations by equations, of which he distinguished the rank and composition. He showed that a biquadratic equation is, by the help of indeterminate co-efficients, resolved into two quadratics, and may be constructed by combining a circle with a conic section. The construction of a cubic equation was somewhat simpler, though derived from the same principles. But Descartes proceeded still farther, and represented what are now called curves of double curvature, by reducing them, by a series of perpendiculars, to some plane of projection. These were all important advances in mathematical speculation.

Attempts have been made to apply the Cartesian method even to Elementary Geometry, which is in fact to convert a clear and simple train of reasoning into a sort of hard mechanical process of calculation. This change, were it attainable, would be the reverse of an improvement. It would extinguish that fine study which affords the best exercise and discipline of the intellectual powers. The wonderful dexterity and readiness which men of such teeming invention as the Bernoullis, Euler, and Lagrange generally displayed in managing algebraic analysis, appear to have seduced their admirers into an over-estimate of its real advantages. The constructions derived from algebra very seldom reach the purity and elegant simplicity of the geometrical methods. In those cases where Geometry

1 A very simple problem will illustrate this: Suppose it were required, from a given point, to draw a tangent to a given circle. The construction would be, to join the centre with the given point, and upon the connecting line describe a circle to cut the former in the points of contact. It is evident, that if the given point occupied the extremity of the diameter, there would be only one point of contact; and if it lay within the circle, there could be none. This construction hence intimates sufficiently the conditions of the problem; and yet it fails in the case where the circle described merges in the given point, and consequently ceases to determine the position of the tangent. The algebraical solution, if rightly interpreted, gives similar information. Let \(r \) denote the radius of the given circle, and \(a \) the distance from its centre to the given point; then \(\sqrt{a^2 - r^2} \) will express the length of the tangent, which only requires to be infected to the given circumference. But if the given point fall on that circumference, then \(a = r \) and the origin and termination of the tangent coincide, leaving its position undetermined. Again, if the given point lie within the circle, \(a \) will be less than \(r \), and consequently the subtractive portion \(a - r \) will predominate over the other portion \(r^2 \), and the compound radical \(\sqrt{a^2 - r^2} \) become impossible. It serves to show, however, that by a change of condition the problem would be rendered soluble.
is most felicitous, they betray the features of a clumsy and artificial combination. The application of Algebra should therefore be reserved for the most arduous and complicated problems in the Higher Geometry.

In the latter part of the seventeenth, and during the course of the eighteenth century, Algebra still continued to advance; and though it underwent no revolution, it acquired greater perfection in all its details. The construction of cubic and biquadratic equations, which Descartes had effected by combining a circle with a parabola, was afterwards improved; but Newton proposed the *Conchoid* as the curve best adapted for the practical solution of such problems. Leibnitz succeeded in conquering the irreducible case of Cardan, by a bold application of the binomial theorem, having converted the cubic roots of the compound expressions into two series, with alternate imaginary terms, which are extinguished by their conjunction. In examining generally the nature of cubic equations, their solution came afterwards to be referred to the trisection of a Circular or Hyperbolic Sector, and was therefore accomplished by the application of a table either of Sines or of Logarithms. The theory of the Section of Angles and of Ratios, founded by the ingenuity of Cotes, furnished a clue to the resolution of certain forms of the Higher Equations. But though Euler solved biquadratics in a different way from that of Descartes, all attempts to find directly the roots of the fifth and the superior orders of equations had totally failed. It became necessary therefore to have recourse to the approximative methods of resolving equations. Successive improvements in the process of calculation were made by Raphson, Halley, Lagny, and Taylor; so that little seemed wanting for any practical end.

During the last century likewise the method of series, so various and extensive in its application, was cultivated with the greatest success. About the years 1714 and 1718, Montmort2 and James Bernoulli employed it in the investigation of the Laws of Chance. But De Moivre,2 a French refugee, and a man of learning and profound science, carried these researches much farther, having devoted his time professionally to the calculation of probabilities, and of the values of life-annuities. In 1730, he published an original work, which, besides other useful inventions, explained the properties of a Recurring Series, that always repeats the same succession of co-efficients in distinct sequences. About the same time, Stirling3 brought out a complete treatise on Series, in which he advanced by a different road to consider their convergence, interpolation, and summation. This ingenious

1 A man of some rank, and an able mathematician, born in 1672 at Paris, where he died in 1710.
2 Abraham De Moivre, born in 1667 at Vitri in Champagne. Being a Protestant, he was obliged at the age of eighteen to seek shelter in England after the revocation of the Edict of Nantes. Having shown an early taste for Mathematics, he continued to prosecute the study as a profession. He supported himself creditably in exile, by giving lessons and holding public lectures. His analytical discoveries extended his fame, and his good conduct insured him respect. He embraced the Newtonian Philosophy, and made some improvements on it. He generalized Cotes' famous theorem of the section of a circle, but turned his attention chiefly to the method of series, which he applied successfully to the doctrine of annuities and chances. After his reputation for such calculations had been established, it is said that he spent a great part of the day at Slaughter's Coffee-House, in St Martin's Lane, where he was ready to answer any question of that nature propounded to him, for the fee of one guinea. His principal work on the *Doctrine of Chances* was published in 1738, but the enlarged and improved edition bears date 1756. De Moivre lived to a great age, but in his advanced years he was subject to obstinate fits of sleeping, and in that torpid state he remained for at least several weeks, till death closed the scene in November 1754.
3 James Stirling, born about the year 1699 in Stirlingshire, where his father owned a small property. He was educated at Glasgow, and sent by that University on Snell's Foundation to Balliol College in Oxford. During his retreat there he applied himself so diligently to the study of Mathematics, that he printed in 1717 a small tract on Lines of the Third Order, with new solutions of one or two difficult problems by the fluxional calculus. He then repaired to London, and becoming acquainted with the Venetian Minister, he accepted an invitation to settle at Venice, where he resided several years, and taught Mathematics. The vicinity of Padua gave him an opportunity of acquiring the friendship of Nicholas Bernoulli, nephew of the two elder Bernoullis, who was Mathematical professor in that University. During his stay at Venice, Stirling contrived to gain access to the manufacture of glass plates, and escaping at some personal risk, he is said to have transferred the secret to England. He now conducted a mathematical or nautical school on Tower Hill, while he maintained a correspondence with the philosophers both abroad and at home. Here he published his great work on the *Differential Method* and *Series* in 1730. After toiling in his academy several years, he was induced to leave London, and undertake the direction of the Mines at Leadhills; in Scotland. In that elevated district near Sangbar he resided during the rest of his life, and by his skill and activity he greatly improved the operations of extracting the lead ore. He now held a profitable employment, but his high mathematical fame would have secured him the honour of succeeding Maclaurin in 1746, if he had not at that unhappy period been tainted with Jacobite principles. In his latter years he seems to have confined his attention to practical concerns, and died at Leadhills in 1772.
mathematician followed no general procedure, but showed great felicity and address in transforming one series into another. The subject was at different times partially extended by Simpson, Maclaurin, Landen, Lorgna, Hutton, Waring, Pfaff, and Kramp. Euler handled series with his usual fulness, perspicuity, and penetration; and yet Lagrange and Laplace, in surveying that field, have gleaned fresh discoveries, which the latter of these illustrious men applied most happily to develop the Theory of Probabilities.

The composition of equations was at the same time investigated with more address and precision. The rule for distinguishing the positive and negative roots from the alternating signs, which Descartes had merely stated, now received a strict demonstration by Segner. The mode of finding the impossible roots, or rather the quadratic factors, of an equation, which Newton probably had inferred from mere induction, was traced by Maclaurin to its real source. D' Alembert proved that every irrational expression is reducible to the form \(A^e \pm \sqrt{-B^e} \); or, in other words, that every compound expression of a higher order may be resolved either into simple or quadratic factors. This is the most important conclusion perhaps relating to the nature of equations. But the general theory was never so clearly and completely discussed as by Gauss, in a small work published by him in 1779. Various methods, and several of them elegant, have been proposed by Euler and others for simplifying and expediting the approximation to the roots of equations. When a question involved the powers and products of more than one unknown quantity, it exercised the skill of algebraists to separate them; but Bezout has brought the mode of this elimination into a regular system, which removes all the difficulties. Among the promoters of Algebraical Science may be ranked our countryman Dr Waring, a profound analyst, but unfortunately an obscure and confused writer. His Miscellanea Analytica and other detached pieces discover uncommon penetration and originality of conception, and though neglected at home, they have, notwithstanding their repulsive form, been duly appreciated by the great mathematicians on the Continent.

The latest improvement that Algebra has received consists in the Combinatorial Analysis, which may be viewed as an important extension of the principles of the binomial theorem. Vieta traced the rudiments of the doctrine, which was successively enlarged by Mersenne, Guldinus, Schooten, Pascal, Wallis, James Bernoulli, De Moivre, and Euler. But it has received its greatest expansion in Germany, and chiefly from the laborious and persevering researches of Hindenburg, who first published a tract on this subject in 1779, and resumed the discussion in the years 1793, 1794, and 1795. He was followed in the same line of investigation by Burekhardt, Rothe, De Prassi, and Pfaff; and this interesting branch of analysis now forms a part of the algebraical course pursued in the German States. It throws much light on the theory of equations, renders more general the method of series, and facilitates the calculation of chances.

In the application of Algebra to Geometry, Euler, pursuing the route marked out in 1727 by Frederick Mayer, has given such extension to the properties of Angular Sections, as to create almost a new science, bearing the appellation of the Arithmetic of Series. Vieta prepared the

1 Stephen Bezout, born at Nemours on the 31st March 1739—led accidentally to the study of Geometry, and fired by the perusal of the Elagis of Fontenelle. Having soon distinguished himself by proficiency in Mathematical Science, he was appointed Examiner to the Navy in 1763, and Examiner of the Artillery Department 1766. In the discharge of his duty in those offices, he gained the love and respect of the youth by his impartiality, kindness, and solicitude for their advancement. He published The General Theory of Equations in 1779, and gave further proofs of his original inventive powers in other occasional Memoirs. But he has owed his celebrity chiefly to the excellent Course of Mathematics compiled for professional education, which is highly esteemed and generally adopted on the Continent. The constitution of Bezout was prematurely exhausted, and he died of a malignant fever on the 27th of September 1793.

2 Edward Waring, born near Shrewsbury in 1736. He studied at Cambridge, where he distinguished himself so much in abstruse calculations, that he was elected, after a hard contest, Lucasian professor of Mathematics in January 1769. He led the life of a recluse student, and though a man of great worth, he was unfitted by his extreme diligence for the general intercourse of society. His latter years appear to have been spent at his place of nativity, where he died on the 15th August 1798. Waring had not entirely confined his application to mathematical research; he printed a metaphysical tract of considerable merit, which was distributed among his friends; and it deserves mention, that he there distinctly brought forward the philosophical view of Causation which is now very generally embraced.
way, and the Bernoullis had advanced far in the research, but it was reserved for their great disciple to expand and convert their conclusions into a compact body of doctrine. This important branch of Analysis has continued to be much cultivated in Germany, under the more expressive name of Goniometry, which was first applied by Lagny in the Parisian Transactions for 1724, to an ingenious method proposed by him for measuring angles. Pfaff has lately enlarged it with the properties of the multiple tangents, and his countryman Mollweide has likewise made some valuable additions. The store of formula now collected is of the utmost utility in transforming and reducing into practical operation the different series adopted by Physical Astronomy.

Algebra has also been applied with advantage to Goniometry generally, as comprehending the solution of the cases both in Plane and Spherical Trigonometry. This was early attempted by Girard, but carried to its completion by Euler and Lagrange. Some concise and elegant formule have been deduced, which facilitate and diversify the practice of computation. In short, if Algebra were purged of the vitious language and inaccurate conceptions that pervade it, and which were early introduced by the confidence of rapid and careless calculators, it might at last claim the character of a perfect science.

The number of elementary treatises of Algebra which have been produced in various languages during the currency of the eighteenth century, appears quite incredible. They are almost ephemeral, and assume every feature and dimension, superficial or profound, from the size of a primer to the magnitude of a lexicon. A very few of those works claim the highest praise, and may retain their hold of education. The Algebra of Euler is in various respects a most remarkable production. That illustrious analyst, when totally deprived of sight in his advanced age, dictated it in the German language to a young domestic, whom he trained for an amanuensis. He was obliged therefore to be plain, distinct, and perspicuous; and these qualities he combined with richness of invention. The second volume had an air of originality, which made it peculiarly interesting. It treated of Diophantine Problems, and the resolution of Indeterminate Equations, and was afterwards expanded in the French version by the masterly annotations of Lagrange. In our own language, Maclaurin's Elements of Algebra, though a posthumous work, is perhaps the ablest on the whole, and the most complete. The bulky volumes of Dr Sanderson, which were likewise printed after the death of the author, are commendable chiefly as the production of an ingenious person, afflicted from infancy with the calamity of total blindness; they have little claims to depth, originality, or logical precision, but possess the merit of being eminently clear, methodical, and copious even to diffusion. The Algebra of Thomas Simpson is a work of an opposite description—brief, condensed, and marked with traits of invention. Passing over the numerous smaller treatises which have run through the schools, the compilation of Emerson deserves notice. It forms part of the Cyclomathesis, or

1. This consists in performing by the help of compasses a repeated decomposition, similar to what is effected in the reduction of a common to a continued fraction. There being in practice generally a balance of errors, the numerical relation hence derived approximates to great precision. The method may be applied to the comparison either of arcs or of straight lines.

2. The collection of formule by Hirsch deserves particular commendation.

3. A very simple and regular method of solving such questions is given in the second volume of the Transactions of the Royal Society of Edinburgh.

4. Nicholas Sanderson, born at Thurleston in Yorkshire in 1682. When only twelve months old, he lost both eyeballs by small-pox, but showing early capacity, he was sent to the free-school at Penniston, where he made great proficiency in the knowledge of the classics, and soon understood the works of the ancient Geometers when read to him in the original Greek. He afterwards profited by the kind instructions of some mathematical friends, and found himself so far advanced in science, that at the age of 25 he repaired to Cambridge, and established his fame in that university by the warmth and splendour of his lectures on the Newtonian Philosophy. He was encouraged by the gentleness of Whiston, who saw no rival; and, on the election of that amiable enthusiast in 1711 for heresy or dogmatism, succeeded to the Lucanian Professorship of Mathematics, the duties of which he continued henceforth to perform with zeal and assiduity. The faculties of touch and hearing he possessed in a wonderful degree; and he was a lively companion, breathing a free and open disposition. But sedentary habits impaired his vigorous constitution, and he died of a mortification in his limbs on the 10th of April 1739.

5. William Emerson, born in June 1701 at Hurworth, a village near Darlington—the son of a schoolmaster, who taught him Mathematics, and left him a small property, which he occupied and cultivated. He was a person of strong intellect.
series of elementary works in all the departments of Mathematics and Mechanical Philosophy, executed with ability by that singular man; exhibiting a mass of valuable matter, clothed in a slovenly style, and digested without method, or any regard to taste or elegance. Nothing is more wanted for the purpose of education than a classical treatise on Algebra, which, avoiding all vague terms and hasty analogies, should unfold the principles with simplicity and rigid accuracy, and follow the train of induction with close and philosophical circumspection.

4. THE HIGHER CALCULUS.

Leibnitz, at his death, left the Calculus which he had framed in a most flourishing condition. The superiority of its algorithm, joined to the ardour of his disciples and successors the Bernoullis, gave it the complete possession of the Continent. But in England, the Method of Fluxions, now greatly in arrear, was cultivated only by a very few aspirants. Its inventor had vacillated about the notation he should adopt, and the unfortunate marking by points appeared the first time in one of the volumes of Dr Wallis' works, printed in 1699. Newton had published nothing separately on the subject, till the Tract on Fluxions, drawn from the recesses of his closet, made its appearance in 1704; which, though full of ingenuity, was then decidedly imperfect and insufficient. But Cotes and Taylor laboured successfully in extending the analytical discoveries of their great master. The former, one of the brightest mathematicians whom England has produced, died at an early age, after achieving, however, some fine analytical discoveries. Besides producing the beautiful geometrical theorem on which is founded the application of Binomial Factors, he constructed an ample Table of Fluents or Integrals, which were solved by the decomposition of fractions, by Logarithms or Circular Arcs. Other ingenious problems are introduced in his posthumous volume entitled Harmonia Mensurarum, published in 1722 by his relative and successor Dr Smith; but for want of the author's revision, this profound tract is unfortunately so concise and obscure as to need a commentary. Some of the propositions were neatly demonstrated by John Bernoulli; but De Moivre considerably extended the doctrine, which was afterwards reduced into a systematic form by Walmesley.

Dr Brook Taylor was a man of rich invention and elegant accomplishments, who supported with dignity the reputation of English science. He was indeed our only mathematician that,

and considerable talent of invention; but affected singularity, and indulged coarse boorish habits. Having a mechanical turn, he constructed his own instruments, and delineated all the figures he wanted. His best work, perhaps, was the treatise of Increments, but his System of Mechanics has had the greatest currency among all ranks of students. In the decline of life he suffered much from the cruel attacks of gravel, and died after a lingering illness on the 20th May 1738.

The earliest mode used by Newton for denoting a Fluxion seems to have been a zero prefixed to the variable quantity. Thus, the fluxion of \(x^n \) was written \(n x^{n-1} \). It is evident therefore that the great inventor must have then had nearly the same conception of the origin of Infinitesimals as his rival Leibnitz.

1 Roger Cotes, born July 10, 1682, at Burbach in Leicestershire, of which his father was rector. Having shown an early and decided inclination to Mathematics, he was encouraged by his uncle, the Rev. John Smith, who carried the boy to his house in Lincolnshire, and carefully instructed him in the principles of science. Hence he removed to St Paul's school, where he made great progress in classical attainments, but still found leisure to cultivate his favourite studies. Thus accomplished, he was sent to Trinity College at Cambridge, and advanced through all the gradations with unrivalled distinction. In January 1706, he was elected unanimously to the chair of Astronomy and Experimental Philosophy, which had been just founded by Archbishop Plume. He took orders in 1713, and at the desire of Dr Bentley superintended the printing of the second edition of the Principia; in which he furnished a learned and ingenious preface. His genius and uncommon talents had raised the highest expectations, when a putrid fever snatched him away in the full tide of vigour, on the 6th of June 1716. Newton in his latter days used often to exclaim with a modest feeling of regret, "If Cotes had lived we should have known something." This very promising philosopher was perhaps rather fastidious; for, except a short but ingenious essay on Logarithms, he produced nothing of decided importance during his lifetime. The papers left by him in an imperfect and unfinished state were collected and published with some annotations by his cousin and successor Dr Robert Smith.

2 Born in affluent circumstances at Edmonton in Middlesex in 1685; studied at Cambridge, where he distinguished himself, and passed through the successive gradations with the greatest applause. The mathematical and physical sciences were his favourite pursuits; but he embraced general learning and cultivated the fine arts, being especially fond of painting and music. Fortune enabled him to indulge his taste. He held the office of Secretary to the Royal Society for a few years, and afterwards visited the Continent. His mind was most acute and inventive; but, though methodical on the whole, he was at no pains to unfold his original conceptions. He died at an early age in 1731.
after the retreat of Newton, could safely enter the lists with the Bernoullis. His most original work, the Methodus Incrementorum, published in 1715, unfolded the elements of the increase and decrease of a variable quantity or function. It was a fine extension of the Differential or Fluxionary Calculus, and constituted a new and important branch of the Higher Analysis, which has since received an appropriate algorithm, and acquired the appellation of Finite Differences. The Method of Increments was applied to the summation of series, and a variety of difficult problems, of which it afforded easy and rapid solutions. It furnished the first investigation of the motions of a vibrating cord, showing that the harmonic curve is a Trochoid or Prolate Cyloid. Among other improvements, it contained the celebrated theorem for the expansion of a magnitude, arising from the combination of its successive orders of differentials, which has deservedly retained the name of its ingenious author. This elegant formula is of extensive use in almost every analytical inquiry, and even performs the inverse process of Fluxions, by exhibiting in many cases at once the resulting fluent or integral. But the notation employed was imperfect, consisting merely of accents instead of points; and the Tract, like other works of Taylor, affected a degree of brevity which borders on obscurity. It was therefore elucidated by Nicole, an eminent French mathematician, in a series of able dissertations, between the years 1717 and 1727. The Taylorian Theorem itself has been successively modified, transformed, and extended by Maclaurin, Lagrange, and Laplace, whose names are attached to their several formulas.

The Italian mathematicians contributed materially to the progress of the Higher Calculus. The Integration of a class of Differential Equations was proposed by Count Riccati, and solved in different ways by himself and the sons and nephews of the first Bernoulli. Manfredi in 1707 gave a skilful solution of differential equations of the first degree; and in 1722, Vincent, the son of James Riccati, pursued likewise the same road. A curious kind of problems was started by Fagnano, another Italian Count, to determine those Elliptical or Hyperbolic Areas, which have their difference expressed by an algebraical quantity. This led Euler, in 1756, to invent a very comprehensive method of determining particular integrals, that Lagrange improved in 1766 and 1769, and which he himself again simplified in 1778. Our ingenious countryman Landen has chanced to fall into a similar train, having in 1775 converted the formula for the rectification of the Hyperbola into another which includes two arcs of an Ellipse, together with an algebraical quantity. The rectification of the Ellipse has been since improved by Legendre and Ivory.

To obtain the differential of any integral expression, is always practicable; the great difficulty consists in reversing the problem, and finding the integral which corresponds to a given differential equation. Such equation must be rendered complete before the integration is effected. It was hence a question of much importance, to save unavailing efforts, by determining the conditions necessarily required for integration. Euler, as usual, was the first to discover the rule in 1736; but, only three years afterwards, it was without any communication produced by Fontaine and Clairaut. At a later period, Euler extended the conditions of integrability to the higher orders of Differential Equations, which Condorcet demonstrated with equal simplicity and elegance.

The Modern Analysis thus constantly advancing, received a capital extension about the middle of the last century, by what is termed the Calculus of Partial Differences, which applies with singular felicity to the solution of the most arduous and recondite physical problems. It would be difficult to communicate any distinct conception of this subtle doctrine to the uninitiated, but the object proposed may be stated generally as, the method of finding the function of several

1. Born at Bologna in 1674—appointed professor of Mathematics there in 1699, and astronomer to the Institute of Bologna in 1711. He died in 1739, having produced several excellent works, in which his taste, learning, and science appear conspicuous.

2. Born about 1696 at Senegalia in the Roman State, where he died in 1760. His mathematical researches were published in two volumes quarto, at Pesaro, in 1750. He devoted much attention to the remarkable properties of the curves called Lemniscate.
variable quantities, from the relation merely of the Differential Co-efficients contained in their Complete Differential. The first specimen of this sort of Integration was given by Euler in 1734; but D'Alembert expanded the process in his Discourse on the General Cause of Winds, which appeared in 1749. It was likewise employed by both these illustrious mathematicians in the rigorous solution of the problem of the vibrating musical string; the position of any point in the harmonic curve depending evidently on the interval of time, as well as on the relation between the absciss and ordinate. But Euler left nothing unfinished. In 1762 he resumed the subject of Partial Differences, and gave a complete explication of its principles, embodying the mode of calculation by an appropriate Algorithm, in a memoir of the Petersburg Acts, entitled, Investigatio functionum ex data differentia
tium conditione. But still further progress was made by him in the third volume of his immortal work on the Differential and Integral Calculus, which came out in 1770. Euler, having then advanced to differential equations of the second order, digested the whole doctrine of Partial Differences into a clear and systematic form. Yet several important additions and improvements have been since contributed to this intricate subject by Lagrange and Laplace, by Nieuport and Trembley.

The last great accession to the Higher Analysis, and somewhat resembling the method of Partial Differences, is the Calculus of Variations. Of this fine theory, the first trace was shown by the rapid genius of Leibnitz, in his mode of differentiating a curve whose equation itself is supposed to undergo the minutest alteration. The controversies of the Bernoullis concerning Isoparameters and Lines of the Swiftest Descent, augmented greatly the various resources of that kind of Analysis. But Euler, combining their discoveries, produced a new and direct mode of finding such Maxima and Minima, and compressed the solutions into a systematic form, in a distinct treatise published at Lausanne in 1744. This elaborate performance led the way for the simpler and most elegant and comprehensive doctrine created by the early genius of Lagrange, and invested by him with a commodious notation. Euler, who was far superior to any feeling of jealousy, readily embraced this improvement, and bestowed on it the denomination of the Calculus of Variations, of which he explained the principles and application, after the most complete manner, in a tract appended to the third volume of his great work. The distinction between Differentials and Variations is rather subtle, yet may be easily conceived by considering the nature of the Parabola. When an ordinate shifts into a proximate position, both it and the corresponding absciss acquire Differentials; but if the Parameter suffer the minutest alteration, the whole trace of the curve will vary, and the infinitesimal mutation which the ordinate thence undergoes is termed its Variation. The algorithm adopted to denote Variations consists of the Greek letters instead of the Roman or Italic, which have been appropriated to the ordinary Differentials. The modes of Integration used in both forms are fortunately convertible.

The Integration of Differential Equations has at length, perhaps, nearly attained that degree of perfection of which it is susceptible. A multitude of expedients are devised for effecting the process in particular cases, but no general and direct method has been yet found. To integrate a differential equation of the first order, composed of two variable quantities, is the problem originally known by the title of the Inverse Method of Tangents, and is commonly solved by the separation of the indeterminate members, which brings it to a question of Quadratures. Some equations consist of parts which, though not separately integrable, will yet admit of integration when combined. Others are integrated by the inverse method of factors; but the process by successive approximations may be regarded as in most cases the preferable mode. The skill of the analyst is chiefly displayed in the evolution of series the most converging.

Of the Theory of the Infinitesimal Calculus, various modifications have been offered during the course of the eighteenth century, which help to elucidate the subject by their contrast, and may be regarded as fine speculations, though they should lead to no material improvements in the practice. The notion of flowing quantities,
first proposed by Newton, and from which he framed the terms Fluxions and Fluents, appears, on the whole, very clear and satisfactory; nor should the metaphysical objection of introducing ideas of motion into Geometry have much weight. Maclaurin was induced, however, by such cavilling, to devote half a volume to an able but superfluous discussion of this question. As a refinement on the ancient process of Exhaustions, the noted method of Prime and Ultimate Ratios, or of the Relations of Vanishing or Evanescent Quantities, which Newton preferred in the Principia, deserves the highest praise for accuracy of conception. It has been justly commended by D’Alembert, who expounded it copiously, and adopted it as the basis of the Higher Calculus, The same doctrine was likewise elucidated by our acute countryman Robins, who did not scruple to seize the occasion of making a coarse attack on the great Euler. Landen, one of those men so frequent in England whose talents surmount their narrow education, produced, in 1758, a new form of the Fluxionary Calculus, under the title of Residual Analysis, which, though framed with little elegance, may be deemed, on the whole, an improvement on the method of ultimate ratios. To confer more consequence on his innovation, he contrived likewise a set of symbols, and applied his algorithm to the solution of different problems. But it never obtained any currency, and soon fell into oblivion.

The method of Analytical or Derivative Functions, which has since acquired such celebrity, was darkly anticipated by Dr Waring, one of the profoundest but most obscure of algebraical writers. This elegant theory was concisely sketched by Lagrange in 1772, and enlarged thirty years afterwards into a distinct work; the same subject having been treated very fully and somewhat differently by Arbogast in 1800. It is grounded chiefly on the inversion of Taylor’s theorem, the co-efficients of the several terms of a Derived or Expanded Function involving the successive orders of its Differentials. But Lagrange deduces the formula from considerations purely analytical, and endeavours thence to erect a science on strict logical principles, entirely disengaged from ideas of Infinitesimals or of Vanishing Ratios. It may however be doubted whether, with all his ingenuity, he has attained that object, or gained, indeed, any real advantage. A mathematician so deeply imbued as that sublime genius with the spirit of calculation, would almost spontaneously regard a process of analysis in the same light as a train of legitimate reasoning. However satisfactory may seem the origin of Derivative Functions, if we examine it closely, we shall probably find the demonstration to rest merely on the strength of analogy, which surely is not the most conclusive sort of argument. But though the method of Derivations should not possess that logical superiority over the Fluxionary or Differential Calcu-

1 Benjamin Robins, born of Quaker parents at Bath in 1707. He discovered early and powerful talents, which he improved with intense ardour, and soon emancipated himself from the trammels of his cold and narrow sect. Mathematics were his favourite study, but he enriched his mind by a course of extensive reading and the pursuit of general information. He became a successful teacher of those sciences in London, and turned his attention to their practical application. Having cultivated also the art of writing, he distinguished himself by several controversial pieces in science, and even assisted by his pen the opposition to Walpole’s administration. He was now so well known as a clever writer as to be employed in correcting Walter’s account of Anson’s Voyage round the World; but finding the performance very poor, he re-composed the whole. The appearance of this celebrated work in 1748 secured the patronage of the Admirals, and he was appointed Engineer General to the East India Company. He sailed from England at Christmas 1748, and on his arrival in India began immediately the fortifications at Madras; but he fell a sacrifice to that baleful climate on the 29th July 1751. His various mathematical works are stamped with originality of conception, and composed in a clear, neat, and forcible style.

2 John Landen, born at Peakirk in Northamptonshire in January 1719. Bred up to business, he showed an early talent for Mathematics, which he strenuously cultivated at his leisure hours. In 1702 he was appointed agent to Earl Fitzwilliam, an employment which he held till within two years of his death. Besides his separate publications, he communicated to the Royal Society, at different times, valuable papers on the most difficult parts of mathematical and physical science, all of them distinguished by depth, ingenuity, and powerful invention. It is only to be regretted that, perhaps for want of the collision of society, he indulged a dogmatic and pugnacious temper. He died near his native spot on the 15th of January 1780.

3 An example will show how Landen’s operation might be simplified. Let it be required to find the ratio of the differential of \(x \) to that of \(x^n \). Assume \(v \) a proximate value or state of the variable \(x \); then by division \(\frac{x^n - y^n}{x - y} \), the number of terms being \(n \). But it is evident that the closer \(x \) comes to \(v \), the nearer will each of these terms approximate to \(x^{n-1} \). Wherefore, at the coincidence of \(x \) with \(v \), the differential of \(x^n \) divided by the differential of \(x \) is \(x^{n-1} \), and consequently \(d x^n = x^{n-1} \cdot d x \).

Diss. IV.
ius which its author fondly supposed, yet is the invention entitled to the highest praise for its beautiful perspicuity and its ready and most extensive application. We have only to regret that it has required a new system of characters, when the ordinary notation has become so familiar, and attained so great perfection. Such mutations, like the diversity of languages, may be deemed a serious evil, since they divert the attention to the mere accessories of learning, and retard or obstruct the acquisition of real knowledge.¹

SECTION II.

APPLICATE SCIENCE.

1. DYNAMICS.

This most important science may be considered as grounded on the Composition of Forces. Although the ancients could not fail to remark that the effect of two oblique forces is equivalent to the action of some intermediate force, yet the principle in its simplest form was first distinctly stated, after the revival of letters, by the famous painter Leonardo da Vinci,² who being likewise a skilful mechanic and engineer, was acquainted at that early period with the right mode of conducting experimental research. He showed the action of two perpendicular forces against a point to be the same as what is denoted by the diagonal of a rectangle, of which they represent the sides. It would hence be easy to derive the general proposition of oblique forces; but this beautiful property was suffered to remain buried amidst an unpublished chaos of ingenious hints and multifarious projects. Near a century more elapsed, till it was re-discovered in its full extent by Stevinus, a Flemish engineer, who applied it successfully to the explanation of the common mechanical powers. About the same time, Galileo, exploring the acceleration of falling bodies, employed the principle of the composition of forces in determining the paths described by Projectiles. Another century nearly passed away before Huygens enrich-

¹ As an introduction to this study, the essay of Robins on Prime and Ultimate Ratio may be read with profit. A very clear exposition of the principles will be found in the Principiorum Calculi Differentialis et Integralis Expositio Elementaria, a thin quarto published by L'huillier of Geneva, at Tubingen, in 1795. But the most complete and perspicuous treatise of the Higher Analysis unquestionably is Euler's great work, comprised in seven volumes quarto, printed at different times between the years 1748 and 1797, and consisting of the Introductio ad Analysis Infinitorum in two volumes, one volume of the Calculus Differentialis, three volumes of the Calculus Integralis, to which have been added two posthumous volumes. The treatise composed in Italian in two small quartos volumes, by the late Professor Paoli, though entitled only Elements of Algebra, is of a more comprehensive import, and remarkably clear and elegant. The German language has very full and able articles on every part of the Higher Calculus, in Klügel's Mathematical Dictionary. The large French work of Lacroix is valuable for its contents, but deficient in clearness and elegance. His Abridgment seems very obscure and unsatisfactory. The nearest and most concise treatise on the Higher Calculus in the French language is that of Boscutt, in two octavo volumes. In English, the Treatise of Fluxions by Simpson may still be studied with profit. Of Maclaurin's large work, the first volume contains an excellent account of the ancient method of Exhaustions, and the second volume is valuable for its physical disquisitions. Our later publications on Fluxions are numerous, but have not acquired such a character as might entitle them to any particular notice.

² So called from the name of the place where he was born near Florence in 1452, being the natural son of a notary. Bred in an age and country so transcendant in art, he soon distinguished himself by originality of conception, harmony of design, and elegance of execution. But having likewise ardently cultivated the Mechanical Sciences, he was appointed director of an Academy of Architecture and Engineering by the Duke of Milan, in which capacity he constructed the canal of Mortesana, to supply that city with water. But the political convulsions of that period drove him back to Florence, where he resumed his former profession. Near the close of his days he accepted from Francis I. an invitation to France, where he languished a few months, and expired in the arms of that monarch in 1562. His numerous sketches of projects and machines, with his observations (written backwards), after having been carried to Paris, are now deposited in the Ambrosian Library at Milan, or among the collections at Florence. A digested abstract of these would form a curious monument.
ed Dynamics with his elegant theorems of the measure of Centrifugal Force in the case of circular revolutions. But Newton had already, and without receiving any communication, extended Centrifugal Forces to curve lines in general, and had thence deduced the elliptical orbits of the planets. The Dutch philosopher gave a further expansion to Dynamics, by his beautiful theory of the oscillation of pendulums.

John Bernoulli simplified the science of Equilibrium or Statics, by proposing the principle of Virtual Velocities, which Varignon adapted to the several mechanical powers. This consists in the fundamental property, that any system at rest being supposed to suffer a minute derangement, if the velocity of each body, estimated in the same direction, be multiplied into its mass, all those collected products will extinguish each other. Virtual velocities might be therefore viewed as an extension of the principle of the lever.

But the same inventive mathematician afterwards produced another radical property, which he styled the Conservation of Living Forces, and which had been suggested by the ingenious hypothesis employed by Huygens for discerning the centre of oscillation. The phrase expressed that permanence, through all the gradual changes of any system of connected bodies, in the aggregate of the products of their masses into the squares of their velocities. This important principle abridges the solution of various dynamical problems, and was embraced by Daniel Bernoulli, the son of its propounder, as the basis of his able and complete theory of Hydrodynamics, published in 1738.

Herman, a disciple and countryman of the Bernoullis, and imbued with the taste of the Leibnitzian school, published, in 1716, under the title of Phoronamia, the first regular treatise on Dynamics, drawn up in the analytical or algebraical form. It was clear and compact, but incomplete, and not distinguished by much novelty of conception.

The task of composing a work on Dynamics, full and original in every part, devolved on Euler, who exerted all the resources of his penetrating genius, aided by intense and indefatigable application. This capital performance came out in 1738, in two quarto volumes, entitled Mechanics, or the Science of Motion, and exhibited the completest and most elaborate body of analytical investigation that had been yet produced.

James, the elder Bernoulli, in his mode of treating the problem of the Centre of Oscilla-

1 John Bernoulli was born at Bâle on the 7th of August 1667, being consequently above twelve years younger than his brother James. He possessed equal genius, but had a keener and more pertinacious temper. Designed by his father to be bred a merchant, inclination led him to the culture of letters, which, from the example and instructions of his brother, he afterwards exchanged for the pursuit of mathematics. The force of his inventive faculty he soon displayed in the resolution of those arduous questions which then agitated the scientific world. The spirit of chivalry had about this period passed over to the learned, and the practice of sending mutual challenges incited application and furnished the talent of discovery. Along with Huygens and Leibnitz, he was the first in solving the problem proposed by his brother, to determine the nature of the Catenarian Curve, or the flexure formed by an equal chain suspended from both ends. Having completed the usual course of education, and turned his thoughts in 1693 to the medical profession, he took a degree in physic. He now travelled into France, and spent some time at the country-seat of the Marquis de l'Hôpital, whom he taught the New Calculus. Proceeding next to Holland, he was appointed in 1695 Professor of Medicine and Mathematics (for these sciences were strangely conjoined) in the University of Groningen. The fame he there acquired by his lectures and writings appears to have awakened the jealousy or bigotry of the Calvinistic clergy, who brought a serious charge against him, for impugning the doctrine of the resurrection in a Thesis maintained by one of his scholars, and composed or corrected by himself, which represented the body as in a state of continual mutation, not only the liquid, but even the solid parts being successively absorbed and renewed, and no particle of the composition remaining after a very short term of years. The coolness of the magistrates, however, effectually silenced the ignorant clamour of the Synod, and Bernoulli was pressed to remain in Holland, with flattering offers of promotion. But Bernoulli preferred his native city, whither he was spontaneously invited to succeed his brother. In this honourable station he spent the rest of a long life in extending, by the activity of his genius, every branch of Mathematical and Physical Science. He corresponded with all the foreign societies, and the numerous prizes he bore away proved a source of income. His treatise on seamanship came out in 1714, and his dissertation on the elliptical figure of the planets appeared in 1730. But his various philosophical papers were carefully collected into four quarto volumes, and published in 1742 at Geneva and Lausanne. He died full of years and of glory on the 1st of January 1748.

2 These two properties—Virtual Velocities and Conservation of Living Forces—are easily and directly proved from the elementary principle of the composition of forces. See Elements of Natural Philosophy, p. 134, 135.

3 Born at Bâle in 1678. Having been six years Professor of Mathematics at Padua, he accepted an invitation in 1724 to Petersburg; but not long afterwards returning home, he became Professor of Morals and Public Law in his native city, where he died in 1738.

4 James Bernoulli, the first of a most illustrious race of mathematicians, was born on the 27th December 1654, at Bâle, and educated in the seminary of that frontier city. His father wished him to follow the profession of divinity, but the im-
tion, struck out a more direct and ingenious procedure, by which the forces exerted are resolved into separate portions, and an equality obtained between their accelerating and retarding influence. This fine conception, after the lapse of forty years, appears to have prompted D'Alembert to the discovery of the simple and general principle on which he framed his Trea- tise of Dynamics in 1743. In every system of bodies acting mutually, their several movements at any instant of time may be decomposed into two portions, one which is retained in the next instant, and the other spent; and since an equilibrium must obtain among the lost motions, an expression is hence derived for the motions that are preserved. The most intricate questions in Dynamics were thus reduced to mere stationary problems, and solved constantly in the same easy and uniform way. Maclaurin's method of expounding forces by co-ordinates facilitated still further the application of this principle, which D'Alembert in 1744 and 1752 extended likewise to Hydrodynamics, comprehending both the motion and the resistance of fluids.

The slightest incident has often led to the most interesting discoveries. Few would suppose that the spinning of a common top involves the most difficult conditions in Dyna- mics, and serves to explain all the intricacies of the planetary vertiginous motions. Segner, a celebrated professor of mathematics at Göttingen, and afterwards at Halle, and a man of original and independent mind, published, in 1755, a short dissertation, with the modest title of Specimen Theorie Turbinum, wherein he showed that every body having a determinate figure, which after combined impulsions is abandoned in free space, will, besides its progressive motion, perform simultaneously, and without the smallest interference, a constant and uniform revolution about each of three principal axes mutually perpendicular, and passing through the centre of gravity. These axes of rotation possess some beautiful but abstruse properties, which the

pulse of native genius burst through constraint, and hurried him into the ardent pursuit of geometry and astronomy, which he cultivated in private. Alluding to this circumstance, he chose for his device Phaethon driving the chariot of the Sun, with the motto, "In toto patre sidera verso." He began his travels for information in 1761, visited Geneva, traversed France, and eagerly sought the society of men of learning and science. In 1680 he descended to the Netherlands and Hol- land, passed over to England, and frequented the philosophical meetings in London. After his return home in 1682, he gave a course of mechanical lectures, in which he exhibited the new discoveries. Being appointed Professor of Mathem- atics in 1687, the fame of his vast attainments drew crowds of strangers to the academy. His genius was a torch of illu- mination, and the most elegant simplicity distinguished all his profound inventions. In conjunction with his younger brother, he not only found out the secret of the Differential Calculus, on which Leibniz had given a very short and obscure essay in the Leipsic Acts, but unfolded the principles with such superior talent and address, that the German philosopher had the generosity to regard him as entitled to share in the honour of the great discovery. He pursued the New Calculus with extreme ardour, and applied it most happily to a variety of arduous investigations: He greatly improved the Method of Series, extended the Theory of Curve Lines, approximated to the rectification of the Parabola, and discovered many beautiful properties of cycloids, epicycloids, and spirals. With the logarithmic spiral, which he discovered to renovate itself by evolution, his fancy was so much struck, that, in imitation of Archimedes, but in allusion to the sublime prospect of resurrection, when he should "shuttle off this mortal coil," and rise like Phoenix from her ashes, he directed with a fine enthusiasm this curve to be inscribed on his tomb, with the Ovidian line, "Eodem mutata resurgo."

But such mighty strides required proportional exertion of intellect, and this intense and unremitting application under- mined the constitution of Bernoulli, and carried him to a premature grave. He sunk under a slow fever on the 16th Au- gust 1782. He had nearly finished his great work on the doctrine of series, and the calculation of annuities and chances, entitled De Arte Conjectandi, which was published in 1713. His other miscellaneous productions were not collected till 1744, when they came out in two quarto volumes at Geneva.

1 Born at Paris 10th November 1717, the fruit of an illicit amour with a lady of high rank, who exposed her infant; but the father, listening to the calls of nature, settled a competent annuity. He was educated by the Jansenists in the Col- lège de Quatre Nations, where he gave early tokens of capacity and genius. After finishing the usual course, he returned to the family of his nurse, with whom he lived forty years in its simplicity, cherishing his independence, and devoting himself wholly to mathematical pursuits and the cultivation of general literature. Such was the progress he made, that he was admitted, at the age of 24, a member of the Academy of Sciences, and two years afterwards he produced his Treatise on Dynamics. The gemes of the Calculus of Partial Differences appeared in his Dissertation on Winds, which obtained the prize from the Academy of Berlin in 1746. His new dynamical principle he applied to the investigation of the Earth's vertiginous motion in 1746, and to the theory of the resistance of fluids in 1752. About this time he engaged with Diderot in the composition of the Encyclopédie, in which, by a curious discovery, wrote the famous definition of mathematics, especially in mathematical science. But he now sought to distinguish himself likewise in philosophy and literature, and published a variety of tracts, which gave occasion to controversy and violent opposition. But this hostility carried his reputa- tion to a higher pitch. He corresponded with the great Frederick of Prussia, but the flattering offers of that Mon- arch and of the Empress Catharine of Russia. The literary honours he enjoyed at home were more agreeable to his taste. Having become secretary to both Academies, he was esteemed the head of the philosophical body at Paris. His works are numerous in various departments. He was a close, accurate, and original thinker; and his style partakes of the same qualities, neat, hard, and precise. He died on the 29th October 1783.
great Euler investigated with that profound talent and luminous method which distinguish all his productions. The curious discovery of Segner drew likewise the attention of D'Alembert and Lagrange, and deserves to be regarded as one of the most important additions ever made to the science of Dynamics. It has contributed signal- ly to the advancement of physical astronomy, and thrown a clear light on the theory of the nutation of the earth's axis, and of the precession of the equinoxes.

Dynamics might seem to have nearly reached its perfection, when Lagrange in 1788, by combining the principle of D'Alembert with that of virtual velocities, converted the whole into an absolute analytical science. His procedure was to refer the efforts of every particle of a moving system to three mutual perpendiculars, and thence derive three several differential equations, which being integrated, would give the final solution of the problem. But to discover a general form of integration is the great difficulty which still remains. All attempts to remove this obstacle have hitherto failed, and we are reluctantly obliged to remain satisfied with merely partial and approximative methods. It must be confessed that the subtilties of the Higher Analysis have been often displayed with very little effect, and that the most celebrated mathematicians, in resolving some arduous questions, especially those involving physical considerations, have still not advanced beyond the vague and imperfect results which sagacity had with very slender aid already attained. Analysts affect too much the air of generalizing, and deceive themselves with expectations which are never destined to be realized. It is thus that Nature appears to set limits to the soaring of human genius.

Statics and Dynamics, though really grounded on observation, depend on principles so simple, and apparently so congruous to reason, that they are often derived from mere abstract considerations, or the consonance of mere abstract analogies. But the constituent properties of bodies are beyond the reach of geometrical composition. Each separate portion likewise contains all the properties of the mass from which it was detached. Hence the corpuscular elements, or the materials that form bodies, have precisely the same character as the compounds themselves. But though imagination represents an innumerable series of subdivisions, such cannot be the actual constitution of nature, which is always defined by number and measure. We may therefore infer the existence of certain ultimate portions or atoms, endowed with the very fewest qualities, but which by their various combinations constitute the particles of matter, or form the corpuscular composition of bodies.

Every body whatever can have its dimensions contracted or dilated by the application of force; and the extent of this effect is limited only by our circumscribed power. The atoms must hence be held together by some mutual appetite, whose intensity varies with the intermediate distance. This tendency is evidently repulsive within a certain interval, and attractive beyond it. But the essence of matter consists in impenetrability, and therefore the repulsive force must increase from approximation above any finite measure. The inherent power, thus variously changing at near intervals, will merge at remote distances into the great law of attraction.

Such is a brief outline of the reasoning by which the ingenious Boscovich 1 in 1759 supported his beautiful Theory of the Constitution of the Universe. It was partly suggested perhaps by the modification first proposed by Clairaut on the Newtonian System, which assumed

1 Roger Joseph Boscovich, born in the small republic of Ragusa on the 11th of May 1711; received his elementary instruction under the Jesuits, who noticed the promising talents of the youth, and sent him to complete his education in their college at Rome. He soon attained great eminence in erudition and science; and became Professor of Mathematics and Astronomy successively at Rome, Pavia, and Milan. In 1733 he performed the mensuration of a degree in the Papal States, and during the intervals of that laborious occupation he composed in three octavo volumes a treatise of elementary mathematics, remarkable for its simplicity and elegance. He was afterwards employed in several public negotiations, and the claims of his native state brought him to London, where he spent some time, mingling in the societies of the
the attractive power to be composed of a small portion of the inverse cube of the distance, joined to the ordinary term of the inverse square. But the idea of the Ragusan Philosopher was far more general, exhibiting this power as what algebraists call a function of the distance. He rendered the conception still clearer by means of a primordial curve stretching to indefinite distance, of which the ordinates on either side of the axis indicate the corresponding attractive or repulsive force. The extended horizontal branch includes the solar attraction, the alternate convolutions of the curve mark the proximate changes of cohesion, and the final descending branch, by its continual approach to a perpendicular, intimates the insuperable repulsion which prevents the collapse of matter. The intermediate alternations of the curve are unknown; but as in their progress they cross the extended absciss from above or below, they mark the limits of instability or stability. In this way the different constitution of solid, liquid, or gaseous substances may be represented. The atoms being likewise variously grouped, must by their blended action produce that immense diversity of effects which animate the spectacle of the external world.

It is to be regretted that Boscovich obscured his fine theory by an infusion of scholastic metaphysics: He maintained that those atoms or physical points had no magnitude, or differed from mathematical points only in being endued with primary force. But this difficulty, which proceeds rather from our modes of conception than from the actual state of things, might be obviated, by supposing the atoms to have real dimensions, though far smaller than any assigned measure. The primordial curve can likewise be presumed to advance, not by insensible gradations, but by a succession of most minute steps. This slight modification would accord with the tendency of atoms to collect into certain regular groups, a property which seems deducible from the principles of crystallography and the theory of definite proportions. We thus catch a glimpse of the recondite composition of corpuscular elements.

The Boscovichian Theory reduces the investigation of the properties of bodies to the utmost simplicity, and may be regarded as a very happy extension of the great law of attraction. Why it has not been received with more favour, especially on the Continent, might provoke some surprise. Being probably considered as too speculative, it has never been studied with the attention it deserved. Purged of its antiquated metaphysics and crude chemical notions, it would form the best introduction to general physical science.

A portion of that beautiful theory, however, is now, in a modified shape, very commonly received, especially by the continental philosophers, who view the constituent molecules as held together by their mutual attraction opposed to the repulsive energy among the attached particles of heat. It is a supposition which readily explains the general properties of bodies, and serves to elucidate their structure and internal operations.

The Boscovichian System assumed the general principle, that every substance whatever is capable of contraction and dilatation. But this was not admitted at the time in its full extent, the noted experiment of the Florentine Academicians seeming to have established the absolute incompressibility of water. The conclusion however was too hastily drawn; for though the liquid included within a hollow sphere of gold resisted the blows of a hammer, and burst the shell, yet the celerity with which it spirited through the crevice, only displayed the elastic force resulting, as Bellegardi rightly observed, from an expansive effort to recover its previous condition. But the actual condensation of water and other liquids under pressure was first shown

learned, and composed his *Poem on Eclipses*, which exhibits a neat view of the Newtonian Philosophy. Thence he went with an embassy to Vienna, where he observed the transit of Venus in 1769. On the suppression of the Jesuits by Pope Ganganelli in 1772, he was invited to France, and appointed Director of Optics. But the Parisian philosophers derided his school of theology, and undervalued his scientific talents; and after a residence of ten years, he returned in disgust to Italy, and printed in 1784 his *Opuscula* in five quarto volumes at Bassano. Chagrin and vexation in the decline of life preyed on his sensitive mind; and he sunk by degrees into a deep melancholy, which ended in utter and hopeless insanity. But from this deplorable state he was relieved by death on the 13th of February 1787. Boscovich possessed a fine geometrical taste, joined to considerable powers of invention in a variety of subjects.
experimentally in 1762 by our ingenious countryman Mr Canton, who measured the effect by means of a sort of large open thermometer, containing the fluid in a very capacious glass ball, which terminated in a long capillary tube. Professor Zimmerman of Brunswick in 1779 carried this condensation much farther, having introduced water into the cavity of a brass cannon, and compressed it by a force exceeding the weight of 300 atmospheres. Still the popular and elementary treatises, neglecting such decisive facts, continued to repeat with complacency the paradoxical assertion, that water retains the same volume under every degree of compression. Nor was the public recalled from its careless acquiescence, till the mention of some experiments of enormous compression performed at great depths in the Atlantic Ocean. But the celebrated Oerstedt of Copenhagen has lately made an elegant improvement of Canton’s method, by which the condensing power exerted on water by a progressive pressure as high as thirty atmospheres, is most easily and accurately measured. By a further extension of the apparatus, the contractility of various solid substances could likewise be readily ascertained, which might lead to the detection of facts interesting in the economy of Nature.

2. HYDROSTATICS AND PNEUMATICS.

The theory of the Pressure and Equilibrium of Fluids is readily deduced from the principles of Statics, joined to the consideration of the internal mobility of the fluid particles, or their absolute indifference to maintaining figure. But the ordinary demonstration seems incomplete, without taking likewise into view that Compressibility, which belongs in a more eminent degree to fluid than even to solid substances. The particles retreat from the action of pressure, contracting on all sides, till the repulsion occasioned by their mutual approach becomes a sufficient countervailing force, diffusible in every direction. Hydrostatics is therefore a complete science. The conditions of equilibrium had been discovered by Archimedes, but Stevinus traced the effects of fluid pressure, which Pascal afterwards explained.

Hydrostatics, or rather Hydrodynamics, which treats of the Motion of Fluids, is a subject of far more difficult investigation. Torricelli gave the first traces of this theory, which exercised the sagacity of Newton, and yet required considerable correction. The fundamental problem is to find the discharge of water through a small hole in the bottom of a cylinder filled with the fluid. This efflux amounts only to about five eighth parts of the first emission; and to explain the discrepancy, the immortal author of the Principia had recourse to the supposition of a cataract, or funnel-shaped conoid, by which the various streamlets bend their course towards the orifice. But the theory was not investigated in a more rigorous and systematic manner, till half a century afterwards, when Daniel Bernoulli published his important treatise of Hydrodynamics.

1 John Canton, one of our most diligent, skilful, and accurate experimental philosophers, was born at Stroud in Gloucestershire in 1718. His father, a broad-cloth weaver, bred him to the same trade; but the youth, incited by the lessons of an elementary teacher, had from his earliest years imbibed a taste for mathematical studies, and continued to devote every leisure moment to those fascinating pursuits. The ingenuity he showed in constructing sundials drew the notice of his more intelligent neighbours, who kindly fostered his efforts, and lent him instructive books. Nothing has contributed more in England, not only to spread general information, but to awaken latent genius, than the circulation of popular compendiums and dictionaries of science. With these aids the ardent application of Canton made such rapid and striking progress, that his patrons counselled him to quit the loom and repair to the metropolis, the great mart of talent. In 1738 he was admitted assistant in a mathematical school in Spital Square, and afterwards became partner and successor in the concern, which he conducted during the rest of his life. Without aspiring to the higher walks of science, he was active in the search of knowledge. He devised new experiments, and carefully repeated those in vogue; thus extending our acquaintance with Electricity, Magnetism, and some parts of Physical Chemistry. But his career was short, for he died of a dropsey in 1772.

2 Daniel, son of John Bernoulli, born at Groningen 9th February 1700, conjoined the hereditary talent with a mild and balanced disposition. He was only five years old when his father returned to Basle, where he prosecuted his education, and enjoyed the peculiar advantages of paternal aid, and the inciting emulation of his brother Nicholas. Being destined for the profession of physic, he sought to improve his medical attainments by resorting to the schools of Italy. There he published in 1724 his Exercitationes Mathematicae, and already acquired such reputation that he was pressed to become director of an academy projected at Genoa. This offer, however, he declined, but soon afterwards accepted, along with his
The subject was next discussed in 1744 by D'Alembert, and with the depth and originality which distinguish all his productions. This celebrated philosopher, eight years thereafter, advanced to the arduous investigation of the Resistance of Fluids, and displayed the resources of his invention, in evolving a variety of ingenious formulae. Euler likewise, by a series of repeated progressive essays between the years 1755 and 1772, successively simplified the theory of Hydrodynamics, and reduced the doctrine into a strict analytical form, the whole comprised in two differential equations of the second order. Lagrange followed next, and discussed in 1781 the chief difficulties which encumbered the theory; and five years thereafter, he simplified still further the mode of investigation in his Mécanique Analytique.

But it is rather mortifying to confess, that these refined speculations are of little avail in the practice of the science. It is indeed impossible, by any effort of analysis, to embrace all the physical conditions concerned in such an intricate system of internal corpuscular motions. Assumptions become necessary for the sake of abbreviation, and the process of integration itself is seldom if ever complete. The results drawn from such laborious researches are, after all this parade of rigid accuracy, to be viewed as only near approximations, which could often be attained by much easier means. It would therefore be preferable in many cases to study the physical relations more closely, avoiding the abuse of abstract calculation, and to rest satisfied with arriving at the conclusions by a sort of balance of errors. In the sober application of analysis, Daniel Bernoulli was singularly happy, guiding his steps always by the light of experiment and observation. And, since the result of the most elaborate investigation is very seldom better than a simple approximation, it seems more judicious in such researches to lay the chief stress on the estimate of physical principles. After the most strenuous efforts of genius displayed during the eighteenth century, the theory of the motions of fluids has really not arrived at more precise conclusions than those first assigned by the penetration of Newton. Nay, so far from reaching any higher degree of perfection, some of the recondite speculations of Lagrange and Poisson, those particularly relating to the extent and celerity of waves, and the general undulatory commotions in fluids, involve consequences which are palpably at variance with the known phenomena of Nature. In such complicated investigations, the safest mode of proceeding is to follow the example of astronomers, who determine the co-efficients of the several analytical formulæ, by the comparison of observations. The simplest and most elementary theory is hence rendered subservient to practical use.

The principles of Hydrostatics constitute the grounds of Naval Architecture, which embraces the theory of the Construction and Sailing of Ships. To this very important branch of science, Euler turned his mighty talents, and produced in 1749 a large and elaborate work, containing a series of ingenious propositions, but which unfortunately are not the best adapted to actual practice. About the same time the celebrated Bouguer, combining geometrical skill with the stores of experimental knowledge, exa-
minded the subject in its details, and reduced the theory into a form remarkably simple and elegant. When a body floats on the surface of water, it is held in equilibrium by the action of two equal and opposite perpendicular forces passing through its centre of gravity, and the centre of buoyancy or that of the fluid displaced by immersion. Its weight draws it downwards, while the buoyant effort presses it directly upwards in the line of support, the vertical position of those centres being essential to the stability of flotation. The centre of buoyancy does not remain constant, but shifts with the inclination of the natant body. The sustaining force may be conceived to act at any point in its direction, and consequently where the line of support crosses the axis. On this point of concourse, Bouguer bestowed the appropriate name of Metacentre, as the limiting position which determines the conditions of flotation, there being stability whenever it stands above the centre of gravity, but the contrary if it falls below. This useful theorem he had invented in 1746; and nine years afterwards was published his investigation of the several motions of ships under the impulse of wind. That inquiry rested too much, however, on the ordinary resistance of fluids, which needs material corrections. It is not very difficult to measure the primary shock of the fluid particles; but, since they accumulate on the front of the body while it advances, the most arduous task is to estimate the force expended, in turning them aside into the general mass, and restoring the diffuse quiescence. To include such multiplied conditions, which are still essential towards a correct and complete solution of the problem, would evidently transcend the powers of the most complex analysis. The utmost that can be effected is only an approximation, which may be easily obtained by adopting a simplified hypothesis, and correcting the terms from observation.

The most complete set of experiments on the resistance of water in narrow canals was made by Bossut between the years 1766 and 1775, and forms the groundwork of his valuable theoretical and practical treatise on Hydrodynamics. It hence appears that water has its celerity reduced to the tenth part, by flowing through a smooth leaden pipe whose length is four thousand times its diameter, or that every particle of the fluid has its motion extinguished and successively renewed ten times during the passage along the extended cavity, by grazing against sides and again relapsing into the current. If in this case, therefore, the whole pressure were distinguished into an hundred equal parts, one of these alone generates the velocity, the remaining ninety-nine parts being expended in merely surmounting the impediments to the flow. A similar consideration was made the basis of Practical Hydrodynamics by Dubuat, who in 1786 gave simple and easy formulæ, for determining the discharge of pipes, canals, and rivers.

Smeaton, our celebrated engineer, performed a series of experiments by means of small models in 1759, on the action of water and wind against the floats or sails of mills. The results obtained on such a narrow scale have, notwithstanding their unavoidable imperfection, been adopted into general practice. Other later observations made by Banks have likewise gained credit among our artisans. The most skilful experiments however of that kind were instituted by Eytelwein of Berlin in 1799. But the recent observations made at Fahlun in Sweden are decidedly the completest and most scientific which have been yet performed.

The usual method of investigating the resistance of Fluids is to estimate the momentary shock or impact of their particles against the anterior surface of the penetrating body. But a more complete and elegant solution may be derived, from considering the pressure caused by
the incessant accumulation, and therefore condensation, of the medium in the track of the passage through it. There is likewise another retarding force occasioned by the constant dilatation of the fluid in the rear of the advancing body. In the case of the gaseous media, this impediment often rises to a great amount. When the velocity of penetration, for instance, through common air exceeds 1350 feet each second, a vacuum is formed behind the missile, which thence suffers a retardation equal to the weight of a whole atmosphere. This consequence was first remarked by Robins in the flight of cannon-balls, and it completely disregards the parabolic theory. He was mistaken however in restricting the effect to such extremely swift motions; for the same consideration applies in every degree of rapidity, the condensation and corresponding dilatation of the air close to the anterior and the posterior surfaces of the ball being proportional to the square of its celebrity. Hence the measure of retardation is always affected by the shape of the rear, as well as of the front of the projectile.

Robins employed an ingenious method of determining the impulse of balls, by firing them against a heavy loaded pendulum, whose deflection correctly indicated the momentum thus communicated; and by intercepting the flight at different distances, it was easy to discover the loss of velocity, and consequently the resistance opposed by the air. Borda, assuming a much lower scale of velocities, followed a different mode in the valuable set of experiments on the retardation arising from fluids which he performed between the years 1763 and 1769. He particularly noticed the influence of the figure of the hinder part of a moving body in modifying the resistance of the medium. Dr Hutton adopted the Ballistic Pendulum of Robins in his most extensive series of experiments executed with great circumspection on Woolwich Common during the years 1790 and 1791. It comprehends the whole range of velocities, from 5 feet in a second to 2000. The resistance appeared to increase in a ratio faster than the square of the velocity, and therefore Hutton proposed to increase the index 2 by a small variable addition. This modification however is not conformable to the physical principles. Coulomb has shown, by his very delicate Balance of Torsion, that, in the case of extremely slow motions, the resistance of fluids is proportional to the velocity simply. The complete expression of resistance therefore includes probably, besides the second power, likewise the first and third, of which the co-efficients are to be found by a scrupulous comparison of the results. More precise experiments are still wanted, to improve the science of Gunnery.

The flow of air through a small orifice suffers nearly the same loss as water, or delivers only about five eighth parts of the measure indicated by theory. But, in passing through long trains of pipes, the several gases appear, from some recent though very limited experiments of Girard, to encounter proportionally still greater obstruction; insomuch that a stream of air would require a pressure exceeding tenfold its emergent force, to enable it to work its way through a pipe whose length is 180 times the diameter. It is a question hitherto overlooked, but of real importance in the economical distribution of pipes for conveying coal or oil gas.

Water and other liquids, when heated, are observed to flow more freely from a very narrow aperture or through a long capillary bore, owing evidently to increased fluidity or the greater internal mobility of their particles. From a very slender syphon pure water near boiling will drop six times faster than on the verge of freezing. But air seems not affected in the same way: If it be forced by a certain pressure through a long capillary tube of glass laid horizontally in a water bath, the current, so far from accelerating, will become retarded by the application of heat. This discrepancy is occasioned by the dilatation of the fluid, which enfeebles the rate of discharge.

The progress of chemistry during the eighteenth century has brought us acquainted with

1 The general complexion of the fact had been accidentally noticed before at Wilkins' great iron-works in Wales, where the nozzle of the bellows of a blast furnace being inserted into the one end of a train of large pipes, the efflux from the other end scarcely affected the flame of a candle.
other kinds of air or gases besides the atmospheric. But their mechanical properties are not so easily determined. The very inferior density of hydrogen gas was first discovered in 1766 by Cavendish, who made it ten times lighter than common air. By some late experimenters it has been represented as even sixteen times lighter, when carried to the highest state of purity. This conclusion, however, appears very doubtful, since it involves hypothetical considerations. It is very difficult to detach the latent moisture and to weigh accurately the dried gases contained in large glass balloons. This experiment, though quite practicable, remains still to be performed; and there is reason to suspect that the alleged lightness of hydrogen gas has been much exaggerated. But Pneumatic theory suggests a method of ascertaining the relative density of any gas, which is at once most ready, and susceptible of very considerable accuracy. It is only to observe the time of a given discharge of the fluids, from a small orifice, and under the action of a certain pressure; when the density will, in like circumstances, be inversely as the square of the number of seconds elapsed. But the celerity of the flow may be discovered indirectly by another mode, which is practised with the greatest ease and nicety by any person possessing a fine musical ear. He needs only to send the gas through a detached organ pipe, and distinguish the precise note which it yields, or find another pipe in unison with it; the inverse subduplicate ratio of these lengths will express the relative densities of the fluids. This suggestion deserves to be pursued.

When air is thrown by pressure through a small round hole, either into free space or into a close vessel with a wider exit, it must evidently spread in diverging streamlets, and suffer a certain degree of rarefaction. The radiating discharge of a fluid thus involves a principle, which explains a number of curious facts. Water rushing in a foaming current along a pipe or confined channel, leaves a partial vacuity at the sides, from which a small inserted syphon would draw a stagnant liquid to a considerable height. This was particularly noticed in 1795 by Venturi, who termed the property Lateral Action. On the same principle depends the suspension and play of a small ball above a jet of air from hydraulic bellows or a condensing engine. Hence likewise an explication of a seeming paradox in the action of fluids, lately considered by the ingenious Huchette. If a pipe bent directly downwards swell below into a cone with an horizontal base, encircled by a narrow rim, and pierced with a central hole, a strong current of air issuing through that aperture, but having a circular plate fitting closely with a weight appended, so far from blowing away the water, will draw it forcibly and support the load. The sheet of air between the opposite surfaces being kept rarefied by its diverging streamlets, the external atmosphere presses strongly upwards. The experiment is reducible to the simplest form; for a common tobacco-pipe held inverted, will by mere blowing be made to suspend a card from its bowl. The safety-valve therefore of a high pressure engine may not always afford the expected protection; under peculiar circumstances it will remain attached at a very small distance, allowing only a partial escape of steam in very thin diverging streamlets.

The like effect is produced in the expanding discharge of water from a narrow circular outlet. Here the streamlets dividing from the centre, draw in air and keep it rarefied by their rapid divergence. The adhesion fails with a rectangular aperture, the streamlets then proceeding in parallel lines. On a modification of the same principle depends an elegant experiment of Ampere. If water be projected horizontally from the bottom of a tall vessel through a vertical slit, this able philosopher observed that the sharp parabolic stream will at a certain distance form a sort of node, and sink into a broad arch. The different retardations of the exterior streamlets appear in this case to determine the change of appearance.

1 These methods of experimenting present themselves to a mathematician, but perhaps the first intimation of them was given in the Experimental Inquiry into the Nature and Propagation of Heat, p. 534. Since a delicate musical ear can distinguish even the quarter of a note, the error of observation in the second mode should not exceed the 64th part, which seems a nearer approximation than is attainable in any other way.

2 See the article Meteorology in this Encyclopaedia.
Brook Taylor had shown that a musical chord during its vibrations has the swelling outline of a trochoid. But Euler and D'Alembert drew a more general conclusion, and proved that the curve might consist of several intermediate branches, subject merely to certain conditions depending on the Theory of Partial Differences. The solution of the problem gave occasion to a controversy between those illustrious philosophers, the former maintaining that the portions of the harmonic curve might be discrete, and the latter, in conformity with the great principle of Leibnitz, contending for their necessary continuity. But Daniel Bernoulli, avoiding the mazes of intricate analysis and visionary metaphysics, gave a clear investigation based on experiment. He established from induction that a vibrating string naturally divides itself into aliquot parts, which perform independently several oscillations during each sweep of the whole chord. Applying the same kind of reasoning to wind-instruments, he showed that a cylinder of air which, by its tremor darting in the cavity of a tube with the rapidity of sound, produces its fundamental note, divides, likewise according to the force of intonation, into halves, thirds, fourths, or fifths, which segments yield at the same time their melting subordinate notes. Hence a musical tone is never single, but consists in the union and concord of certain elementary sounds. And such is the origin of Music, which receives its harmonious composition from the balance and concert of Nature. The theory of Rameau, which D'Alembert took the pains to expound, is reducible to the same principle. Those acute subordinate notes rise at times above the fundamental, or outlive it. Hence the shrill expiring note of a deep-sounding bell, and hence also the narrow compass of the French horn, which yields merely the successive natural tones according to the force of the blast.

These natural tones are derived from the mutual relations of the simple series of numbers 2, 3, 4, and 5. The ratio of 1 to 2 is evidently compounded of the ratio of 2 to 3 and that of 3 to 4, and these ratios mark the sweetest concords. The interval between the $\frac{1}{6}$ and $\frac{1}{8}$ is $\frac{1}{24}$, and between $\frac{1}{6}$ and $\frac{1}{5}$ it is $\frac{1}{40}$; which fractions indicate a tone and a semi-tone, the latter differing from unit only by about half the difference of the former. But $\frac{1}{6}$ may be split into $\frac{1}{6}$, $\frac{1}{8}$, and $\frac{1}{4}$; and hence $\frac{1}{6}$ and $\frac{1}{5}$, though not quite equal, are both deemed tones, the former being called the Major and the latter the Minor. The fraction $\frac{1}{5}$ is therefore composed of $\frac{1}{6}$, $\frac{1}{8}$, $\frac{1}{4}$, and $\frac{1}{5}$; and thus seven divisions, consisting of three tones major, two tones minor, and two semi-tones, fill up the whole extent of the fraction $\frac{1}{5}$, which is hence termed the octave. It is impossible to express an equal subdivision of ratios by small numbers, but twelve semi-tones may be interpolated with tolerable nearness. Speculative authors have endeavoured to adjust or temper the scale, and for this purpose they have sometimes proposed the application of logarithms. Wallis illustrated the Theory of Music with his ingenuity and stores of erudition. In the earlier part of the subsequent century Malcolm and Smith produced learned treatises on the subject. But Euler himself, having at different times resumed the investigation, composed an ample treatise on the General Principles of Music.

It is curious to compare the different degrees of sensibility possessed by the organs of seeing and of hearing. The eye extends its perception over a range of intensity from one to beyond a billion, or from the feeblest glimmer of twilight to the dazzling glare of the meridian sun. But it loses its grasp unless the impression lasts nearly the tenth of a second on the sensorium. Hence a momentary gleam of light, as in Electricity, may elude observation, while a brand whirled quickly round appears a continued circle of fire.¹ The discrimination of the human ear has a more limited extent: It comprises only eight octaves, from the gravest to the sharpest note, or from those produced by only 16 vibrations in a second to those excited by a succession of 8192 vibrations in that interval. Such extreme rapidity might seem far beyond the reach of our faculties; but it is the nature of a musical note to repeat its action till an-

¹ This remark might serve to elucidate the more recondite Electrical Theory. A variety of curious appearances are explained from the same principle. Hence likewise the ingenious toy lately brought forward and called by Dr Paris the Thaumatrope.
other arises; and this divided duration, short as it may be, is sufficient to impress the auditory nerve.

The application of the Higher Calculus to unfold the Motions of the Gaseous Fluids has exercised the skill and ingenuity of the greatest analysts, without producing however any material results. But what is really valuable has been obtained, by the simplest theory guiding experimental research. One of the finest corollaries drawn from the principles of Pneumatics is the method of ascertaining the heights of mountains by Barometrical observations. Pascal was the first to propose this nice problem, after the success of the famous experiment performed at his suggestion on the summit of the Puy de Dome. But the essential element of the solution—the relation between the pressure and the density of the air—had not been yet discovered. Twenty years elapsed till Richard Townley, assisting at some of the experiments which Boyle was making to refute the miserable objections of Father Linus, perceived that simple law, which the English philosopher confirmed by other more extended experiments on the compression and dilatation of air. But in 1676, Mariotte, a French experimenter, endowed with greater penetration, and possessing some geometrical skill, published a work on the Atmosphere, of high merit for the time, and stamped with originality. He had instituted a clear set of experiments for investigating, and stated the result in explicit terms, that the \(\text{Density of the Air is always proportional to its Compression} \). From this law he sought to derive the graduated rarefaction in the upper regions of the Atmosphere. He thought the variation of a line by the barometer near the level of the sea should answer to an ascent of 10 1/4 toises, which is the same in English measures as the tenth part of an inch for 75 1/2 feet. He then proceeded to find in succession the thickness of the strata of air corresponding to 4032 twelfth parts of a line in the whole mercurial column of 28 inches.

These strata he remarked might be found by Logarithms; but contenting himself with a rough computation, he adopted an arithmetical instead of the geometrical progression. Hence he reckoned the air to be 4032 times attenuated at an elevation of 15 leagues or 43.75 miles, which is a tolerable approximation, the true height being only 41.4 miles.

Mariotte had therefore no very distinct conception of the great property that at equal ascents in the atmosphere the density of the air diminishes in a continued proportion. This beautiful theorem appears to have been first discovered and demonstrated about the year 1662 by Huygens, who never took the trouble, however, to publish it. But in 1685, Halley gave an elegant geometrical demonstration of the property, founded on the relations of the segments included between the hyperbola and its asymptotes. For the sake of round numbers, he assumed 30 inches for the standard mercurial column, air at the surface having 800 times less density than water; and he made the elevation proportional to the difference of the logarithms of these columns, the interval between 30 and 29 inches corresponding to 900 feet. This rule, drawn directly from theoretical considerations, was found to apply with tolerable accuracy to an observation made a few years afterwards on the top of Snowdon. Newton generalized the problem in his Principia, by taking into the estimate the decrease of gravity in receding from the centre of the earth, and arrived at the conclusion, that the densities of the higher strata of the atmosphere form a geometrical progression corresponding to the altitudes disposed in harmonic proportion. But this correction may be deemed superfluous in most cases of barometrical measurement.

It was only wanted, therefore, to rectify the method of Halley, by trying it with observations made at great altitudes. But, for more than half a century afterwards, the subject of barometrical measurement was entirely neglected in Eng-
land; and, instead of being improved on the Continent, it had relapsed into confusion, and became involved in hypotheses fostered by the lingering influence of the Cartesian philosophy. Bouguer returned to the right path, and availed himself of the opportunity afforded in surveying the stupendous Cordilleras, to compare theory with observations on the grandest scale. His investigation was not published, however, till 1753, when he gave the very simple rule which is the ground of all the modern practice: That the difference between the logarithms of the barometrical columns, reckoning as integers the first four figures, and deducting a thirty part, will express the altitude in

The inch into a thousand equal parts, he unfortunately took an irregular sequence, by adopting lines or twelfth parts, which he broke down again into sixteenths.

The construction of the thermometer engaged his particular attention. He tried alcohol, and various refined oils, and discovered their great defects. He was therefore induced to prefer mercury, which, besides other advantages, he found, by the methods practised by Renaldini and Brook Taylor, to possess the essential property of expanding very nearly equally with equal accessions of heat. Substituting that mineral fluid for the dilute spirit of wine, he merely corrected the divisions of Reaumur, reckoning the arbitrary number of eighty degrees from freezing to boiling water. Corresponding to each of these degrees, he determined the expansion of air by heat to be the 215th part, which answers to a 269th on the centesimal scale.

The rules which Deluc inferred from numerous experiments and observations were published in 1772 in his able but very diffuse work entitled Recherches sur les Modifications de l'Atmosphere. Two years afterwards they were reduced to English measures, and simplified by Maskelyne and Horsley; and the problem of barometrical measurement appears then to have excited much attention in our island. General Roy computed and observed the heights of mountains in Wales, and Sir George Shuckburgh at the same time, and for a similar purpose, ascended the lofty summits of the Alps. They had the advantage of employing barometers constructed by the celebrated Ramsden; and their conclusions, published in 1777, accordingly very nearly agreed, making the difference between the logarithms of the mercurial columns to express the elevation in fathoms at a temperature only the fraction of a degree below the freezing point. Since that time little more improvement has been effected, though several circumstances that modify the solution of the problem, especially the influence of humidity, might require to be reconsidered. Laplace indeed has introduced some niceties which appear hardly suited to such imperfect data, and render his formula extremely complex and inelegant. Till the modifications of the atmos-
the imitative elevation of the wedge, and the preservation of their volume, and does not essentially maintain the firmness or figure of a body. Hence the small detached portions of liquids run into globules or drops, and hence also they may be retained in a vessel at some height above the brim. In very narrow glass tubes, water and other liquids will indeed stand considerably higher than the level. This curious fact was first distinctly noticed by Aggiuntto, one of the leading members of the Academy del Cimento, who died at an early age. But the completest series of experiments on Capillary Action was made by our countryman Hauksbee. He proved that it is not affected by atmospheric pressure, and succeeds equally well in vacuo; he showed the ascent of water and other liquids between proximate glass plates, and compared it with the rise in narrow tubes; and he ascertained the elevation to be always inversely as the width of the bore or the separation of the plates. He found the same property belongs to plates of marble and brass, and remarked the ascension of water in an open barometer tube crammed with fine ashes. Dr. Brook Taylor likewise performed several ingenious experiments on this subject: Having joined two plates of glass at their vertical sides so as to form a sharp wedge, he dipped it in a sheet of water, and observed the liquid to rise and form a rectangular hyperbola; thus clearly exhibiting the relation of the ascent to the interval between the proximate surfaces. But he pursued the phenomena of corpuscular attraction still farther, and measured the adhesion of a disc of glass to water and mercury. Seventy years afterwards this inquiry was resumed by the celebrated Guyton-Morveau, who endeavoured to ground upon it the chemical theory of Elective Attraction. The attempt however was fallacious, because the force required to detach a disc of glass, marble, or metal, from a surface of water or mercury, is not a single effort, but combines the adhesion of the liquid particles to the solid with their cohesion to each other.

In 1718 Dr. Jurin, being led to examine the phenomena of Capillary Action, proposed a theory for their explication which seemed at least plausible. He rightly ascribed the rise of water in the cavity of the tube to the close attraction of the internal surface of the glass, though he did not perceive the way in which that force must act. He fancied the suspension of the slender column of liquid to be caused by the attraction of the ring of glass immediately above the summit. But such an assumption was quite illusory, for the ring below that limit would evidently exert an equal force in the opposite direction, and thus extinguish the influence of the former. This singular oversight very long however escaped remark, and Jurin's hypothesis became popular and commonly adopted.

Clairaut, discussing the equilibrium of fluids in his famous work on the Figure of the Earth, incidentally examined the property of Capillary Attraction, of which he gave a profound but incomplete analytical investigation. The acute Segner took up the subject in 1754, and gave a different solution, distinguished by its depth, ingenuity, and general accuracy. Assuming as a principle, that the attractive energy is confined to a mere exterior film of the liquid, he found the curve of the upper surface to be what is called the Lintearia, or the cavity of an inflated sail formed by an uniform tension. The results he obtained were perfectly accordant with the phenomena, except the figure of a drop, in the determination of which he had, from overlooking the double curvature, committed a small error.

Nearly half a century more elapsed till any further attempt deserving notice was made to im-

1 As the sum of the mercurial columns is to their difference, so is the constant number 62,000 to the approximate height. This number is the more easily remembered from the division of the year into weeks. For a condensed explication of the subject of Barometrical Measurement, see Elements of Geometry, 4th edition, p. 454-456.
prove the Theory of Capillary Action. In 1802, a short dissertation on the subject, drawn up for a particular occasion, and cast into a popular form, was inserted in the *Philosophical Magazine*. It set out from the simplest principles, refuted the notion of Jurin, proved that the attraction of the inner surface of the glass must be exerted laterally, and showed from the nature of fluids how such a force would produce a vertical effort in the liquid column. The author had designed to expand the outline into a strict analytical investigation, that should embrace the whole range of the phenomena, but deferred the task on account of the more interesting objects which happened then to engage his attention. This unpretending essay, though little appreciated at the time, appears however to have recalled the attention of philosophers to a subject so long neglected. In less than two years the late lamented Dr Thomas Young resumed the investigation of Capillary Action after the manner of Segner, and obtained a very complete solution, but which required, besides, the admission of a repulsive force among the particles of the liquid at a certain small distance. At the mention of Dr Young's name the historian must pause. None of our countrymen has approached more nearly to the character of the celebrated Dr Brook Taylor. Possessing the same ingenuity, extensive learning, varied accomplishments, and profound science, he combined likewise a concise, hard, and sometimes obscure mode of stating his reasonings and calculations. He manifested some chagrín at seeing Laplace, within a twelvemonth after, digress from the train of his *Mécanique Céleste*, to produce an analytical investigation of the phenomena of Capillary Action, so closely resembling his own in the general conclusions. The illustrious French Philosopher, overlooking the previous advances that had been made, and little solicitous about tracing physical principles, trusted to his consummate skill in the process of calculation, and involved the subject in a maze of intricate and abstruse formulæ. The reflections drawn from Dr Young on that occasion were extremely judicious, and deserve to be held up to view at present, when such a false taste prevails as threatens to involve the science of our island in specious mysticism. "It must be confessed that, in this country, the cultivation of the higher branches of the Mathematics, and the invention of new methods of calculation, cannot be too much recommended to the generality of those who apply themselves to Natural Philosophy; but it is equally true, on the other hand, that the first mathematicians on the Continent have exerted great ingenuity in involving the plainest truths of mechanics in the intricacies of Algebraical formulæ, and in some instances have even lost sight of the real state of an investigation, by attending only to the symbols, which they have employed for expressing its steps." (Lectures on Natural Philosophy, vol. II. p. 670.)

Laplace's intricate formula for Capillary Action has been since unravelled by the acute discrimination of Mr Ivory, who disjoined it into two separate portions; the one depending on the adhesion of the watery film to the inside of the tube, and the other resulting from half the cohesion of the particles of the liquid to each other. But our ingenious countryman deduced these elements of the complete force from the simplest physical principles, availing himself of the property of equable diffusion of pressure through the mass of a fluid. The same investigation gave the measure and limits of depression observed in mercury and some other liquids. The treatise on the Elevation of Fluids which first appeared in the Supplement to this Encyclopædia was a masterly production, which fulfilled every requisite that could be desired.

1 In a memorandum bearing the date of December 1798, the principle is thus briefly stated: "The attraction of water to glass, being directed perpendicular to the surface, produces, in consequence of the laws of fluids, a lateral motion, in the same manner as would the pressure of a vertical column equal to that force." It then goes on to investigate generally the curvature of the surface of the water, and gives the simple formulæ \(f_d \) and \(f_p \) for the ascent of that liquid between glass plates or within the bore of glass tubes, the mutual distance or diameter being denoted in inches by \(d \).

2 *Supplement to the fourth, fifth, and sixth editions*, vol. IV. p. 309.
3. ELECTRICITY.

Electricity has, from very small beginnings, risen in the space of little more than half a century to the rank of a Science, superficial indeed, but full of interest and splendour. Without engaging the attention of profound philosophers, it owes its progress chiefly to the ardent application of ingenious experimentalists. In this department Hauksbee, a diligent and skilful operator, made some considerable advances soon after the commencement of the eighteenth century. He marked the circumstances of electrical attraction and repulsion, and observed the production of light by friction both in air and in vacuo. But to him succeeded a more fortunate explorer of Nature—Stephen Gray—a pensioner of the Charter House, a man of recluse and peculiar habits, and no great reach of mind, yet allured to the pursuit by curiosity and the gleams of fancy. The apparatus he employed was very humble, suited to his slender means. About the year 1720 he gave a catalogue of bodies, which show electricity on being rubbed by the hand, including most substances, except the metals which he could not excite. But in 1732 he was led by a chain of accidents to discover the conducting property inherent in certain bodies, by which they are distinguished from such as may become electrical. The fundamental facts thus elicited were in 1739 arranged perspicuously by Desaguliers, who framed the inter-changeable epithets Conductors and Non-electrics, and Non-conductors and Electrics, and proposed the term Insulation to denote the interrupted communication of electrical virtue. In the meanwhile Dufay, keeper of the King's Garden at Paris, availing himself of these discoveries, advanced in the investigation with a keener and more philosophical spirit. Between the years 1733 and 1739 he detected two opposite kinds of electricity, which he called the Vitreous and the Resinous, the former being excited by rubbing glass, crystal, and other kindred substances, and the latter by the friction of amber, lac, resin, &c.; and he gave a clear view of the phenomena of electrical attraction and repulsion, by demonstrating that bodies similarly electrified mutually repel, while those dissimilarly electrified attract each other.

Electricity began about this period to draw general notice, and accordingly more efficient means were employed for the exhibition of its properties. The friction of a glass tube or stick of sealing-wax by the hand was abandoned for the adoption of a large wheel to whirl swiftly a globe or cylinder under the pressure of a cushion. Otto Güricke had used for the same purpose a globe of sulphur, and Hauksbee one of glass; but the advantage of applying a cushion was not immediately perceived. One or more gun-barrels suspended horizontally by silk cords, and having small bundles of linen threads fastened to the nearer ends, formed the prime conductors. Such was the clumsy machine then constructed in Germany, and thence introduced into France and England. The curious found amusement in drawing sparks and firing inflammable substances; and experiments of that sort were ingeniously varied and multiplied. The analogy of Lightning to the Electrical Flash could not fail to be remarked, though their absolute identity was not yet proved. Recourse was now had to electric agency, for the mitigation or cure of certain chronic disorders; and with that view principally were different substances subjected to its immediate influence.

The attempt to electrify water in a phial suspended by a hook from the prime conductor, gave occasion at this time to a discovery which constitutes an epoch in the annals of science. The experiment appears to have been originally performed in Poland, but was repeated in November 1745 by Cuneus and Lallemand at Ley-
den, and described by Musschenbroeck. It hence acquired the appellation of the Leyden Phial or Jar, and consists of a jar or plate of glass covered or coated on both sides, to near the top or edge, by a metallic leaf or other conducting surface, which renders it capable of holding a very high charge of accumulated electricity. By this wonderful invention, a power was obtained incomparably greater than any former exhibition of electrical influence. The shock or convulsive agitation accompanying the discharge of a loaded jar through the nervous system, at first inspired terror, and still continues to excite surprise and astonishment. The swiftness of electrical communication thus displayed seemed to exceed the rapidity of thought itself. Nollet, a popular lecturer on Experimental Philosophy at Paris, sent the shock with instantaneous effect through a whole regiment of guards; and Watson, an ingenious physician in London, could discover no interval of time in its transmission by a circuit of about six miles, formed partly by a wire, but mostly by the course of the river Thames.

Various attempts were now made to explain the electrical phenomena. The ordinary class of philosophers had so long indulged the belief of ethereal media, that they were easily induced to ascribe the powers of electricity to the agency of such a subtle fluid, which might seem at length revealed to our observation. Dufay showed that the electrical machine draws its supply from the ground, and Watson advanced a step farther, in assuming that every substance naturally holds a certain share of the fluid, which in a charged jar is redundant on the one side and deficient on the other, or distributed in a positive and negative state. The credit of inventing this Theory has been assigned to the celebrated Franklin, who might probably without communication have hit on the same idea, and is certainly entitled to the merit of expounding it in a clear and interesting manner. The shrewd American, without possessing any superlative talents, or the advantages of education, had, by industry, judgment, and perseverance, raised himself to a conspicuous station in society. Having some tincture of science, and a taste for experiments, he was peculiarly fortunate in choosing a subject of inquiry which so well accorded with the pitch of his acquirements. He had repeatedly visited England, and after his return to America he maintained a constant interchange of letters with his friend Peter Collinson, a wealthy grocer in London, but a zealous botanist, who valued learning, and held a regular and extensive correspondence over Europe. Through this channel of communication, was Franklin early apprized of whatever chanced to engage attention in the scientific world; and his observations were in their turn quickly transmitted across the Atlantic, and conveyed from England to France and Germany. Having carefully studied the important art of writing, he had attained a style remarkably simple and perspicuous, which gave the best effect to all his compositions. His explication of the Leyden Jar, from the redundancy and defect of a single fluid, was favourably received both at home and abroad; though the hypothesis of a vitreous and a resinous fluid, proposed by Dufay, and generally preferred on the Continent, appeared to explain the principal facts with equal readiness and facility.

But it was reserved for the American philosopher to complete a grander discovery, which, though unreasonably extolled, is the foundation of his permanent fame. The similarity of Electricity and Lightning already struck several experimenters; and the Abbé Nollet had in 1746 drawn a parallel, in which he compared the con-

1 John Anthony Nollet, born at Iimpanpré, in the district of Noyon, on the 19th of November 1700. From that obscure retreat he was drawn by his growing reputation; and his amiable character secured the support and encouragement of zealous friends. He had the advantage of visiting England and Italy, and those journeys procured him the favour of the King of Sardinia, and afterwards the patronage of the Royal Family of France. Enjoying some appointments at Paris, he for many years gave regular courses of Natural Philosophy, and by his popular and eloquent lectures, and his skill in preparing and exhibiting the illustrative experiments, he spread a general taste for science. His elementary works, without aiming at originality, are remarkably neat and clear. He died much regretted on the 24th of April 1770.

2 William Watson, born in London in 1716. Bred an apothecary; and being very prosperous, he turned physician. He was active and ingenious, with some talents, and still greater pretensions. By his ardour he extended considerably the knowledge of Electricity. He died in 1707, having the year before obtained the honour of knighthood.

3 Benjamin Franklin, born at Boston in 1706; and died at Philadelphia on the 17th of April 1790. His political career is well known, and his literary progress has been sufficiently appreciated.
glomeration of thunder-clouds to the prime conductor of an electrical machine. Winkler next, and with more decided arguments, contended for the identity of those powers. Franklin, following the same train of speculation, enumerated in a clear and methodical order the different circumstances of resemblance. But it was necessary to pass the circle of mere probabilities, and he proposed as the final proof to have recourse to direct observation. His suggestion was, to erect on the top of some eminence a tapering iron rod 40 feet high, which he conceived would attract electricity from the charged thunder-clouds. Preparations were accordingly made in France for trying that bold experiment. In the spring of 1752, Dalebard, a distinguished botanist, had an iron rod 40 feet in height tied with silk cords to a post in the neighbourhood of Paris, the lower end being protected from rain by a sort of sentry-box. The apparatus was, during his absence, intrusted to the charge of a resolute carpenter, who watching the first appearance of a thunder-storm on the 10th of May, ran to the spot, drew sparks from the rod, and, assisted by the curate of the village, actually charged an electric jar. The demonstration of the nature of Lightning was thus rendered complete; but an experiment so wonderful deserved repetition. It was eagerly performed, under the direction of Buffon, in the Royal Garden at Paris; and, during the months of July and August, it was tried with the same results near London, where Canton succeeded in detecting atmospheric electricity by means of a common fishing-rod.

Intelligence now came from America, that Franklin had performed his experiment in a finer style. Not having the opportunity of an eminence in the flat country around Philadelphia, he imagined the expedient of employing a boy's kite, to gain a great elevation in the air. To the end of the hempen string, from which hung a small key, he fastened a piece of silk cord, for holding in his hand. On the 15th of June in the afternoon, while a storm was gathering, he walked into the fields, and, assisted by his son, he launched the kite, when, to his inexpressible delight, he saw the loose fibres stretch out from the string; heard a snapping noise, and observed the pendant key not only to attract light substances, but to give sparks on approaching his knuckle. These were all decisive marks of electrical action, and answered his most sanguine expectations. The success of this trial encouraged him to entertain the daring project of turning aside the stroke of heaven, and of guarding our edifices from the ravages of thunder, by the erection of lofty conductors. These views, combined with amusing experiments and lively speculations, were explained at great length, and in a very easy and pleasing manner, in the series of letters to Collinson, and through his friendship printed at London in 1755, and immediately translated into the French language, and circulated with zeal and rapidity over Europe.¹

Notwithstanding the enthusiasm excited by the dispersion of that work, the scheme of annexing conductors to buildings was yet slowly adopted. The first one erected was by Watson, at his villa near London, in 1762; two years afterwards, they appeared in Germany; and not till the year 1770 were they applied to protect some cathedrals in Bavaria and Italy. They have spread since in all directions, especially on the Continent, flowing, it might seem, with the tide of Franklin's political celebrity.

But his famed hypothesis, if examined strictly, will be found to rest merely on the extension of vague analogical considerations. If a pointed wire sensibly draw electricity at the distance of a foot from the prime conductor, through what a wide range, it is argued, must a long tapering rod shoot its influence in the vast magazine of the atmosphere?¹ It may be shown, however, that the point acts only on the electrified air which streams from the machine, and by repelling again laterally those affluent particles, facilitates their continued flow. The slightest impediment to the motion of the aërial currents reduces the action of the point; while, on the contrary, a knob or blunt termination may acquire the same influence as a pointed end, if the flow of electrified

¹ It deserves to be noted, that the Royal Society, which rarely extends its patronage to untried merit, had refused these ingenious letters a place in their Transactions.
air towards it be maintained, either by rendering the ball very hot, or by sticking to it a small lighted taper. The idea of stealing the lightning from the thunder-cloud, and silently disarming the fulminating agent, is therefore utterly chimerical. To produce such an effect, the whole body of succumbent air must discharge its electric store, by actually coming in successive contact with the end of the rod. And, in what reasonable length of time could that extended communication be accomplished? But it is equally futile to suppose, that the terminating of the rod by a point could have the slightest influence, in tempting or leading the thunder-stroke towards any particular spot. Yet such was the main argument used in the famous dispute which once agitated the scientific world, with regard to the comparative advantages of terminating the conductors with points or with knobs.

But though any attempt to avert the course of thunder seem preposterous, it is of extreme importance to consider whether the intervention of a proper conductor may not mitigate, or even render innocuous, the fulminating stroke. The coruscation of lightning resembles most the electric spark, its tortuous path being marked by the violent divulsion of the aérial track. The rapidity of transit might indeed be regarded as instantaneous; but Helvig has lately endeavoured, in Germany, to measure it by help of the Camera Lucida, and estimates it, from probable conjecture, at 8 or 10 miles in a second, or above 40 times swifter than sound. According to the ingenious Gay-Lussac, lightning often darts at once more than three miles in a rectilinear path.

The ordinary classing of conductors into perfect or imperfect, is very loose and unsatisfactory. Their true distinction consists in the time they require, however short this may be, for the transmission of electrical energy. From a set of peculiar experiments, it would appear that the copper transmits this virtue more than a thousand times quicker than water, which again conveys it several thousand times faster than dry stone. But all the particles of the conductor are thrown during the passage into a state of vehement re-

effect, of even moderate dimensions, if well spread over the roof and continued into the ground, may hence be sufficient to protect a house from thunder, by reducing exceedingly the duration of the repulsive efforts.

Iron, which is generally employed, conducts twenty times slower than copper; and lead is still worse adapted for the purpose, since it conducts about a hundred times slower. The electrical energy being conveyed chiefly along the surface of bodies, sheet-copper should decidedly be preferred for the substance of a conductor.1

Thunder-rods of the ordinary construction have been now tried seventy years, and the accidents from lightning seem just as numerous and indiscriminate as before. The public is gradually losing its confidence, therefore, in the efficacy of those vaunted protectors; but, in spite of such warnings, philosophers are most unwilling to descend from their proud eminence. When any sinister event occurs, they are solicitous to find excuses and parry objections. They recommend the conductors to be planted nearer, carried higher, and perhaps armed with a cluster of points. It may require a few more of such fatal accidents as the late explosion, in France, of a protected powder-magazine, to demolish finally the Franklinian hypothesis.

But the injury caused by the stroke of lightning is, in this climate, much less considerable, after all, than has been generally believed. The loss of human life by thunder-storms over Europe appears not to exceed annually, perhaps, one individual in three millions. The damage to property from such appalling discharges is likewise comparatively small. The ravages inflicted on the Continent by showers of hail are of a more formidable kind. Those frozen masses are often large, and fall with such terrible force as in the space of a few hours to tear in pieces the vines and batter down the fields of corn over wide and fertile districts. It was an object therefore of still greater moment to mitigate, if possible, the fury of such rageful storms.

1 On this important subject see a paper on Electrical Points and Conductors, in the first number of Professor Jameson's Philosophical Journal, published in 1823.
About the year 1776, several speculative experimenters, conceiving electricity promoted con-
gelation, and therefore the conversion of the drops of rain into solid icicles, proposed erecting
thunder-rods to prevent the formation of hail. It was even suggested, in aid of those pro-
tectors, to kindle fires on the high grounds, and
to shake the atmosphere by the discharge of mortars. But Heinich showed the futility of
all such expedients, in a dissertation printed in
the Bavarian Transactions for 1785; and, except
the notice of a curious experiment by Seiferheld
in 1790, the question seems to have sunk into
oblivion. The attention of the public, however,
was again for a moment recalled in 1800, by the
offer of a prize from the Physical Society at
Berlin; but the successful candidates, Wrede
and Weiss, proved that hailstones had no con-
nexion with Electricity, and that the various
expedients tried for averting them were entirely
fallacious. The subject seemed deservedly for-
gotten for twenty years, but has been lately re-
vived again by the periodical folly of mankind.
La Postolle, apparently a zealous visionary,
proposed in France with the utmost confidence, as
a complete safeguard against the ravages of hail,
the erection of a tall wooden pole with straw
ropes hanging loosely from the top of it to the
ground. He was followed in 1823 by Thollard,
another projector equally sanguine. But as the
world is governed by names, the powerful talis-
man or lofty thatched pole received the sounding,
though not very classical, appellation of
Paragrelle or Paragrandino. Certificates of its
efficacy flowed in from all parts; the storm-
clouds were seen by veracious witnesses collect-
ing over those poles, and rolling their hail-
stones harmless along the straw to the ground.
The cultivators of the mountain districts on the
confines of France, Switzerland, Italy, and Ger-
many, seemed enchanted by the discovery, and
whole fields were planted with those Paragrelles;
which, like embattled spears, dared the front of
heaven. The question relative to the utility of
Hail-Protectors was now referred to the Institute
of France; but that learned body, though it
clung to the charm of the Thunder-Rod or
Paratonnerre, rejected with scorn the pretensions
of the Paragrelle. But the faith of the believers
was not so easily shaken, and a succession of
angry and querulous pamphlets for a while kept
up the dispute. Yet we may infer that the con-
fidence in the efficacy of such notable protectors
is fast declining, since an old auxiliary—the agi-
tation of the air by the firing of mortars—has
been recalled to their aid.1

1 In the latter part of the eighteenth century,
Electricity was enriched by a continual acces-
sion of curious facts and experiments. New
instruments were devised, of nicer construc-
tion, to measure the intensity of electrical at-
tractions and repulsions. The catalogue of
electrics themselves was not only extended,
but rendered more definite, by distinguishing
the opposite qualities of the substances rub-
bed. Some steps have likewise been made
towards a more precise theory. If a ball elec-
trified vitreously be approached to an insulated
cylinder, the nearer end will assume the resin-
ous electricity, while the remotest extremity will
indicate the vitreous; the limit of neutrality al-
ways advancing to the approximating ball. This
capital experiment appears to furnish the true
explication of the Leyden Jar. But it involves
a more extensive principle: Pressure may be con-
sidered as only close apposition, and friction is
evidently a case of repeated pressure. Hence the
action of the Electrical Machine itself, and hence
likewise the theory of that beautiful contrivance,
the Electrophorus, first announced by Wilke of
Stockholm in 1762, but named and fully de-
scribed in 1776 by Volta2 of Como, to whom
electrical science was afterwards so much in-

1 Orioli, professor of Natural Philosophy at Bologna, seems not disposed to acquiesce in the decision of the Academy of
Sciences at Paris. He appeals to the liberality and opulence of the French nation, and gravely recommends it to plant
paragrelles, armed with metallic wires about 40 feet high, and not more than 500 feet apart, over its wide territory; and
further proposes that the experiment should be continued for ten years, under the inspection of some competent agricul-
tural board. If the sum of 100,000 livres has been raised at his suggestion for that project in the small province of Bologna,
what might not be expected from the munificence of such a kingdom as France?

2 Alexander Volta, descended of an ancient family in the north of Italy, and born in 1745. He embraced the clerical
profession; but, devoting himself to the pursuits of natural science, he was appointed to the chair of physics at Pavia in
1774. Electricity engaged his attention, and the observations of Galvani opened to him that brilliant career of discovery
debted for its extension. The *Indicating Electricity* of Beccaria and the *Returning Stroke* of Lord Mahon depend on the same property. Of a like nature is the accumulation of Electricity by the *Double* and other instruments of that sort.

It appears that the electrical state of bodies suffers a modification from every change of their chemical or mechanical constitution. Such alterations are detected by delicate Electrometers, of which the best perhaps may be the gold-leaf one proposed by Bennet in 1787. The origin of atmospheric Electricity is finely illustrated by that sensible instrument, which shows an evolution or an absorption during the condensation of vapour or the transition of water into steam. Hence a cloud suddenly collected from the conglomerating vapours is vitreously charged, and flashes its lightnings, which, by the succession of the air in their devious lengthened tracks, conveyed to our ears with the tardiness of sound, occasion the prolonged rolling noise of thunder.

The power of benumbing the touch, which belongs to a certain fish of the ray kind, thence called the *Torpedo*, and very frequent in the Mediterranean, had been remarked from the earliest times. This singular property was now suspected to be owing to electrical influence; and the zeal of Walsh in 1773 converted the conjecture into demonstration, showing by satisfactory experiments that the animal could send its shock only through conducting substances. But the power of stunning its prey is possessed in a much higher degree by a large species of eel, the *Silurus Electricus*, which was originally brought from Surinam, and abounds in the pools and sluggish streams of the hot region of Venezuela. From a healthy specimen exhibited in London, vivid sparks were drawn in a darkened room. But from a rapid emission of shocks, these animals suffer great prostration of strength; and the celebrated Humboldt gives an amusing account of the method of catching them in New Spain, by driving into the waters where they resort, a number of horses, which, though stunned by the multiplied succussions, yet generally recover and withstand those attacks, till the eels themselves become quite exhausted, and are dragged out helpless. It appears from dissection, that the *Silurus Electricus* is furnished with a very peculiar and complex nervous apparatus, which has been fancifully compared to an electrical battery. But we are entitled only to infer, that the animal is endowed with a faculty of modifying, by sudden compression or otherwise, its internal constitution, and consequently its electrical condition.

Electrical agency, by effecting new combinations among substances, has contributed essentially to the advancement of Chemistry. Cavendish discovered the composition of nitric acid in 1789, by passing successive sparks through a mixture composed of certain portions of the oxygenous and azotic gases. By a similar process, he found atmospheric air to consist of the same elements, only combined in a different proportion. But his fine discovery of the composition of water was afterwards confirmed, by concentrating the effort of electrical repulsion, in the experiment that Dr Pearson, assisted by Cuthbertson, an expert electrician, performed in 1790, which evolved those gaseous components. This satisfactory experiment has been since greatly simplified, by one of those happy miniature contrivances, in which the late very ingenious Dr Wollaston so much excelled.

Electricity can be transmitted through the several gases; and the light which it then extricates is brighter in proportion to the condensed state of the medium. As the air becomes rarer, the projected spark assumes a spreading lambent appearance, through all the gradations of colour, from white to yellow, orange, and purple, vanishing into the faintest violet. The most copious display of purperine gleams appears when the air is rarefied about 1000 times, which corresponds to an altitude of thirty-five miles in the atmosphere. Such may be the proper region of the diffuse and tremulous coruscations of the

which will render his name immortal. Volta was particularly distinguished by the liberal and discerning patronage of Napoleon. During the fervour of reform and revolution, he laid aside the ecclesiastical habits, and married; but, in the decline of life, the early impressions regained their ascendancy, and compunction for the breach of the vow of celibacy preyed on his spirits, and undermined his health. He died on the 6th of March 1827.
Dissertation Fourth.

Aurora Borealis, which is decidedly an electrical phenomenon. If the rarefaction be pushed farther, the luminous appearance grows always fainter, till it becomes extinct. Accordingly, Morgan¹ found by a very careful experiment that an electrical charge is not conducted through a Torricellian vacuum,—an important discovery, since it shows that Electricity, like Heat, can exist only in a state of combination with its recipient substances.

The close of the eighteenth century was distinguished by the accession of a new branch of Electrical Science, more brilliant and astonishing than even the parent stock. It originated in a fortunate incident which occurred in the year 1790. Galvani, whose name it bears, professor of anatomy at Bologna, remarked, in the course of his demonstrations, that the limbs of a dissected frog were strongly convulsed at every spark which one of his pupils happened to draw from the prime conductor of an electrical machine standing in the immediate vicinity. Being thus led to consider the subject, he made several curious experiments, and published a Dissertation on Animal Electricity, which engaged very general attention. The femoral muscles of a frog, bared of their integuments, but left connected with the trunk of nerves, were found to serve as a most delicate sort of electrometer. With this aid, it was easy to trace the faintest vestiges of electrical influence, and to contrast the properties of various conductors. The very weakest chemical solutions, the mere contact of different metals, nay the apposition of animal fibres, were all found in their several degrees to develop electricity. But the simplest mode of exciting it is, by the mutual application of small plates or discs of copper and zinc. Dr Robison made a capital improvement, in proposing a pillar of those discs, like a rouleau of half-crowns, to augment by their combination the intensity of effect. This happy idea seems to have been overlooked, when Volta in 1800 invented his famous Pile; the most energetic instrument of all electro-chemical analysis, and commencing deservedly a new epoch in physical science. By Crookshanks it was rendered far more commodious, in being converted into the Galvanic Trough; which, again enlarged into Batteries sometimes of enormous extent or dimensions, has conducted Davy, Berzelius, and others, to the most splendid and wonderful discoveries.

The Voltaic Pile is only a modification of the Electrical Battery; but its peculiar action may assume two distinct features. It either exerts the slowness and duration of repulsive force, or displays the most intense concentration of that power. Hence the opposite effects produced by very large single plates, and by a very numerous series of small ones. Light and heat are most copiously projected from their recipients by the former, while chemical decomposition is effected with the greatest energy by the latter. But it would require much patient and profound investigation, to discover the working of such recondite principles.

The original design of this discourse was to come no lower than the early part of the present century, and to avoid discussing the merits of contemporaries. But I cannot resist the pleasure of noticing the signal advance which Electricity has lately made. Its close connexion, if not perfect identity, with Magnetism had been long suspected, and was even adopted by several ingenious theorists. This affinity found a most zealous supporter in Ritter; but the fancy and mysticism blended with his opinions had begun before the year 1818 to weaken their influence. In this state of uncertainty, Professor Oerstedt of Copenhagen, happening, in the course of his lectures during the winter of 1819-20, to show his pupils the intense heat excited in a small wire of platinum, laid horizontally and nearly

¹ A very ingenious person, who died young, being nephew to Dr Price, and brother of the able Actuary of the Equitable Assurance Company.

² The Germans lay claim to the origin of Galvanism. Sulze, about the middle of the eighteenth century, had, in his work on Taste, noticed the singular impression made on the tongue by the contact of two distinct metals. But Zimmerman has lately produced a passage from the Biblia Natura, a book published at Leipsic in 1752 by Swammerdam, in which the author mentions his having observed the convulsions of the muscle of a frog held against a glass tube by a silver wire pendant from a ring of brass. Such facts are curious, and deserve attention; but every honourable mind must pity or scorn that invidious spirit with which some unhappy jackals hunt after imperfect and neglected anticipations, with a view of detracting from the merit of full discovery.
in the direction from east to west, to join the conductors from the copper and zinc plates of a Galvanic Battery, thought of placing under it a small compass, and the needle was observed instantly to turn aside as if it had been drawn by another magnet. This surprising fact was not much heeded by him at the time; but having afterwards carefully traced the conditions of the experiment, he published near the close of the year 1820 his great discovery, which awakened the public attention, and gave rise to numerous speculations that frolic in the giddy maze of electric and magnetic currents.

It must indeed be confessed, that after all the progress which Electricity and its younger branch Galvanism have made, the hypotheses commonly received are exceedingly vague and unphilosophical. In cultivating these attractive sciences, experimenters would seem to satisfy themselves with the exercise of a looser and humbler species of reasoning. It is rather amusing to observe the complacency with which some ingenious persons describe the play and vagaries of an Electrical Current, whose existence was never proved. We are acquainted only with electric attraction and repulsion, and with the transmission of electric influence: All beyond these elementary principles, rests on hasty conjecture. Instead of adopting one or two fluids, it were safer to suspend the assumption of any. We can perceive no distinctive marks of the operation of a fluid, which is often confounded with the mere luminous track occasioned by the particles of Light disengaged from the substance of the conductor; the colour of emission being modified by the peculiar character and intensity of the retaining force.

The Theories proposed by Épinus and Cavendish are entitled, however, to the praise of great ingenuity, and may serve to connect with elegance the chain of principal facts. The latter most accurate philosopher likewise stated the immense disproportion in the celerity of different conductors, though he did not explain the grounds of his conclusions. Coulomb agreed with him in limiting electrical diffusion to the surface of bodies; and the Balance of Torsion showed the intensity of attractive and repulsive power to be inversely as the square of the distance. These were real discoveries, deduced from nice and cautious observation; but his countryman Poisson has since exercised profound skill in the play of analysis, by attempts to explore the hypothetical influence of Electricity, without having arrived, however, at any conclusion that is not obvious or of no value. ¹

4. MAGNETISM.

Nearly allied to Electricity is the science of Magnetism. The property of attracting iron possessed by a certain stone or metallic ore, was known from the remotest times; but the directive power, or disposition to turn always towards the north, that most wonderful property which guides the modern navigator over the dark and desert expanse of ocean, lay hid through a long succession of ages. This remarkable substance derived its name among the Greeks from Magnesia, a district of Macedonia, where it was chiefly found.

The Magnetic Compass, with the art of distillation, which was never practised by the ancient Greeks or Romans, seems to have been discovered in Upper Asia, and thence communicated by their Tartarian conquerors to the Chinese. From them again, the knowledge of the invention spread gradually over the East. The Crusaders, during the occupation of their bloody conquests in those regions, had leisure to admire the arts acquired by their more civilized rivals. Having their curiosity thus awakened, they appear, about the latter part of the twelfth century, to have imported into Europe the Compass, along with the substance which, mistaking it for Natron, they called Salt Pêtre, and of which they had learned the deflagrating property. That invaluable instrument was at first very rudely formed, consisting merely of a piece of

¹ Such abuse of a noble science would have merited the censure of the Dunces:
Or set on Analytic ground to prance,
Show all his paces, not a step advance.
the native mineral fixed to a broad cork, and set to float in a dish of water. An artist of the opulent town of Amalfi, the great emporium of the East, and seated on the shore of Calabria, in the direct route of the Crusaders, improved the construction, and marked the north point by a Fleur-de-Lis, the armorial bearing of the kingdom of Naples. From its directive property, it was now called in English the Leadstone or Leading Stone. About a century afterwards, the method of communicating magnetism by the touch was probably discovered, the needle or small bar of steel so treated being then applied to a card suspended on a pivot. The Germans bisected successively the eight cardinal divisions, which had satisfied the Romans and the Chinese, into sixteen and thirty-two points, to which they gave those compound names which are still retained. About this period, when observations were not very precise, the needle was judged to turn nearly towards the north; but Columbus, in his first voyage of discovery, found it to decline from the meridian as he advanced on the Atlantic; and this apparent change of the laws of nature occurred under circumstances which would have appalled a less determined commander. The variation of the compass, however, was distinctly noted in the year 1500 by Cabot, another celebrated Italian navigator.

Magnetism made little further progress, till Dr Gilbert, the founder of experimental science in England, explored the subject by a course of patient and skilful investigation. To this eminent philosopher we are indebted for the discovery of the few connecting principles. Every magnet, whether natural or artificial, has its powers concentrated in two opposite points, termed the north and south poles; and the similar poles of separate magnets repel each other, while their dissimilar poles exert a mutual attraction. When a piece of soft iron is approximated to a magnet, it becomes itself a magnet, the nearest end assuming an opposite polarity, and therefore being constantly attracted. If a long iron bar he held in a position nearly vertical, its lower extremity is always found to manifest the properties of a north pole; and, from this induced power, Gilbert legitimately inferred the magnetism of our globe. He likewise illustrated its structure, by fashioning a magnet into a small sphere or terrella, and hence illustrated the declination of the needle, as well as its dip, or the position which it takes when, after being poised freely on its centre of gravity, it receives the magnetic virtue—a property which had been first noticed by his countryman Robert Norman in 1576. But something more was required to explain completely the directive property of the needle. If a magnetized sewing needle be set to swim on the surface of water or quicksilver, it will not advance towards the north, but readily traverse in that direction. In fact, while the one end is attracted, the other is equally repelled, by the vast magnetic power of the earth concentrated below the Arctic Region, but having really the same quality as what was first named the South Pole of the needle. Those antagonist forces will have no influence therefore to draw it forwards; but if it be turned aside, they will combine their oblique action to bring it back into its meridional position.

Gilbert's original work was republished at Ferrara in 1629, with a commentary by Cabaeus, a Jesuit; and fourteen years afterwards another member of that learned fraternity, Kircher, a man of singular talent and immense erudition, produced at Cologne a full treatise on Magnetism, which contained little, however, of sound doctrine, but abundance of fanciful speculation.

Hooke remarked the debilitating effect of heat on the power of the magnet. Newton appears to have sometimes amused himself with magnetic experiments, but did not bestow much thought on the subject: He was disposed to consider the force exerted as reciprocally proportional to the cube of the distance.

The celebrated Halley, who, by his ingenuity, learning, zeal, and enterprise, contributed so largely to the promotion of physical science, now turned his attention to the subject of terrestrial magnetism. In 1683, and more distinctly in 1692, he endeavoured to explain the declination of the needle and its variations, by supposing the Earth to be a hollow sphere with two opposite magnetic poles, but having another solid sphere, of analogous polarity, which revolved slowly within it. From this bold hypothesis, of two fixed, combined with two mov-
able poles, he sought to calculate the changes of internal constitution that are continually going forward. At a time when the method of finding the longitude at sea was extremely imperfect, he proposed the variation of the compass observed in different latitudes, as an easy way of obtaining at least an approximation to that important problem. With this view it was necessary to collect numerous observations made at remote points on the ocean; and in 1699 Halley obtained the command of two small sloops of war, with the rank of post-captain, the better to insure subordination among the crews. Thus equipped and empowered, he traversed the vast Atlantic, diligently exploring both hemispheres, till he was arrested by the icy barriers. On his return in the following year, enriched with a store of various information, he published his Magnetic Chart, in which the limits corresponding on the surface of the globe to every five degrees of declination, were marked by certain curve lines formed by connecting the points of observation. This was the model of all the charts of a similar nature which have been since constructed. One of the most noted was produced by Mountain and Dodson in 1744, and again improved in 1756. Wilke laid down another in 1772, and Lambert sketched out a third in 1776. But the most accurate and complete magnetic chart that has yet appeared, was published by Churchman in 1794. The value of such delineations, however, is unfortunately diminished by the errors proceeding from the local attraction of the magnetic needle, which were quite overlooked at that period.

Between the years 1712 and 1725, numerous experiments were made by Hauksbee, Brook Taylor, and Musschenbroeck, to determine the relation of the intensity of magnetic force to the distance of its action; but though the power appeared to decrease most rapidly with its remoteness, no satisfactory conclusion was obtained. The cause of this failure must be imputed to the intermixing, in the statement of the results, no fewer than four distinct forces, emanating from the several poles. Taylor, the most acute of those observers, reckoned the magnetic force, if exerted very near, to be inversely as the square, but when more remote, as the cube, of the distance. It was reserved for Coulomb, sixty years afterwards, to discover the true law of magnetic attraction and repulsion, by means of his delicate Balance of Torsion, though the same deduction had been previously announced by the ingenious Lambert. The earlier experimenters had sought to ascertain those forces by the loads required to effect a separation, or to counterbalance their action. Graham proposed the more precise method of computing the magnetic forces, from the number of vibrations performed in a given time by the needle; but his suggestion was overlooked, to be invented again, and generally adopted.

The properties of the magnet appear mysterious, though reducible to a few primary facts. But to discover the great pervading principle, still baffles the ingenuity and penetration of the most ardent research. The supposition of a subtile permeating fluid is very generally embraced, though it rather darkens than elucidates the subject. Yet it seemed to receive countenance, from the curve lines marked out by iron-filings when strewed on a sheet of paper or a plate of glass laid over one or more magnetic bars. On a hasty glance, these traces might be regarded as indicating the circulation of an invisible fluid. Euler, whose strength lay in the command of analysis, went so far as to imagine that the pores of the magnet were furnished with a sort of valves, which permitted the entrance of the current and prevented its return. But this amusing experiment is most easily and satisfactorily explained, from the composition of the attractive or repulsive forces centred in the magnetic poles. The curves delineated by the filamentous chains, when two dissimilar poles are exerted, resemble elliptical arcs, but seem hyperbolic ones, if two similar poles unite their action. The magnetic curve is distinguished by some

1. These laborious compilers in 1727 gave a table of no fewer than 50,000 observations arranged corresponding to the years 1700, 1710, 1720, 1730, 1744, and 1756. They found it impossible, however, to reduce all the changes to calculation.

2. Charles Augustin Coulomb, a most accurate and ingenious experimenter, was born at Angouleme in 1736, and died at Paris on the 23d of August 1806. Receiving his education in that capital, he embraced the military profession, and was sent as engineer to the island of Martinique. He afterwards held various employments, and might have risen to the highest distinction, if he had been as compliant with the times as some others of his countrymen.
remarkable properties, and one of the most beautiful may be cited: It is, that if from the same points in the axis, tangents be drawn to them, the several points of contact will range in the circumference of a circle.

Æpinus adopted the hypothesis of an active fluid, to explain the phænomena both of Magnetism and Electricity, and endeavoured to reduce its operations to great simplicity. Brugman and others have entertained similar notions. But admitting the ingenuity of such conceptions, they enable us merely to shift the difficulties. We must imagine the constitution of the unknown fluid, while the properties of the magnet itself are obvious to the senses. Sound logic, therefore, dissuades us from indulging in dreams hardly more instructive than the occult qualities of the Schoolmen. The true business of the philosopher, though not flattering to his vanity, is merely to ascertain, arrange, and condense the leading facts.

Ingenuity and patience were for many years exercised in improving the art of constructing artificial loadstones, or of communicating magnetism by different modes of Touch. The general procedure depends on the magnetic power induced by apposition, though it is often affected by very slight circumstances, and always requires dextrous manipulation to insure success. In France, Reaumur and Duhamel gave circumstantial directions; but our countrymen Knight, Mitchell, and Canton, acquired peculiar address in magnetizing; and Æpinus gave an improved method, suggested by his theory, for communicating magnetism by the Double Touch, the two rubbing bars being held each reeling about half a right angle from the vertical position.

It was proved that the magnetic virtue resides near the surface, and therefore hollow magnets were proposed, though perhaps never actually tried. But thin bars seemed to answer best for attaching under the card of the mariner's compass. Coulomb remarked that a steel wire is, by twisting, made capable of being nine times more strongly magnetized. It is singular that cast steel is unfit for a magnet, and that the smallest admixture of antimony destroys the polarity of iron. In the years 1786 and 1787, Cavallo tried the magnetism of various substances, by setting them to float on a very clean surface of mercury, on which they turned nimbly by the smallest force. In this way, he found that a trace of iron which no chemical test could detect was yet capable of sensibly affecting the needle. Nickel is strongly magnetical, but seems enfeebled by the addition of cobalt. Yet brass, though naturally passive, becomes susceptible of magnetism by hammering, and loses this power again when heated to near redness. But a more numerous and far more precise collection of experiments of that kind was made during the course of twenty years, between 1784 and 1804, by Coulomb. This most acute and accurate experimenter found every substance almost to be susceptible of magnetism. To examine the property, he formed needles about three-eighths of an inch in length, suspended by fine silk lines; and these obeyed the magnet, though composed of gold, silver, copper, lead, and tin, nay of bone and chalk. But this seeming universal diffusion of the property might still be owing to the presence of iron, however much attenuated. When bees-wax had incorporated with it a portion of iron-filings equal only to the 130,000th part of its weight, it was yet sensibly affected by the magnet. Nor is it improbable that nickel, as once believed, may be only a refractory ore of iron, still resisting chemical decomposition, though deriving from this source its magnetic virtue.

The variation of the needle has been accurately observed in Europe during nearly two centuries. It seems to be continually increasing, though in a most irregular manner. In the year 1657, it stood directly north at London; and it held the same meridional position in 1660 at Paris. But during the remainder of the century it changed towards the west, at the rate of 11' annually at London, but only 6' at Paris. From 1700 to 1725 the yearly increase of variation at London was only 9', from 1725 to 1750 it rose to 14'; but from 1750 to 1775 it returned to 9' again, and from 1775 to 1800 it declined to 6'. For the next 25 years the

1 See Analysis of Curve Lines, near the end of the volume.
The celebrated astronomer Burckhardt, by combining together a number of observations, has deduced a formula for the variation of the needle at Paris. Admitting its accuracy, the maximum will be attained in 1837, and reach to 24° 29', the period of magnetic revolution being completed in the space of 800 years.
Bayly, who accompanied Captain Cook as astronomer in the two last voyages of that great navigator. But it was accurately investigated by Lieutenant Flinders in 1795. The error thus caused is often as much as 10 degrees; and, owing to the oblique influence of terrestrial magnetism, it attains to a much greater amount in the high latitudes. When the vessel's keel lies in the magnetic meridian, the needle is not disturbed, and the divergence becomes greater in the transverse position; in every other position, the sine of the deflexion has a certain ratio to the sine of the angle of the course. A single experiment will determine that ratio, and hence the rectification is easily applied. But Barlow has proposed a very simple contrivance, to avoid the trouble of computation: It is to fix, on the deck and immediately behind the binacle, a thin iron plate, which by its proximity may counteract the diffuse attraction along the forepart of the ship. This adjustment being once attained, must suit every situation.

But the action of terrestrial magnetism is evidently the result of its intensity combined with its direction. Though the attractive force augments in approaching to the magnetic pole, yet the Dip of the Needle rapidly increases, insomuch that the late Arctic voyagers found it in Baffin's Bay only three degrees from the vertical position. The efficacy of the directive force was hence reduced about nineteen times, and the compass betrayed a deviation amounting to 70° or 80°.

The study of Magnetism, so long neglected, has lately been revived with splendid success. Conjoined with observations of the length of the pendulum in different latitudes, experiments have been likewise made on the oscillation of the needle, which indicates the directive power of the great internal magnet. From a comparison of these, it appears that the intensity of the terrestrial magnetism is doubled in the ascent from the equator to the western limit of Baffin's Bay. No person has shown such ardour in pursuing the investigation of this subject as Professor Hansteen of Christiania, who not only with infinite labour collected and digested the multifarious facts, but has undertaken distant journeys for the purpose of rectifying former observations. From all these combinations, he was enabled to detect the position of the magnetic poles of the Earth, and trace the curves of variation on its surface. But the results undergo correction as often as fresh data are procured. Hansteen infers, from experiments he made between the years 1819 and 1826 on the oscillation of the needle, that the magnetic intensity has been decreasing annually at Christiania, London, and Paris, by the 235th, the 725th, and the 1020th parts respectively. This diversified effect he ascribes to the revolution of the Siberian pole.

The remarkable discovery of Oerstedt has greatly enlarged the field of magnetic influence. A wire of any kind of metal being laid horizontally and at right angles to the magnetic meridian, to connect the opposite conductors of a Galvanic Battery, a needle either below or above it is drawn considerably to the one side or the other. Instead of bewildering the imagination with the vagaries of invisible streams, a sufficient explication of the phenomenon may be deduced from two leading principles:—1. Magnetism is in some proportion diffused through all metallic substances, owing either to their peculiar constitution or the universal dissemination of ferruginous molecules: 2. The cross wire, from its position with regard to the Terrestrial Magnet, acquires induced magnetism, but extending transversely; the under side having the virtue of a north pole, and the upper side that of a south pole. The copious infusion of that virtue is occasioned probably by the duration of the internal tremor, excited by intense electrical action, and analogous to the effects on a bar of iron or steel subjected to hammering, twisting, heating, or the fulminating shock. Hence are easily explained the diversified phases of attraction, rotation, or impressed magnetism.

Arago proved that continuous electrical sparks or discharges operate the same combinations as the Galvanic Battery. But his penetrating ingenuity soon discovered the means of augmenting prodigiously the intensity of the magnetic action, by coiling the conjugate wire into a cylindrical spiral, and thus forming a sort of magazine of transverse inferior and superior needles which unite their influence. Schwegger, pursuing the same ideas in Germany, has produced
a very simple and convenient instrument, for detecting the smallest traces of magnetic virtue. Magnetism has again received a beautiful accession from the keen glance of Arago, whose mind embraces and enriches every department of science. If a needle be finely suspended over a thick circular plate of copper made to revolve horizontally, it is drawn aside from the meridian in the direction of the motion; and when this becomes very rapid, it will even follow the tide of circumbution. The effect is nowise occasioned by the whirlwind raised, for the experiment succeeds best when the needle, pendant from a silk line, is inclosed within a glass case that has a bottom of mica or thin glass resting immediately over the plate of copper. The power is augmented by the proximity of the needle and the thickness of the revolving disc,—an evident proof of the attraction exerted by the accumulated ferruginous molecules.

The simplest and most satisfactory way of explaining this curious phenomenon seems derived from the principle, that, though magnetism acts instantaneously, a certain portion of time, however small, is required for the infusion or communication of the magnetic virtue. The circular plate acquires this property from the mere apposition of the needle; its axis with reversed poles lying when at rest exactly under the pointer. But if the plate be quickly turned, the axis, not being instantly impressed, will be carried forward, and must consequently draw after it the needle, or even involve it in a continued rotation. On the other hand, if the copper remain fixed while the needle is made to vibrate, the axis of induced magnetism must always hang in the rear, and therefore retard, or tend to diminish, and soon extinguish the oscillations. Hence an important practical inference, that the needle of a ship's compass should traverse near the bottom of a thick copper box, in order to correct that excessive sensibility which is so inconvenient in ordinary seamanship.

Magnetism has been gaining accessions likewise in detail. Seebeck of Berlin proved that various substances have their magnetic state affected by the unequal distribution of heat. Becquerel described an instrument which, by neutralizing the terrestrial influence, shows the faintest shades of magnetism, and distinguishes the slowest electrical conductors. His countryman Rousseau, advancing by the same path, gave the construction of the Sideroscope, which detects the very feeblest traces of iron in bodies. This curious combination of magnetic needles has been improved and successfully applied by Leballif, who devotes the moments of respite from the drudgery of a laborious office to the ardent and unwearied pursuit of experimental science.

5. OPTICS.

The science of Optics, next to that of Astronomy, is the noblest creation of human genius. No branch of knowledge so far transcends ordinary notions, and none has more essentially contributed to augment our perceptive powers or expand the range of observation. The sense of Touch, diffused with various intensity over the surface of the body, connects us with the proximate objects of an external world. Taste is akin to Touch, and makes us acquainted with those solvent properties of food which stimulate the animal frame. The sense of Smell is not confined to mere contiguity, but extends its information to the substances which emit from a distance their peculiar odorous effluvia. Hearing carries our sensations still farther, and intimates the operation and the direction of those distant changes which excite the tremulous commotion of sound in our atmosphere. But the faculty of Vision is of a much higher order. It soars above the grossness of matter, transports us above this sublunary scene, and holds commerce with the skies. The other senses have gained no help from instruments, if we except the partial advantages which Hearing has derived from the speaking and ear trumpets. But Sight was refreshed by the application of Spectacles, and its powers of exploration have been advanced in a most astonishing degree by the tardy subsequent discovery of the Microscope and the Telescope. The wonders of atomic Nature seem now laid open, and all the glories of the remotest celest-
tial forms are brought under immediate observation. The medium of such intercourse is that pure empyreal stream of Light, which approaches the nearest to our conception of Spiritual Essence.

The chief properties of the rays of Light consist in Reflection and Refraction. With the former the ancients were sufficiently acquainted, but they had only a vague notion of the connexion between the angles of Incidence and Refraction. It is somewhat singular that both the Telescope and the Microscope should have been several years invented before the law on which their construction depends, or the constant relation between the sines of those angles, was detected. This important discovery was made by Snellius, but simplified and first published in 1637 by Descartes, who greatly reformed optical science. The progressive motion of Light was next beautifully deduced from the annual anticipation and retardation of the eclipses of Jupiter's satellites, by the ingenuity of Römer, a young Danish astronomer, who had been invited to France in 1672, and there liberally entertained for nine years, till he was recalled to his native country and loaded with lucrative and honourable appointments. One might suppose that the aberration of the fixed stars, or their apparent circular shifting in the heavens, would have been hence anticipated, as a simple inference from the motion of Light combined with the revolution of the Earth in its orbit. Such a consequence had been foreseen by the acute mind of Descartes, who therefore adopted the instantaneous propulsion of light as a fundamental principle in his Dioptrics. Were it otherwise, he maintained the stars would not appear in their true positions, and the sun would be seen eclipsed long after his conjunction with the moon. These considerations, however, were quite overlooked, when Bradley in 1729 established his fine discovery within close limits, but on the very same grounds.1

Astronomers had been obliged to abandon their attempts to construct telescopes of much higher magnifying powers, and to contract the apertures, and consequently to reduce the measure of illumination in order to procure distinct vision. Colour was still imagined to depend merely on the various mixture of light and shade. But Newton's grand discovery of the decomposition of the Solar Beam, first communicated to the Royal Society in 1671, and further explained by his correspondence during the three following years, changed the whole aspect of the science. The ingenuity in devising the simple and beautiful experiments with combined prisms, is not more admirable, than the force and clearness of the reasoning which deduced from them such splendid conclusions. The mild spirit of the philosopher was wounded by the attacks of petulance and contradiction; and he quietly retained, in his closet, for the space of upwards of thirty years, the sequel of those invaluable experiments, and only consented to publish the Treatise of Optics after his reputation had finally triumphed over all opposition. This resolution is much to be regretted, as it not only postponed the diffusion of genuine science, but gave occasion to the blending of some speculations which the discerning author would probably not have published in the high meridian of his intellect. Though the experimental procedure on which the work rests had been strictly inductive, yet was the composition cast in a synthetical form,—broken into a series of propositions, with their preliminary apparatus of Axioms and Definitions; which commonly involve assumptions, and so far from giving more precision to our reasonings, imperceptibly lead to the admis-

1 In a letter of Descartes, bearing the date of 1634, he notices an experiment proposed by a Dutch correspondent, to prove that Light takes a sensible time to arrive at the eye from a distance. This was to wave a flaming torch at night, and observe its reflection from a mirror removed only a quarter of a league. The French philosopher with his friends repeated the experiment several times, and could not discern the smallest interval between each bending of the flame and its reflection. But even admitting the lapse of the 24th part of an arterial pulse to intervene during the short passage to the mirror and back again, or allowing the velocity of 46 English miles in a second, it would completely derange Astronomical Observations. The sun would not appear in his real position, but in that which he occupied when the rays of light which reach us began their journey. A solar eclipse would therefore be seen, not at the moment of conjunction, but an hour afterwards, the Light having to travel from the Earth to the edge of the Moon and back again, or to pass and repass the distance of 50 semidiameters, each of 3000 leagues.
sion of errors. The very term *Refrangibility*, which Newton, under the guise of a definition, applied to the rays of light, became afterwards a source of misconception. It evidently converted the refraction of light into a general property belonging peculiarly to the rays themselves, and therefore independent altogether of the quality or nature of the refracting medium. This might appear only a slight distinction, but it probably contributed to the hasty and inaccurate experimental inference, that in every case the refraction of the mean ray by a prism determines the corresponding refractions of the extreme rays, or that the solar spectrum is always distinguished into the same proportions of coloured spaces. Since all material action, however, is reciprocal, the refractive process cannot be referred to the single agency of the particles of Light, but must result from their mutual attraction to the substance of the transparent medium. It is not the lot of humanity to reach perfection, and the most gifted of mortals will at times betray the weakness of our nature. The subdivision of white light into *seven* component rays, and the distinction of the spectrum into coloured spaces adapted exactly to the intervals in the *diatonic scale* of music, were no doubt fine illusions which reflected the mysticism of the age. But it must now be admitted that the primary colours melt into each other by imperceptible shades, and that the *spectra* painted by different prisms differ widely in their relative extent, and exhibit even a diversified partition of spaces.

Certain it is that the philosophers on the Continent generally refused to admit the accuracy of the conclusions of the Treatise of Optics, and Mariotte, the most ingenious and skilful of the French experimentalists, was unsuccessful in his attempts at the prismatic decomposition of the sun's rays. His failure must no doubt be attributed to the influence of prejudice, and the stiffness of advanced age; but finally to silence all such opposition, it was judged expedient in 1716 that Desaguliers should repeat and somewhat vary the original experiments before a committee of the Royal Society at London.

Notwithstanding these few blemishes, arising merely from hasty generalization, the Newtonian Theory of Light and Colours is undoubtedly one of the noblest efforts of human invention. It quickly modified the projects of opticians. The imperfection of the Telescope was hence found to proceed only from undue mixture of colour in the image, occasioned by unequal refraction, which no change in the forms of the glasses could remedy. The Reflexion of Light alone offered any chance of improvement. Newton had constructed a small Catoptrical Instrument with his own hands; but for many years afterwards no artist appeared that possessed sufficient skill to imitate and improve it. The ingenious Mr Hadley in 1723 was the first who succeeded in getting a Reflecting Telescope made for his private use; and we may presume that the great inventor himself, before the close of life, enjoyed the satisfaction of seeing his early ideas realized. Such was not the fortune of James Gregory, whose Reflector, more complex indeed, but likewise more commodious, had remained a mere speculation, till about this time it was manufactured and came to acquire high reputation. James Short particularly distinguished himself by the finished execution of those instruments, and for a long time he maintained the superiority of the English artists. Every improvement in the construction of the telescope contributed to the accuracy of astronomical observations.

Hadley not only gave an impulse to practical astronomy, but soon enriched its stores by that invaluable instrument the Quadrant of Reflexion, which has ultimately produced a complete revolution in the art of observing. A similar instrument was proposed by Newton as far back as the year 1669, in consequence of an unsuccessful attempt of Hooke; but the description had been laid aside and neglected till 1731, when the announcement of Hadley's invention recalled it from oblivion. The mode of finding an altitude hitherto practised at sea was liable to much uncertainty, since it required to direct the eye first to the horizon and next to the disc of the sun, though the instrument might have its position altered during this interval by the motion of the ship. The difficulty was now obviated by employing a movable index, which brought the sun's image to touch the boundary of the horizon. It is a very happy application of the simple prin-
ciple in Catoptries, namely, that a ray of light which has suffered two refractions deviates from its course by an angle just double of the mutual inclination of the mirrors. The Quadrant was afterwards enlarged into a Sextant, it had telescopic sights affixed to it, and received its final simplification in this country from the dividing engine of Ramsden. This delicate instrument has come since into almost universal use in measuring angles; and though originally contrived only to observe the latitude at sea, it is now employed with the greatest facility in ascertaining the angular distance of the moon from the sun or a star, and thence supplying correct data for computing by the help of improved lunar tables the longitude itself.

Meanwhile the Sextant underwent a radical transformation on the Continent, being changed into an entire Circle. This was effected by the celebrated Mayer, whose very narrow circumstances drew forth all the resources of his invention. He sought to remedy the imperfection of the common Graphometer or Circumferentor, by multiplying the angle observed, and thus blending and extenuating the errors of subdivision. By this simple contrivance not only were the grosser inaccuracies obviated, but the instrument was rendered even superior to others of the finest construction. Mayer next conjoined this principle with that of Hadley, and produced the Repeating Circle, which, having afterwards received some further improvements from Borda, is now employed universally on the Continent in Goniometrical Surveys, and in the practice of Navigation and Astronomy. This instrument being complex, however, in its construction, and tedious and operose in its application, seems after many trials not to be gaining ground, in England. Its chief advantage consists in reducing the errors occasioned by imperfect workmanship, which a more skilful execution might nearly preclude.

The middle of the eighteenth century was distinguished by a capital correction of the Newtonian principle of the proportional refraction of the several rays of light, which has led to the most important practical results. It had been concluded that no combined unequal refractions could ever form a white image, because the same refractive powers which might neutralize the colours must likewise bend the converging or diverging rays into exactly parallel directions. But, dissatisfied with this theory, Euler in 1747 endeavoured to prove the possibility of destroying the coloured margin of a focal image, by imitating the structure of the eye, which he considered as a perfect optical instrument. He proposed to construct a convex lens, by joining two meniscent glasses holding water in their cavity; and expected from such a combination not only to correct the spherical aberration, but to prevent the border of colour. All his attempts, however, to obtain distinct vision, were unsuccessful. Yet he still persisted in holding it to be a Law of Nature, that not the refractions of the extreme rays, but the indices of their powers, are constantly proportional; and from this mathematical or metaphysical assumption, he strictly deduced his calculations. These speculations of Euler made some noise in the scientific world, and shook the confidence abroad in the accuracy of Newton's experimental conclusions. About this time John Dolland, bred a silk-weaver, the trade of his father, a French Protestant refugee, being fond of mathematical studies, had chosen to embrace, in partnership with his son, the profession of an Optician, as more congenial to his taste. Having already acquired reputation for ingenuity and skill, he communicated in 1752,
to the Royal Society of London, a short paper, showing that the principle advanced by Euler was discordant with the property deducible from the Newtonian experiments. But it did not thence follow that either of these must be the true Law of Nature; and accordingly Klingeni-
stierna, an ingenious and learned Swedish philoso-
pher, proved that the hypothesis espoused by Dolland would not stand a rigorous analytical investigation. The English artist was therefore compelled to adopt the only sure and decisive mode of settling the question, the unbiased appeal to experiment. He soon found that his preconceptions were inaccurate, and that refraction may subsist without any fringe of colour. He formed a wedge or hollow prism with two thin rectangular pieces of plate-glass, joined at the edges and cemented to planes of brass at the ends, and having filled the cavity with distilled water, he inverted it in an acute-angled glass prism, and looking through this compound me-
dium, he gradually widened the angle of the glass plates, till an object placed in front ap-
peared free from any coloured border, but con-
siderably depressed. The refraction of the water had therefore predominated over the op-
posite refraction of the glass, without expand-
ing at the same time the prismatic colours. This simple and well-devised experiment esta-
blished therefore, in contradiction to Newton, the important principle, that the length of the spectrum, or the dispersion of the extreme rays, is not always proportional to the mean refraction, but depends on the constitution of the diaphanous medium. The result already indicated an im-
proved construction of the telescope, by substi-
tuting a compound object-glass, inclosing water, nearly in the manner attempted by Euler. But Dolland rejected this imperfect expedient, and sought to produce an unalterable combination with different kinds of glass: Having struck into the right path, he pushed forward to a great discovery. He tried to select among the dif-
ferent kinds of glass such as might effect his purpose; and after a long and perplexing re-
search, he finally preferred the combination of crown and flint glass; the refractive power of the former being to that of the latter as two to three, while their opposite dispersions are equal.

A convex lens of crown glass of the focal length of two feet, conjoined with a concave lens of flint glass having a virtual focus at the distance of three feet, must hence form a colourless image at the distance of six feet. This capital discov-
ery, achieved in 1757, enabled Dolland to construct refracting telescopes of much larger aperture and wider field than before, and pre-
senting the image with such a pure brilliancy as to entitle them to the name of Achromatic. It was likewise possible to correct the spherical aber-
ration by modifying the coalescent curva-
tures. But the discharge of extraneous colour is attained most completely by forming a triple ob-
ject-glass, composed of a concave lens of flint glass inclosed on both sides by two convex lenses of crown glass.

The theory of Achromatic Telescopes was now complete, but it still required patience and ad-
dress to carry it into successful execution. Dol-
land, and his son afterwards, took incredible pains in choosing their samples of glass, and ac-
quired such exquisite skill in combining them, as to set all rivalry at defiance. The Conti-
ental Mathematicians were eager in examining the structure of those achromatic lenses, and in applying their superlative powers of calculation to define the proper forms. Klingeni-
stierna and Boscovich, but especially D’Alembert and Euler, distin-
guished themselves by their most elaborate and profound investigations in this new branch of Dioptics. Yet it may be questioned whether artist-
ists have derived any real help in practice from such vast and profuse displays of analytical re-
search. England, following a more tentative pro-
cedure, continued exclusively for half a century to supply the world with Achromatic Glasses. The correction of colour obtained by the in-
genuity and perseverance of Dolland consisted thus in the blending of a spectrum with an-
other of the same reversed length, but caused by an inferior refraction. Though the extreme boundaries were necessarily white, it did not however follow that the intermediate portions should be absolutely colourless. On the con-
trary, it seems ascertained that not only the en-
tire expansion of the spectrum, but the relative extent of its several coloured spaces, depend on the peculiar quality of the refracting medium.
A redoubled combination of lenses might therefore mingle and destroy the secondary colours scattered through the middle range. But the light would be necessarily enfeebled by suffering those repeated refractions.

Several experimenters, in their attempts to improve the achromatic telescope, had proposed the interposition of fluids between the pieces of the compound object-glass. But the late Dr Robert Blair instituted the most elaborate investigation on this subject about the year 1787. He found all the essential oils, but especially certain metallic solutions in muriatic acid, to possess the greatest dispersive powers. A most complicated arrangement of those fluids with different lenses was first tried, and next abandoned for a less intricate combination of a triple muriatic solution, inclosed in glass shells, and invested on both sides by a semiconvex and a meniscus of crown glass. This compound appeared to produce the effect desired, not only discharging from the image the extreme fringes of red and violet, but excluding also the intermediate streaks of green and yellow. Unfortunately the liquid by degrees lost its transparency, either from the change of its own constitution or from the slow but continual corrosion of the surface of the glass. A similar attempt has been lately revived, but we fear with no better prospect of success. No confidence can be placed in the permanent transparency of any fluid medium.

Although the prismatic colours follow the same invariable order, they yet expand in very different proportions, according to the nature of the refracting substance. It is impossible, from the closest examination of the solar spectrum in a dark room, to distinguish the limits of the several coloured spaces, which appear to melt away by insensible gradations. The extreme boundaries of illumination are still more undefined. The red seems to graduate near the edge into a dull brown, while the violet spreads out by lengthening shades into blackness. Those verges are no doubt more extended in our climate, owing to the greater profusion of lateral rays sent from the white portion of the sky which encircles the sun’s disc.

Three primary colours—red, green, and violet—are commonly supposed to be sufficient by their various admixture to generate all the rest. Thus, red mingled in different proportions with green produces orange or yellow, and green suffused with violet gives blue; while red blended with violet forms crimson, that fine brilliant hue which is not emergent in the solar spectrum. In this pencilled expansion, we may thus reckon three principal colours, or more completely four, five, or six, with innumerable shades. If the whole extent of the spectrum produced by a prism of flint glass be reckoned 50 parts, the spaces occupied by the unfolded colours will be nearly represented in this series: red 5, orange 4, yellow 7, green 9, blue 10, and violet 15; or if the orange be merged in red, and the yellow in green, the expanse of the four resulting colours will be, red 9, green 16, blue 10, and violet 15. These successive spaces are all considerably different, it must be confessed, from the fanciful subdivision of the diatonic scale of music attributed to the range of the spectrum formed by water or crown glass.

It is often assumed that the numbers of the component rays of light are proportional to the breadths of the several coloured spaces of the spectrum. But the most ordinary experience contradicts that supposition; for the eye is offended by the excessive glare of red and orange, is relieved by the softness of green, and feels languid under the feeble action of blue or violet. Whatever may be the distinctive properties of the coloured particles themselves, they are evidently collected by the prism in groups of very different densities. It is hardly possible to compare the various intensities of such heterogeneous things as colours with any degree of precision; but when highly condensed, the impression they make on the eye is nearly the same as that of white light itself. On this principle the late ingenious Fraunhofer, the great improver of achromatic glasses, was enabled in 1814 to estimate nearly the illuminating powers of the prismatic rays, by examining them as concentrated in the field of a large telescope of a theodolite. He found the brightest spot on the spectrum of flint glass to lie on the verge of the yellow next the orange, and about 11 parts of its whole extension of 50, from the extremity of the red. But the most remarkable discovery he made was, that though the coloured spaces appear not parted by
any distinct boundaries, yet they are broken and subdivided by numerous white and black lines, or even dark stripes. He reckoned altogether above 600 lines; a few occur in the red, but they are multiplied in the orange, the yellow, the green, and the blue. A stripe, opened by a fine white line, divides the red; other stripes emerge at intervals between the orange and the blue; and two very broad approximating bars cross the violet. Other glass prisms, and even those filled with liquids, gave similar appearances, which were therefore not accidental, but the constant results of some law of nature. The powers of refraction thus advance not by insensible gradations, but seem to ascend with irregular bounds. This inference bears some analogy to the Newtonian hypothesis of the easy fits of reflexion and transmission.

The same judicious philosopher, combining eminent practical skill with deep and accurate science, succeeded by unwearied application in achieving the grandest improvement effected in the construction of achromatic glasses since the time of Dolland. Fraunhofer conducted personally the whole train of a large establishment; he directed the preparation and fusion of the materials, selected the proper pieces for grinding, and prescribed the due forms. The glass produced under the patronage of the liberal Bavarian government greatly surpassed in quality every other kind: it had a translucid purity, and a uniform consistency. Fraunhofer constructed with it the most perfect object-lenses, of more than eight times any former dimension, and exceeding nine inches in diameter. He had proposed to attain an aperture of ten inches or even more, and would unquestionably have succeeded, if death had not prematurely stopt his ardent career. The power and brilliancy of such magnificent telescopes transcended all conception.\(^1\)

If the rays of the coloured spaces of the spectrum be so widely diversified in their illuminating energy, they differ no less in the property of exciting or communicating heat. Common language betrays in this respect their distinctive characters. Red and orange are termed warm colours, green temperate, and blue and violet are said to be cold. The first that endeavoured to measure the heating powers of the coloured rays of the spectrum was the Abbé Rochon, who in the summer of 1776 employed for that purpose an air thermometer and a prism of flint glass. But though he used some precautions, and repeated his experiments, the results were not very nice or consistent. Without venturing to compare the calorific intensities of the extreme rays, he yet reckoned those of a bright red as about eight times more powerful than such as gave the liveliest violet, and considered the bordering orange as the hottest spot in the spectrum. But in this country the differential thermometer, modified as a photometer, being an instrument susceptible of incomparably more precision, was applied to the spectrum of flint glass in 1798. Dividing the whole extent into four equal spaces, the calorific energies of blue, green, yellow, and red might be represented with tolerable exactness by the series of square numbers 1, 4, 9, and 16. Two years afterwards the famous Dr. Herschel tried to measure the impressions made by the coloured rays on the small bulb of a mercurial thermometer, and arrived at the paradoxical conclusion, that the hottest part lies even on the outside of the red, and at a little distance beyond the extreme termination of the spectrum. It was thence inferred that there are dark rays which give only heat and not illumination, and travel in company with the solar beams, though less subject to refraction. This bold hypothesis was for a time regarded with wonder and applause; but the delicate observations of Berard, by the help of an Heliostate to direct the incident rays and give them a steady effect, soon demolished the fabric. A large circular prism or the outer ring of a huge burning glass has been since employed to mark with nicety the limit of the

\(^1\) The Bavarian flint-glass appears free from those wavy lines or streaks which still impair the best English specimens, and displays besides one-third more of dispersive power. The famous telescope constructed for the University of Dorpat has an aperture of 9½ inches, with a focal length of 14 feet 3 inches English measure: it turns with a double parallactic motion, guided by the constant revolution of a centrifugal pendulum. This wonderful production of art, pouring a flood of light on the image, magnifies 200 and occasionally 600 times, and has enabled Professor Struve to augment prodigiously the catalogue of double and changing stars.
The greatest calorific effect, which always occurs within the red space, though nearer its exterior border. The notion of dark rays of light, which enveloped the science in mystery, stands now therefore without any proof, and is utterly dis- countenanced by sound philosophy.

The improvements made in the application of Optics to the measuring of angles, since the invention of the repeating circle, relate principally to the micrometer. Bouger proposed his Heliometer, or double object-glass micrometer, in 1748; but Short and Dolland, probably from a different suggestion, simplified the contrivance in 1754, by dividing a single object-glass into two equal portions. Beccaria had shown that rock crystal, like Iceland spar, has the power of double refraction; and Rochon availed himself of this property to construct in 1777 a very delicate micrometer, though Boscovich about the same time appears to have conceived a similar idea. Dr Maskelyne had more than a year before pursued a path little different, his micrometer consisting of movable glass prisms.

The French have ingeniously directed the principles of Optics to the improvement of Light-Houses. In this useful pursuit the celebrated Buffon led the way. Endeavouring to realize the performance ascribed to Archimedes, he disposed 400 mirrors, each of them half a foot square, into a frame, so as to collect the sun's rays into a single focus, and by the reflection from this large surface in 1747 he actually set fire to wood at the distance of 70 yards. The experiment was next inverted, and a burner placed in the focus, to have its rays thrown parallel, and produce remote illumination. But for this purpose a much smaller reflector was sufficient, composed of bits of mirror planted in a spherical cavity. The final improvement consisted in hammering thin plated copper into a parabolic shape. These powerful reflectors, combined with Argand's lamp, were about thirty years since introduced from France into our light-houses.

Buffon tried likewise to concentrate the power of refracted rays. The ancient engravers had employed spheres of glass or crystal to assist vision; but the substitution of lenses, which at the close of the thirteenth century served for spectacles, was an important advance. This figure greatly reduced the thickness of the diaphanous mass, and therefore facilitated proportionally the passage of light. But the progress of improvement seemed completed in the plan proposed by the French Naturalist to obtain the exterior surfaces of a lens by combining a number of circular prismatic segments. From the difficulty of the construction, however, this project was long retarded, and afterwards forgotten. The knowledge of such attempts was not wanted to direct the ingenuity of Fresnel into the right path. He calculated the curvature of the successive concentric segments which would produce a correct focus, and advanced the construction to a regular system, on which Soleil, an expert optician at Paris, has founded a manufacture. This compound lens has displaced the reflectors from the French light-houses, and must soon, from its very superior power of concentration, become generally adopted.

The eighteenth century created a new branch of optical science, destined to measure or compare the intensities of different lights, and therefore termed Photometry. The first notions of this curious subject were given by Marie, a French Capuchin, in a small tract printed in 1700. Though this ingenious person erred egregiously in the mathematical deductions, he had probably the merit of setting to work the superior talents and skill of his countryman Bouguer, who published in 1729 an original treatise on the gradation of light. He there sets out from the obvious principle that light darting in straight lines must become dilated or attenuated in the ratio of the square of the distance from the radiant source. But the eye with a little training can with tolerable accuracy distinguish in a dark room when two surfaces presented at once are equally illuminated, and consequently the relative powers of the lights may be readily computed from the distances required.

1 The insidious advance of a consumption has arrested his career of discovery, and drawn that inventive and amiable philosopher to a premature grave.
to produce such a congruous appearance. Bouguer compared the light of a candle with the dazzling brilliancy of the sun and the soft radiance of the moon; and found that the intensity diminishes from the centre to the margin of the solar disc, but that the gradation is inverted in our satellite. He discovered also experimentally the diminution of the sun's rays in traversing the atmosphere with different angles of obliquity. The same able experimenter ascertained the loss of light, as occasioned under different circumstances, by reflexion and refraction. He then held the office of Royal Hydrographer at Croisic in Lower Brittany; but after his return from the laborious and memorable scientific expedition to Peru, he resumed his early pursuits, and prepared an enlarged edition of his optical work, which was edited by La- caille in 1760, two years after his death. At the same time came out the systematic treatise which Lambert entitled Photometria, designed as the sequel to a small tract which this ardent and inquisitive philosopher had printed two years before on the remarkable properties of the route of light through the air. This production is very complete in its mathematical structure; but the experiments on which it rests are generally not so well devised or so nicely performed as those of Bouguer. The ingenious author seems to confide too much in a sort of filtration and adjustment of facts, as obtained by the aid of calculation. Lambert, in his preamble, admits the imperfection of those observations, owing to the infirmity and variable condition of the eye, and regrets that he had no instrument like the thermomter to guide the sense of vision. This desideratum was happily supplied before the close of the century; and the Photometer constructed on the principle of the minute differences of temperature is not only very delicate, but exempt from the remotest chance of error. The method of shadows proposed by Count Rumford in 1796, may be reckoned an improvement on Bouguer's procedure, but it is liable to the insuperable objection of depending altogether on the patient attention of the observer and his uncertain sharpness of sight.

The present century opened with the most auspicious prospects, and was soon distinguished by one of those great and unexpected discoveries which form an epoch in the progress of science. Such may be regarded the fine detection of the polarized rays of light by Malus, a French officer of Engineers, and one of the most ardent disciples of the Polytechnic School; which in so short a period drew together and put into rapid motion a far greater mass of mathematical and physical talent than any of the older seminaries in Europe. The double refracting property of Iceland Spar, or the crystallized carbonate of lime, noticed by Bartholinus and accurately investigated by Huygens, had likewise engaged the penetration of Newton, who concluded that the ray which suffers the unusual or extraordinary refraction must have its opposite sides affected by some virtue like magnetism which gives them a tendency to polarity. This curious and acute remark appears to have lain neglected near a hundred years among the crowd of ingenious speculations started in the optical queries. Ma-

3 Optandum certe esse, ut exposito in Photometrum thermometri ad altheam, quod luminis ejus intensitatem atque claritatem indicaret. He subjoins, Enimvero ipsum, ejus sit etum exemplar, quippe gypass aperitura luminis sequitur magnitudinem ac claritatem, et utrique esse accommodat. At magnopere dubitantum artem in hoc negatio naturam possit imitari. (Photometria, sive de Mensura et Gradiibis Luminis, Colorum, et Umbrae, p. 7.)

4 The whole passage deserves transcribing. "The unusual refraction of island crystal looks very much as if it were performed by some kind of attractive virtue lodged in certain sides both of the rays and of the particles of the crystal. For were it not for some kind of disposition, or virtue, lodged in some sides of the particles of the crystal, and not in their other sides, and which inclines and bends the rays towards the coast of unusual refraction, the rays which fall perpendicularly on the crystal would not be refracted towards that coast rather than towards any other coast, both at their incidence and at their emergence, so as to emerge perpendicularly, by a contrary situation of the coast of unusual refraction, at the second surface; the crystal acting upon the rays after they have passed through it and are emerging into the air, or, if you please, into a vacuum. And since the crystal by this disposition or virtue does not act upon the rays, unless when one of their sides of unusual refraction looks towards that coast, this argues a virtue or disposition in those sides of the rays, which answers to and sympathizes with that virtue or disposition of the crystal, as the poles of two magnets answer to one another. And as magnetism may be intended or remitted, and is found only in the magnet and in iron; so this virtue, of refracting the perpendicular rays, is greater in island crystal, less in crystal of the rock, and is not yet found in other bodies. I do not say that this virtue is magnetic; it seems to be of another kind: I only say, that whatever it be, it is difficult to conceive how the rays of light, unless they be bodies, can have a permanent virtue in two of their sides, which is not in their other sides; and this without any regard to their position to the space, or the medium, through which they pass." (Opere, book iii. query 29.)
has had early turned his attention to the more difficult problems in optics, and after his return, with a shattered constitution from an absence of several years spent in foreign service, obtaining more congenial employment at home, he resumed with enthusiasm his favourite studies, and devoted to them every moment he could spare. While intensely occupied with the investigation of the phenomena of double refraction, a fortunate accident occurred, which disclosed to him a new and splendid field of contemplation. In one of his frequent visits to the Observatory, during his residence at Paris, he chanced in the summer of 1809 to be struck with the brilliant reflexion of the setting sun from one of the windows of the Luxembourg Palace, on looking at the appearance through a prism of rock crystal which he slowly turned round, and remarked with surprise that one of the images changed regularly to brightness from obscurity. Next morning he repeated this observation with the same results, and soon found that light reflected at a certain angle from the surface of glass acquires the same character as the extraordinary ray in the double refracting prism. Water showed a similar disposition, but at a different angle of incidence. It was not difficult to trace the law through the various reflecting surfaces; but Malus extended his researches farther, and pursued them with rapidity and success. But, in the midst of this career, he was prematurely carried away from his friends and the philosophic world, by a lingering disease, on the 23d of February 1812. The subject of Polarity has been since carried forward by several eminent experimenters both abroad and at home, particularly by Arago, Biot, and Fresnel, and by Brewster, Seebeck, and Herschel; but it still wants the simplicity and evidence which always mark the perfection of science.

6. DOCTRINE OF HEAT.

Heat is the great principle of all internal motion. Its various changes and gradations determine the growth of plants and the expansion of animated beings. The knowledge of the production of fire was the earliest of human discoveries, and already distinguished our species in its lowest condition from the brute tenants of the forest. The application of that element has most essentially contributed to the advancement of the arts and the general progress of society. It has contributed prodigiously to the increase of population, by converting the crude produce of the soil into nutritive and wholesome aliments. Applied in a higher degree, it has aided industry in fashioning the various utensils necessary for the comforts of life; but urged to the greatest intensity, it has enabled man to fuse the metallic ores, and forge those efficient tools by which he controls the powers of nature, and renders them subservient to his convenience. What a vast interval in the range of progression from the rude savage, that laboriously kindles two sticks by rubbing them, to the experienced engineer, who combines all the deductions of philosophy in wielding and directing the restless force of steam!
Heat was viewed by Aristotle as a peculiar element, composed of minute particles in continual agitation. Bacon, after a very prolix and confused exemplification of his formal method of pursuing induction, arrived at a conclusion nearly similar, though less intelligible, that Heat consists in a certain expansive motion. But other philosophers, and especially the alchemists, entertained juster notions of the subject. They conceived Heat to be a material substance, of extreme subtilty, diffused in various proportions internally through all bodies. Unfortunately those theorists were not very consistent in their speculations. The different applications of fire they considered as not merely varying in degree, but quite distinct in kind. The heat of a furnace and a stove, that of a sand and a water bath, and that of putrefaction and fermentation, seemed in their apprehension all separate species; and animal heat was regarded by the Arabian physicians as a finer essence, endued with invigorating and restoring virtue.

So long as such notions prevailed, it is evident that no real advances could be made in the knowledge of the properties of Heat. The first thing required was to find a method of ascertaining its intensity; and for this invention we are indebted to Sanctorio, Professor of Physic in the University of Padua, the celebrated discoverer of Insensible Perspiration, who, near the end of the sixteenth century, laboured with ardour and success in improving Medical Science by the application of Mechanics. Hero, of the Alexandrian School, had anciently described a curious machine, which, by the alternate expansion and contraction of included air during day and night, produced certain reciprocating motions; the Paduan physician seized the principle, and constructed an instrument on a small scale, chiefly adapted to measure the temperature of the human body during fevers. It consisted of a pretty large ball of glass, terminating in a long narrow stem, which was inverted and plunged perpendicularly in water or coloured liquid. For the sake of convenience, the ball was sometimes flattened on the one side, and the stem rendered more compact by serpentine involutions. With this instrument Sanctorio tried to measure the heat of the rays shot from the sun, and even that of the lunar beams, which were fancied then to have a solid influence.

The Air Thermometer, as it is now called, was about twenty years afterwards, though probably without any communication, reproduced by Drebbe1 of Alemaer in North Holland, who carried it, with other ingenious contrivances, into England during the latter part of the reign of James I. The instrument being observed to be affected by the changes of weather, was hence called a Weather Glass. In fact, it indicated only the elasticity of the air, which depends on the blended operation of two separate causes, the degree of temperature, and the varying force of atmospheric pressure. But the latter influence was yet unknown, nor till the great discovery of the Barometer by Torricelli could it be distinctly traced. The insufficiency of the Air Thermometer was then perceived, and another fluid substituted, which sensibly expands by heat while secluded from the compression of the atmosphere. The Florentine Academicians, about the year 1655, first constructed an instrument of that kind, consisting as before of a glass ball, but filled with spirit of wine, and having its stem of a smaller bore, sealed hermetically, or melted at the top by the flame of a blow-pipe. Italy had thus the honour of inventing both those instruments, the Thermometer and Barometer, the most important auxiliaries of modern science. Three different forms of Thermometers, constructed for the Academy del Cimento, were copied and circulated over Europe. But the great object now was to procure an exact correspondence, by fixing on some standard scale. The Italians began the divisions at the cellular heat, supposing this to be uniform; and they marked other points by plunging the ball in certain chemical mixtures. Boyle proposed the freezing of the oil of aniseed for the lower point; and Halley recommended the ebullition of alcohol as the limit of the scale. The great advantage of deriving a point from the congelation of water was not at first perceived. Many observers believed it to vary under different circumstances, being deceived by the fact that water will bear a greater cold before it shoots into crystals, though the temperature at which ice or snow begins to
melt is always the same. Guericke was the first who started from the thawing point, in dividing the scale of a large spirit of wine thermometer. To regulate the divisions, two different ways occurred; either to assume a higher point, or to distinguish into small portions the capacity of the ball. The latter was the mode adopted by Newton, who recreated his mind with chemical experiments. Employing linseed oil, which expands largely, and bears a great heat, he subdivided the capacity of the glass into 10,000 equal parts; and beginning from the point of thawing ice, he found the liquid to expand 256 at the heat of the human body, 725 at boiling water, and 1516 at melting tin; but preferring smaller numbers, he assumed 12 for blood heat, and reduced the other numbers in the same proportion to 84 and 71. This method was quite philosophical, but of very difficult execution. A correct and ingenious process for determining the scale of heat was proposed in 1694 by Renaldini, a learned Italian mathematician. Taking the freezing and boiling of water for the extremes, he found the intermediate points from a mixture of ten parts, composed progressively of melting snow and water just ceased from ebullition, the ingredients being 1 and 9, 2 and 8, 3 and 7, &c. About twenty years afterwards, Brook Taylor and Haaksbee applied an ingenious mode to ascertain whether the expansions of certain fluids are exactly proportional to the corresponding accessions of heat.

It had been proposed by Roemer to fill thermometers with quicksilver, and Halley adopted the suggestion. But instruments of this kind being observed to disagree with the common spirit of wine thermometers, the cause of such discrepancy was now detected. Alcohol swells with increasing progression on the application of heat; while mercury shows the valuable property of expanding with an uniform advance.

After the point of thawing snow had been fixed, the degrees of the scale were generally derived from the decimal subdivision of the capacity of the ball. But this absolute bulk is not the true basis of the scale, since the expansion indicated by the thermometer must be the excess of the dilatation of the liquid above that of the glass which contains it. The mensuration of the ball hence became troublesome and liable to much uncertainty.

The first who succeeded in constructing thermometers with adequate skill was Fahrenheit. This ingenious man had been a merchant at Dantzic, and through misfortune failed in business; but having a good taste for mechanics, he removed into Holland, and settled as a philosophical instrument maker at Amsterdam. He began with spirit of wine thermometers, which he formed much smaller and neater than had been attempted before. But he soon preferred quicksilver, and having found it to expand from freezing water to blood heat, about 60 parts in 10,000, he assumed the number 64, and obtained the degrees by repeated bisections. In this practice he was confirmed, on observing what he considered as extreme cold, to descend just through half that space, or 32 degrees. From a mixture of water, ice, and sal ammoniac, the scale commenced; 32 degrees were allotted for the interval to ice-water, and 64 more for the ascent to blood heat. But he afterwards enlarged the range, and assumed another point from the limit of boiling water, which he placed at the 212th degree in the mean state of the atmosphere, though liable to some variation from the change of barometric pressure. Such was now his confidence in the delicacy of the construction, that he proposed the thermometer as an instrument for ascertaining the heights of mountains from the depressed temperature of boiling water; a very simple method, which has been lately revived by the reverend Mr Wollaston.

The thermometers manufactured by Fahrenheit being remarkably neat and convenient, were, notwithstanding their arbitrary subdivision, widely dispersed over Germany, and introduced into Britain by the practitioners in physic, who at that period usually resorted to Holland for medical instruction. But most strangely in France a very unwieldy and inaccurate instrument maintained its ascendancy. The thermometer of Reaumur had a ball near four inches in diameter, which was filled with spirit of wine diluted with water. The scale began at the term of congelation obtained by an artificial process, but
the highest point was marked by plunging the instrument into boiling water. But it is evident that the liquid could never reach this degree of heat, but would stop several degrees lower at the limit of its own ebullition. Besides, so large a mass receiving the impression very slowly, would not indicate with any precision the temperature of the surrounding medium. Reckoning the ball to contain 1000 parts of the fluid, the whole expansion was found to be $87\frac{2}{3}$, and Reaumur therefore took the round number 80 for the extent of his scale. The same artificial subdivision is still very generally retained, though transferred to the mercurial thermometer, which is exempt from the glaring defects and errors of the original instrument.

Provided with Fahrenheit's thermometer, the philosophers of Holland and Germany made some progress in the science of heat, while France appeared to rest satisfied with mere speculation. But experimenters were too eager in hastening towards general conclusions. While the theory of gravitation possessed the charm of novelty, it seemed natural to suppose that heat is distributed among bodies according to their density or mass. This inference, however, is often very remote from the fact. Boerhaave found that a pound of mercury at 200°, so far from communicating to a pound of water at 32° half the excess of heat, or 84°, as another pound of water at that high temperature would have done, gave only an addition of 47°; so that twenty pounds of mercury had scarcely as much heating influence as a single pound of water. It would have required, according to his experiment, even a greater bulk of mercury by one-half more, to produce the same calorific effect as water. Had he performed the process with due precaution, he might have observed that hot water exerts as much influence as mercury of 32 times its weight or 2$\frac{1}{4}$ times its volume. But this celebrated chemist, satisfied with gross results, and mistrusting perhaps his own experiments, hastened to the conclusion that heat is distributed among bodies in proportion to their bulks, or maintains an equal diffusion through space. This principle was likewise adopted by Musschenbroeck, and the simplicity of the proposition seems to have procured it a very general reception.

Wolfius, who about this time was spatiating over the vast field of physical and moral science, and forming a new philosophical sect in Germany, taught that bodies had two sorts of interstices, the one filled with air and the other charged with fire. He attempted to explain why iron acquires heat sooner than wood, and why the solution in nitre occasions cold; but neglecting to follow experiments, he produced only vague and shallow speculation. Equally visionary, but enlivened by French vivacity, was Mairau's Dissertation on Ice, published in 1740.

The most judicious writer that had yet appeared on the subject of heat was Dr Martine of St Andrews, who studied medicine on the Continent, and, like the accomplished physicians of that period, cultivated learning and general science. His acute Essays, published in the years 1739 and 1740, not only corrected the different thermometric scales, but enriched philosophy by several well-devised and original experiments. Unfortunately the career of this promising genius was very short. Having in the pursuit of his profession accompanied Admiral Vernon in the fatal expedition against Carthage, he perished by a malignant fever. Martine did not consider with sufficient attention the unequal distribution of heat among bodies, but he carefully investigated the variable rates of heating and cooling of different substances. He noticed especially the facility with which mercury, in comparison of water, receives or parts with its heat. He conceived the process of cooling to be commonly retarded by a sort of covering or atmosphere of warm air closely encompassing the body; and he endeavoured to distinguish two sources of the dispersion of heat. Had such investigations been steadily prosecuted, they must have led to interesting results.

1 He was the son of George Martine, a small Fife proprietor, who having officiated as chamberlain to Archbishop Sharp, wrote a credulous and bigoted account of the See of St Andrews. The youth displayed the principles of the defunct Episcopacy, by heading a riot of some students at the College of St Andrews, on the breaking out of the feeble rebellion in 1715.
About this time, the practice of making observations with the thermometer had become pretty general in England, in consequence of the diffusion of the very neat and accurate instruments manufactured by Fahrenheit and Prins, at Amsterdam, which were likewise imitated in London by Wilson, who afterwards established a flourishing type-foundry at Glasgow, and held the professorship of Practical Astronomy. These thermometers were filled with quicksilver, and only four or five inches long, the stem clasped by a folded paper scale, engraved with successively bisected divisions, and the whole enclosed in a thin glass case. But the most philosophical construction of the thermometer was now proposed by the learned Celsius, who filled the chair of Astronomy in the University of Upsal, and had borne an active share in the operation of determining a degree of latitude on the verge of the Arctic Circle. He started from the point of congelation, and reckoned just a hundred divisions upwards to that of ebullition. This simple scale, commonly used in Sweden and Denmark, is the same as that which was afterwards adopted by the French under the name of centigrade, in their complete and elegant system of decimal weights and measures. It is singular that Deluc, in rectifying Réaumur's thermometer, should have retained such an artificial subdivision as that by fourscore. But this philosopher had the merit of ascertaining that mercury dilates almost uniformly with equal additions of heat, while the expansion of the spirit of wine is variable, and ascends with an accelerating progression. A thermometer formed by alcohol, whether diluted or not, is hence exceedingly inaccurate, unless it be regulated by the comparison with a mercurial one.

The practice of using thermometers filled with quicksilver led to the curious discovery of the congelation of that dense liquid. Professor Gmelin, who had been sent with a party of naturalists to explore the remote regions of the Russian empire, observed in Siberia, on the 16th of January 1735, the mercury to sink in the thermometric tube to a point which corresponds to the 120th degree below the zero of Fahrenheit's scale, while it changed into a solid mass. But the artificial freezing of mercury was first performed by Braun, Professor of Philosophy at Petersburg, in the month of December 1759, when the natural cold seemed to be 34° under the beginning of the scale. Having plunged the bulb of a thermometer into a mixture of pounded ice and sal ammoniac, the quicksilver appeared to sink progressively to 350°, and then to consolidate. But such enormous cold exceeded the bounds of credibility, and Epinus soon discovered the source of this illusion. Employing tubes of a wider bore, he observed the quicksilver, drawing after it a concave surface, to retreat as it congealed, and sink into the rest of the liquid mass. The semi-metal must therefore have suffered a large contraction in the act of freezing, and become much denser. Yet twenty years elapsed before the point of mercurial congelation was correctly ascertained. On the 16th of January 1780, Von Elterlein of Vytegra, a town of Northern Russia, in the latitude of 61°, found that some pure quicksilver exposed in a porcelain tea-cup during the night had become solid, but began to melt again when the thermometer rose to 40 degrees below the zero of Fahrenheit's scale. This limit was more decisively fixed, at the suggestion of Dr Black, by Hutchins, then governor of Hudson's Bay, who repeatedly froze mercury during the winter of 1781–2, by the application of artificial cold. In rigorous climates, or for measuring very depressed temperatures, it hence becomes necessary to employ thermometers filled with alcohol, which has never been made to freeze.

The cold occasioned by the evaporation of water and other liquids in the more genial regions had been known and turned to domestic use from the earliest ages. In the northern countries, that property, being less apparent, was commonly disregarded; but the thermometer now detected changes which might elude ordinary observation. It was soon remarked that, after dipping the bulb in water or alcohol, the quicksilver constantly sunk in the stem. About the year 1750, Dr Cullen, then Lecturer in Chemistry at Glasgow, in repeating some experiments with a pupil, remarked that a thermometer with a wetted bulb showed a much greater depression of temperature under the exhausted receiver of an air-pump. But he did not pursue the observation farther, or attempt
to investigate the theory of evaporation. This interesting subject remained long afterwards involved in deep obscurity.

The temperature of water exposed to heat appears to rest stationary at the two distinct limits of freezing and boiling, which serve to mark the points of the thermometric scale. Though the fact had been long well known, it was first examined with attention in 1760 and the three following years by the celebrated Dr Black, who had already distinguished himself by unfolding the nature and properties of fixed air. He rightly inferred that a certain additional share of heat must at each station unite with what is already lodged in the substance of the ice or the water; but not aware that he was really framing an hypothesis, he termed the former latent and the latter sensible heat. Strictly speaking, however, all heat is latent or concealed from the senses, and never exhibited in a detached form. The thermometer indicates merely the heat contained in its own bulb, and not necessarily that of the body with which this communicates. But heat is evidently not passive; it is an expansive fluid, which dilates in consequence of the repulsion subsisting among its own particles; and it would spread indefinitely through space, if it were not fixed or retained by the counterbalancing attraction of the substances which absorb it. Were each corpuscle to exert the same action, this universal fluid would be disseminated among bodies, exactly in proportion to their respective quantities of matter. The mutual adhesion depends, however, on the density of the substance, modified by its degree of inherent disposition to combine. A sort of affinity or specific attraction for heat is thus produced, evidently proceeding from the peculiar nature of each body. To trace its immediate origin is not more possible perhaps than to discover the source of other physical properties. Yet there appears some tendency towards a general principle: the particles of heat, like those of all expansive fluids, have their repulsion diminished in proportion to their mutual distance; while the molecules of the containing substance suffer the corresponding decrease of attraction after a slower ratio than the spaces of internal separation. Heat has therefore a narrower range of density than the bodies with which it combines. It holds a sort of middle station, and is distributed according to the quantity of matter, joined to the consideration of the space which this occupies; that is, it obeys some compounded relation of the weight and the bulk. Hence the denser bodies receive a proportionally smaller share of heat. Thus, a pound of metal contains less heat than one of stone; this, less than an equal weight of liquid; and this last, still less than a pound of any species of gas.”

“When two bodies are united chemically, the compound has an attractive force generally different from that of the mean result. Hence a corresponding portion of heat is, during the act of coalescence, either absorbed or evolved. Thus, water, on being joined to sulphuric acid, occasions an extrication of heat, because the diluted acid exerts less power of adhesion than did its ingredients. And, for an opposite reason, the muriate of ammonia, in dissolving, is attended by an absorption of heat, or an apparent production of cold.”

“Every substance capable of assuming different states of constitution betrays likewise analogous variations of attractive force. When a solid body melts into a fluid, and thence passes into vapour, each transit is marked by an augmentation of that force, and is therefore accompanied with a corresponding absorption of heat; during which process, the temperature must evidently remain stationary. Thus, a lump of ice transported intensely cold into a close apartment, will grow warmer by regular gradations, till it begins to thaw, and then the farther accumulation of heat will appear to be suspended; and if the water so formed be poured into a covered pot, and set over a steady fire, the temperature will again rise uniformly, till it reaches the limit of boiling, when the act of conversion to steam will henceforth absorb the whole affluent heat; yet the temperature will mount still higher, if the escape of the vapour be prevented, but which soon acquires such prodigious elasticity as to burst whatever obstacle can be opposed to it.”

The first that made any advance towards such views of the distribution of heat was Irvine, who had been assistant to Black at Glasgow. Unfortunately he seems to have introduced the term Capacity, which involves a crude notion, as if heat were merely passive, filling up the interior pores or internal vacuities of bodies. But, a few years afterwards, Wilcke of Stockholm, directed, he says, by the views of his colleague Klingenstierna, a mathematician and philosopher of the first order, examined the subject philosophically, and performed several accurate experiments. Thus, he found that water at 98° of Celsius, poured upon an equal weight of snow, had its temperature reduced to 13°, and that three parts of water at 40°, joined to one of snow, produced the common temperature of 12°. These trials gave both the same result, or 73° of Celsius, corresponding to 129-6° on Fahrenheit's scale, for the increase of heat required to convert snow into water. 1 A similar conclusion was obtained by filling equal tin vessels with equal parts of snow and snow-water, and placing these within a larger one full of boiling water, and set over a fire; the moment the chill water rose to 72°, the snow had all melted.

In 1780 Lavosier, assisted by Laplace, and employing his Calorimeter, ascertained the heat evolved from different bodies during their various changes, from the several quantities of ice which it melted. This seemed to be a very simple and correct mode of investigation; yet was it liable to considerable inaccuracy, from the large portion of water which still remained adhering to the mass of pounded ice. But the French chemists rather confused the subject, by mixing incongruous principles. Embracing the theory of Capacity, they likewise tacitly adopted the hypothesis of sensible and latent heat, only changing these terms by a sort of appropriation into free and absolute, while the poverty of their language suggested for that fluid such an imperfect etymon as Caloric.

The best series of experiments on the distribution of heat among different bodies was performed before the year 1784 by Professor Gadolin of Abo, who, rejecting the notion of Capacity, introduced the unexceptionable expression, Specific Heat. One of the most beautiful consequences derived from this theory, was the determination of the absolute zero or lowest point in the scale of Heat. Two different ways of solving the problem led to nearly the same results: 1. From the measure of Heat absorbed in the melting of ice, and 2. From the quantity evolved in the mixture of certain liquids. Thus, it being found that the heat contained in water is to that of ice as 10 to 9, and that 135 degrees are required for the equilibrium of the liquid constitution, it follows that the water just formed must actually contain 1350 degrees of heat, or that the real scale would descend to the enormous depth of 1318° below the beginning of Fahrenheit's divisions. Again, the concentrated sulphuric acid holding only six tenth parts of the heat of water, the arithmetical mean of a mixture of one part of it by weight with three of water would evidently be nine tenths; but suppose the specific heat of that compound were only eight tenths, while the thermometer rose on the affusion 169°, or from 32° to 201°, the whole extension below the point of congelation would be 8° × 169°, or 1352°. This experiment is susceptible of greater accuracy than the former, and deserves to be repeated in different proportions. Considerable discrepancies have hitherto affected such observations, arising probably from the want of sufficient precaution in the manner of conducting them.

Dr Crawford followed nearly the same train, and was enabled, by employing finer instruments, to obtain a greater degree of precision. He took, on the whole, a philosophical view of the subject, but sacrificed his better judgment to popular opinion, by retaining also the hypothesis of Latent Heat, "the ideas associated with which have spread a cloud of mystery and paradox most unfavourable to the progress of real science." It is to be regretted that a similar confusion of ideas should still pervade the writings of so

1 In the first experiment the hot water lost 98° — 13°, or 85°, while the snow water gained only 13°, or had absorbed 72°: in the second experiment the hot water had transferred 3 (40 — 12) or 84°, and consequently 84° — 12°, or 72°, was spent in liquefying the snow. If every precaution were used, the measure of heat absorbed would amount to 75° of Celsius, or 135° by Fahrenheit's scale.
many of the chemical philosophers. Crawford had expected much accuracy from thermometers with large bulbs and minute subdivisions; but these advantages were more than overbalanced by the want of delicacy to transient impressions. On a revision of the experiments from which he sought to ground his theory of animal heat, he had occasion to change the numerical results.

About this time shone forth the brilliant and original genius of Scheele, who not only expanded the boundaries of chemistry by his various inventions, but enriched other departments of physical science. In particular, he bestowed a keen glance on the subject of the emission of Heat.

That Heat, and even the opposite influence, impression of Cold, admits of Reflexion, like light, is a property long known, and had been distinctly announced by Baptista Porta, in the sixth edition of his *Natural Magie*, printed about the year 1590. This remarkable experiment was more particularly described in 1632 by Cavallieri in his tract on the *Burnung Speculum*: it was repeated and varied in 1658 by the members of the *Academy del Cimento*, who received the impression on the bulb of an air thermometer. The concentration of cold in the focus of a metallic reflector was again tried, during the severe winter of 1740, by the academicians of Petersburg, though with rather doubtful results, owing to their ignorance of the true circumstances on which the success depends. But, after an apparent oblivion of near forty years, the experiment was revived with striking effect at Geneva, and continues to hold a conspicuous place in every course of physical lectures.

Mariotte, as far back as the year 1682, had made a capital remark, which some late discoveries have revived and explained. That able experimenter, in concentrating the heat of a fire by help of a burning mirror, found the effect to cease when a piece of glass was interposed behind the focus. A similar experiment was about the same time made by Hooke, though not published till very long afterwards. This ingenious philosopher showed that a glass mirror which reflects light will not repel heat. But these interesting facts lay buried for a century amidst a multitude of scattered observations, and seem to have first attracted the notice of Saussure and Pictet, both of whom, and especially the latter, carried the investigation to some extent. They still wanted the connecting principle, which should embody and reanimate the mass.

Scheele pursued a similar path, but was little versant in the history of science, and had none of the advantages of an improved apparatus. Endowed with original and inventive powers, he followed the current of his own conceptions, and consulted always the book of Nature. An examination of the circumstances disclosed in the management of stoves and chemical furnaces, induced him to consider Heat or Fire as existing under two distinct modifications; one which rises and spreads by a successive transfer among the ambient substances, and the other which streams immediately from its source in rectilineal directions. The latter he designated by the phrase *Radiant Heat*, which has since become a favourite appellation. If this expression indicated merely the tendency of Heat, under certain circumstances, to disperse in straight lines; it would be quite unexceptionable. But in technical language, the *Radiation of Caloric* associates an obscure idea of a subtle fluid invested with vague or uncertain properties.

The common thermometer comprises, between freezing and boiling mercury, the space of scarcely 700 degrees; which is evidently but a small portion of the vast range of heat. It was most desirable, therefore, to have an instrument of greater extent, adapted especially to the ascending scale. The *Pyrometer*, composed of metallic

1 This must have been a metallic reflector; an ordinary mirror, or one of silvered glass, will scarcely collect any heat at all. Indeed the art of applying a metallic plate to the surface of glass is a modern invention. The earliest method was the Dutch, which consisted in pouring melted lead intensely hot over a sheet of glass softened nearly to fusion. But the adhesion was afterwards more easily obtained in the ordinary way, by applying tinfoil to the glass, and dextrously flooding it with mercury, to form an amalgam. It is from this shining metallic coating that light is chiefly reflected, having penetrated and again escaped through the substance of the glass. But with regard to heat, a very small reverberation takes place at the anterior surface of the glass, and the effect is exactly the same if the silvering be rubbed off. It would prevent much confusion were chemical writers to appropriate the term *speculum* to metallic reflectors.
bars, answered, though very imperfectly, that purpose. But the elegant contrivance of Wedgwood, the celebrated improver of English pottery, promised the greatest advantages; both to science and the chemical arts. It consisted merely of a small cylindrical piece of finely prepared clay, which bears the most intense heat, and yet regularly contracts in the fire. Assuming that the intensity of heat must cause a proportional contraction, he measured this by sliding the thermometric piece within a tapered groove, its width at the one end being to that of the other as 5 to 3, and its whole length divided into 240 equal parts. By comparing the dilatation of silver, it was found that each of these divisions answers to 130 degrees of Fahrenheit's scale. Hence the melting points of silver, gold, and cast-iron, and those of the fusion of flint-glass and of Chinese porcelain, being respectively 28, 32, 130, 114, and 156, by Wedgwood, would correspond to the enormous numbers 4717°, 5237°, 17977°, 15897°, and 21257°.

These results, however, appear far to transcend the truth. The principle of the instrument is totally different from that of the thermometer. It does not mark the transient impression of heat, but the change or permanent effect produced on the bit of clay by baking, or the exposing it during a certain time to the action of the furnace. Hence the very ingenious method of discovering the degrees of heat which the Chinese and the ancient Etruscans employed in their potteries, by observing the moment when a specimen of their ware subjected to an increasing fire began to contract anew. That contraction is undoubtedly caused by the expulsion of a part of the water held so obstinate ly by the clay, the repulsive force excited by the accession of heat controlling the adhesion of the moisture. It may be inferred that the clay attracts the remains of latent humidity with a force always increasing; but the repulsion infused by the conversion of the expelled particles into steam ascends nearly in a geometrical progression with equal acquisitions of heat. A nearer approximation to the scale of temperature might probably be derived from the logarithms of the very large numbers stated above.

It remains however still an important desideratum to construct a thermometer that shall accurately measure the higher degrees of heat. The fusible metal, composed of lead, tin, and bismuth, has been suggested as an expansible substance, which may be heated to near the fusion of copper; but, in congealing again, it unfortunately swells suddenly, and would burst its glass ball. A combination of metallic bars has likewise been proposed, though no plan for effecting this has yet been devised, sufficiently simple and reducible to practice.

Metallic thermometers have indeed been constructed, which indicate with great delicacy the ordinary temperature, and all the sudden changes of heat. These consist generally of thin slips of steel and brass, united together, and formed into circles or spirals. The most elegant instruments of this sort were executed at Paris, by the late ingenious artist Breguet.

It was an object of much greater consequence to construct a register-thermometer, which should mark the greatest heat and cold during the absence of the observer. This had been attempted by different experimenters in the course of the eighteenth century, but was first carried to any tolerable perfection about the year 1780, by Mr. Six of Canterbury. These registers consisted of spirit of wine thermometers, with compound reverted stems, partially filled with quicksilver, which carried small bits of steel to indicate the limits of ascent. With such instruments the inventor made some curious observations on local heat, or on the differences of temperature at moderate altitudes during the alternations of day and night. He particularly remarked the influence of a clear sky in chilling the ground.

The simplest and most commodious register thermometers, however, were a few years afterwards contrived by Dr. Rutherford, an ingenious physician, who resided on his property in the neighbourhood of Kinross. They turn on a pivot, the stems being placed nearly horizontal, and only inclined occasionally for adjustment after the heat of the day. The minimum thermometer is filled with alcohol, and the maximum one with mercury, the tubes of both being rather wide, with bits of enamel swelled at each end, which are drawn down the slanting tube by the retreat of the alcohol or pushed upwards by the expansion of the mercury. Rutherford's thermometer was first happily applied by his neighbour Dr. Coventry, the well-known
Professor of Agriculture in the University of Edinburgh, in ascertaining the progress of heat into the ground, and its effects on the germination of the seeds of the *cerealia*. Some curious facts have thus been detected regarding the influence of an herbaceous covering to retard the penetration of frost.

The thermometer soon afterwards received a most important modification, which renders that instrument extremely sensible to the alterations of local heat. This improvement consisted in adapting the instrument to measure, not the actual temperature of any spot, but its occasional change or variation. The extent of the scale being limited, the dimensions of the degrees could be proportionally enlarged.

The construction of the Differential Thermometer was early suggested by a close analysis of the phenomena of evaporation. It is well known that a wet sponge suspended in the air loses gradually its water, and during this dissipation it continues colder than the encircling medium. The depressed temperature was commonly attributed to a process of rapid evaporation, which seemed to result from the combined action of various causes,—the heat of the air, its state of dryness or rarefaction, but especially the swiftness of its circulation. Halley had, near the close of the seventeenth century, advanced the rational hypothesis, that moisture is exhaled from the surface of water by a sort of chemical solution in the atmosphere. The same opinion was about the middle of the following century proposed and expounded by Le Roy of Montpellier; but though supported by concursing analogies, it might appear perhaps too simple for the general taste. The fanciful notion, first started by Derham, that evaporation is occasioned by very minute vesicles or hollow spherules of water, charged with highly attenuated air, which rise and float in the atmosphere, proved more acceptable to a wondering public. The vesicular theory afterwards obtained a wide currency from the philosophical reputation of Saussure, who considered it as countenanced by some dubious optical appearances. But the mere subdivision of fluid matter could produce no change of temperature, and the clearest facts are opposed to the notion of a passive dispersion of aqueous corpuscles.

An absorption of heat always accompanies the passage of a fluid from the liquid to the gaseous form, which seems to require the same surplus, in whatever way the conversion has been produced. If a body of air be confined over a surface of water, it will soon become charged with moisture, and then there is no more evaporation. But if the damp air be suffered to escape and disperse itself, the process will be perpetually renewed. The corresponding abstraction or transfer of heat must consequently proceed without intermission. Although the dissipation of moisture and of heat from a humid surface exposed to a current of air continues incessant, the coldness thence resulting is not, however, likewise progressive. A wet sponge or a porous vessel full of water will, when placed in the same situation, gradually arrive at a certain depression of temperature; nor will this limit alter without a change of circumstances. It follows, therefore, that the exhaling surface, after it has become colder than the ambient medium, must begin to receive as well as to discharge heat. Every thin shell of air which successively comes to touch the humid surface must be cooled down to this standard, and thus deliver its excess of heat, while it absorbs another portion spent in vapourizing the moisture it dissolves. As the process of evaporation goes on, the heat communicated at each repeated contact of the fugacious medium must soon come to be precisely equal to what is again abstracted from the exhaling liquid in the act of saturation. When this equality of interchange is attained, the resulting temperature must have reached its lowest point of depression, where it will continue stationary. But the heat deposited by each successive shell of air must evidently be proportional to that depression, which will hence indicate the portion of humidity that passes into the gaseous state of solution; or the difference of temperature induced will furnish an accurate measure of the dryness or distance from saturation of the circulating air. To obtain, therefore, a perfect Hygrometer, it was only required to construct a Thermometer that should mark distinctly small differences of heat. In the first application of this principle, made as early as the year 1791, the water was evaporated from a thin porous earthen cup, like
a truncated egg-shell; and the thermometer had rather a large bulb, with a very narrow bore, and bearing a scale of only a few degrees subdivided into tenth parts. The tube was not sealed, but had a wider cup of glass cemented a little below the top, containing some mercury, which united with that of the stem when the instrument was inverted, and separated the moment it was dipped into the evaporating cup, leaving the mercurial thread to contract downwards from the end. This arrangement was found, with due care and attention, to answer satisfactorily. It was more than three years afterwards, when the severity of the season suggested the idea of making the ball of the thermometer itself the evaporating surface, by covering it with a crust of ice.

The next advance was at all times to invest the ball with a thick coat of tissue paper or soft lint, that should hold a sufficient charge of water. To find the depression of temperature which marks the dryness of the air, nothing was wanted but to compare it with another thermometer having a naked bulb. This purpose appeared to be most easily effected, by joining the stems of two air-thermometers; and thus was fortunately produced the Differential Thermometer, which under a variety of forms is capable of so many curious and important applications. Its primary object was to serve for an Hygrometer, but the instrument was soon found, when placed out of doors, to be sensibly deranged by the diffuse light of the sky. This circumstance led to its modification as a Photometer, the covering being removed from one of the balls, and the other ball blown of black enamel. The addition of a pellucid glass case now became necessary, to screen the action of light from the consuming and irregular influence of wind. The luminous rays pass without interruption through the clear ball, but are by the dark ball absorbed and converted into heat, which continues to accumulate and to raise the temperature, till the corresponding augmented dispersion of heat by the ambient air comes at length to equal the continued accessions from the afflux of light.

In arranging the instrument as an Hygrometer, it was hence requisite to neutralize the photometrical influence, by covering the evaporating ball with coloured silk, and blowing glass or enamel of the same shade for the naked ball. A free exposure to the atmosphere is in this case essential. The sweep of the wind may accelerate the equilibrium, but cannot derange its limit; for the same portion of air which abstracts vapour and the constituent heat, likewise deposits its excess of temperature on the chilled surface of the wet ball. The interposition of a screen will not in the smallest degree affect the indication of this Hygrometer, -- a result at complete variance with the notions generally received. To regulate the scale of the instrument, the tenth part of the centesimal subdivision was adopted, or the distance from freezing to boiling was distinguished into a thousand degrees.

By successive improvements in its construction, the Differential Thermometer was rendered simple, precise, and elegant. But the instrument still betrayed imperfection, the limit of equilibrium or the zero of the scale visibly sinking in the course of several months. This was owing to the diminished elasticity of air in immediate contact with the liquid lodged below one of the balls, which continued to absorb oxygen, and deposit its colouring matter. But early in 1800 every source of error was removed, by adopting, as the movable fluid, concentrated sulphuric acid tinged with carmine, which remains unaltered for any length of time, though exposed to the full glare of the sun.

The precision of the Differential Thermometer now fitted it for a variety of nice inquiries. One of the most important was to ascertain the alteration of the charge of heat in air, corresponding to a change of the elasticity or volume of this fluid. When the variation was small, the allowance of two centesimals degrees for each hundredth part of the difference of density seemed to be a very near approximation. Thus, if a mass of air be condensed one fiftieth part, it will have its temperature raised one degree, or give out one degree of heat; on the contrary, a like expansion of air occasions an equal absorption of that element, or the appearance of cold. But when the difference of elasticity is considerable, some modification becomes requisite; and a very simple formula was found to connect the experimental results. Let this elasticity change from 1 to \(e \), then the heat
evolved or absorbed is expressed in centesimal degrees by
\[25^\circ \left(\frac{e - 1}{e^2 - 1} \right) \text{ or } 25^\circ \left(\frac{e - 1}{e} \right). \]

A similar mode of investigation determined the relative shares of heat contained in the artificial gases and in common air.

This principle elucidates the decrease of temperature in the higher strata of the atmosphere, while the formula exhibits the scale of gradation. Hence, knowing the mean temperature of the ground at any part of the globe, it is easy to compute the elasticity and corresponding elevation which would reduce that to the zero, and mark the limit of perpetual congelation. A curve is thus traced, bending at first with a gentle declivity on either side from the equator, and then descending more rapidly and turning with a contrary flexure, grazing along the surface at the pole. The application of the instrument led more immediately to the solution of another important physical problem,—to determine the proportion of humidity or of volatilized water which air is capable of holding in solution at different temperatures. A very simple law was derived,—that the quantity of moisture dissolved constantly doubles at every 15 degrees in the rise of temperature. Thus, air at the freezing point may contain the two hundredth part of its weight of moisture, but at 15° it will hold the 100th, at 30° the 50th, at 45° the 25th part; so that, if it were safe to push the progression to its extremity, the air could unite with rather more than half its weight of steam at the limit of ordinary ebullition.

Similar conclusions were derived from the waste by exhalation at different temperatures. A large hollow ball of thin metal, covered with a close coat of linen, and filled with boiling water, being suspended from the end of a fine beam, and 10 grains of water at successive intervals repeatedly sprinkled over the surface, the times of dissipation were carefully noted, and the corresponding solvent powers of air hence inferred.

The Hygrometer likewise determined the relative portions of heat contained in water and air. It is evident; from the theory before explained, that were the heat diffused according to the densities of these fluids, each millesimal degree of moisture would equal the 6000th part of the air which held it. But adopting the capacity or measure assigned to air by Dr Crawford (then esteemed the most accurate), each hygrometric degree would correspond to the 3460th part of the weight of the solvent. Both of these proportions were found, however, to differ widely from the truth. A wet card being tied to the instrument, it was let down into the centre of a large glass globe with a narrow neck, containing 4000 cubic inches of air, and suspended through a hole in the glass cover from a fine balance; the progress of humification and the concomitant loss of weight were at short intervals of time nicely observed. From this comparison it resulted, that the moisture sufficient to mark an hygrometric degree is only the 20,000th part of the air with which it unites. Hence the atmospheric fluid, instead of being charged with nearly twice as much heat as water, as had been generally presumed, holds only three-tenths of that quantity. The proportion afterwards given, in some elaborate experiments of Petit and Dulong, was rather smaller, or 26 parts in 100; but the former result is simpler, and probably more exact.

The principles thus established serve at once to confirm and illustrate the ingenious Theory of Rain, which the keen sagacity of Dr James Hutton had elicited from observation about the year 1786. The commixing of two bodies of damp air that have different temperatures, must always occasion a precipitation of moisture more or less copious; for, since the solvent power augments in a geometrical progression, the loss of it which the warmer air suffers will constantly exceed what is gained by the heating of the colder portion of the damp mass.

A curious conclusion followed from those data: Supposing the vast canopy of air, by some sudden change of internal constitution, at once to discharge its whole watery store, this precipitate would form a sheet of scarcely five inches thick over the surface of the globe. During the course of a year, our atmosphere must therefore deposit five or even ten times all the moisture it held in solution. To explain the actual phenomena, it is hence requisite that this restless medium should change unceasingly from a state of dryness to humidity. Such alternations are effected by the system of winds, which sweep variously over the land and the
ocean. But to complete Dr Hutton's Theory of Rain, it becomes necessary to have recourse to the operation of opposite humid currents of different temperatures, which bring their grazing surfaces into rapid intermixture over a given spot, where the aqueous precipitate is copiously discharged.

A further application of the Hygrometer detected the influence of rarefaction in augmenting the dryness of air. The change is rendered very perceptible, by introducing that instrument in its quiescent state under the receiver of a pneumatic machine. On working the pump, the hygrometric action which had ceased is instantly renewed, and urged constantly forward in proportion as the process of exhaustion advances. The dryness thus induced amounts to 50 degrees, every time the rarefaction is doubled. If air had the same temperature at all elevations, it would exhibit a regular gradation of dryness. But at each ascent of 2800 feet, though the air is constitutionally 7 degrees drier, it likewise becomes 5 degrees colder. This continued diminution of temperature predominates at first over the progressive arid quality of the medium, till the apparent moisture has become extreme, beyond which limit the attenuated air continues to spread drier and more pellucid. The Curve of Greatest Humidity, forming the proper range of clouds, rises about two miles above the Line of Perpetual Congelation. The pervading clearness of the upper region, without which the surface of our Earth would have been wrapped in perpetual darkness, is entirely owing to the property of rarefaction augmenting the solvent power of the air.

From the theory of the Hygrometer, it is obvious that the instrument marks the dryness of the ambient air only at the reduced temperature of the wetted ball. To find the true dryness of the atmosphere, a correction is to be applied for the superior solvent power of its actual temperature. With this view auxiliary tables are constructed, which give also the coldness of extreme humidity, or what has been termed the *Dewing Point*. But it is liable to considerable uncertainty. Placed within a metallic case, the wetted Hygrometer will gain the zero of the scale; but when covered with a glass shade, it will stand at 5 or even 10 degrees of dryness, the vitreous surface, aided by heat, abstracting the humidity from the inclosed air, and preventing it from attaining the state of saturation.

The Differential Thermometer was now directed to a more extensive and important subject of inquiry,—the mode of the propagation of heat among various bodies. Considering it as a subtle diffusible fluid, a nice investigation of the phenomena might disclose the nature of its connexion with other substances. Ascending by a regular gradation, bodies may be distinguished into solid, liquid, and gaseous. Suppose a cylinder of silver, cased in down, had the one end heated always to the same degree, the heat would advance, and discharge itself from the other. If the igneous fluid were merely passive, like a current of water, the elevation of temperature and the inverse length of the cylinder would follow the square of the velocity of discharge, and not the simple ratio, as actually observed. Heat is therefore never passive, but powerfully attracted by its recipient. No portion of the cylinder can receive or deposit its heat, without simultaneously suffering a corresponding expansion or contraction. The heat is thus transferred from stage to stage, by a series of concatenated dilatations and contractions; and these alternate oscillations, which are quicker in some substances than in others, create the only impediments to the flow, that would otherwise be almost instantaneous. The elasticity of heat must be prodigious, since its weight eludes all examination. Considering its extreme tenacity, the expansive energy which it displays can only be assimilated to the mutual repulsion of the particles of Light. Every appearance, indeed, seems to indicate that Heat is merely Light under a latent and combined form.

In the case of liquid substances, the commun
nification of Heat is more complicated. Suppose Heat were applied to the upper surface of a vessel containing water, its influence would gradually descend, precisely in the same manner as if the whole mass had been consolidated; for the warmer and dilated portions, retaining their several positions, would continue to float in successive strata, graduating downwards. But if the bottom of the vessel were subjected to the same process of heating, the water, as fast as it grew warmer and specifically lighter, would rise and diffuse its acquired heat. The communication of this influence would hence become rapid, and spread itself in horizontal strata. But every renewal of the sentient surface must likewise promote the dispersion of heat through a fluid mass. Such is the expenditure of heat from a hot ball plunged in the current; but in cold still water, the heat being dispersed by two distinct processes, the ball at first cools in a much faster ratio than the difference of temperature, but ultimately approximates to that ratio. The loss of heat is, however, the same, whatever be the nature of the surface incircled by the water, whether of metal or glass, or cased in linen. Water moving in a current at the rate of only a mile an hour, will abstract four times as much heat as if it had remained stagnant.

But when a hot ball is suspended in air, another element of dispersion now comes into play. The air in contact becoming heated and rarefied, ascends continually and scatters the heat. But another portion of heat is discharged from the cooling surface by a rapid rectilinear projection. This emanation is best observed in substituting a cubical vessel with different sides of glass, or of polished or papered metal. It is most powerful in front, diminishing laterally as the cosine of the angle of declination. From a surface of linen the propulsion of heat is ten times, and from that of glass eight times greater, than from a bright polished metallic surface. This peculiar dissemination of heat, which from a glass ball amounts to nearly half of the whole discharge, is not performed by the actual flow of the heated air, though it requires the agency of a gaseous medium. The discharge can be collected at any distance by a metallic reflector, and thrown concentrated on the naked ball of the Differential Thermometer. But the intervention of a large sheet of tin-foil obstructs the whole effect, while a very fine screen of gauze, which would stop the passage of streamlets of hot air, scarcely impedes the operation. It is impossible, therefore, to resist the conclusion, that what has been vaguely termed the radiation of heat, consists in a certain propulsive effort or internal tremor, excited in the gaseous medium, analogous to the undulatory propagation of sound. The air can be shown to have a closer contact with glass than with metal, and hence the former surface exerts a superior energy of pulsation. The interval in the case of glass appears to be about the 500th part of an inch. A metallic ball, coated with the finest gold-beater's skin, of only the 3000th part of an inch in thickness, will have its pulsatory energy augmented from 1 to 6; and by the addition of other films, this dispersive power will successively rise to 10.

In air rarefied 200 times, the abductive power from the glass balls is reduced from 6 to 1, while the peculiar discharge of heat at the naked surface is depressed from 7 to 5, and that at the gilt surface from 1 to \(\frac{4}{9}\); the naked ball emitting now 6\(\frac{1}{2}\) parts of heat, and the gilt one only 2\(\frac{1}{2}\). The effects are changed in a different gaseous medium. Thus, the same balls, with a vitreous and metallic surface, would discharge 31 and 25 parts of heat if immersed in hydrogen, both of them losing 24 parts by the powerful abdication of that gas. But were the medium rarefied about 200 times, the quantities of heat emitted from the naked and the gilt ball would be reduced to 13 and 8\(\frac{1}{2}\).

The principle thus unfolded applies with mathematical precision, and illumines an extensive train of phenomena. It likewise suggests

in all cases dart forward with the same celerity, or travel at the rate of about 200,000 miles in a second. But since atmospheric air is projected into a vacuum with the velocity of only a quarter of a mile each second, the motion of Light is thus 600,000 times more rapid. Wherefore the propulsive force of Light compared with that of Air is expressed by the square of this number, or 460 billions. In the state of combination with Air, since it must have the same elasticity as that fluid, Light must hence be 544,000,000,000,000,000 times rarer than water. See Elements of Natural Philosophy, vol. i. p. 452.
various improvements in the practical arts, and in general economy. One of the finest modifications of the Differential Thermometer converts it into the Pyroscope, by merely gilding richly one of its balls. By this alteration it is fitted to measure nicely the hot or cold pulses, and hence to determine the relative powers of fuel, and the efficacy of variously constructed chimneys. The access of heat is almost entirely repelled from the gilt ball, while its accumulation on the naked ball is regulated by its subsequent tendency to disperse through the ambient air. The action of wind must evidently lower the effect, insomuch that a current at the rate of only eight miles an hour will reduce it to the half. To fit the Pyroscope for observations out of doors, it became therefore necessary to shelter it from the sweep of aerial streams. This protection was obtained by adopting the pendant form of the Differential Thermometer, inclosing the lower ball within a larger one of silver, and inserting the upper one in the focus of an oblong spheroidal cup, cut over at the remoter focus. It was thus converted into an Ethrioscope, which indicates the cold pulses darted at all times from the higher strata of a clear atmosphere, but more copious in summer than in winter, and stronger during the day than the night. The information afforded by that delicate instrument completely elucidates the successive steps towards a correct Theory of the formation of Dew, by Musschenbroeck, Dufay, Six, Wilson, Bernard Prevost, and finally the late ingenious Dr Wells.

In analyzing the process of evaporation, the cold induced on the humid surface was attributed solely to the quickened transfer of the contiguous portions of the ambient medium. "But the conterminous air must besides communicate heat to the water by pulsation, and consequently the balance of temperature would be liable to incidental variations, if moisture, with its embodied heat, were not likewise abstracted by some corresponding process. And such is the harmonious adaptation of these elements. The discharge of vapour appears to be subject precisely to the same conditions as the emission of heat, and in both cases the proximity of a vitreous or a metallic surface produces effects which are entirely similar." This beautifull property was established by decisive experiments, which render the theory of the Hygrometer absolutely complete. But the performance of that instrument received further confirmation and clear elucidation from the contrast of the Atmometer, which indicates with great accuracy the quantity of exhalation from a given surface in a certain time.

A train of observations performed by this Hygrometer in 1810 led to the method of producing artificial congelation on a large scale. Having ascertained the increased power of aqueous solution which air acquires as it grows thinner, it was next suggested to combine the action of a vigorous absorbent with the transient dryness created within a receiver by rarefaction. "On introducing a broad surface of concentrated sulphuric acid, this substance was found to superadd its peculiar attraction for moisture to the ordinary effects resulting from the progress of exhaustion; and, what was still more important, it continued to support, with scarcely diminished energy, the dryness thus created. The attenuated air was not suffered, as before, to grow charged with humidity; but each portion of this medium, as fast as it became saturated by touching the evaporating porous dish, transported its vapours to the acid, and was thence sent back denuded of the load, and fitted again to renew its attack. By this perpetual circulation, therefore, between the exhaling and the absorbing surface, the diffuse residuum of air is maintained constantly at the same state of dryness. Heat is hence abstracted in proportion to this invigorated evaporation. If air be rarefied only 50 times, a depression of temperature will be produced, amounting to 80 or even 100 degrees of Fahrenheit's scale." It is hence easy in the hottest weather, and in every climate, to freeze a body of water, and keep it in a congealed state, till it gradually wastes away by a continual but invisible process of evaporation. On a large scale the operation would be conducted the most profitably; insomuch that a proper system of air-pumps, put in motion by a steam-engine of only six horse power, might in the climate of London produce at the rate of a ton of pure ice every day. Other absorbent substances besides sulphuric acid could be em-
ployed, though not so advantageously; such as pounded trap-rock slightly roasted, parched oatmeal, and dry sole-leather. When water is excluded, the dryness created within the exhausted receiver may be turned to different useful purposes. This process is now commonly employed, especially on the Continent, in the nicer chemical analyses. It can likewise be directed to delicate preparations, which the action of heat might derange.

The application of these various refined instruments forms a sort of era in the progress of philosophical apparatus, and has contributed to introduce into physico-chemical researches a precision and delicacy unattempted before. What seems wanted at present to complete our knowledge of Heat, is not the vague repetition of experiments already carefully performed, but a nice investigation of several unexplored properties, directed with scrupulous accuracy and on a large scale.

The systematic application of Heat has, during the eighteenth century, produced a complete revolution in the mechanical arts. Air, steam, and water are often employed as carriers of Heat, but with very different energies. These fluids being all raised to the pitch of boiling water, while a current of air will transmit only one degree of Heat, a like current of steam will communicate 12 degrees; but a stream of water with the same celerity and transverse section will, from its density and high charge, communicate no less than 2800 degrees of Heat.

The alternate expansion and contraction of fluids by heating and cooling evolves prodigious powers. It may be shown that, with the same expense of Heat, air itself treated in this way exerts about three times as much force as what is obtained from the successive formation and condensation of steam. If such reciprocal changes were impressed on air as rapidly as on steam, the application of that medium would soon supersede the most efficient of all engines.

The expansive force of steam was finely displayed by the Edipler, an instrument constructed in the Alexandrian School. After the revival of science, it had been employed to set in motion a variety of toys; but no efficient application of steam was achieved in the seventeenth century.

It seems idle to examine the pretensions of such projectors as the Marquis of Worcester or Sir Samuel Morland, who caught at any shadowy schemes, to retrieve their ruined fortunes. The person who first considered the properties of steam philosophically was Papin, a physician born at Blois, who visited England in 1680, and became curator to the Royal Society. The Digestor, which he constructed next year, exemplified the enormous elastic force that steam acquires when heated and confined. As a source of power he proposed atmospheric pressure, by forming a vacuum either by the inflammation of gun-powder or the condensation of steam. Precluded by the revocation of the Edict of Nantes from returning to France, he accepted in 1687 an invitation from the Prince of Hesse to a chair in the University of Marburg. There he extended his plans, but found no helps to carry them into execution. The superior skill of English artists transferred the palm of invention. Newcomen, a blacksmith, and Cavley, a glazier, natives of Dartmouth in Devonshire, by their united studies and labours, produced the Atmospheric or Fire Engine in 1705; but, to prevent opposition, they associated in their patent a naval officer, Savery, who had a few years before contrived a very imperfect machine, which acted however by alternate expansion and condensation. Accident suggested the injection of cold water within the steam-vessel, instead of external affusion. Beighton simplified the mode of opening and shutting the valves, and improved the whole system of machinery; and in the course of half a century, the Fire Engine was adopted for raising water in all the coal-mines.

At this epoch the genius of Watt, guided by sound judgment and urged by unremitting application, effected in less than forty years a complete change in the powers of mechanism. His steady purpose was to reform the principles of the steam-engine, and reduce its composition to mathematical precision. He began with performing the condensation in a vessel distinct from the working-cylinder; and he next excluded atmospheric pressure, and merely employed the alternate action of expanding and contracting steam. But to pursue his career of invention might demand a separate disquisition.
7. ASTRONOMY.

The varying spectacle of the heavenly bodies has attracted the curiosity of mankind since the very dawn of civilisation. In the genial regions of the East, where societies were first collected, the rural inhabitants, accustomed to enjoy the freshness of the nights in the open fields, contemplated with wonder the sparkling radiance of a pure canopy, remarked the groups of stars, and learned by degrees to trace their successive changes, and to connect these with the periodic motions of the great luminaries. The rudeness of such early observations was compensated by the number of the included revolutions. The occasion of an eclipse or an occultation served, by disclosing the coincidence of different periods, to rectify the elements of the planetary movements. Astronomy has grown up by a slow accumulation of facts, continued through a long tract of ages. It had acquired considerable accuracy in practice, before it received any tolerable lights from theory. But the art of observing has in modern times acquired amazing precision, from the very improved construction of instruments, and the extended methods of calculation. The register of a single year may now furnish more complete data than the aggregate observations of a whole century in remote ages.

The great cultivators of astronomy are divided into two classes;—accurate and inventive observers,—and profound and original theorists. Of those illustrious men who, in the lapse of three thousand years, have devoted their labours to so noble a purpose, we may distinguish a few that have stood pre-eminently above their compeers;—as observers, Hipparchus, Ptolemy, Tycho Brahé, Hevelius, Cassini, Flamsteed, La Caille, Bradley, Maskelyne, and Piazzi;—and as theorists, Copernicus, Kepler, Newton, and after some interval Clairaut, D’Alembert, and Euler, and in our own times the associated names of Lagrange and Laplace. Astronomy is not only the sublimest of all the sciences, but has at last reached the highest pitch of perfection, and constitutes by far the grandest monument of human assiduity and genius.

The progress which Astronomy has made since the decease of Newton may be referred to five separate heads; 1. The investigation of the figure of the earth, and of the other planets; 2. The determination of the anomalies of the moon’s motions, and their application to the finding of the longitude at sea; 3. The analysis of the prolonged effects resulting from the mutual disturbing influence of the planets; 4. The improved theory and observation of comets; and, 5. The telescopic discoveries of new planets, and the vast expansion of the catalogue of stars.

1. Investigation of the Figure of the Earth and of the other Planets.—It was easy, by combining the rotation with the length of the radius of the Earth, to compute that every body at the equator must lose the 289th part of its weight, from the action of centrifugal force, which, being proportional to the distance from the centre, will exert only half such influence over the whole mass; and therefore supposing this to be homogeneous, and assuming with Huygens that gravitation is all directed to a central point, and equal at every distance, it thence followed that our planet is an oblate spheroid, of which the Equatorial is to the Polar diameter as 578 to 577. But Newton had already explored the question with consummate penetration; and, setting out from the great principle of an attraction subsisting among all the particles of matter, had, on the hypothesis of homogeneous fluidity, shown that the equatorial column has its pressure at the centre diminished by the elliptical defect of the sphere, while the action of the perpendicular column is augmented from the opposite cause; and thus a greater inequality than the mere influence of centrifugal force becomes requisite to produce equilibrium, assigning 280 to 229 as the ratio of the diameter to the axis. This solution, however, was merely tentative, the imperfection of the calculus being compensated by a refined sagacity, which noted only the leading steps.

The explication of the System of the World from the Theory of Attraction, embraced with
indolent acquiescence by the countrymen of Newton, was either opposed or viewed merely as an ingenious speculation by most of the philosophers on the Continent. But a controversy now arose, which brought the accuracy of these principles to the test of observation, and secured their final triumph. It is evident that the length of a degree of the meridian must be proportional to the distance of the centre of mutual concurrence of the plummets from its extremities, or to the radius of external curvature. In the case of an oblate spheroid, therefore, those degrees would regularly enlarge from the equator to the pole. But the Trigonometrical Mensuration of France, begun by Picard in 1675, and completed in 1716 by Cassini, forming the most extensive survey yet attempted, was found leading to an opposite conclusion in the meridional arc, the degrees on the north of Paris, instead of lengthening, appearing to contract about a 430th part below those on the south, which would indicate an oblong figure, having its perpendicular diameters as 96 to 95. This perplexing result served to keep alive for some time longer the controversy on the Continent between the followers of Descartes and the growing partisans of the Newtonian Philosophy. In the meanwhile, a clock made by the famous Graham, and carried out to Jamaica in 1732 by Colin Campbell, was ascertained by astronomical observations at Black-river, in the latitude of 18°, allowing for the influence of heat on the pendulum, to go 1° 58′ slower every day than in London. This quantity of variation Bradley found to exceed what would suit the figure calculated by Newton, and he was therefore disposed to attribute the effects to some diminution of density in the equatorial regions. James Stirling comprised the attractions of homogeneous spheroids under two beautiful theorems, which were published, though without demonstrations, in the Philosophical Transactions for 1735. About the same time Bouguer noticed some restrictions essential to the rigorous solution of the problem; but now Maclaurin took a most commanding view of the subject, and produced, first in his famous Dissertation on the Tides, and again more fully in his Treatise of Fluxions, printed in 1742, a geometrical investigation, distinguished by its originality, clearness, and superior elegance. This illustrious mathematician established, from the law of gravitation, the stability of a fluid spheroid revolving about its axis in a certain time, proved that every point within the mass would be pressed equally on all sides, and showed that even the superadded attractions of the sun and moon could not disturb the internal equilibrium of our Earth. The conclusions applied likewise to the other planets, and embraced the theory of the tides. But his profound investigation likewise disclosed several general theorems, which have greatly simplified and extended the science of Hydrodynamics.

The most refined theory, thus confirming the Newtonian figure of the Earth, again recalled the attention of philosophers to the actual survey of its surface. The French triangulation being resumed in 1740, an error was detected in the measurement of the base, and another not less considerable in the observation of the meridional arc; but to rectify the various details required the labour of several years, nor did the work terminate before 1754. In the extent of above eight degrees, their lengths appeared regularly to increase, from Perpignan to Dunkirk, by about the 1730th part; marking evidently the oblateness of the spheroid.

But it was most desirable to resolve the question on a larger scale; and the Academy of Paris, urged in 1733 by Condamine to send a party to measure a degree under the Equator, adopted his project with zeal, and fortunately obtained the sanction of government. After all the preparations were made, the Academicians, Con-

1 In a letter written from Basle on the 22d November 1729 by Nicholas Bernoulli, to his friend James Stirling at London, with whom he had become acquainted several years before, when the former was professor at Padua, and the latter a teacher of Mathematics in Venice, he confesses, with regard to Machin's attempt to illustrate the Lunar Theory, that he had not yet taken the trouble to read the third book of the Principia. Pauc...
Damime, Bouguer, and Godin, in May 1735 sailed from Rochelle to Peru, where they joined Juan and Ulloa, two naval officers deputed by the king of Spain. The whole company assembled in the month of June in the following year at Quito, almost under the Equator, and arranged their plan of operations. They chose a valley of the Cordilleras running above 200 miles southwards from that city, and inclosed on both sides by the loftiest ranges of the Andes. Divided into two troops, they carried a series of triangles along the flanks and summits of those stupendous mountains covered with eternal snows, and connected the reticulation with the base measured below. In pursuing their laborious task, the observers had to encounter the greatest difficulties, and to suffer privations of every kind, owing to the severity of the climate and the total want of accommodation, joined to the continual impediments occasioned by the superstition of the natives and the pilfering habits of the Indians. But resolution and perseverance at length overcame the multiplied obstacles, though no fewer than eight years were consumed in completing with elaborate care and accuracy the different operations undertaken. Damime was a man of an ardent and active mind, and persuasive address; Godin, an excellent observer; but Bouguer combined the character of a deep and original thinker, with the talent of invention, unwearied application, and an extended acquaintance in the various pursuits of philosophy and science. The Academicians were ably assisted by their Spanish associates, though each performed separately his own calculations. It was reserved, however, for Bouguer to give the complete narrative of all the various operations, in his Treatise on the Figure of the Earth, not published till 1749, but one of the most valuable scientific works that has ever appeared. Besides amply discussing the principal question, it investigated incidentally the effects of local attraction on the plummet, the length of the pendulum, the theory of refractions, the rules of barometrical measurements, the limits of perpetual congelation, the intensity of the solar rays at different elevations, and the celerity of sound as affected by heat. He concluded that the Earth is not only an oblate spheroid, but so considerably flattened as to have its equatorial diameter to its axis in the ratio of 179 to 178; and he thence inferred that the central parts must be four or five times denser than the superficial crust.

In the mean time, it being foreseen that the mensuration of a degree in Peru would be necessarily retarded, the celebrated Maupertuis, a person of agreeable attainments, though not very profound in science, prevailed with the French minister Maurepas, to dispatch another company, which he reluctantly consented to lead, for a similar purpose to the Arctic Circle. His associates were Monnier, Camus, Outhier, and Clairaut, already distinguished by the precocity of his fine mathematical genius. They arrived at Stockholm in June 1736, and were joined by Celsius, the professor of astronomy at Upsal, who had brought from London Graham's zenith sector and transit instruments. Having settled their general plan, they proceeded to the bottom of the Gulf of Bothnia, and selected Tornea for the principal station. From that small capital they stretched a chain of triangles along the wooded heights to the top of Kittis, a distance however not exceeding 60 miles. Working with great spirit and activity, and having no difficulties to encounter but the severity of the climate, they observed the angles from the several stations during the remainder of the summer, determined the celestial arc in autumn, and measured the base along the frozen surface of the river Muonio in the early part of winter. The length of a degree of latitude at the Arctic Circle was found to be 57,419 toises, or 349 toises longer than the corresponding measure at Paris, which gave the ratio of 178 to 177 for that of the Equatorial and Polar diameters, almost the same as the result of the more extensive operations afterwards in Peru. Maupertuis, having with such expedition ascertained the oblateness of the Earth, and assigned a depression still greater than had been computed by Newton, returned triumphant to Paris in the spring of 1737. But this arctic triangulation, betraying evident marks of haste, became suspected afterwards of inaccuracy; and, at the suggestion of Melanderhjelm, the Swedish academy, about the
beginning of the present century, sent Svaneberg, with proper assistants, to resume the operations, who not only rectified the former observations, but carried the mensuration about 40 miles farther north.

It was then determined that the length of a degree in Lapland is only 57,209 toises, which, compared with Cassini’s corrected measure in France, reduces the oblateness to the 290th part of the Earth’s axis. But a more accurate result is obtained from the comparison of the distant observations made under the Equator and at the Arctic Circle, the perpendicular diameters of the terrestrial spheroid being in the ratio of 392 to 391. Still greater nicety has been attempted by Littrow, who, on re-computing the degree in Lapland, reduced it to 57,168 toises, which gives an oblateness of only \(\frac{1}{312} \).

Other determinations of a degree of latitude have been made at different parts of the Earth’s surface, the most remarkable of which may be noticed. La Caille, one of the best observers, and the most accurate and laborious of astronomers, rectified the French triangulation during the years 1739 and 1740; nor did the extreme severity of that memorable winter prevent his carrying forward these operations over the lofty mountains of Auvergne. He proved decidedly that the degrees of the meridian regularly increase from the south to the north of France. Some years afterwards he went to the Cape of Good Hope, chiefly for the purpose of framing a catalogue of the stars of the Southern Constellations; but his ardour and extreme activity enabled him to accumulate other valuable celestial observations. Having performed the task he had proposed, and the ship not arriving to carry him home, La Caille was tempted to employ the time thus afforded in measuring by his single exertions a degree of latitude. This he found, on the parallel of 34°, to be 57,037 toises, and therefore of the same length with a degree as far north as 49° in France; which seems to indicate not only a flatter outline, but a difference of internal constitution in the southern hemisphere. The accuracy of the measurement itself, however, has been strongly suspected.

In 1750 and the two following years, Boscovich and his associate La Maire measured an arc of two degrees in the Papal States, and fixed the length on the parallel of 43° at 56,979. Beccaria traced a single degree in Piedmont, and found the opposite attractions of the lofty sides of the Alps had such influence in deflecting the plummet, as to render the northern half of the measure a 69th part longer than the southern.

After a pause of nearly forty years, the mensuration of the Earth was revived with increasing ardour and on a grander scale. The object first contemplated was merely to settle the difference of longitude between the observatories of Greenwich and Paris, by connecting them with a series of triangles. General Roy directed the English survey in 1784, while similar operations were conducted by Cassini in France. The Revolution soon followed, and prepared the public mind for the reception of every bold project. It was now proposed to adopt a universal and permanent system of weights and measures drawn from nature, the unit of linear extent being the thousandth part of a centesimal minute, or the ten millionth part of the quadrantial arc from the Pole to the Equator. To obtain this standard, it had been resolved to carry a chain of triangles over the whole extent, from Dunkirk to Barcelona; which was performed during the most eventful period of general excitement and commotion, by the profound sagacity, perseverance, and undaunted zeal of Delambre, who joined to

1 Born at Amiens on the 19th September 1749. Being designed for the church, he studied the ancient languages in the Gymnasium of his native city, first under the Jesuits, and afterwards under the tuition of the poet Delille, to whom he became warmly attached. At a ripe age, he was invited to the study of astronomy by Lalande, and soon adopted as his favourite pupil. In 1765 he begins the vast series of his scientific labours, which occupied the rest of a long life. Without aiming at originality, Delambre produced very complete and valuable works, pursued his immense calculations with scrupulous nicety and incessant application, and distinguished himself as most a accurate, skilful, and indefatigable observer. He sought precision merely, and was rather indifferent about the elegance of his formulæ or composition. Yet he was an excellent Greek scholar, well acquainted with the principal modern languages, and indeed a man of general erudition. Of an amiable disposition, with fixed principles of integrity joined to simple habits, he passed through all the storms of the Revolution with a blameless character. He obtained his full share of the honours and distinction which France so liberally bestows on those eminent in science, and died universally regretted, on the 19th of August 1822.
Mecain. After completing this operation, they measured a base of seven miles in length near Paris, and another of verification, somewhat shorter, on the road from Perpignan to Narbonne. The register of all the observations was in the spring of 1799 submitted to a sort of congress of scientific men assembled in the French capital, who having examined and repeated the various calculations, and compared the celestial arc with the mensuration in Peru, adopted the 334th for the oblateness of the earth, and determined the distance of the pole from the equator to be 5,130,740 toises.

Mecain, anxious however to extend the meridian as far as the Balearic Isles, again repaired to Spain, and conducted a series of triangles over the savage heights from Barcelona to Tortosa, when, exhausted by incessant fatigue, he caught an epidemic fever, which proved fatal in September 1805. The operations were continued by his young but very able successors, Biot and Arago, who terminated the meridional arc at the isle of Formentera in 1807. This extension of the chain scarcely altered in the slightest manner the former conclusion.

The English survey, being designed merely for the construction of an accurate set of maps, suffered some interruption by the death of General Roy, but was resumed with spirit in 1793, under the skilful direction of Colonel Mudge, who carried the triangulation as far as the north of Scotland; and since his decease in 1820, the work has been transferred to Ireland by his persevering assistant and successor Colonel Colby. The method of observing is now improved, and all the refinements of modern art have been exhausted in the mensuration of a new base.

Those operations have no doubt proceeded very slowly, and yet the results of the first series were perplexing, the three degrees measured from Dunnose to Clifton successively contracting instead of lengthening, and therefore indicating, like the earlier observations of Cassini, an oblong figure of the Earth. The whole arc agrees exactly with the last triangulation of France, in giving an oblateness of only the 334th part; but whether the intermediate discrepancies should be imputed to an error of azimuth, or to the probable derangement from local attraction, still remains undecided.

In 1802 and 1803 Colonel Lambton measured a degree of the meridian in the East Indies, and found, at the latitudes of 9° 32', 12° 3', and 16° 35', the lengths to rise successively to 60,477, 60,490, and 60,512 fathoms. Hence Delambre deduced the oblateness of the terrestrial spheroid to be the 206th part. But Rodriguez, an able Spanish mathematician, who had already criticised the observations of Mudge, detected various mistakes in Lambton's calculations, which being rectified, reduced the depression of the Earth to the 320th part.

Since the spheroidal figure of our planet is evidently subject to great irregularities, we are led to inquire, whether it be a solid of revolution and have true circles for its parallels of latitude. Cassini and Masardi seem to have been the first to solve this interesting question. They found, in 1734 and 1735, a degree of longitude at Paris and at Strasburg to be 36,676 and 37,745 toises,

1 Born at Laon 16th August 1744, the son of an unprosperous architect, who could hardly educate him in the same profession. The youth supported himself, and even aided his father, by teaching mathematics, and made such proficiency in astronomy as to attract the notice of Lalande, by whose warm and active patronage he soon obtained the office of hydrographer to the Marine at Versailles. Though he had not the talent of invention, he became an expert, patient, and correct calculator. He was, besides, a very nice and accurate observer, and applied himself particularly to the search of comets, and the computation of their orbits. In 1784 he was joined to the commission for adjusting the difference of longitude between the observatories of Paris and Greenwich; and when the Constituent Assembly had resolved to adopt a grand metrical system founded on the length of the meridional arc, he was appointed to measure the southern portion of it from Barcelona to Rocez. He conducted his operations with great celerity and success; but, inspecting a new engine constructed by a friend at Barce- lona, he met with a dreadful accident, which had well nigh proved fatal. After a slow convalescence he resumed his labours; but every thing now combined to dishearten him—the war with Spain, the ravages of the yellow fever, and the news of the reign of terror in France. After moderation had revived, Mecain with much reluctance was prevailed on to come to Paris; but strongly pressed the expediency of extending the measurement two degrees farther into Spain, and insisted on carrying on that work himself. This pertinacity was not explained till after his death, when it appeared that he had concealed a discrepancy occurring in the rectification of his observations, which, without acknowledging the error, he no doubt hoped to remove by subsequent operations. After experiencing many difficulties, he vigorously renewed his labours in Valencia; but his mind was depressed by anxiety for his reputation, and alarms at the spread of contagious disease. This mental prostration favoured its attack, and he expired of yellow fever in his retreat at Castellon de la Plana, on the 20th September 1806.
and therefore considerably less than what belongs to a perfect sphere. But the most accurate ob-
servation of this kind was made by La Caille in
1740, from the top of a hill near Aix, to a signal
on a high tower above the Rhone, about 96 miles
remote, where he caused ten pounds of gunpowder
to be fired, and found by the instantaneous blaze
the difference of time between the two meridians,
and then measured trigonometrically along the
plain of Arles the intermediate distance, which
gave 41,358 toises for a degree of longitude, or
260 toises less than a globular form would re-
quire. Lambton estimated the degree of longi-
tude on the parallel of 12° 32' to be 61,061
fathoms, or 57,294 toises; but his observations
and calculations seem not entitled to much con-
fidence. The latest and most accurate measure-
ment of a perpendicular to the meridian was
performed in 1823, near Geneva, by Colonel
Brousseau, of the French engineers, in connexion
with the late ingenious Professor Pietet, while
the skilful astronomers Plana and Carlini com-
pleted a similar operation on the plains of Italy as
far as Padua. The first, being compared with the
arc from Greenwich to Formentera, gave a 271st
part for the oblateness of the Earth; but, when
conjoined with the Italian prolongation, it redu-
ced the quantity of depression to a 293d part of the
equatorial diameter. It must be confessed, how-
ever, that the accuracy of these conclusions has
been contested by some of the ablest calculators.

From a skilful combination of the five prin-
cipal measurements, in Peru, India, France,
England, and Lapland, Mr Ivory has, by the
method of the least squares, deduced \(\frac{1}{309} \) for the
oblateness of the Earth, and shown that the

and in Russia and Finland by Struve. These
continental observations must throw much light
on the form and constitution of our planet.

Local attraction may deflect the plummet from
its vertical position, but it can have little effect
on its general gravitation. The vibration of a
pendulum, therefore, promises a readier and
surer method of discovering the figure of the
Earth. The difficulty is to ascertain the length
with extreme precision, or the distance between
the point of suspension and the centre of oscilla-
tion. The pendulum constructed by Borda
seemed to require little correction. It consisted
of a slender iron wire about 13 feet long, termi-
nated by a small cap of copper, to which was
nicely fitted a ball of platinum about an inch
and half in diameter. The vibrations were per-
formed in two seconds and continued for twelve
hours, the number being reckoned from the dis-
tant coincidences with the pendulum of an astro-
nomical clock. Mathieu has computed, from six
observations made with this instrument along
the meridian from Dunkirk to Formentera, the
depression of the terrestrial spheroid to be
\(\frac{1}{389} \).

But from a general comparison of all
the various measures over the surface of the
Earth, Laplace reckoned this quantity only
\(\frac{1}{335-78} \). It has been alleged, indeed, that the
illustrious author had committed a mistake in the
taking out of a logarithm, which being corrected
would give \(\frac{1}{319} \).

The Convertible Pendulum constructed by Cap-
tain Kater, on the beautiful principle first de-
monstrated by Huygens, that the point of sus-
pension and the centre of oscillation are inter-
changeable, seemed to promise greater accuracy,
and was proposed by the inventor as furnishing
an invariable standard of linear measure. So
sanguine were his expectations, indeed, that he
believed it could not occasion an error of the
400,000th part of the whole. But the observations
which he made with this pendulum, at different
points in an arc of ten degrees extending to Shet-
land, display no such harmony, for the resulting
oblateness of the Earth varies from the extremes, between $\frac{1}{397.5}$ and $\frac{1}{229.6}$. It has been customary to attribute the discrepancies to the influence of local attraction, but they are frequently too considerable for the most exaggerated hypothesis to explain, and must be referred either to the inaccuracy of the observer or to the imperfection of the instrument employed. Calculators, in their endeavours to harmonize such observations, can seldom proceed dispassionately; they are apt to modify some of the data, and arbitrarily to reject others as anomalous or liable to suspicion. Parry's experiments with the convertible pendulum at London and Melville Island gave an oblateness of $\frac{1}{312.6}$. The numerous observations made by Freycinet and Duperrey, in their voyages of discovery, indicated, for both the northern and southern hemispheres, a depression between $\frac{1}{280}$ and $\frac{1}{282}$; Captain Sabine concluded, from his own combined observations, that the quantity is $\frac{1}{288.4}$. But Mr Ivory, whose decision is entitled to the greatest confidence, has, from a critical examination of those data, concluded the ellipticity to be $\frac{1}{300}$; and found the same figure to agree both with the measures along the meridian and those perpendicular to it. To arrive at so satisfactory a result, however, it was necessary to exclude nearly one-sixth of all the observations, those made near the equator being the most discordant. Such aberrations leave considerable distrust, which is not removed by inspecting the later observations. But it were idle to affect extreme precision, where the discrepancy amounts sometimes to a six thousandth part. The convertible pendulum appears liable to different sources of error, and though it may furnish an approximation to the determination of the terrestrial spheroid, it can hardly be expected to reach the accuracy and certainty requisite for a metrical standard.

We may now revert to the analytical investigation of the figure of the Earth. Clairaut had given the elements of the solution previous to his setting out on the expedition to the Polar Circle. But after his return from that memorable achievement, he resumed the disquisition; and adopting the geometrical discoveries of Maclaurin, he produced the completest analysis of the problem, in his very ingenious work which came out in 1743. He determined the equilibrium of a revolving spheroid, when composed of concentric layers of different densities, assuming the deviation from the spherical figure to be very small. Clairaut showed that the particles of the same density must always range in distinct strata, to which the resulting force that urges them is perpendicular; and found the general equations, simplified afterwards by Euler, for assigning the stability of the fluid mass. But it was not until 1784 that Legendre gave a direct analytical solution of the problem, in the case of a homogeneous spheroid approaching nearly to a sphere, which required the single condition that gravity should act perpendicularly at the surface. Laplace afterwards simplified and completed this investigation, by extending it to elliptical strata of different densities. The solution, however, was not rigorous, and merely exhibited an approximation, by leaving out the cubes and higher powers of the series. The numerical results yet vacillate between the proportions announced by Huygens and Newton. It is indeed remarkable, that a subject which has exercised the efforts of sublime genius, should have yet derived so little real elucidation from the stores of the higher calculus. The theorems of Maclaurin still far transcend the most elaborate displays of analytical research. But his illustrious countryman Ivory, undismayed by such formidable difficulties, has lately revived the discussion, and, examining more narrowly the physical conditions of the problem, and thus restricting the differential equations, he has with felicitous address succeeded in conducting his analytical procedure to a definite result. Britain has therefore the honour both of originating the discovery of the true figure of the Earth, and of completing its demonstration.

But the Earth's oblate shape is likewise deducible from certain small mutations in the orbit of the moon. The attraction exerted by our satellite on the protuberant matter at the Equator occa-
The motions of the lunar nodes and perigee have been shown by the same profound philosopher to indicate a similar conclusion. The form of the Earth is hence flatter than that of a homogeneous spheroid; and this difference appears to arise from the increasing density of the internal mass caused by superincumbent pressure. A like character belongs to Jupiter, the largest planet in our system; for his axes, which, from the combined action of gravity and centrifugal force, should have the ratio of 41 to 36, are observed to be only as 14 to 13, or 41 to 38, thus evincing the great compression of the internal mass.

The discussions relating to the figure of the Earth led to an examination of the Theory of the Tides, the great outlines of which had been likewise traced by Newton from the Law of Gravitation. The Academy of Sciences at Paris selected the complete investigation of this difficult subject for the prize offered in 1740; and never did three more illustrious competitors contend for the honour of an award, which was shared among Maclaurin, Euler, and Daniel Bernoulli. The dissertation of our countryman, as already observed, was pre-eminently distinguished by the new and beautiful propositions which it contained. Supposing the Earth were at rest and covered with a shell of water, any remote body, attracting the anterior surface with greater force than the lateral mass, and this again with greater force than the posterior surface, would evidently cause the fluid to rise on the opposite sides and form a prolate spheroid, having its longer axis directed to the disturbing agent. But this influence was proved by Newton to be inversely as the cube of the distance. Though the sun has above twenty million times more matter than the moon, yet being four hundred times more remote, he therefore exerts three times less influence in raising the tides. While the ocean swells out both under and opposite to the sun, it turns another trebly more protuberant spheroid towards the moon. These elevations, differently combined, produce the variable heaving of the waters which constitutes the general tide. The conditions of equilibrium are easily determined; but it is a most arduous research to distinguish the several effects of the rotation of the earth and the revolution of the moon, in retarding and modifying the oscillations of the irregular aqueous expanse. Such was the problem which so long exercised the genius and penetration of Laplace. He began the consideration of this intricate subject in 1774, and resumed his investigation repeatedly afterwards. Having obtained a general expression for the oscillations of the ocean, he distinguished these into three separate swells, obeying different periods of succession. The tides of the first class depend on the motions of the sun and moon, the variations of the distances, and the change of their declinations. The stream tide occurs at the interval of a day and a half after the conjunction or opposition, the lunar swell at first preceding the solar, but falling back at the next two returns, till at the third accession it combines with the latter. The decrease of consecutive tides is about a third faster at the conjunctions which happen in the equinox than at those in the solstice, and nearly twice as rapid at the quadratures that occur in the equinox as at those in the solstice. Similar consequences result from the alterations in the right ascension and the declination of the sun and moon. All these conclusions of a refined theory are singularly confirmed by a critical and very laborious examination of the observations made for a series of years at the port of Brest. The second sort of oscillations is occasioned by the diurnal change of the elevation and depression of the sun; so that in midsummer, when the declination is greater, the stream tide at Brest rises seven inches higher in the morning than the following tide towards evening. This divaricating tide has no visible influence however on our shores; and to explain the equal swell of the waters during the day and the night, Laplace refers it to the retardation from a current of a certain uniform depth, which he estimated at
four leagues, or eleven English miles, but has since greatly reduced it, without venturing to assign the true measure. The third kind of tides, depending on the greater revolutions of the moon, have much longer periods; but their influence, however small, is traced through the observations. The immense calculations of Bouvard have detected every varying phasis of the law of Universal Attraction; but a closer approximation is still wanted to unfold separately all the terms of the disturbing forces. Some of the minute shades are indicated by a fine application of the Doctrine of Chances, and a similar process renders highly probable the existence of corresponding fluctuations in the mass of our atmosphere.

2. Mathematicians were at length prepared for investigating dispassionately the application of the great principle of attraction to all the various motions of the heavenly bodies. It had explained with beautiful simplicity the revolutions of the planets about the Sun, and of the satellites around their primaries. But to distinguish its operation in the anomalies of the general system was a most arduous undertaking. Astronomers indeed had already, from a diligent and skilful comparison of distant eclipses, detected the principal irregularities of the Lunar Motions. Hipparchus and Ptolemy discovered what are called The Equation of the Centre and the Execution; and after an interval of fourteen centuries, Tycho and Kepler added the Variation and Annual Equation. Newton not only expounded all these anomalies by the simple law of gravitation, but, probably without any help from observation, discovered six more auxiliary equations. The Theory of the Moon, which crowns his immortal Principia, is a production of genius, sagacity, and invention, almost superhuman. He ascends with admirable order from the easier to the more difficult problems, reducing them always to greater simplicity; he pursues his approximations with consummate address, and seldom passing the clear bounds of geometry, or entangling his demonstrations in the labyrinth of Algebraical formulæ, he advances with elegance and apparently without effort to the disclosure of the most recondite truths. But it must be confessed that, in his 'eagle flight,' he was satisfied with taking a general glance of the objects, and seldom stooped to mark the details or investigate the grounds of his calculations. He no doubt managed the research by estimating the different elements of perturbation, and supplying; as in other cases, the deficiency of the analytical process by a selection of circumstances, and the nice balancing of errors. The illustrious author himself candidly admitted the imperfection of his Lunar Theory; but what seems truly astonishing is, that in such a novel and arduous attempt he should have been guilty of so very few mistakes or omissions. The English commentators contributed very little to its extension and improvement. Machin, professor of Astronomy in Gresham College, secretary of the Royal Society, and esteemed an expert calculator, speaks of it with flippancy, and seeks only to annex a vague hypothesis, which leads to an arbitrary geometrical construction; "especially," says he, "since the greatest part of the Theory of the Moon is laid down without any proof, and since those propositions relating to the Moon's motion which are demonstrated in the Principia do generally depend upon calculations very intricate and abstruse, the truth of which is not easily examined, even by those who are most skilful; and which, however, might be easily deduced from other principles and hints of calculations which he has not produced." 5 He admits, indeed, that Theory gives only half the motion of the Lunar Apogee.

The first who improved and expanded the Newtonian Theory of the Moon was Calandrini, professor of Mathematics at Geneva, who superintended the printing of the Jesuits' edition of the Principia in 1739 and 1742. He investigated by a direct method the principal lunar equa-

1 In the last edition of the Mécanique Céleste he seems to have silently abandoned his calculation altogether, contenting himself with adopting the conjecture of the geographer Varenus, that the depth of the sea must bear some proportion to the altitude of the shore.

5 The Laws of the Moon's Motion according to Gravity, a very short tract appended to Motte's Translation of the Principia which came out in 1739.
tions, and likewise the smaller inequalities which Newton had left undemonstrated. He revised the investigation of the motion of the apsides, but was mortified to find his calculations gave only half the quantity derived from observation. The honour of confirming the Newtonian Theory of the Moon was reserved, however, for our own countrymen. Dr. Stewart, the successor of Maclaurin in the University of Edinburgh, discovered the true motion of the line of apsides by a simple and beautiful geometrical procedure, in which his inventive penetration happily supplied the flexibility of the modern calculus. About the same time Walmesley, an English Benedictine Monk, who afterwards attained the rank of Catholic Bishop and Apostolic Vicar, but had been compelled by religious and political bigotry to reap the advantages of a foreign education, produced in 1749, at the early age of 27, a correct analytical investigation of the motion of the Lunar Apogee, which he extended and completed in 1758.

In the meanwhile, the profoundest mathematicians were directed to the right points of attack, and incited to exert all their penetration in exploring the influence of the System of Gravitation, by the prizes proposed by the learned associations on the Continent. Clairaut began his examination of the Lunar Theory in 1743. At first he was content with merely studying the Newtonian procedure, and converting it into analytical expressions; but as he became more familiar with the subject, he pushed his investigation further, and in 1747 comprised all the subordinate motions of the Moon under the famous general problem of the *Three Bodies*. But, after a prodigious exertion of ingenuity and perseverance, it was mortifying to find his solution assign for the variation of the Lunar Apogee only half the measure established by observation. Euler and D'Alembert, nearly about the same time, arrived at a similar conclusion. The followers of Newton were surprised and mortified at the result, while the adherents of the Cartesian system already began to exult in the prospect of the immediate fall of such a towering rival. In this dilemma, Clairaut, to reconcile the result of analysis with the actual phenomena, proposed, without abandoning the great principle of attraction, to modify its reciprocal gradation of intensity, by annexing to the square of the distance a small subsidiary term depending on its cube. This correction might be sufficient, from the proximity to the earth, for adjusting the Lunar motions, while it could have no sensible influence, he conceived, in affecting that duplicate ratio which directs the remote revolutions of the planets about the sun. But Buffon, who began his career with the study of mathematics, showed, from the properties of the roots of equations, that such a modification of the law of gravity involved what appeared an absurd consequence, that a body would be attracted equally at different distances. Clairaut was not shaken by this argument, which he considered as only metaphysical; yet so much discussion had been provoked, that, anxious to remove all doubts from the subject, he resumed his investigation, and pursued it with incredible labour and resolution. Carrying the approximation much farther, by computing the values of the higher terms of the series, and reiterating the process, he found the combined integrals to give exactly the double of the former result. This satisfactory conclusion, which confirmed the simple law of gravity, and restored the harmony of the universal system, was announced early in 1749. The bare mention of the fact was enough for the inventive powers of Euler, who, by quite a different procedure, soon obtained the true variation of the Lunar Apogee. If D'Alembert needed some previous information to put him in the right train, he pushed his calculations to wider extent, and approached still nearer the absolute effect. It would seem that, during this eager competition, the advances of Stewart and Walmesley were overlooked. But their countryman Thomas Simpson ventured, though considerably in the rear, to travel partly over the same ground of inquiry.

This remarkable coincidence among the first

1 Dr. Charles Walmesley, born in 1726. In his latter years he resided at Bath, and took to the study of mystic theology, having written on the Revelations, and explained the Vision of Ezekiel. His papers were burnt by an antipope mob in 1780, and he died in 1797.
mathematicians of the age extinguished for ever any lurking suspicion of the Law of Universal Attraction. The great object of scientific research was henceforth to direct its application to the celestial motions and the improvement of practical astronomy. The rectification of the Lunar Tables, now become of such importance in the practice of navigation, was the fruit of those arduous calculations. Clairaut bestowed intense application, and digested his results into a clear form; he skilfully employed some data furnished to him by La Caille for adjusting the auxiliary equations, and thus produced Tables of the Moon's motions distinguished by their very superior accuracy. D'Alembert proceeded more slowly and neglected such aids, so that his Lunar Tables never obtained estimation with astronomers. Euler excelled both his illustrious rivals in the wonderful command of the powers of calculation; he worked with ease and rapidity, and his fertile invention continually supplied new resources and suggested other paths of advance. He suspended for a few months the further improvement of the Lunar Theory, and at the invitation of the Academy of Sciences at Paris, analyzed with all the fulness of research the influence of the mutual disturbance of the planets Jupiter and Saturn. But aiming at still higher perfection, after the interval of a few years he resumed this investigation, simplifying and greatly extending it. In the mean time he had computed a set of Lunar Tables, which he disposed in a clear method, having discovered the co-efficients of the several equations from theory alone.

About this time Mayer of Würtemburg began to distinguish himself as one of the ablest and most ingenious astronomers that has appeared in any age. In 1751 he had been appointed director of the observatory at Göttingen; and in this situation, encircled by foreign troops, and exposed to the danger of powder magazines, he yet laboured with such intense and enthusiastic ardour as to shorten his days. His efforts were mainly directed to the improvement of the Tables of the motions of the Sun and Moon. These elements he derived from a discussion of numerous observations of eclipses and occultations; and he borrowed little from theory, though he preferred the arrangement of the elements adopted by Euler. He was the first who employed the method of conditional equations to find the true values of the co-efficients. His Tables were inserted in the Göttingen Transactions; and after the most sedulous correction, he sent them in 1755 to London, for the patronage of the Board of Longitude. At his death in 1762 he left two copies, greatly improved, one of which his widow transmitted to that scientific body. After long and protracted deliberations, the modified prize of L3000 was at last awarded to his family, with a present of L300 to Euler, for his excellent formulas. But another more complete copy having been afterwards presented, the Board of Longitude bestowed an additional reward of L2000 at the instance of Dr Maskelyne, who zealously undertook the charge of editing those Tables in 1770.

The exertions of the continental mathematicians were now successfully directed to the investigation of the disturbing influence or mutual perturbations of the larger and nearer planets. Euler in 1747 sent to the Academy of Sciences at Paris a most ingenious memoir on the de- arrangement of Saturn's motion, occasioned by the superior attraction of Jupiter. It was not only the first solution of the problem, but the simplest and most direct, referring the forces exerted to three perpendicular co-ordinates. He then discovered the beautiful principle in celestial mechanics, that there exist really no secular equations, but that all the deviations from the regular course are strictly periodical, and return always in the same order, though separated at vast intervals. Notwithstanding the exuberance of his analytical resources, he was yet obliged to omit the smaller quantities, and to adopt certain admissible suppositions, in order to shorten the immensity of the calculation. But being again recalled to the consideration of the subject, he produced, four years afterwards, another dissertation, which surpassed all his former efforts, and obtained the double prize of the Academy. The great analyst new-modelled his investigation, rendered the process much simpler and clearer, pursued the approximations farther, and arrived at more accurate results. He found that the mean motions of Jupiter and Saturn are equally subject
to a very slow increase or diminution, which alternates however in the lapse of 15,000 years. But Euler was induced to push those researches still farther, and gained the prizes proposed by the Academy for the years 1754 and 1756, by his theory of the inequalities in the Earth's motion, caused by the planets. The three methods of investigation that he proposed were all of them quite different; and nothing seemed more astonishing than the facility with which his prolific invention struck out new paths. He discovered four small anomalies to result from their combined attractions, though it was scarcely possible, for want of proper data, to assign the precise measures of those aberrations. He ventured, however, to estimate the mean progression of the aphelion at 12 seconds annually, and the diminution of the obliquity of the ecliptic, which some astronomers still doubted, at 49 seconds in a century. He found that the eccentricities of the aphelia of Jupiter and Saturn are periodical, and complete their cycle in the space of 80,000 years. By an inverted application of the same principles, it was possible, by computing the co-efficients of the formula from actual observations, to determine the masses of those planets which are not accompanied by satellites. Euler hence found that Mars contains rather less matter than the Earth, and Venus only about the half, but which by a subsequent calculation he nearly doubled. The process was too much involved to secure entire confidence in the results; and the rapidity and extent of his calculations had led to occasional mistakes.

The same subject was in 1757 discussed by Clairaut, in a clear and concise manner. By comparing his formula with the accurate observations of La Caille, he determined very nearly the masses of the principal planets, and showed that the greatest effect of their accumulated influence in deranging the Earth's motion can amount only to about a minute. His estimate of the attraction of Venus has been confirmed by later and more elaborate calculations.

In 1749 D'Alembert investigated rigorously the effects arising from the Moon's attracting the spheroidal prominence of the Earth. By the transformation of his general expressions, he found the Precession, or conical motion of the terrestrial axis about the poles of the ecliptic, to be 50 seconds annually, and its Nutation or alternate vibration on the same plane only 18 seconds during the period of the revolution of the Lunar Nodes. Comparing this quantity with observation, he concluded that at the surface of the Earth the attraction of the Sun is to that of the Moon as 3 to 7, which makes the satellite to have only the 70th part of the mass of our planet.

The powers of calculation were now turned to the erratic class of the celestial bodies, so long the objects of superstitious terror, but which Newton had likewise subjected to the great law of gravitation. While the planets revolve in ellipses approaching to circles, and lying nearly in the plane of the ecliptic, the comets describe elliptical orbits with very different inclinations, and so extremely elongated as to resemble parabolas through a considerable part of their course. Being very small, they are seen for a short space only in the vicinity of the Sun, but become quite invisible during their distant excursive journey beyond perhaps the boundaries of our planetary system. The periodic time of a comet, depending on the length of the transverse axis of its ellipse, can seldom be determined with any sort of accuracy. The few observations that can be made in the transient interval of its apparition are scarcely sufficient to assign its mean motion and the places of its nodes and perihelion. Newton, while he proposed the parabolic theory as sufficiently correct in the visible portion of the cometary track, gave two elegant constructions for discovering the elements of the curve from three proximate observations. Halley applied those principles to the laborious computation of twenty-four remarkable comets. But his attention was more especially fixed on the nearest of them, which had been observed in 1531, 1607, and 1682, and seemed to be the same with one noticed by chroniclers in 1080, 1155, 1230, 1305, 1381, and 1456,1 and hence

1 This would seem to be the comet whose appearance after the capture of Constantinople by the Turks spread terror through Christendom, and which pope Calixtus III. so devoutly exorcised in the same anathema with these dreaded infidels.
performing its revolutions in about 75\(\frac{1}{2}\) years; he therefore ventured to predict its return about the end of 1758 or the beginning of 1759. In arriving at this conclusion he was equally fortunate and circumspect; he found that the comet must suffer great derangements in its passage through our planetary system, from the attractions of Jupiter and Saturn, which he endeavoured to calculate, though with very doubtful success. The time of the expected return approaching, excited intense curiosity in the philosophical world; and Clairaut was induced to apply his formula in the investigation of the progress of the comet, which, after immense labour in calculation, assisted by several expert computers, he announced at a public meeting of the Academy of Sciences on the 14th of November 1758. He found that the last revolution would be retarded about 618 days longer than the former, not reaching the perihelion till the middle of April 1759. But on revising his computation, he reduced that term to the 4th of April, exceeding that of observation by 12 days only, a discrepancy owing probably to the influence of the remote planet Uranus, which was not yet discovered. The comet was first seen by a peasant in Saxony on Christmas-day, but soon became the admiration of Paris, and procured for Clairaut the enthusiasm of popular applause. This remarkable erratic star, though visible only for a few months, had journeyed five years within the orbit of Saturn, though it never stretched its excursion to twice the distance of Uranus. It approached so near to the Earth as would have disturbed her motions, if its mass had not been extremely small.

The success and popularity of Clairaut drew some peevish reflections from D'Alembert, whose formula, if he had taken the trouble to pursue their application, would have led to similar results. Euler, whose researches on Comets were still more extensive and diversified, viewed this triumph of ardent exertion with the calmness and magnanimity of a sage. But Clairaut, eager to complete a work in which he had gathered so many laurels, next proceeded to calculate the disturbing influence of Jupiter and Saturn on the place of the nodes of the comet of 1682 and 1759, which has an inverted motion. Newton had shown that the perturbations in the planetary system always advance the perihelion and retract the nodes; but the case here was just reversed, and the quantity of recession thence determined agreed most exactly with observation.

So gamed the last efforts of a philosopher who happily united the highest vigour of intellect with suavity of manners and elegance of conversation, but whose days were shortened by excessive labour, and the seductions of refined society, which incessantly courted and expressed his presence. Clairaut died on the 17th May 1765, at the age of 52, deeply regretted by a very numerous circle of friends, and leaving imperishable monuments of genius.1

1 A tribute of warm respect is paid to the memory of Clairaut by the celebrated but unfortunate Bailly, who thus eloquently pleads the cause of abstract science:—

"Le portrait de M. Clairaut serait celui du véritable Géomètre. Un Géomètre est un homme qui entretient de trouver la vérité; et cette recherche est toujours pénible, dans les sciences comme dans la morale. Profondeur de vue, justesse de jugement, imagination vive, voilà les qualités du Géomètre; profondeur de vue, pour appercouvoir toutes les conséquences d'un principe, cette immense postérité d'un même père; justesse de jugement, pour distinguer entre elles les traits de famille, et pour remonter de ces conséquences isolées au principe dont elles dépendent. Mais ce qui donne cette profondeur, ce qui exerce ce jugement, c'est l'imagination; non celle qui se joue à la surface des choses, qui les anime de ses couleurs, qui y répond l'éclat, la vie, et le mouvement, mais une imagination qui agit au-dedans des corps, comme celle-ci au-déhors. Elle se peint leur constitution intime; elle la change et la dépoignée à volonté; elle fait, pour ainsi dire, l'anatomie des choses, et ne leur laisse que les organes des effets qu'elle veut expliquer. L'une accumule pour emballer, l'autre divise pour connaître. L'imagination, qui pénètre ainsi la nature, vaut bien celle qui tente de la parer; moins brillante que l'enchanteuse qui nous amuse, elle a autant de puissance et plus de fidélité. Quand l'imagination a tout montré, les difficultés et les moyens, le Géomètre peut aller en avant; et s'il est parti d'un principe incontestable, qui rende sa solution certaine, on lui reconnaît un esprit sage; ce principe le plus simple, offre-lui la voie la plus courte, il a l'élegance de son art; et enfin il en a le génie, s'il atteint une vérité grande, utile, et long-temps séparée des vérités connues!"

"Aucune de ces qualités n'a manqué à M. Clairaut; les preuves sont de l'histoire de la Géométrie, les succès seuls sont de notre ressort. L'Astronomie lui doit des progrès difficiles; nous le jugeons ici par ce qui intéresse les hommes, et sur ce qu'il a fait d'utile. La théorie de la lune restée imparfaite dans les mains de Newton, le cours des comètes calculé, leur retour prédit, en rendant compte des causes qui le retardent eu qui le précipitent; voilà ce qui restait à faire depuis Newton, depuis Halley; et voilà ce que M. Clairaut a fait. Cela était difficile, puisque deux grands hommes y ont été arremtés; cela était utile, parce que la connaissance des mouvements de la lune amenera la perfection de la géographie et de la navigation, parce que la prédiction du retour des comètes caractérisera notre siècle et fera sa gloire. " Le principal mérite
But the Theory of Comets still remained incomplete. Those excursive bodies, in traversing our system, often suffer such derangement from the influence of the proximate planets, that the most select observations are insufficient to determine with any sort of precision their elliptical orbits. The famous comet of 1759 was calculated by Euler and Lexell to perform its revolution in a space between 449 and 519 years, while Pingré assigned it the period of 1231 years. In some cases the observations have indicated an hyperbolic orbit.

Conti, following the method of Gauss, found the comet of 1811 to revolve in 3053-3 years; but by a second computation he reduced the time to 2301 years. The profound and experienced calculator Bessel lately gave the comet of 1807 a period of 1953-2 years, which he next brought down to 1483-3. The attraction however of the Earth would increase this to 1713-5 years, while the influence of Jupiter would reduce it again to 1543-1 years. Although the process of calculation be now greatly improved, the return of a new comet cannot be safely predicted. Our expectations can acquire confidence only from a comparison with former appearances.

Though the comets suffer such derangement from the action of the larger planets, they have no sensible influence on our system. They must therefore be extremely small, consisting of a dark nucleus, invested with a cloudy or hazy excrescence, and generally provided with very long sweeping tails. They have never disturbed our tides; though, having sometimes approached within the third part of the distance of the Moon, they would consequently with the same mass exert twenty-seven times greater deranging force. But their passage was then so rapid as not to allow the accumulation of impulse required to heave the wide expanse of ocean.

Comets are distinguished by the elements of their orbits, derived only from observations made near the perihelion. Newton gave an elegant method of discovering those paths, by a geometrical construction grounded on the parabolic theory, and embracing three distinct observations. But this solution is liable to much uncertainty in its application, and Boscovich has shown how in most cases it merges in a porismatic or indefinite result. Mathematicians have therefore employed the resources of analysis in the resolution of this problem. Euler, besides the three consecutive observations, adopted a fourth one more remote, and thus obtained an accurate but very tedious and involved process. Lambert derived a different mode of solution from some general properties which he discovered of the Conic Sections in 1761. He employed calculation combined with a graphical process, and sought to abridge the labour, by help of a table of the descents of comets, or the motions which they would perform if their parabolic paths collapsed into straight lines. Thomas Simpson, the only person in our island who at this time appeared to emulate the Continental mathematicians, likewise produced ingenious disquisitions on the Comets, and framed similar tables. Hennert, Tempelhofer, and Sejour, afterwards pursued the same subject, which has since been discussed with great ability by Lagrange, Laplace, and Legendre. Other methods for discovering the orbits of comets have been more recently proposed by Delambre, Olbers, and Gauss; the last of which may be considered as the most elegant and complete. But all these analytical modes of solution are still very tedious and complicated; insomuch that the humbler procedure by the way of Trial and Error, or what is called False Position, is found in practice to be on the whole the shortest and most satisfactory.

While the sublimer geometry thus gradually disclosed the various recondite anomalies which
D'ALEMBERT.

The Lunar Theory still presented difficulties which it required the utmost efforts of genius to abridge and partially remove. In 1768 D'Alembert simplified the evolution of the disturbing forces, by projecting orthographically the moon's orbit on the plane of the ecliptic. Euler, in conjunction with his son Albert, now gave the completest solution of the general problem that had yet appeared; but having discovered no indication of a secular equation affecting the Lunar motions, they were inclined to doubt its existence. This arduous discussion was repeated in 1772, on which occasion Lagrange shared the prize with the Eulers. Two years afterwards he resumed the subject, and closely examined the different conditions annexed to the programme. There are five elements of a planet's motion liable to the influence of Disturbing Forces: 1. The Great Axis of the primary ellipse; 2. The Eccentricity of the orbit; 3. The Inclination of its plane; 4. The position of its Nodes; and, 5. The direction of its line of Apsides. In 1776 Lagrange demonstrated that the great axis, on which depends the period of revolution, has no term involving the lapse of time, and therefore cannot be affected by any Secular Equations, which constantly increase or diminish. But with regard to the mean motions of Jupiter and Saturn, Lagrange and Euler came to opposite conclusions, the one exhibiting a continual acceleration, and the other a like retardation.

Laplace, who has attained still higher celebrity, now appeared on the scene. Displaying the same faculty of invention, he possessed nearly equal skill in the management of the Calculus, without reaching, however, the clearness, simplicity, and elegance of his illustrious rival. But he ranged over a wider field of discovery, and exerted greater and more persevering industry, and pressed forward with a loftier feeling of ambition.

In 1773 Laplace, following the steps of Lagrange, adopted a new mode of investigation, and pushed his calculations farther. Instructed by the successive advances of his predecessor, he

affect the planetary motions, and yet maintain the balanced harmony of the universe, a genius of the first order arose, and placed himself at once on the summit beside the chief mathematicians of the age. In 1759 Lagrange, when only 28 years old, gave a new extension to the Integral Calculus, under a form which has obtained the appellation of the Calculus of Variations, and applied this with singular address to the rigorous solution of the very difficult problems of the propagation of sound, and the vibration of a musical chord. His early progress was hailed by Euler, and encouraged by D'Alembert. No mathematician has ever displayed a completer command of the Calculus than Lagrange, who rivals Euler himself in clearness, elegance, and fertility of invention, and eminently surpasses that great master of analysis in the justness and expansion of his philosophical views.

The next effort of Lagrange obtained him the prize offered by the Academy of Sciences at Paris in 1764, for his Discourse on the Libration of the Moon, in which he most satisfactorily explained, from the theory of Attraction, the cause of the Moon's presenting always nearly the same face towards the Earth. He arrived directly at the same general equations as D'Alembert, by a happy combination of the dynamical principle of that philosopher with the property of virtual velocities, which was the germ of his capital work on Analytical Mechanics. This subject he again resumed in 1780, and discussed it in the fullest and most accurate manner, having succeeded in completing the integration of the chief equations.

The theory of Jupiter's Satellites is not only an object interesting in speculative science, but of great importance in the practice of astronomical observation for finding the longitude. Bailly, applying merely the formula of Clairaut, obtained an imperfect solution of their periodic motions. In 1766 the genius of Lagrange embraced this subject in its full extent, by introducing into his equations not only the attractive force of the Sun, but the mutual attractions of the Satellites themselves. He neglected no term which might sensibly affect the results, and advanced with caution and address by successive approximations. His investigation was a model of analytical research; yet, though capable of extensive application, it did not desend into all the practical details.
proved in 1775 that the mean motions of Jupiter and Saturn have no secular equations, but perform all their changes within certain long periods, which hence reconciles the discordant conclusions of Euler and Lagrange. Having found that the variation of eccentricity of Jupiter's orbit must cause a corresponding alteration in the motion of the Satellites, Laplace transferred the same idea to the perturbations of our Moon, and thus discovered the true theory of her secular equation, or rather of that vast cycle in which the lunar revolutions are alternately accelerated and retarded. This very slow but gradual diminution of the moon's periodic motion, which the intermediate observations of the Arabian Astronomers, between Hipparchus and Bradley, have incontestibly established, was at one time referred to the resistance from an ethereal fluid imagined to occupy the celestial spaces. Laplace at first conceived that the retardation might be explained on the hypothesis of a progressive transmission of the power of Attraction, and computed that it would require 8000 times the celebrity of Light, which travels 200,000 miles in a second, to produce this effect. But his subsequent inquiries having shown that Gravity must dart its influence more than 50 million times faster than Light, we may therefore safely consider it as quite instantaneous. This conclusion is highly important in a philosophical view, since it sets for ever at rest the various speculative attempts to explain the cause of Attraction by the agency of certain mechanical intermedia, and demonstrates it to be a primordial and ultimate principle ordained by the Wisdom of the Supreme Architect.

In the meanwhile Lagrange had in successive dissertations investigated the secular variations of the planets by a new and direct process, which he conducted with incomparable address and elegance. Nor did he confine his researches merely to theory, but applied the formulæ to the motions of the five planets then known. In a subsequent investigation he most skilfully separated the terms of the equation which exhibit the secular deviations, from those which represent the periodical changes.

The soaring rivals appear alternately to surpass each other. Laplace, continuing his researches, at last discovered, that the secular equation of the Moon affecting her mean motion and that of her perigee and of her nodes in the ratio of 4, 12, and 3, is produced by the slow variation of the solar attraction occasioned by the changing eccentricity of the Earth's orbit resulting from the influence of the larger planets, though they cannot alter the great axis which determines the mean periodic revolution. Lagrange then showed that the same results were deducible from his general formulæ. In 1785 Laplace resumed his investigation of the motions of Jupiter and Saturn; and suspecting that Euler and Lagrange had not carried their approximation sufficiently far, he pushed his calculations from the second to the fourth powers of the eccentricities of their orbits, and proved that those planets can have no secular equations. But, having remarked that their mean periods are commensurable and very nearly as 2 to 5, he found their reciprocal acceleration and retardation to follow the same ratio. The cycle began in 1560, and comprehends 929 years; so that at the epoch of 1750 Saturn had his period shortened 48' 44", while that of Jupiter was lengthened by 19' 28". In 1788 he discovered two curious laws that connect the periods of Jupiter's Satellites, and gave a complete theory of their motions, which served as the basis of Delambre's excellent Tables.

After an interval of several years, during which Lagrange had totally suspended his mathematical studies, he returned to his early pursuits with all the freshness of youthful invention, and all the vigour of matured and improved intellect. In 1808 he gave a most general solution of the problem of Disturbing Forces, and by a wonderful effort of sagacity he reduced his equations into a form of the utmost simplicity and elegance.

1 It is rather singular that Laplace should on several occasions betray a disposition towards materialism, while his investigations point evidently to an opposite inference.

2 Since all observations are liable to incidental inaccuracies, it requires great address to balance the opposite errors. The ordinary way is to take the arithmetical mean; but this mode confounds equally the remote and the approximate indications. Cotes, in his Estimate of the Errors of Observation, proposed an ingenious and more accurate mode of investigation,
The eighteenth century was equally distinguished by the progress of Practical Astronomy. Observatories were greatly multiplied and widely dispersed over the surface of the globe, the art of making observations was brought to higher perfection, and instruments of more delicate construction were successively introduced. Besides the great problems of the figure of the Earth and the nutation of her axis, we may enumerate four capital improvements: The measure of celestial refraction—the determination of the parallaxes, and consequently the mean distances of the Moon and Sun—the discovery of new planets and satellites—and the enlarged survey of the heavens, comprising the groups and various modifications of the fixed stars.

1. Celestial Refraction. A ray of light passing obliquely from a rarer into a denser medium, is bent or refracted towards the perpendicular. The light emitted by the heavenly bodies, when it enters our atmosphere and descends to the surface through a succession of condensing strata, must evidently describe an incurved path; and the particles which reach the eye and produce vision, pursuing the direction of the terminal tangent, will give to a star an apparent elevation. The portion of the trajectory traced in approaching the surface of the Earth may be considered as an arc of a circle having its radius about six times greater. The quantity of refraction is hence nearly proportional to the tangent of the altitude.

Hawksbee had in 1710 found by a nice experiment, that the refractive power of air compared with that of water is in the ratio of its density; and this law was ascertained by Biot and Arago about a century afterwards to be general in our atmosphere. Hence refraction of that medium increased with the elevation of the barometer or the depression of the thermometer.

The effect of cold was early remarked by the Dutch Arctic voyagers; but Bouguer first accurately observed the diminished agency of attenuated air during his sojourn on the summits of the Andes. Yet without demonstration Bradley gave a simple rule for computing the celestial refraction, and Mayer adopted another nearly similar. Thomas Simpson, in a very ingenious dissertation, derived a formula which is substantially the same. The subject of refraction has likewise been discussed by Lambert, Kramp, Fontana, and more recently by Laplace, Gauss, Bessel, Young, and Ivory. The formula of Laplace is complicated and inelegant, while Ivory's method seems clear and simple.

2. The Lunar and Solar Parallaxes. The nearer celestial bodies are seen from the surface of the Earth in a position somewhat different than if viewed from the centre. This deviation, termed parallax, is obviously greatest at the horizon, and diminishes constantly in approaching to the zenith. To ascertain parallax with any precision, it is therefore required to institute observations at distant stations. It was chiefly for this purpose that La Caille selected the Cape of Good Hope, where he determined the mean parallax of the moon to be 57' 39". But the parallax of the sun, being so small a quantity, is much more difficult to find. Kepler had taken it for a minute, Halley reckoned it at 25", but subsequent astronomers had generally reduced the estimate to 10 seconds. To determine this element with accuracy, Halley proposed a very ingenious method from the next transit of Venus, by measuring the acceleration and retardation of the time of her passage over the disc of the sun as viewed from remote points on the surface of the globe. He could not expect his life to be prolonged till that event, but he warmly exhorted his successors to prepare them-

which, reduced to its simplest form, consisted in projecting the several data on a plane, and assigning their common centre of gravity for the true result. Euler disposed the observations into conditional equations with indeterminate co-efficients, which he traced out by successive eliminations. Mayer adopted the same plan, and employed it most extensively in the construction of his valuable Tables. But this procedure being very laborious, Legendre proposed to abbreviate it by the method of least squares, which had likewise occurred to Gauss, being generally used by him in the reduction of observations. It was a fine application of the Doctrine of Chances. Various algebraical investigations of the principle have been given; but they are commonly very intricate and abstruse.

Mathematicians, in threading the labyrinths of analysis, seem to have overlooked a most simple and luminous demonstration furnished by the Ancient Geometry. From an elegant proposition of the Locis Plani, it follows as a corollary, that the sum of the squares of the distances of any number of points from their centre of gravity is a minimum; which therefore merges in the solution of Cotes.
selves for observing it on the 5th of June 1761. Astronomers were accordingly dispatched by the several maritime powers of Europe to all the stations that were considered as the most eligible and accessible. Owing to various accidents, however, the results did not answer the expectations raised. The stations had not been always the best chosen; some of the most expert observers did not reach their proper destination, others were obstructed in their operations by the state of the weather, and many difficulties generally occurred which had not been provided for. From a comparison of the collected observations, Pingré deduced a parallax of $10^{\frac{1}{3}}$, while Short made it only $8^{\frac{1}{3}}$. Such a discrepancy was mortifying, and astronomers looked forward with impatience to the succeeding transit of Venus, which was fortunately to happen within the space of eight years, though such an occurrence would not take place again till the 8th of December 1874. In the meanwhile Dr M. Stewart revived an idea of Machin, who, from a rude computation grounded on the motion of the Moon's Nodes, estimated the Solar parallax at 8°. He preferred however the change of the apogee, or of the direction of the principal axis, which is affected in some degree by the sun's distance. By the application of the Greek Geometry alone, Stewart had with profound ingenuity achieved the solution of a problem which so long baffled the address of the great masters of the modern calculus; but in pursuing his deductions, the passion for purity and elegance of demonstration led him to hazard so many simplifications, as to render the conclusion, amidst a balance of errors, very doubtful and precarious. He reduced the parallax to $6^{\frac{9}{10}}$, which from its smallness excited considerable surprise.

The uncertainty regarding the sun's real distance was finally removed by the skilful and numerous observations of the Transit of the 3d of June 1769. The several results differed scarcely the quarter of a second, and their concurrence fixed the parallax at $8^{\frac{6}{10}}$. This likewise agrees with the theoretical calculations of Laplace from the Lunar anomalies. But Bessel, having with immense labour combined and carefully recomputed the original observations, has recently detected a small correction, which makes the parallax to be only $8^{\frac{575}{1000}}$, and consequently the mean distance of the sun $95,158,440$ English miles.

3. Discovery of New Planets and Satellites. It was an inveterate opinion, derived from the ancient Pythagoreans, that the number of the great celestial bodies must of necessity be six, the first perfect number, or one which contains all its subdivisions. When Galileo directed his tube to the heavens and detected some of the satellites of Jupiter, this notion retarded the assent of the learned to his discovery; but after Saturn was found to be accompanied likewise by satellites, speculative philosophers sought to extend the catalogue of revolving stars to 28, the next perfect number. In this expectation, however, they were disappointed, and the Solar System received no further accession for the space of a century. The discovery of a New Planet was reserved for our own times.

Herschel, a musician residing at Bath, though a native of Hanover, which he had left in early youth, devoted his leisure to the construction and improvement of reflecting telescopes, with which he continued ardently to survey the heavens. His zeal and assiduity had already drawn the notice of astronomers, when he announced to Dr Maskelyne, that, on the night of the 13th of March 1781, he observed a shifting star, which from its smallness he judged to be a Comet, though it was distinguished neither by a nebulousness nor a tail. The motion of the star, however, was so slow as to require distant observations to ascertain its path. It was for several months presumed to be a Comet; but the hypothesis of a parabolic orbit led to very discordant results. The president Saron, an expert and obliging calculator, was the first who conceived it to be a Planet, having inferred from the few observations communicated to him, that it described a circle with a radius of about twelve times the mean distance of the Earth from the Sun. Lexell removed all doubt, and before the close of the year he computed the elements of the New Planet with considerable accuracy, making the great axis of its orbit 19 times greater than that of the earth, and the period of its revolution 84 years. Bradley, mistaking it for a fixed star, had observed it on the 3d December
1753; and it was again seen by Mayer on the 23d September 1756.

Herschel proposed, out of gratitude to his Royal Patron, to call the planet he had found by the barbarous appellation of Georgium Sidus; but the classical name of Uranus, which Bode afterwards applied, is almost universally adopted. Animated by this happy omen, he prosecuted his astronomical observations with unwearied zeal and ardour, and continued during the remainder of a long life to enrich science with a succession of splendid discoveries. But Herschel also detected the satellites that accompany his planet, amounting to six, which revolve in a plane nearly perpendicular to its orbit, and contrary to the order of the signs. Both these primary and secondary bodies obey, in the relation of their motions and distances, the great law of Kepler. The same conformity obtains in the revolutions of the satellites of Saturn, which he increased to seven; and thus every step in the progress of astronomy gives additional solidity to the grand system of attraction.

Some German philosophers, indulging their curious fancy, have traced among the distances of the planets an analogy, which, though not strictly accurate, yet approximates so near the truth, that if not really founded in nature, it may at least assist the memory. Kepler, whose ardent imagination inflamed all his speculations, believed that the harmony of our system wanted a planet between Mars and Jupiter. A similar notion was entertained by the ingenious Lambert, who further supposed it might be dark and invisible. Reckoning from Mercury, the first of planets, and assuming as the unit of measures its interval from the sun, the intervals of the rest will be expressed by the binary progression 2, 4, 8, 16, &c.; and consequently the distances of the series of planets from the sun may be represented by the numbers 1, 2, 3, 5, 9, 17, 33, 65, &c. While 3 denotes the distance of the Earth, and 17 and 33 indicate the distances of Jupiter and Saturn, the remote Uranus has come to occupy the place marked by 65. But a planet at the distance 9, between 5 and 17, the distances of Mars and Jupiter, was still wanting to complete the regular sequence. Bode slightly modified these proportions, and attained greater accuracy, at some expense, however, of simplicity. Taking the number 4 to express the interval of Mercury, he multiplied the terms of the binary progression by 3. The distances of the planets from the Sun are hence denoted by the series 4, 7, 10, 16, 28, 52, 100, 196, &c. which numbers are convertible into English miles by multiplying by 9 1/2 millions. The dark or deficient planet, corresponding to 28 or the distance of 266 millions of miles, is now supplied by the discovery of four very small stars, which have been fancifully conjectured to be only fragments dismembered from the principal, while other portions, still unobserved, are whirling through space. The detection of those singular planets distinguishes the commencement of the nineteenth century. Piazzi discovered Ceres at Palermo on the 1st of January 1801, Olbers at Bremen found Pallas on the 28th of March 1802, and his countryman Harding added Juno on the 2d of September 1804, and Vesta on the 29th of March 1807. These astéroides, as they have been called by Herschel, differ from other planets not only by their diminutive size, but by the remarkable inclination of their orbits to the plane of the ecliptic, which, however, they intersect nearly in the same nodes.

This wonderful extension of the Solar System was chiefly due to the zeal and industry of the German and other confederated Astronomers, who, at the instance of the spirited Baron Zach, had divided the heavens into different sections, and occupied themselves in surveying their several allotments. The catalogue of fixed stars was thus prodigiously augmented, and many peculiarities in their character and configuration detected. In the meanwhile Herschel, with the superior aid of his powerful reflecting telescopes, observed the numerous clusters of nebulae, and distinguished many of the changing and double stars, which, though suns of other systems, yet appear connected, and may probably circulate about their common centre of gravity. Assuming that the instrument he used could enable him to penetrate 497 times farther than Sirius, he reckoned 116,000 stars to pass in a quarter of an hour over the field of view, which subtended an angle of only 15'. If we compute from such a narrow zone, the whole
celestial vault must display, within the range of telescopic vision, the stupendous number of more than five billions of fixed stars. Imagination is bewildered in the immensity of such prospects. But a sober retrospect of the progress of astronomy would aid our conception of the structure and harmonious adjustment of the universe.

"To generate a circular description, it is requisite that the body should have the precise celerity due to a fall through half that radius. But, projected with inferior celerity, it would, about the same axis, trace elliptical orbits more or less compressed; the foci mutually retiring towards the extremities, while the conjugate diameter contracts. When the primary impulsion becomes extinct, the elongated ellipse merges in a straight line. On the other hand, if the projectile motion should exceed the limit of circular velocity, a new series of curves will arise. But when the acceleration is directly as the distance, on passing the limit of celerity, the foci will first unite in the centre, and the axis suddenly turning at right angles, the foci will now gradually dispart in this transverse position. As the velocity of impulsion is successively augmented, the ellipse will assume all the degrees of oblateness, till it finally vanishes in two parallel lines.

"If the centripetal force be inversely as the square of the distance, the moment the primary impulsion transcends the limit due to a circular trajectory, the orbit would suddenly change into an equilateral hyperbola; the farther focus, which had come to coalesce with the attractive one, now flying to the opposite side beyond the diameter. When the celerity of projection receives a farther increase, the incurvation at the vertex will be proportionally diminished. With an extreme impulsion, the body would shoot off in a straight line perpendicular to the axis.

"It thus appears, that a circular revolution, which the ancients so fondly contemplated as the perfection of the celestial movements, is incompatible with the stability of the universe. The most absolute precision of impulse would have been necessary, and the very slightest subsequent addition of celerity, from the incidental influence of those disturbing forces which are incessantly in operation, would at once have transformed the circle into a hyperbola, and have carried the planet away for ever into the boundless expanse of heaven. In viewing the grand phenomena of nature, our admiration is drawn to those conservatory principles which, in shorter or longer periods, correct every occasional deviation from the general balance of the system.

"It is curious, however, to remark how very nearly the planetary orbits approximate to circles. In that of our earth, the two axes differ only by the 7086th part. In the trajectory of Mars, this difference amounts to the 231st part. It was accordingly the greater eccentricity of that orbit which led Kepler to detect its elliptical form. The group of small kindred planets lately discovered revolve in curves still more elongated, the diameters of those of Juno and Pallas being nearly in the ratio of 30 to 29. These singular bodies might seem to rank between the ordinary planets and the comets, which wander in ellipses of extreme elongation, scarcely distinguished from parabolas, during a great part of their visible track. In another circumstance, too, the analogy obtains; for while the larger planets deviate not more than 2 or 3 degrees from the plane of the ecliptic, Pallas crosses it at an angle of 35°, and the paths of the comets have every possible inclination. It remains to be discovered, whether diversified bodies, travelling in the celestial spaces, may not fill up more completely that prolonged gradation of existence, which appears so conspicuous in other parts of nature. Supposing the projection of the planets to be the result of some more general law, those which had an excess of impulsion would totally escape our range of observation, being swept away in hyperbolas into boundless space, there perhaps to form other stellar systems."1

The ingenious Lambert produced some curious speculations respecting the celestial bodies. He presumed that the various planetary systems are all connected, and revolve about a common centre, which Galileo had conjectured to be situated in Orion or Sirius. The planets, therefore,
do not strictly describe ellipses, but a series of convoluted epicycloids. He showed that comets, in passing the nearest planets, might have their orbits changed into parabolas or even hyperbolas, and hence journeying from system to system, would perform the tour of the universe. Those erratic bodies he peopled with a race of contemplative astronomers, who, enjoying such peculiar advantages, could survey the whole extent of the starry frame.

Lambert remarks, that, between the 16th and 17th centuries of our era, we have been visited by 40 comets that have not appeared again. These must, from their brilliancy, have reached the earth's orbit, and perhaps come within the verge of Venus and Mercury. But the very elongated cometary paths might descend in various directions without interfering with the planets. Calculating on the principle of chances, he found that no fewer than 500,000 comets might have the aphelia of their ellipses situate in the orbit of Saturn. But if we extend this computation to the orbit of Uranus, we may reckon up two millions of comets, as probably the number of those erratic attendants of our system.

Mr. Milne carries the estimate still higher. Assuming a thousand years for the average period of the revolutions of the comets, it would require to multiply by ten the 140 which have been observed within the earth's orbit during the last hundred years, giving 1400 for the whole of such near visitors. But Uranus being twenty times more distant, the product of the cube of this, or 8000 into 1400, exhibits 11,200,000 as the approximate number of all the comets which range within the known extent of our system.

The periodical change of the inclination of the ecliptic is at last established, though the quantity of variation and the length of its cycle have not been absolutely determined. Schubert, in his treatise of Practical Astronomy, makes it to fluctuate between 18° and 29°, altering in the space of 65,000 years from 27° 45' to 30° 43'; the maximum having occurred at the remote period of 36,300 years. But Delambre and Piazzi, whose judgment and scientific attainments rank much higher, have reduced this aberration within the moderate limits of 1° 20'. The greater obliquity of this ecliptic in ancient times, by elevating the sun more in summer, and depressing him in winter, must have proportionally increased the diversity of the seasons. But still the mean temperature of the earth has continued for ages exactly the same; for the momentum of rotation at first impressed remaining necessarily invariable, the smallest rise of heat, expanding the revolving mass, must have retarded its motion, and consequently lengthened somewhat the day. Any decrease of heat, on the contrary, would accelerate the terrestrial rotation. Now, the length of day has certainly not altered a single second of time since Hipparchus observed ellipses 3000 years ago; and it therefore follows, that during this long period the mean temperature of the earth has not varied the fraction of a degree. The constant accession of heat from the sun must hence be consumed by some process yet unexplored. Unless this heat were again to resume the form of light, it could not be darted from the upper atmosphere through the boundless void. Since the waters of the ocean are colder in proportion to their depth, might we not suppose the bottom to be frozen, and all the surplus heat to be absorbed in melting the subaqueous ice?

Astronomical considerations likewise elucidate the internal structure of our globe. The mean density of the mass is about double that of its exterior crust. But if the general materials were the same, and the law of compression subsisted in any degree, the resulting condensation would be inconceivably greater. Air compressed into the fiftieth part of its volume was lately found in France to have its elasticity fifty times augmented; and had it continued to contract at this rate, it would from its own incumbent weight have acquired the density of water at the depth of 34 miles. But water itself would have its density doubled at the depth of 83 miles, and even attain the density of quicksilver at a depth of 362 miles. In descending therefore towards the centre, through the space of about 4000 miles, the condensation of ordinary materials would surpass the utmost powers of conception. "It seems therefore to follow conclusively, that our planet must have a very widely cavernous structure, and that we tread on a crust or shell,
whose thickness bears a very small proportion to the diameter of its sphere. But since an absolute void is inadmissible, the vast subterranean cavity must be filled with some very diffusive medium, of astonishing elasticity or internal repulsion among its molecules. The only fluid we know possessing that character is Light itself, which when embodied constitutes Elemental Heat or Fire. The great concavity may thus be filled with the purest ethereal essence,—Light in its most concentrated state, shining with intense refugence and overpowering splendour.

It was the firm opinion of the ancients that our atmosphere rises as high as the Moon, the whole space below being doomed to change, decay, and mortality; and this notion still tinctures the language of poetry. But Kepler first reduced the extent of atmosphere within moderate limits. Astronomers having observed that twilight commonly closes after the sun has sunk 18 degrees below the horizon, it was hence easy to compute that the highest portion of air which from the west reflects the departing ray must have an altitude of about 44 miles. This conclusion, however, seems invalidated by the remark of Lambert, that twilight does not absolutely cease, but is succeeded during the night by a series of decreasing crepuscles, formed by a double, a triple, or even a quadruple reflection. These secondary lights may therefore be produced by the repeated gleaming from the sky at much lower elevations.

A wider limitation of the atmosphere is derived from a rigid principle. It is evident that the particles of air, as they expand from the axis of rotation, will augment their centrifugal tendencies, while their attraction to the centre will diminish in a duplicate ratio. At a certain distance, therefore, those antagonist forces will produce a mutual equilibrium. This balance must occur in the equatorial region at the height of 66 semidiameters, or about 26,000 miles, when the centrifugal force is increased, and the power of gravitation is reduced to about $\frac{1}{43\frac{1}{2}}$.

The late Dr Wollasten arrived at nearly a similar conclusion, from an hypothesis respecting the ultimate molecules of the atmosphere. But a different consideration will bring us within much narrower limits. If we assume the depression of the absolute zero to be 750 centesimal degrees, and adopt the formula already stated for the relation of the density and temperature of air, it will follow that the tenuity of the highest stratum of the atmosphere cannot exceed 50×750 or 37,500 times, which corresponds to an altitude of about 51$\frac{1}{2}$ miles. This boundary nearly coincides with the approximation of Kepler, and likewise agrees sufficiently with the estimated range of the Aurora Borealis. It thus appears from concurring probabilities, that our atmosphere extends not above 50 miles, the higher regions perhaps being occupied by hydrogen gas transfused with phosphorescent matter.

The perfection of astronomical instruments has afforded the prospect of being able to determine the Annual Parallax, and consequently the distance of the fixed stars; but the quantity of deviation is so small as to have hitherto eluded the closest observation. It cannot amount to a single second in the most conspicuous and probably the nearest of the stars. These luminous bodies must therefore be more distant at least two hundred thousand times than the measure of the diameter of the earth. The light emitted from such neighbouring suns, though it flies with enormous rapidity, must yet travel more than six thousand years before it approaches the confines of our system.

But scattered over the immensity of space, there may exist bodies which, by their magnitude and predominant attraction, retain or recall the rays of light, and are lost in solitude and darkness. Had the celerity of the luminous particles not exceeded four hundred miles in a second, we should never have enjoyed the cheering beams of the Sun. They would have been arrested in their journey, and drawn back to their source, before they reached the orbit of Mercury. But a star similar to our Sun, and having a diameter 63 times greater, would entirely overpower the impetus of light.

1 Elements of Natural Philosophy, pp. 449-453.
Many of the smaller stars are found to have proper motions, some of them to an extent of several degrees. Mayer attempted to class the shifting stars according to their places in the heavens, and remarked that, while those situate in two opposite quarters appeared nearly stationary, such as had a lateral position varied the most. He therefore inferred that our Sun and the whole train of his attendants are carried forward in the line joining those opposite points. Herschel seized this ingenious idea, and combining his own observations, he concluded that the translation of the planetary system is directed to the constellation of Hercules. But the critical examination of Bessel has proved that no such regular transfer would reconcile the various discrepancies of the shifting stars.

The Double and Multiple Stars have lately engaged the attention of observers. Their catalogue has been prodigiously augmented by the ardour of South and the younger Herschel, and by the un wearied assiduity of Struve at Dorpat, and of Inghirami at Florence. The Double Stars assume every hue, but generally the contrasted or complementary colours; a circumstance which seems to betray the influence of ocular deception. Their proper motions result probably from a circulation around their common centre of gravity. The Multiple Stars may possibly derive their peculiar aberrations in certain cases from the revolution about huge invisible Suns. All these mutable Stars are extremely remote, descending so low as the twentieth degree of magnitude, and can therefore be distinguished only by the penetration of the most powerful telescopes. Imagination is utterly bewildered by the shadowy visions which flicker along the horizon of Illimitable Space. But each successive observation reveals more clearly the extension of that exquisite harmony which the great law of attraction maintains through the countless systems of Worlds.
INDEX

TO

THE DISSERTATIONS.

A.

Air, discovery of the elasticity of

Page, See also Pneumatics.

Alchemists, views of, regarding heat

Page.

Algebra, probably invented in Hindustan

Page.

First introduced into Europe by Leonardo ibid.

The Arabic notation, a previous acquisition from the East ibid.

Introduced by Gerbert ibid.

First book printed on algebra ibid.

Account of the algebraical system of Diophantus 591 ibid.

Resolution of equations higher than the second degree, and extension of the rule by Cardan ibid.

Merit of Cardan's discoveries ibid.

He gave his algebraic rules a poetical dress ibid.

Properties of algebraic equations discovered very slowly ibid.

Contributions to the science by Recorde, Bombelli, Vieta, Girard, Harriot, and others 422-3 ibid.

See also these heads; and 591-2 ibid.

Causes why the properties of equations were discovered so slowly 443 ibid.

Grand step taken by Descartes in applying algebraical analysis to define the nature and investigate the properties of curve lines 444 ibid.

Analysis of the work in which that discovery is announced ibid.

Advantages resulting from the introduction of algebra into geometry ibid.

It denotes both quantity and the operations on quantity by means of conventional symbols 445 ibid.

Remarks on the excellence of this ibid.

Difference in practice between the algebraical and geometrical method of treating quantity 445 ibid.

Observations on the use of the signs plus and minus 446 ibid.

Aberration of light, discovery of, by Dr. Bradley 569 ibid.

Affords another proof of the earth's motion in its orbit 571 ibid.

Abstraction, the faculty of, essential to the geometer and the metaphysician, as well as the poet 6 ibid.

Academies, or philosophical societies, first establishment of, in Italy, England, and France 499 ibid.

Acoustics, explanation of the theory of vibrations 612 ibid.

Principles on which music is founded ibid.

Different degrees of sensibility possessed by the organs of seeing and hearing ibid.

Addison, Joseph, his opinion of the works of Hobbes 42 ibid.

His censure of the French writers of his age 55 ibid.

His reputation as a philosopher has suffered by the beauty and clearness of his style 83 ibid.

Value of his essays in widening the circle of mental cultivation 160, 161 ibid.

His papers on the pleasures of imagination chiefly entitle him to a place amongst metaphysicians 161 ibid.

Reasons for his being thought superficial ibid.

Quotation from, concerning ideas, with Dr. Blair's remarks thereon, Note R R 272 ibid.

Precision of his views relative to colours 273 ibid.

His definition of "fine writing" 162 ibid.

Merits of his style and writings in general ibid.

Argument of, for the immortality of the soul ibid.

Quotation from, on the care with which nature disseminates her blessings 163 ibid.

EPINUS, his theory of the principle upon which depend the phenomena of electricity and magnetism 627 ibid.

AGES, the middle, intellectual darkness of that period 14 ibid.

Agriculture, extraordinary demand for books relative to that subject during the reign of James I. 39 ibid.
INDEX.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra, extraction of the cube root first discovered by the Arabians</td>
<td>583</td>
</tr>
<tr>
<td>Observations on the algebraical signs</td>
<td>503</td>
</tr>
<tr>
<td>Descartes’ contributions to the science</td>
<td>504</td>
</tr>
<tr>
<td>Proposal of the Conicoids, by Newton</td>
<td>505</td>
</tr>
<tr>
<td>Advance made in the science by the discoveries of Leibnitz</td>
<td>ibid.</td>
</tr>
<tr>
<td>Discoveries of De Molve and Stirling</td>
<td>595</td>
</tr>
<tr>
<td>Theory of quadratic factors</td>
<td>506</td>
</tr>
<tr>
<td>Account of improvements made in algebra</td>
<td>596-7</td>
</tr>
<tr>
<td>Applications of the science, and notice of elementary works on</td>
<td>ibid.</td>
</tr>
<tr>
<td>Alhazen’s explanation of the reason why objects appear larger near the horizon</td>
<td>505</td>
</tr>
<tr>
<td>His work on optics superior to that of Ptolemy</td>
<td>506</td>
</tr>
<tr>
<td>Solution of a very difficult problem by</td>
<td>ibid.</td>
</tr>
<tr>
<td>Merits and defects of his work</td>
<td>507</td>
</tr>
<tr>
<td>Allamand, M. his criticism on Locke’s argument against innate ideas</td>
<td>107</td>
</tr>
<tr>
<td>And note T</td>
<td>250</td>
</tr>
<tr>
<td>Gibbon’s account of</td>
<td>107</td>
</tr>
<tr>
<td>America, notice of the literature of</td>
<td>203</td>
</tr>
<tr>
<td>Ampère, elegant experiment of, on the projection of water through a vertical slit</td>
<td>611</td>
</tr>
<tr>
<td>Analysis, infinitesimal, see Geometry, New.</td>
<td></td>
</tr>
<tr>
<td>Anaxagoras taught that the moon shines by light borrowed from the sun</td>
<td>452</td>
</tr>
<tr>
<td>Ancillon, M. quotation from, on the doctrines of the French and German schools of philosophy</td>
<td>186</td>
</tr>
<tr>
<td>Apollonius, profound researches of, in mathematics</td>
<td>435</td>
</tr>
<tr>
<td>Approbation, moral, see Ethics.</td>
<td></td>
</tr>
<tr>
<td>Aquinas, doctrines of</td>
<td>309</td>
</tr>
<tr>
<td>Comprehensiveness of his mind</td>
<td>310</td>
</tr>
<tr>
<td>Extensive influence of his ethical system</td>
<td>312</td>
</tr>
<tr>
<td>His Augustinianism, Note C</td>
<td>418</td>
</tr>
<tr>
<td>Quotation from, on charity, Note G</td>
<td>420</td>
</tr>
<tr>
<td>On the power of the pope, Note H</td>
<td>ibid.</td>
</tr>
<tr>
<td>Argo, M. recent discoveries of, in magnetism</td>
<td>629-30</td>
</tr>
<tr>
<td>Arbuthnot, Dr, his share in the work entitled Martinus Scriblerus</td>
<td>242</td>
</tr>
<tr>
<td>Estimate of his talents, Note B B B</td>
<td>285</td>
</tr>
<tr>
<td>Archimedes, contributions of, to mathematics</td>
<td>435</td>
</tr>
<tr>
<td>Discoveries of, in physics</td>
<td>450</td>
</tr>
<tr>
<td>The first who applied mathematics to natural philosophy</td>
<td>451</td>
</tr>
<tr>
<td>Discovered some of the first principles of hydrostatics</td>
<td>480</td>
</tr>
<tr>
<td>Burning mirrors of</td>
<td>506</td>
</tr>
<tr>
<td>Architecture, naval, depends upon the principles of hydrostatics</td>
<td>608</td>
</tr>
<tr>
<td>See Hydrostatics.</td>
<td></td>
</tr>
<tr>
<td>Areas, see Geometry.</td>
<td></td>
</tr>
<tr>
<td>Aristotle, causes which operated in undermining the authority of</td>
<td>16</td>
</tr>
<tr>
<td>By whom most powerfully assailed</td>
<td>25</td>
</tr>
<tr>
<td>Passage quoted from, on the principles of rhetoric</td>
<td>54</td>
</tr>
<tr>
<td>Remarks on his celebrated comparison of the mind in its first state to a sheet of white paper</td>
<td>364</td>
</tr>
<tr>
<td>Resemblance of Hume’s principles of association to the views of the Stagyrite, Note T</td>
<td>427</td>
</tr>
<tr>
<td>Definition of motion by</td>
<td>450</td>
</tr>
<tr>
<td>Aristotle, definition of light by</td>
<td>506</td>
</tr>
<tr>
<td>His views regarding the nature of light</td>
<td>640</td>
</tr>
<tr>
<td>Arithmetic, early systems of notation</td>
<td>586</td>
</tr>
<tr>
<td>Origin of the denary system generally referred to India</td>
<td>587</td>
</tr>
<tr>
<td>Advantages and gradual extension of this system</td>
<td>ibid.</td>
</tr>
<tr>
<td>Decimal fractions introduced by Stevinus</td>
<td>ibid.</td>
</tr>
<tr>
<td>Notation of decimals brought to its utmost simplicity by Baron Napier</td>
<td>ibid.</td>
</tr>
<tr>
<td>Advantages and disadvantages of the duodenary scale</td>
<td>ibid.</td>
</tr>
<tr>
<td>Perfect, prime, and composite numbers</td>
<td>588</td>
</tr>
<tr>
<td>Antiquity of magic squares</td>
<td>ibid.</td>
</tr>
<tr>
<td>Different individuals by whom they were constructed</td>
<td>ibid.</td>
</tr>
<tr>
<td>Continued fractions much cultivated during the eighteenth century</td>
<td>589</td>
</tr>
<tr>
<td>Brought to perfection by Euler</td>
<td>ibid.</td>
</tr>
<tr>
<td>Applications of the theory by ditto</td>
<td>ibid.</td>
</tr>
<tr>
<td>Applied to the solution of numerical equations by Lagrange</td>
<td>500</td>
</tr>
<tr>
<td>Tables of the powers and products of numbers made by Hervert, chancellor of Bavaria</td>
<td>ibid.</td>
</tr>
<tr>
<td>Arnauld, Anthony, the first who struck a blow at the ideal theory</td>
<td>80</td>
</tr>
<tr>
<td>Summary of his doctrine concerning ideas</td>
<td>ibid.</td>
</tr>
<tr>
<td>Merits of his treatise entitled The Art of Thinking, or the Port-Royal Logic</td>
<td>ibid.</td>
</tr>
<tr>
<td>Anecdotes of his infancy and old age</td>
<td>81</td>
</tr>
<tr>
<td>Association of Ideas, see Ethics.</td>
<td></td>
</tr>
<tr>
<td>Astrology exercised an extensive dominion over the human mind</td>
<td>484</td>
</tr>
<tr>
<td>During the dark ages taught in universities</td>
<td>ibid.</td>
</tr>
<tr>
<td>Astronomy, considerable progress made in, by the ancients</td>
<td>451, 481</td>
</tr>
<tr>
<td>Views of those who first studied the heavens</td>
<td>481, 655</td>
</tr>
<tr>
<td>Universally believed by the ancients that the earth formed the centre of the universe</td>
<td>482</td>
</tr>
<tr>
<td>Introduction of the epicycle by Apollonius Pergeus</td>
<td>ibid.</td>
</tr>
<tr>
<td>Application of the epicycles to explain phenomena, by Hipparchus</td>
<td>ibid.</td>
</tr>
<tr>
<td>Other epicycles introduced to explain the irregular motions of the moon and planets</td>
<td>ibid.</td>
</tr>
<tr>
<td>The system of the heavens became thus extremely complicated</td>
<td>ibid.</td>
</tr>
<tr>
<td>Advantages which were derived from it</td>
<td>483</td>
</tr>
<tr>
<td>The hypotheses of epicycles, and centres of uniform motion, accommodated to the state of science</td>
<td>ibid.</td>
</tr>
<tr>
<td>Dawn of a new era, Copernicus and Tycho</td>
<td>484</td>
</tr>
<tr>
<td>Correction of Ptolemy’s tables by Alphonsus, king of Castile</td>
<td>ibid.</td>
</tr>
<tr>
<td>Purbach and Regiomontanus contributed much to the advancement of the science</td>
<td>ibid.</td>
</tr>
<tr>
<td>Publication of Copernicus’s great work, Astronomia Instaurata, containing the discovery of the earth’s annual and diurnal motion</td>
<td>485</td>
</tr>
<tr>
<td>Observation of the heavens by Tycho Brahe</td>
<td>486</td>
</tr>
<tr>
<td>See Brahe.</td>
<td></td>
</tr>
<tr>
<td>Discoveries of Kepler, see Kepler.</td>
<td></td>
</tr>
</tbody>
</table>
INDEX.

Astronomy, discoveries of Galileo, see Galileo.
Evidence of the Copernican system developed by the discoveries of Kepler and Galileo 492
Beneficial results of its being established 493
Descartes' theory of the universe, see Descartes.
First complete system of astronomy in which the elliptic orbits were introduced, was the Astronomia Philolaica of Bullialdus 495
Hypothetical views contained in that work ibid.
Contributions to the science by Horrox, Ward, Riccioli, Hevelius, Hooke, Cassini, and Roemer; see these heads.
First establishment of academies 499
See also Academies.
Figure and magnitude of the earth, see Earth.
Discovery of universal gravitation by Newton 554
See also Newton.
References of the ancients to weight or gravity 557
Clearer views of Copernicus and Kepler 558
Galileo supposed that gravity was a principle belonging to each of the planets individually, but did not extend from the one to the other ibid.
Near approximation made to the truth by Hooke 559
Causes of irregularities in the motion of the moon 560
Newton's determination of the shape of the earth 561
Discovery of aberration of light by Dr Bradley 569
Newton's theory of the moon, a work of genius almost superhuman 663
Lunar theory first expanded and improved by Ca- landrini ibid.
Completed by Dr Stewart and Walmesley 664
Examination of the subject by Clairaut ibid.
Astronomical discoveries of Mayer 665
See also Mayer.
Calculations and discoveries of Euler regarding the motions of the planets 665-6
Appearance of Halley's comet, and calculations of Clairaut regarding its retardation 667
Size and consistency of comets, and methods of discovering their orbits 668
Notice of Lagrange's discourse on the librations of the moon 669
Researches of Lagrange and Laplace regarding the planetary motions ibid.
Laplace's discovery of the moon's secular equation 670
Laplace's complete theory of the motions of Jupiter's satellites ibid.
Description of celestial refraction, and the solar and lunar parallaxes 671
Discovery of a new planet by Herschel 672
Discovery of four small planets 673
Number of stars which passed over Herschel's field of view in a quarter of an hour ibid.
Speculations regarding the celestial bodies and the constitution of the universe 674
Various estimates of the number of comets within the known extent of our system 675
Observations on the earth's internal structure ibid.
Observations on the limits of the atmosphere 676
Observations on double and multiple stars 677

Association of ideas, see Ethics.
Atheism, prevalence of, at Paris in the middle of the eighteenth century 181
Influence of, in aggravating the atrocities of the French revolution 182
Atmosphere, experiments to ascertain the density of, at different heights 613
Atomic or corpuscular theory superior to any other con- jecture of the ancient philosophers 71
Aubrey, anecdotes of, relative to Lord Bacon, Note F 239-40
Augustin, St, quotation from, asserting the freedom of the will, Note M M 267
Augustin, genius and character of 309
Aurora Borealis dependent on electricity 623
Avarice, see Ethics.

B.
Bacon, Roger, claims of, to the respect of posternity 454
Pursued the true philosophy amidst ignorance and error 507
Advancement made by, in optics ibid.
Probable that he made experiments with lenses, and knew their properties ibid.
Inclination of, to the marvellous 506
Bacon, Lord, his outline of the various departments of human knowledge imperfect 1-3
Objections to his classification of the sciences and arts according to a logical division of our faculties 5, 6
His attempt to accomplish this, however, productive of great advantages to science 7
His comprehensiveness of mind ibid.
His opinion of Paracelsus 16
His genius peculiarly adapted to the study of the phenomena of mind 32
His definition of poetry 33
General comprehensiveness of his hints and reflections relative to the philosophy of the mind, and its relation to matter ibid.
Quotation from, on the reciprocal influence of thought and language 34
Profound reflections of, on grammar ibid.
His ethical disquisitions generally of a practical nature 35
His opinion that the faculties of man have declined as the world has grown older, erroneous ibid.
Character of his Essays 36
Quotation from, on philosophical jurisprudence ibid.
Quotation from, on "deep and vulgar laws" ibid.
Paramount importance attached by, to the education of the people 38
Character of, by Ben Johnson and others, Note F 239-40
Condorcet's estimate of his powers 56
His works little read in France till after the publication of D'Alembert's preliminary discourse ibid.
Quotation from, on human reason 58
His admiration of the Epicurean physics 71
Analysis of his Novum Organon 454
INDEX.

Bacon, Lord, low state of physics in the time of
Reflections on, on the causes of vagueness and sterility in all the physical sciences, quoted
ibid. 455

Causes of error enumerated under four heads
1. Idols of the tribe, or those causes of error founded on human nature in general
ibid.
2. Idols of the den, or those resulting from individual character
ibid.
3. Idols of the forum, or those which arise out of the commerce or intercourse of society 456
4. Idols of the theatre, or those deceptions which have taken their rise from the systems or dogmas of the different schools of philosophy ibid.

Does not charge the physics of antiquity with being absolutely regardless of experiment. ibid.

Reduces the periods during which science had been cultivated, to that of the Greeks, that of the Romans, and that of the western nations after the revival of letters ibid.

Considers the end and object of knowledge to have been very much mistaken
Reverence for antiquity, and the authority of great names, has much retarded improvement ibid.

Another cause is, that men attend more to what is grand and wonderful than what is common 458

Exemplification of the nature of induction ibid.

Classes all learning relatively to the three intellectual faculties of memory, reason, and imagination ibid.

Distribution of knowledge among these heads
Explanation of the latent process, and the latent schematism ibid.

Method of exemplifying the process of induction relative to the form or cause of any thing
Intended that his method should be applied to all investigations where experience is the guide ibid.

All facts not of equal value in the discovery of truth 461

Enumeration of twenty-seven different species of facts, with examples of these ibid.

1. Instantiae solitaires, which are either examples of the same quality existing in two bodies otherwise unlike, or of a quality differing in two bodies which are in other respects alike ibid.

2. Instantiae migrantes, which exhibit some nature or property of body passing from one condition to another, either from less to greater, or vice versa ibid.

3. Instantiae ostensive, or facts which show some particular nature in its highest state of power 462

4. Instantiae clandestines, which show some power or quality just as it is beginning to exist ibid.

5. Instantiae manipulares, or collective instances of general facts ibid.

6. Analogous or parallel instances, consisting of facts between which there is a resemblance in some particulars, though great diversity otherwise exists 463

7. Monodic or singular facts 464

8. Instantiae constatibus, or examples of certain qualities which always accompany each other, as flame and heat ibid.

9. Instantiae crucis, with examples from astronomy and chemistry 465

Bacon, Lord, great weight of the experimentum crucis in matters of induction
Division and arrangement of the twenty-seven classes of facts
Remarks on, and examples given, of the various instance
Quotation from, on those experiments which most immediately tend to improve art by extending science ibid.

Remarks on the philosophical instruments then known ibid.

Sagacious anticipation of facts regarding light afterwards discovered, quoted ibid.

General estimate of the genius of Bacon 468

Comparison between Bacon and Galileo, quoted from Hume ibid.

Not made with justness and discrimination ibid.

Qualities in which he excelled Galileo, as well as all mankind 470

Views of, regarding the nature of heat
His Novum Organon contains a most comprehensive and rigorous plan of inductive investigation 470

Principles upon which may be founded an answer to the question, How far has this method been carried into practice ibid.

Does not give sufficient importance to the instantia radii 471

Examples pointing out this defect ibid.

Strict method only necessary in certain cases 472

The instantia crucis the experiment most frequently appealed to ibid.

Example in inquiring into the law by which the magnetic virtue decreases as we recede from the poles ibid.

Appears to have placed the ultimate object of philosophy too much beyond the reach of man 473

In some respects misapprehended the way in which knowledge becomes applicable to art ibid.

The anticipations of the Novum Organon in some instances realized by chemical theories ibid.

Bailli, M. his estimate of Leibnitz's character, as compared with his contemporaries, Note I 262

Barlow, Mr, contrivance of, to counteract the local attraction of the needle on board of ship 629

Barometer first applied to the measurement of mountains by Mariotte 542

Rule of modern practice stated 614

Barrow, Dr Isaac, his unjust depreciation of Ramus 30

Character of, as a philosopher and writer 45

Anecdote relative to his sermons ibid.

Quotations from, on ethics 46

Notice of his lectures on optics 514

Baxter, Andrew, merits of his Inquiry into the Nature of the Human Soul 205

Bayle, M. the writer who first led to the misapplication of the term Spinozism 147

Character of his writings 151

Opinions of the learned at the time of his appearance divided between Aristotle and Descartes 152
INDEX.

Bayle took advantage of this by keeping aloof from either, and indulging his scepticism
Probable reason why he did not notice his favourite author Montaigne in his Historical and Critical Dictionary ibid.
Copied the spirit and tone of the old academic school in composing his dictionary
Estimate of his character by Warburton, Leibnitz, and Gibbon ibid.
His critical acumen unrivalled, but his portraits of persons defective 154
Causes which contributed to unsettle his opinions ibid.
Early fluctuations of, in his religious creed ibid.
His propensity to treat of indelicate subjects ibid.
Mischevious tendency of his work
Benefits which have resulted to literature from his labours ibid.
His leaning to the system of the Manicheans apparent, but not real ibid.
Estimate of his genius and acquirements 156
Lessons of historical scepticism to be learned from ibid.
Beattie, Dr, quotation from, on Locke's views concerning innate ideas
Merit of, as a writer 222
Beautiful, signification of the word, in Plato's works 301
Benedetto, an Italian, published a work on geometrical analysis in 1695 436
Benevolence, sources of
See also Ethics.
Inward delight arising from the practice of, overlooked by Bentham's followers 390
Benevolent affections, difference between them and self-love 344
Bentham, Jeremy, quotations from, concerning the law of nature
Quoted on the blind veneration of the moderns for the wisdom of antiquity 95
Character of Bentham and his followers
His first work, entitled A Fragment on Government, unmatched in acuteness, but too severe ibid.
His tract upon the Hard Labour Bill laid the foundation of just reasoning on reformatory punishment ibid.
The Letters on Usury, a fine specimen of the exhaustive discussion of a moral or political question ibid.
Estimate of the value of his writings on the subject of Jurisprudence 378
Has not reached the most desirable distinction in Ethical Theory
Preaches the doctrine of utility with the zeal of a discoverer ibid.
Confuses moral approbation with the moral qualities ibid.
His followers have overlooked the inward delight which arises from virtuous conduct 380
His true and eminent merit is that of a reformer of Jurisprudence 384
Both he and his followers have treated Ethics too juridically ibid.
Coincides with the Epicureans in some points ibid.

Bentham, Jeremy, revolution which his style underwent
Benefits which his works have derived from the labours of M. Dumont 386
Berkeley, Dr, refutation of a fallacy contained in a passage quoted from his work on vision, Note M 244
His interview with Malebranche 80
Character of his genius 163
Instance of Pope's veneration for ibid.
His great popularity made metaphysical pursuits fashionable 164
Chief aim of his great work upon Vision to draw a line between the original and acquired perceptions of the eye ibid.
His doctrine unknown to the ancients ibid.
Merit of the new theory of vision not exclusively his own 165
Did not himself lay claim to complete originality in his views 166
Sense in which he employed the term suggestion 167
Object which he had in view in denying the existence of matter 168
Value which he attached to his system of idealism, and the impression it made 168, 169
His Theory of Vision contains a great discovery in mental philosophy 349
His speculations not sceptical ibid.
All parties conspired to praise his talents and virtues 350
Attempt of, to reclaim the natives of North America ibid.
Was made Bishop of Cloyne through the influence of the Queen ibid.
His patriotism with regard to Ireland ibid.
His general principles of Ethics 351
His dictton distinguished for exquisite grace and beauty ibid.
His reasonings undoubtedly produced the scepticism of Hume 352
Notice of his Analyst, in which he opposes the new analysis of Newton 354
Berrier, M., brief notice of his writings 168
Bernoulli, James and John; able coadjutors of Leibnitz in illustrating the new analysis 529
See also Geometry, New.
Explained some of the most difficult problems of the infinitesimal analysis 529
John, judgment pronounced by, relative to the controversy between Newton and Leibnitz 522
Solution of problems by
By the introduction of exponential equations he materially improved a branch of the calculus 529
Works of, and those of his brother James 530
Was the first who enunciated in its full generality the proposition of the equality of the opposite momenta 535
Account of his prize essay on the laws of the communication of motion 537
By his principle of virtual velocities he greatly simplified the science of equilibrium or statics 603
His principle styled the Conservation of Living Forces ibid.
INDEX.

Bernoulli, John, sketch of his life and character 603
Quotation from his defence of Leibnitz's Law of Continuity 133
Had a conviction of this law previously to communicating with Leibnitz upon the subject, Note DD 258
James, account of his original mode of treating the problem of the centre of oscillation 603
Sketch of his life and character ibid.
Daniel, importance of his treatise on Hydrodynamics 607
Sketch of his life and character ibid.
Singularity happy in his sober application of analysis 608
Clearly established the true theory relative to the vibrations of a musical chord 612
Berthollet, notice of the process of bleaching invented by 473
Bezout, Stephen, notice of his life and writings 596
Black, Dr, his discovery of latent heat 644
Blair, Dr, quotation from, containing remarks on Addison's statement regarding the secondary qualities of bodies, Note B R 272
Blair, Dr Robert, attempts of, to improve the achromatic telescope by interposing fluids between the object-glasses 635
Bodin, or Bodinus, high character of, as a philosophical politician 27
His opinion of Machiavel, Note C 233
Absurdity of some of his speculations 28
De la République, his most important work 442
Sorcery imputed to him ibid.
Boerhaave, views of, regarding the distribution of heat 642
Beethoven, notice of 307
Bombelli, an Italian mathematician, discoveries of 442
Bonnard, M. de, his estimate of the merits of Condillac 177
Bennon, Charles, his commentary upon Leibnitz's theory of a Sufficient Reason 131
Was the first to assert that there is a scale of beings descending from the deity downwards 134, 149
His scheme of necessity similar to that of Spinoza 149
Account of his speculations regarding human nature 170
Agreement of his physiological theory concerning the union between soul and body with that of Hartley 171
Coincidence of some of his views with those of Hartley. See Hartley.
Boscovich, extraordinary talents of 202
Notice of his theory of the constitution of the universe 605
Outline of the reasoning on which he supported his theory of the constitution of the universe ibid.
Account of his life and writings ibid.
Obscured his theory by an infusion of scholastic metaphysics 606
It may be regarded as a happy extension of the law of attraction ibid.
Bossuet, contrast between him and Fénelon 335
His reply to Fénelon concerning man being influenced by a disinterested love of God 336
Bossuet, in this controversy, relied mainly on the principle, that as man must desire his own happiness, he desires everything as a means towards it 336
Bossuet, made a most complete set of experiments on the resistance of water 609
Bouguer, Peter, reduced the theory of hydrostatics, as applied to naval architecture, into a form simple and elegant 608
Sketch of his life and character ibid.
His rule relative to the barometrical measurement of mountains stated 614
Measurement of a degree by, in South America 657
Boyle, the Honourable Robert, contributions of, to metaphysical science 139
Improvements made by, on the air-pump 481
Brade, Tycho, ranks next to Copernicus as an astronomer of the sixteenth century 485
Perfection to which he brought astronomical instruments 486
Improvements made by, in the art of observation ibid.
His catalogue of stars ibid.
Discoveries made by, in reference to the irregularities of the moon's motion ibid.
Determined atmospheric refraction 607
His observations on the comet of 1570 gave a blow to the physics of Aristotle ibid.
Rejected the system of Copernicus, and substituted one of his own ibid.
An apology for this retrograde movement 488
His belief in the predictions of astrology ibid.
Bradley, Dr, discovery of the aberration of light by 569
Proved that it arose from the progressive motion of light combined with the earth's orbital motion 570
Bradwardine, archbishop of Canterbury, ethical doctrines held by 309
Brown, Dr Thomas, his Observations on the Zoology of Dr Darwin, the unmatched work of a boy in his eighteenth year 394
His work on Causation one of the finest models of discussion in mental philosophy ibid.
Brief view of his early life and studies 395
His character, moral and intellectual, highly attractive ibid.
His prose brilliant to excess 396
The declaratory parts of his lectures excusable in the first warmth of composition ibid.
His poetical talents rose to the rank of an elegant accomplishment 397
The intellectual part of his philosophy a complete revolt against the authority of Dr Reid ibid.
Observations on his application of the word feeling ibid.
Remarks on his substitution of the term suggestion for that of association of ideas ibid.
Erred in representing his reduction of Mr Hume's principles of association to the one principle of contiguity as his own discovery 398
He, however, very much enlarged the proof and the illustration of this law of mind ibid.
In Ethics he followed Butler 399
INDEX.

Brown, Dr Thomas, mistake committed by him in representing the theory which derives the affections from association as "a modification of the selfish system" 399
Followed Mr Stewart in considering the formation of conscience as not referrible to those laws of human nature to which he ascribed every other state of mind ibid.
Improper use made of the term "suggestion" 400
Admitted virtuous acts to be universally beneficial 401
Brucker, estimate of his talents, Note A A A 293
Buchanan, George, character of his work entitled De Jure Regni apud Scotos 31
Budeus, character and works of 29
Bullialdus published the first complete system of astronomy in which the elliptic orbits were introduced 495
Fanciful views contained in the work ibid.
Butler, Dr, quotation from, on personal identity 217
Early promise and education of 343
His rapid advancement to the see of Durham ibid.
His Analogy of Religion to the course of Nature the most original and profound work of the kind in any language ibid.
His ethical principles contained in his Discourses ibid.
Profound, original, and comprehensive truths taught in these ibid.
Ethical principles of, appear to be devoid of errors 345
Defects of, pointed out ibid.
Omits all inquiry into the nature and origin of the private appetites which appear first in human nature ibid.
Shows that there are principles of action independent of self ibid.
His reasoning concerning the social affections more satisfactory than that on the moral sentiments 346
Just statement of the nature of conscience 347
The great defect of his scheme is, that he does not point out the distinguishing quality of all right actions ibid.
His style very defective ibid.

C.
Cæsar, remarks on his triumph over the nobility 306
Caille, La, measurement of degrees of latitude by 658

Calandrini, the first who expanded and improved the Newtonian theory of the moon 663
Calculus, differential, see Geometry, New.
Calvin, John, his disregard of the authority of Aristotle ibid.
His argument upon the subject of usury quoted, Note B 233
Camera obscura, invented by Baptista Porta 508
Campanella, compared by Leibnitz to Bacon 26
Character of his writings ibid.
Campbell, Dr, comprehensive sense in which he makes use of the words physics and physiology 9
Merits of, as a writer 220-222
Canton, Mr, was the first to determine experimentally the compressibility of water 697
Sketch of his life and character as a philosopher ibid.
Capillary action, completest set of experiments made by Hauksbee on 615
Experiments and explanation of the principle upon which it depends, by Brook Taylor, Guyton-Morveau, Dr Jurin, Clairaut, Dr Thomas Young, and Laplace 616
See also these heads.
Cardan of Milan, a remarkable instance of the union of great genius with weakness 441
See also Algebra.
Carmichael, Professor, of Glasgow, his opinion of the works of Grotius and his followers 88
Carneades, estimate which Grotius formed of his ethics 315
Cartesian philosophy, see Descartes.
Casanova, a Venetian, effects produced on whilst in prison, by a work entitled La Clé Mystique de Sœur Marie de Jesus appelée d'Agrada, Note R 426
Cassini defined the motions and calculated the places of Jupiter's satellites 493
Discovered four satellites of Saturn, and the rotation of Jupiter and Mars upon their axes ibid.
Catóptics, see Optics.
Causation, remarks on Hume's theory of 211
See also Hume.
Malebranche's views relative to 78
Cavallieri, great advancement made by, in mathematics 436
New and important principle in geometry developed by 437
Led to take his peculiar view of geometrical magnitudes by reading a tract of Kepler's ibid.
Great benefits resulting from his introducing into science the idea of quantities infinitely small in size and infinitely great in number 438
New and remarkable proposition of 439
Celestus, the most philosophical thermometer first proposed by 643
Cervantes, character of his Don Quixote 96
Chapelle, M. brief account of 108
Charros, M. the depositary of Montaigne's philosophical sentiments, and the guardian of his posthumous fame 52
His anxiety to provide an antidote against the errors of his friend 53
His name only rescued from oblivion by his connection with Montaigne ibid.
INDEX.

Chastelet, Madame du, took a part in the controversy relative to the force of a moving body 539
Notice of her writings 185-6
Chemistry, vague notions and theories of the first experimenters in 453
Its application to pharmacy has conferred a lasting benefit on the world 454
Van Helmont and Roger Bacon's discoveries ibid.
Treatise of Gilbert on the magnet... ibid.
Chord, musical, the principle regarding the vibrations of, explained 612
Chrysippus, account of 303
Cicero, quotation from, concerning right reason being a law universally diffused 86
His remarks on Cato's stoicism, Note A 417
Circle, see Geometry
Attempts to ascertain the ratio of the diameter to the circumference 503
The incommensurability of, first demonstrated by Lambert 584
Clairaut laboured indefatigably to establish the theory of universal gravitation 577 & 584-5
Calculated the amount of retardation which Halley's comet would suffer by the influence of Jupiter and Saturn 578
Gave an analytical investigation of capillary attraction 616
His solution of the problem of the earth's figure 681
Calculations of the retardation which Halley's comet would suffer 667
Estimate of his genius and character ibid.
Clarke, Dr, remarks on his controversy with Leibnitz 139
His reasons regarding the existence of a God 141
Derived his demonstration of the existence of a God from a passage in Newton's Scholium ibid.
Anecdote of, showing the early development of his reflective powers 142
Principal subjects of discussion between him and Leibnitz ibid.
Chief glory of, as a metaphysical writer, and character of 143
Remarks on his controversy with Anthony Collins 144
Value of his reasoning against the doctrine of necessity 149
Versatility of his genius 327
Sum of his moral doctrines 328
Quotation from Rousseau concerning his argument for the being of a God, Note M 422
Error into which he fell in employing the term relation, the pivot of his system 329
Difference between perception and emotion ibid.
Difference between his system and Cudworth's 331
Account of the controversy in which he was engaged relative to the force of a moving body 539
Cleanthes, repartee of, in reply to Arcesilaus 304
Clere, Le, his character of Paracelsus 18
His acquaintance with and respect for Locke 106
Coccelli, Samuel de, merits of his commentary on Gros tius's work De Jure Belli et Pacis 92
Cold, admits of reflection as well as heat 465
Coleridge, S. T. mistake committed by, relative to the Parva Naturalia of Aristotle, Note T 427
Collard, M. Royer, taught the philosophy of Dr Reid at Paris 388
Remarks on his efforts to render speculative philosophy popular in France ibid.
Collier, Arthur, notice of his work, in which he denies the existence of a material world 168
See also Note S S 274
Collins, Anthony, instance of Locke's regard for, with remarks on their friendship, Note K K 264
Controversy of, with Dr Clarke 144
His arguments for the doctrine of necessity 148
See also Note M M 266
Remarks on his historical statement relative to the tenets of the Epicureans and Stoics, Note M M 266
His notion of liberty precisely that of Hobbes, Note M M 268
Anticipated Dr Jonathan Edwards' scheme of necessity 148
Colour of bodies, mistaken notions regarding, the cause of much error in philosophy 64
Remarks of Dr Reid on 66
Connection between it and extension and figure ibid.
Of what service its varieties are in distinguishing bodies 66
Addison's precise statement of the nature of 273
Colours, primary, resolvable into red, green, and violet 635
See also Optics.
Comets, just notions entertained by the ancients regarding 452
Account of the appearance of Halley's comet, and calculations of its retardation 667
Size and consistence of 668
Methods for discovering the orbits of comets ibid.
Compass, first importation of, into Europe 624
See also Magnetism.
Condillac, M. opinion of, concerning vision 164
His commentary on Locke differs from the author's text in regard to the origin of ideas 173
Adopted Cassend's views on that point ibid.
Cause of the popularity of his works ibid.
Commonly follows Locke as his guide when most successful in describing mental phenomena 174
The most valuable parts of his writings relate to the action and re-action of thought and language upon each other ibid.
Instance of the radical error of his system 176
Great influence of his theories in misleading the opinions of his contemporaries 177
M. de Bonnald's estimate of his merits ibid.
He, along with Hartley, confused and mutilated Locke's doctrine regarding reflection 363
See also Hartley.
In his Treatise on Sensation, he reproduces the doctrine of Hobbes, with its root, namely, that love and hope are but transformed sensations 364
In his works there is no distinction between the percipient and the emotive part of human nature ibid.
INDEX.

<table>
<thead>
<tr>
<th>Page</th>
<th>Cumberland, Bishop, the only professed answerer of Hobbes</th>
</tr>
</thead>
<tbody>
<tr>
<td>689</td>
<td>Notice of his work on the law of nature ibid.</td>
</tr>
<tr>
<td></td>
<td>Fundamental principle of his ethics ibid.</td>
</tr>
<tr>
<td></td>
<td>His attempt to explain what the moral faculty is ibid.</td>
</tr>
<tr>
<td></td>
<td>Cuvier, M. animadversion of, on Bonnet's definition of</td>
</tr>
<tr>
<td></td>
<td>moral liberty, Note M M 268</td>
</tr>
<tr>
<td></td>
<td>Cycloid, see Geometry.</td>
</tr>
</tbody>
</table>

D.

<table>
<thead>
<tr>
<th>Page</th>
<th>D'Alembert, M. his classification of the sciences incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vagueness of his views relative to the origin of the</td>
</tr>
<tr>
<td></td>
<td>sciences ibid.</td>
</tr>
<tr>
<td>3</td>
<td>His unsuccessful delineation of an encyclopedical tree</td>
</tr>
<tr>
<td>3-4</td>
<td>Quotation from, on his division of human knowledge</td>
</tr>
<tr>
<td>5-6</td>
<td>Objections to this</td>
</tr>
<tr>
<td>6</td>
<td>His definition of poetry</td>
</tr>
<tr>
<td>7</td>
<td>His identification of imagination with abstraction</td>
</tr>
<tr>
<td>7-8</td>
<td>His modesty in propounding his theory</td>
</tr>
<tr>
<td>10</td>
<td>His encyclopedical tree only an amplification of Bacon's</td>
</tr>
<tr>
<td></td>
<td>sketch</td>
</tr>
<tr>
<td>142</td>
<td>Character of his preliminary discourse on the division</td>
</tr>
<tr>
<td></td>
<td>of the sciences</td>
</tr>
<tr>
<td>144</td>
<td>Quotation from, on the bias of the mind produced</td>
</tr>
<tr>
<td></td>
<td>by habits acquired in infancy</td>
</tr>
<tr>
<td>145</td>
<td>His mistaken view of the nature of space and time</td>
</tr>
<tr>
<td>151</td>
<td>Continued researches of, in the department of the</td>
</tr>
<tr>
<td></td>
<td>mathematics</td>
</tr>
<tr>
<td>578</td>
<td>He expanded the process of integration relative to</td>
</tr>
<tr>
<td></td>
<td>partial differences</td>
</tr>
<tr>
<td>600</td>
<td>Notice of his treatise on Dynamics</td>
</tr>
<tr>
<td>604</td>
<td>Sketch of his life and character ibid.</td>
</tr>
<tr>
<td>605</td>
<td>He converted dynamics into an absolute analytical</td>
</tr>
<tr>
<td></td>
<td>science</td>
</tr>
<tr>
<td>606</td>
<td>He treated the subject of hydrodynamics with his</td>
</tr>
<tr>
<td></td>
<td>usual originality and depth</td>
</tr>
<tr>
<td>608</td>
<td>Dalgaro, profound remark of, Note D</td>
</tr>
<tr>
<td>248</td>
<td>Notice of his works, Note B B B</td>
</tr>
<tr>
<td>284</td>
<td>Darwin, Dr, answer to his Zoönomie, by Dr Thomas Brown</td>
</tr>
<tr>
<td>394</td>
<td>Davies, Sir John, quotation from his poem on the</td>
</tr>
<tr>
<td></td>
<td>Immortality of the Soul, Note Y</td>
</tr>
<tr>
<td>533</td>
<td>Deffand, Madame du, remarks of, on the origin of our</td>
</tr>
<tr>
<td></td>
<td>knowledge</td>
</tr>
<tr>
<td>72</td>
<td>Degerando, M. remarks of, on the Kantian schools of</td>
</tr>
<tr>
<td></td>
<td>philosophy</td>
</tr>
<tr>
<td>200-1</td>
<td>Deity, Descartes' argument for the existence of</td>
</tr>
<tr>
<td>59</td>
<td>Dr Clarke's and Sir Isaac Newton's reasonings regarding</td>
</tr>
<tr>
<td></td>
<td>the existence of</td>
</tr>
<tr>
<td>140-1</td>
<td>Our idea of, associated with those of infinite space and</td>
</tr>
<tr>
<td></td>
<td>endless duration</td>
</tr>
<tr>
<td>141</td>
<td>Impossibility of finding proper language to describe the</td>
</tr>
<tr>
<td></td>
<td>nature and attributes of</td>
</tr>
<tr>
<td>147</td>
<td>D'Holbach, Baron, the probable author of the Système</td>
</tr>
<tr>
<td></td>
<td>de la Nature</td>
</tr>
<tr>
<td>181</td>
<td></td>
</tr>
</tbody>
</table>

Conderct, M. quotation from, respecting religious Machiavelism

His estimate of the comparative merits of Bacon, Descartes, and Galileo 56

His opinion that Descartes is entitled to be called the father of experimental physics, erroneous ibid.

Conscience, definition of 346

Formation of, from various elements 405

See also Ethics.

Continuity, law of, see Leibnitz.

Continuity, law of, in mechanics, first maintained by Galileo 476

Copernicus, results of his discovery of the true theory of the planetary motions 20

Publication of his Astronomia Instaurata 485

Its bad reception at first, and subsequent success ibid.

His discovery fully established by Kepler and Galileo 488-93

Views of, relative to gravitation 558

Corneille, M. character of his writings, by M. Suard 135

Cotes, Roger, published a valuable work upon the new analysis of Newton 531

Discoveries of, in mathematics 576

Sketch of his life and character 598

Coulobm on the resistance of fluids 610

Discovered the true law of magnetic attraction and repulsion 626

Sketch of his life ibid.

Experiments made by, to ascertain the best species of magnets 627

Courage and prudence not identical 379

Observations on 380

Cowley, Abraham, remarks on his ode entitled Destiny, Note O O 270

Crawford, Dr, views of, relative to heat 655

Crousaz, influence of Locke's doctrines upon 106

His principles mistaken by Pope and Warburton ibid.

Gibbon's estimate of his talents ibid.

Cubes root, the extraction of, first discovered by the Arabians 583

See also Algebra.

Cudworth, Dr, quotation from, on moral distinctions 20

He was the first who successfully combated the philosophical doctrines of Hobbes 43

Quotation from, on the perception of external objects ibid.

Influence of his principles on the theories of morals 44

Merits and defects of his intellectual system ibid.

His doctrines identical with those which were afterwards taught by Kant 191

Facts relative to his unpublished manuscripts 192

Quotations from, on the twofold origin of ideas 194-5

His intellectual system directed against the atheistical opinions of Hobbes 325

Merits of the work ibid.

Analysis of his Treatise concerning Eternal and Immutable Morality 362

Quotation from, on ideas not derived from sense ibid.

Cumberland, Bishop, character of his work De Legibus Naturae Disquisitio Philosophica 46
INDEX.

Descartes misunderstood in his doctrines concerning ideas Page. 109
See also Note X ibid.
His assertion of the freedom of the will, Note M M 267
Supposition of Coleridge that he anticipated Hobbes in his discourse on Method erroneous, Note T 428
Application of algebraic analysis to define the nature and investigate the properties of curve lines 444
Analysis of the work in which the discovery is contained ibid.
In philosophizing he pursued a course opposite to that recommended by Bacon 468
He assigned to experiment a subordinate place in his philosophy ibid.
Comparison of his system with that of Bacon 469
The theory of motion indebted to him 478
His notion regarding the preservation of the same quantity of motion in the universe ibid.
Pointed out the nature of centrifugal force ibid.
The first who attempted to reduce all the phenomena of the universe to the same law 493
Account of his theory of vortices 494
His claim to having discovered the true law of refraction ill founded 511
His theory of light, and attack on by Fermat 512
Discoveries of, in optics 512-13
He gave a full explanation of the rainbow, as far as colour was not concerned 513
Way in which he estimated the force of a moving body 538
The publication of his geometry an epoch in the history of analytical science 594
Account of his mathematical discoveries ibid.
He adopted the instantaneous propulsion of light as a fundamental principle in his dioptrics 631
Diderot, M. quotation from, on the formation of ideas 109
His erroneous estimate of Locke's discoveries regarding ideas 100-11
Quotation from, on liberty and necessity 150
A zealous abettor of atheism 181
Quotation from, showing that he seems to have thought differently at times, Note T T 274
Differentials and variations, distinction between 600
See also Geometry, New.
Diamond, from its refracting powers, determined by Newton to be inflammable 550
Diophantus of Alexandria, work of 441
Account of his system 591
Dioptrics, see Optics.
Dolland, John, sketch of his life 633
His grand discovery of the achromatic telescope 634
Domina, Antonio de, discovery of, respecting the rainbow 510
Dryden, John, compared Hobbes to Lucretius in haughtiness 322
Dufay detected the vitreous and resineus electricity 617
Dumont, M. benefits which the works of Bentham have received from his editorial labours 386
Dynamics, grounded on the composition of forces 602
Principle regarding oblique forces first distinctly stated by Leonardo da Vinci ibid.
Dynamics re-discovered by Stevinus 602
Expansion of the science by Huygens 603
Newton's extension of centrifugal forces to curve lines in general ibid.
Principles of virtual velocities and conservation of living forces ibid.
The first original work on the science composed by Euler ibid.
James Bernoulli's original mode of treating the problem of the centre of oscillation ibid.
Supposed to have led D'Alembert to the discovery of the general principle on which he framed his treatise of Dynamics 604
Advantages which the science derived from Maclaurin's method of expounding forces by co-ordinates ibid.
Original principle of Segner relative to a moving body which has received combined impulsions ibid.
Dynamics converted into an analytical science by D'Alembert 605
Principles on which the science depends ibid.
Outline of the reasoning on which Boscovich supported his theory of the constitution of the universe ibid.
General estimate of that theory ibid.

E.
Earle, Bishop, his description of a sceptic 61
Earth, figure and magnitude of 501
No correct information of, derived from antiquity ibid.
Attempt of Eratosthenes of Alexandria to measure an arc of the meridian ibid.
First modern measurement made with any degree of accuracy, by Snellius of Holland 502
Measurement of an arc by Norwood, Ternel, and Picard ibid.
The first observation, that a pendulum beats slower at the equator, made by M. Richer 503
Explanation of, by Newton and Huygens ibid.
Determination of the form of the earth (that of an oblate spheroid) by Newton 501
Errors committed by Cassini and Fontenelle in measuring an arc of the meridian 569
View taken by Maclaurin regarding the figure of 656
Measurement of degrees of latitude under the equator, and within the arctic circle 657-8
Measurement of a degree of latitude by La Caille 658
Measurement of degrees by Delambre, Mechain, Biot and Arago, Colonel Mudge, Colonel Colby, Colonel Lambton 659
Various estimates of the amount of depression at the poles 660
Accurate measurement of a perpendicular to the meridian, made by Colonel Brousseau ibid.
Estimate of the earth's figure by the vibrations of a pendulum ibid.
Convertible pendulum of Captain Kater ibid.

INDEX. 691

Earth, Mr Ivory's estimate of the earth's ellipiticy 661
Analytical investigations to determine the earth's figure, by Clairaut, Legendre, and Laplace ibid.
The demonstration completed by Ivory ibid.
Discussions regarding the figure of the earth led to an examination of the theory of the tides 662
Speculations as to the internal structure of the earth 675
Economists, the French, formation and objects of that sect 183
Education of the people, paramount importance attached to, by Lord Bacon 38
Effects of, used as an argument against man's free agency, Note N N 209
Edwards, Dr Jonathan, his scheme of necessity anticipated by Anthony Collins 148
The only metaphysician of whom America has yet to boast 203
High moral and intellectual character of 340
Where he confines himself to created beings, and his theory is intelligible, it coincides with that of universal benevolence 341
Makes virtue consist in a love of order ibid.
Electricity, observations on, by Gilbert 544
Began to assume a scientific form about the beginning of the eighteenth century ibid.
Accidental discovery of the conducting and non-conducting powers of bodies 544, 617
Considerable advances made in the science by Hauksbee 617
Fundamental facts arranged by Desaguliers ibid.
The two opposite kinds of electricity detected by Dufay ibid.
Invention of the Leyden phial ibid.
Experiments on the rapidity of electrical communication 618
Franklin's explanation of phenomena ibid.
The identity of electricity and lightning proved almost simultaneously in France and America 619
Conductors to buildings suggested by Franklin, but slowly adopted ibid.
Comparative advantages of terminating the conductors with points or knobs ibid.
Estimate of the speed of lightning ibid.
Observations on conductors ibid.
General inefficiency of these protectors ibid.
Estimate of the loss of life by lightning ibid.
Attempts made to prevent the formation of hail by erecting thunder-rods 621
Principle upon which the action of the electrophorus depends ibid.
Causes by which the electrical state of bodies is modified ibid.
Uses of the electrometer 622
Benumbing power of the torpedo dependent upon electricity, proved by Walsh ibid.
Sparks drawn from the Silurus electricus ibid.
This science has greatly contributed to the advancement of chemistry ibid.
Discovery of galvanism by Galvani 623
Volta's invention of his pile ibid.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity, voltaic pile only a modification of the electrical battery</td>
<td>623</td>
</tr>
<tr>
<td>Identity of electricity and magnetism proved</td>
<td>624</td>
</tr>
<tr>
<td>Theories proposed by Epinus and Cavendish</td>
<td>ibid.</td>
</tr>
<tr>
<td>For Magnetism, see that head.</td>
<td></td>
</tr>
<tr>
<td>Electrometers, uses of</td>
<td>622</td>
</tr>
<tr>
<td>Elliot, Sir Gilbert, letters of, to Mr Hume concerning his theory of causation</td>
<td>287</td>
</tr>
<tr>
<td>Emerson, William, account of his life and writings</td>
<td>597</td>
</tr>
<tr>
<td>Empedocles taught the true theory of lunar light</td>
<td>452</td>
</tr>
<tr>
<td>English language, its superiority over the French as an instrument of thought</td>
<td>299</td>
</tr>
<tr>
<td>Epicurean physics, Bacon's admiration of Gassendi's partiality for</td>
<td>71</td>
</tr>
<tr>
<td>Epicureans and Stoics</td>
<td>302</td>
</tr>
<tr>
<td>See also Ethical Philosophy.</td>
<td></td>
</tr>
<tr>
<td>Epicurus, character of</td>
<td>363</td>
</tr>
<tr>
<td>Respect paid to his system by his followers</td>
<td>305</td>
</tr>
<tr>
<td>Definition of motion</td>
<td>450</td>
</tr>
<tr>
<td>Explanation of light</td>
<td>506</td>
</tr>
<tr>
<td>Equations, see Algebra.</td>
<td></td>
</tr>
<tr>
<td>Homogeneous, explanation of</td>
<td>592</td>
</tr>
<tr>
<td>Erasmus, effect of his writings in accelerating the Reformation</td>
<td>15</td>
</tr>
<tr>
<td>Eratosthenes of Alexandria, attempt of, to measure an arc of the meridian</td>
<td>601</td>
</tr>
<tr>
<td>Ethical philosophy, Bacon's disquisitions on</td>
<td>35</td>
</tr>
<tr>
<td>Hobbes's ethical principles</td>
<td>42</td>
</tr>
<tr>
<td>Cudworth's system of ethics</td>
<td>44</td>
</tr>
<tr>
<td>Little attention paid to, at the era of the Restoration</td>
<td>46</td>
</tr>
<tr>
<td>Quotation from Barrow on</td>
<td>ibid.</td>
</tr>
<tr>
<td>Dr Law's system of ethics</td>
<td>171-2</td>
</tr>
<tr>
<td>Division of the subject</td>
<td>296-7</td>
</tr>
<tr>
<td>Dr Paley's views of the moral sense</td>
<td>298</td>
</tr>
<tr>
<td>Ancient ethics, retrospect of</td>
<td>299</td>
</tr>
<tr>
<td>Ethical philosophers of Greece</td>
<td>300</td>
</tr>
<tr>
<td>Account of Plato's writings</td>
<td>301</td>
</tr>
<tr>
<td>Account of Aristotle's works</td>
<td>302</td>
</tr>
<tr>
<td>Epicureans and Stoics, philosophy of</td>
<td>ibid.</td>
</tr>
<tr>
<td>Characters of Epicurus and Zeno</td>
<td>363</td>
</tr>
<tr>
<td>System of the Stoics</td>
<td>304</td>
</tr>
<tr>
<td>Estimate of the practical philosophy of Greece</td>
<td>305</td>
</tr>
<tr>
<td>Literature of Alexandria</td>
<td>306</td>
</tr>
<tr>
<td>Scholastic ethics</td>
<td>307</td>
</tr>
<tr>
<td>Jewish and Mahomedan writers</td>
<td>308</td>
</tr>
<tr>
<td>Augustin's system</td>
<td>309</td>
</tr>
<tr>
<td>Doctrines of Aquinas, Scotus, and Bradwardine</td>
<td>ibid.</td>
</tr>
<tr>
<td>William of Ockham's and John Gerson's doctrines</td>
<td>310</td>
</tr>
<tr>
<td>Estimate of the genius of Aquinas</td>
<td>ibid.</td>
</tr>
<tr>
<td>Notice of the Mystics</td>
<td>311</td>
</tr>
<tr>
<td>Temptations and errors of the scholastic age</td>
<td>312</td>
</tr>
<tr>
<td>Nominalists and Realists</td>
<td>ibid.</td>
</tr>
<tr>
<td>Extensive influence of Aquinas's system</td>
<td>312-13</td>
</tr>
<tr>
<td>General estimate of scholastic ethics</td>
<td>313</td>
</tr>
<tr>
<td>Spanish writers on this subject</td>
<td>314</td>
</tr>
<tr>
<td>See also Note L</td>
<td>422</td>
</tr>
<tr>
<td>Grotius's views of Carneades's principles and arguments</td>
<td></td>
</tr>
<tr>
<td>Hobbes's principles, see Hobbes.</td>
<td>316</td>
</tr>
</tbody>
</table>

INDEX.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethical philosophy—Reason and passion, difference between the acts resulting from</td>
<td>331</td>
</tr>
<tr>
<td>A regard for self considered the first principle which prompted men and other animals to activity</td>
<td>342</td>
</tr>
<tr>
<td>Dawn of a better theory of ethics</td>
<td>ibid.</td>
</tr>
<tr>
<td>Difference between self-love and the benevolent affections</td>
<td>344</td>
</tr>
<tr>
<td>Definition of the moral sentiments</td>
<td>346</td>
</tr>
<tr>
<td>Moral faculty of conscience explained</td>
<td>ibid.</td>
</tr>
<tr>
<td>Avarice not a principle of human nature</td>
<td>366</td>
</tr>
<tr>
<td>Analysis of the principle of hoarding</td>
<td>ibid.</td>
</tr>
<tr>
<td>Analysis of self-love</td>
<td>ibid.</td>
</tr>
<tr>
<td>Origin of benevolence</td>
<td>367</td>
</tr>
<tr>
<td>Pity one of the grand sources of benevolence</td>
<td>ibid.</td>
</tr>
<tr>
<td>Origin of the sense of justice</td>
<td>ibid.</td>
</tr>
<tr>
<td>Breach of the rules of justice crime, observation of them duty</td>
<td>ibid.</td>
</tr>
<tr>
<td>Remarks on the performance of duty</td>
<td>ibid.</td>
</tr>
<tr>
<td>Power of association in regard to remorse</td>
<td>368</td>
</tr>
<tr>
<td>In the language of all mankind, the moral faculty is uniformly spoken of as one</td>
<td>ibid.</td>
</tr>
<tr>
<td>Sentiment of moral approbation</td>
<td>ibid.</td>
</tr>
<tr>
<td>Observations concerning right and wrong, duty and virtue</td>
<td>ibid.</td>
</tr>
<tr>
<td>Conscience constantly tends to act on the will and conduct of the man</td>
<td>369</td>
</tr>
<tr>
<td>Comparative merits of various religions</td>
<td>374</td>
</tr>
<tr>
<td>Essential to ethics that they should contain principles recognised by men of every religion</td>
<td>ibid.</td>
</tr>
<tr>
<td>Remarks on honour, cowardice, and dwelling</td>
<td>375</td>
</tr>
<tr>
<td>Remarks on the social affections and the malevolent passions</td>
<td>380</td>
</tr>
<tr>
<td>Definition of humility</td>
<td>381</td>
</tr>
<tr>
<td>Observations on the love of praise</td>
<td>382</td>
</tr>
<tr>
<td>The existence of that passion shows the power of disinterested desire</td>
<td>ibid.</td>
</tr>
<tr>
<td>General reflections on utility and virtue</td>
<td>ibid.</td>
</tr>
<tr>
<td>The frequent appeal to utility tends to lessen the intrinsic pleasure of virtue</td>
<td>383</td>
</tr>
<tr>
<td>Evils that would result from a slavish adherence to the principle of utility</td>
<td>ibid.</td>
</tr>
<tr>
<td>Direct object of ethics</td>
<td>384</td>
</tr>
<tr>
<td>Intimately connected with law</td>
<td>ibid.</td>
</tr>
<tr>
<td>Remarks on Stewart's ethical theory</td>
<td>393</td>
</tr>
<tr>
<td>Principal object of conscience to govern our voluntary exertions</td>
<td>ibid.</td>
</tr>
<tr>
<td>Manner, remarks on, as an index of character and disposition</td>
<td>395</td>
</tr>
<tr>
<td>Dr Thomas Brown's views relative to sympathy and conscience</td>
<td>399</td>
</tr>
<tr>
<td>Defect of the term association</td>
<td>401</td>
</tr>
<tr>
<td>Defect of the term suggestion</td>
<td>ibid.</td>
</tr>
<tr>
<td>Relation between virtue and utility</td>
<td>ibid.</td>
</tr>
<tr>
<td>Beneficial tendency an essential quality of virtue</td>
<td>402</td>
</tr>
<tr>
<td>Conscience an essential part of human nature</td>
<td>ibid.</td>
</tr>
<tr>
<td>The laws of God founded on the principle of promoting the happiness of his creatures</td>
<td>ibid.</td>
</tr>
<tr>
<td>Man incapable of solving the question why evil exists under the government of a good and benevolent Being</td>
<td>ibid.</td>
</tr>
</tbody>
</table>
INDEX.

693

Ethical philosophy—Virtue must be loved for its own sake before progress can be made in it 403
There are primary pleasures, pains, and even appetites, in human nature 405
Number of undervield principles not determined ibid.
The theory that supposes the smallest number of ultimate principles to be preferred ibid.
Three conditions which it must be subject to ibid.
The philosophical world divided into two sects; the partisans of the selfish principle, and the advocates of benevolence ibid.
Analogy derived from the material world relative to secondary desires or pleasures 406
The latter as real, and in some instances as indestructible, as primary ones ibid.
Their origin ibid.
Analysis and definition of conscience 407
Operation of this power in reference to vice ibid.
Anger, properly regulated, becomes a sense of justice ibid.
Formation of magnanimity ibid.
Conscience the result of all the moral sentiments 408
Private and social feelings become blended with conscience 409
Coincidence of morality with individual interest ibid.
The formation of conscience from various elements contributes to give it the appearance of simplicity and independence ibid.
Difference between the passions and conscience 410
Conscience rarely contemplates the distant welfare of sentient beings; the elements of which it is composed do ibid.
Operation of conscience in reference to religious systems 411
Review of Scotch ethical philosophy ibid.
The Scotch moralists avoided the selfish system ibid.
Dr T. Brown revolted against the Scotch system ibid.
Ethical philosophy of Germany; Kant 412
See also Kant.
Observations on the two systems of ethics; that which considers conscience as supreme, and that of the partisans of undervield principles 413
The relation of conscience to will 414
Conscience composed of emotions and desires, which contemplate dispositions dependent on the will ibid.
Etymology, value of Leibnitz’s speculations on 136
See also Note I I 262
Euclid collected the elementary truths of geometry 435
Laid the foundation of optics and catoptrics 504
His work, as a book of instruction in geometry, unfitted for the present day 684
Euler, supremacy of, as a mathematical analyst 578
The real founder of the theory of continued fractions 589
Various applications of the theory, made by ibid.
His extension of the properties of the angular sections 596
His invention of a method to determine particular integrals 599
Euler, his explication of the principles of partial differences 600
He composed the first original work on dynamics 603
Euler, contributions of, to the science of dynamics 608
Theory of, regarding the principle of magnetism 626
Attempt of, to destroy the coloured margin of a fo-
cial image 633
Calculations and discoveries of, regarding the plan-
tary motions 665-6
Exhaustions of the ancients, see Geometry.
Eye, structure of, first analysed by Kepler 509

F.

Feeling, observations on Dr T. Brown’s application of the term 397
Fénelon, the beauty of his writing prejudicial to his re-
putation as a philosopher 82
Characteristic excellence of 83
His Adventures of Telemachus, and Dialogues of the Dead ibid.
On commerce, and the necessity of permanent laws ibid.
His political views developed, chiefly in his Direction pour la Conscience d’un Roi ibid.
Quotation from, on liberty of conscience ibid.
Contest between him and Bossuet on the pure love of God 335
Amiable and exalted character of ibid.
Causes of his being distrusted by Louis XIV. ibid.
His generous defence of Madame Guyon 336
His banishment from court, and condemnation by a bull of Pope Innocent XII. ibid.
Ferguson, Dr, remarks of, on the history of language 176
Fermat, his method of drawing tangents to curves 445
Fermat, his method of drawing tangents to curves 445
Views of, regarding refraction 512
Fernel, measurement of an arc of the meridian by 502
Fichte, speculations of, on the meaning of the pronoun I 200
Filangieri, the Chevalier de 237
Florentine academicians the first to employ a dense fluid instead of air in constructing thermometers 640
Fluxions, discovery of, by Newton 519
See also Geometry, New.
Fontenelle, M. noted maxim of 23
Reasons for classing him with his early contempo-
raries 156
Account of his early productions 157
His History of the Academy of Sciences, and Eloge of the Academicians, the basis of his fame 158
Unrivaled powers of, as a writer of eloges ibid.
Effects of these two works on the improvement of youth 159
Aspired to be the philosopher of the Parisian circles ibid.
His character 160
Voltaire’s eulogy of ibid.
Forum. Idols of, see Bacon, Lord.
Fractions, decimal, introduced into Europe by Regiom-
ontanus 435
See also Algebra and Arithmetic.
Continued, Euler the real founder of 589
France, progress of, in literature and philosophy during the seventeenth century 49
France—Adlison's censure of the French writers of his day 55
Sterility of invention in the metaphysical writers of, between the time of Descartes and Condillac 172
Disposition of the French philosophers of the eighteenth century to push their theories to extremes 180-81
Literature of the eighteenth century divided into two epochs, Note U U 277
The writers of, on the philosophy of mind excel in painting manners, and observing varieties of intellectual character 184
French and German schools of philosophy contrasted 186-7
Franklin, Benjamin, his theory of electrical phenomena described 618
Estimate of his talents ibid.
Proved the identity of electricity with lightning 619
Fraunhofer improved achromatic glasses 635
Discovered that the coloured spaces of the spectrum are subdivided by numerous lines 636
Superiority of the flint-glass produced under his inspection ibid.

G.

Gadolin of Abo, consequences of his introducing the term specific heat into science 645
Gallani, M. l'Abbé, his views regarding free agency 197
Galileo, his application of the law of continuity confined to physics, Note D D 258
Comparison between him and Bacon, by Hume 469
Points in which Bacon excelled all other men 470
Revolution which he effected in science 474
Analysis of his treatise Della Scienza Mechanica 475
Gave not only the theory of the lever, but also that of the inclined plane and screw ibid.
Discovered that heavy and light bodies descend with equal velocity in vacuo 476
That the great and the small vibrations of the same pendulum are performed in the same time ibid.
And that the acceleration of falling bodies is uniform ibid.
Determined the path described by a projectile to be a parabola ibid.
Estimate of his genius 477
His discoveries in mechanics contributed to prove the truth of the Copernican system ibid.
Construction of the telescope 490
Discovers two of Jupiter's satellites 491
Observations and discoveries on the other planets ibid.
These called down the censure of the church, being supposed to be adverse to Scripture 492
Brought before the Inquisition, and made to recant ibid.
His discoveries, with those of Kepler, established the Copernican system ibid.
Results of this 493
Generalization of the property of the lever by 533
His views regarding gravitation 550

Gallois, Abbé, Fontenelle's apology for his opposition to the new geometrical analysis 534
Galvani, account of his discovery of galvanism 623
Modes of constructing a galvanic battery ibid.
Claims of the Germans to this discovery ibid.
Gases, methods of determining the relative densities of 611
Gassendi, contrast between him and Descartes 70
Diligently studied the works of Bacon ibid.
His partiality for the Epicurean physics 71
His argument against Descartes now considered as frivolous ibid.
His claims to the discovery of the doctrine concerning the origin of our knowledge considered 72
Advantages he possessed over Descartes in renouncing the doctrine of innate ideas 73
His merits as a philosopher and writer ibid.
Memorial of his orthodoxy as a Roman Catholic divine quoted, Note R 248
Notices of some of his most distinguished followers 107, 108
Illustration of his doctrine of ideas by the authors of the Port-Royal Logic 109
Possessed great learning and profound understanding 495
Explained the connection between the laws of motion and the motion of the earth ibid.
First observed the transit of a planet over the sun's disc ibid.
Gauss, curious discovery of, in geometry 585
His discussion of the general theory of quadratic factors or impossible roots 596
Gay, Mr, account of his dissertation concerning virtue 170
Suggested to Hartley the idea of association 364
Genovesi, notice of his writings 202
Gentilis, Albericus, merits of, as the precursor of Grotius 25-5
An apologist for Machiavelli, Note C 233
Geometry, the inventive and elegant genius of the Greeks beautifully displayed in 435 & 580-81
Contributions to the science by Euclid, Archimedes, and Apollonius 435
Geometrical analysis one of the most beautiful inventions in the mathematics ibid.
Advanced by the works of Regiomontanus ibid.
Introduction of trigonometry and decimal fractions ibid.
Werner's contributions to the science 436
Benedetto, Maurolycus, and Cavallieri ibid.
See also these heads.
Explanations of the exhaustions of the ancients ibid.
The idea of quantities infinitely great and small first introduced into the science by Kepler 438
Generation of solids by means of ibid.
Kepler's view of the composition of circles ibid.
Observations on lines and areas ibid.
Purpose served by the doctrine of quantities infinitely small in size and infinitely great in number 439
Of the cycloid: difficulty in determining who first discovered its area ibid.
Discovery claimed by Torricelli and Roberval ibid.
INDEX.

Geometry—Properties of the cycloid
 Valuable results of the introduction of algebra 439
 Analysis of Descartes' Geometria 444
 Fermat's method of drawing tangents to curves 445
 Difference between the geometrical and algebraic
 method of treating quantity ibid.
 High value set on the geometrical construction of
 problems by the Greeks 563
 Attempts to ascertain the relation of the diameter
 to the circumference ibid.
 Incommensurability of the circle first demonstrat-
 ed by Lambert 584
 Best elementary works on
 Elementary plane rests on the combined properties
 of the straight line and the circle ibid.
 Instruments required in solving the common prob-
 lems 593
 Best manner of treating lines and curves of the
 second order ibid.
 Improvement made in trigonometry during the
 last century ibid.
 Account of Descartes' discoveries 594

Geometry, New, state of the sciences when Newton arose 513
The problem of the quadrature of the circle solved.
 by Newton ibid.
 Account of Wallis's Arithmetic of Infinites ibid.
 Discovery of Fluxions by Newton 519
 Revealed to various philosophers before being pub-
 licly made known ibid.
 Newton the first, and Leibnitz the second, inven-
 tor of the new infinitesimal analysis 529
 Controversy relative to the discovery 521
 Feelings displayed on both sides ibid.
 Problems proposed by the parties for solution 522
 Produced much rancour amongst philosophers 523-4
 Steps by which the mathematical sciences were
 prepared for the new analysis 525
 This analysis made its first appearance in the
 method of exhaustions ibid.
 Advanced a step in Cavalieri's method of indivisibles ibid.
 Descartes' application of algebra to the geometry
 of curves ibid.
 Method of Cavalieri improved and extended by
 Torricelli, Barrow, and others ibid.
 Lastly appeared Newton and Leibnitz, who made
 their discoveries separately 526
 Rejection of the higher powers of the differences
 of the variable quantities by Leibnitz, liable to ob-
 jection ibid.
 The two problems into which the analysis, thus
 constituted, is divided 526-8
 Manner in which Newton proceeded 526
 The fluxionary and differential calculus, two mo-
 difications of one general method 527
 The introduction of the analysis greatly enlarged
 the domain of the mathematical sciences ibid.
 Problems of maxima and minima, to which it was
 extended ibid.
 Is peculiarly adapted to physical researches 528
 Problem of integration explained 528-9

Geometry, New—Calculus first made publicly known by
 Leibnitz 530
 Writers by whom it was explained and improved 531-2
 Its firm establishment in Europe 532
 English mathematicians fell behind the French in
 the integrations of differential or fluxional equa-
 tions 533
 Opponents of the new method ibid.
 Contributions to the science by Cotes, Taylor,
 Bradley, Maclaurin, and others 576, 598-9
 The Italian mathematicians contributed to the ad-
 vancement of the higher calculus 599
 Euler's method of determining particular integrals ibid.
 Extension of the modern calculus by that of partial
 differences ibid.
 Application of it by Euler and D'Alembert 600
 Calculus of variations, the last great accession to
 the higher analysis ibid.
 Distinction between differentials and variations ibid.
 On the integration of differential equations ibid.
 Modifications of the theory of the infinitesimal
 calculus ibid.
 The method of prime and ultimate ratios preferred
 by Newton in the Principia 601
 Improved by Robins and Lauder ibid.
 Method of derivative functions ibid.
 Works on prime and ultimate ratios 602
 Gerbert, a monk of the Low Countries, first introduced
 into Europe the Arabic notation 441
 German philosophy contrasted with that of France 186-7
 Censure of the terms employed by the philoso-
 phers of Germany 219-20
 Language, value of, in philosophical discussions 295
 Ethical philosophy of, see Ethics.
 Gerson, John, doctrines held by 310
 Gibbon, Edward, his estimate of the talents of Crouzaz,
 and account of his own studies in 1776 106
 Propensity of, to be indecent in his writings 154
 Gilbert, notice of his treatise on the magnet 454, 628
 Made an enumeration of the bodies which can be
 rendered electrical by friction 544
 Discoveries made by, in magnetism 628
 Girard, Albert, a Flemish mathematician, made discov-
 eries in algebra 443
 Analysis of his character, and notice of his discov-
 eries 592
 Glanvill, Joseph, character of his work entitled Stepsis
 Scientifica 42
 His illustration of Descartes' doctrines 64
 God, see Deity.
 Goniometry, the name under which Euler's Arithmetic
 of Series is cultivated in Germany 567
 Government, monarchical, improved in modern times 24
 Grace, controversy of Malebranche regarding 74
 Grammar, Bacon's profound reflections on 34
 Gravitation, discovery of, by Newton 564
 See also Newton.
 Gray, Mr, his estimate of the merits of Rousseau's Emile 184
 Gray and Wheeler, their discovery of the conducting
 and non-conducting powers of bodies 544, 617
INDEX.

Halley, physics greatly indebted to Voyage to St Helena, with additions to the catalogue of stars ibid.
He was the first to prove evaporation sufficient to maintain the flow of springs and rivers 543
Voyages of, to the Atlantic and Pacific Oceans ibid.
His account of the winds peculiar to the tropics ibid.
Sketch of his life, works, and character 581
Demonstrated that at equal heights in the atmosphere the density of the air diminishes in a continued proportion 613
His hypothesis explanatory of magnetism 625
Account of his voyage to find the longitude at sea by the variation of the compass 626
Discovery of, regarding comets 667
Harpe, La, his eulogy of Condillac 116
His definition of reflection ibid.
Harrington, merits of his Oceana 47
Harriot, Thomas, improvements by, in Algebra 443
Observed the spots on the sun scarcely a month later than Galileo ibid.
Hartley, Dr, doctrine of, concerning the origin of our knowledge 115
Causes which led him to produce his Theory of Human Nature 170
Coincidence between his speculations and those of Charles Bonnet 170–1
Dr Priestley's opinion of his merits 171
His Observations on Man distinguished by the union of originality with modesty 362
Disfigured by the affectation of mathematical forms ibid.
State of physics at the time of its appearance ibid.
The author stopped short of materialism 363
He, along with Condillac and Bonnet, mutilated Locke's doctrine regarding reflection ibid.
Agreed with Condillac in referring all the intellectual operations to the association of ideas ibid.
Coincidence with Hobbes in part of his doctrine ibid.
His principal fault rash generalization ibid.
Superior to Condillac 364
Derived the idea of association from Mr Gay ibid.
Views of, respecting the love of money 365
Estimate of his talents, and merits and defects of his work ibid.
Views of, concerning gratitude, veneration, and love 369
His system regarding disinterestedness superior to systems prior to Butler and Hutcheson 370
Value of that part relating to the rule of life ibid.
Hauksbee, the best experimenter of his time 617
Heat, effects of, on the organic world 639
Doctrine of, now advanced to the rank of a science ibid.
Bacon's and Aristotle's opinion of its nature 640
Views of the alchemists ibid.
Invention of the thermometer by Sanctorio ibid.
The air thermometer of Drebbel ibid.
Methods of graduating the tube of thermometers ibid.
Newton's and Reaumur's modes 641
Fahrenheit's thermometer 642

Greece, remarks concerning the ancient philosophy of 9
Gregory, Dr John, remarks of, concerning the union between mind and matter 224
Gregory, James, a profound and inventive geometer; account of his work Optica Promota 513
Gregory, David, sketch of his life, works, and character 581
Grimaldi, a Jesuit, his discovery of the diffraction or inflection of light 514
Grimm, Baron de, his remarks on a maxim of Fontenelle 23
Observations of, on liberty and necessity 150
See also Note P P
An abettor of atheism 181
Grotius, influence of his work De Jure Belli et Pacis 35, 84
Period when the writings of, began to be generally studied 46
His opinion of Raimond de Sebonde's principles 52
Scope and character of his treatise De Jure Belli et Pacis 85, 89
 Undertaken at the request of his learned friend Peireskius 85
Gave rise to a professorship at Heidelberg, for teaching the law of nature and nations ibid.
Difficulty of ascertaining the precise object aimed at in the systems formed upon his principles ibid.
Arrangement of his views under heads 86
His fundamental principle ibid.
In theory he was aware of the distinction between natural and municipal laws 91
Merits of Samuel de Coceii's commentary on his great work 92
His History of the Netherlands, Note B 417
His treatise on the Laws of War and Peace contains the best account of the general principles of morals prevalent in Christendom after the close of the schools 315
Remarks of, concerning the ethical principles of Carneades 316
Guardian, the, quotation from a paper in 64
Guericke, Otto, invention of the air-pump by 480
Guyton-Morveau, unsuccessful attempt of, to ground the theory of electric attraction on the principle of capillary action 615
Guyon, Madame, notice of her writings 335
When falsely charged with crime, and imprisoned, her cause was espoused by Fendel 336
H.

Hadley, Mr, the first who got a reflecting telescope made for his private use 632
Gave a new impulse to astronomy by the invention of the quadrant of reflection ibid.
Hail, attempts made to prevent the formation of, by erecting thunder-rods 621
Hakewill, Dr George, on the decline of intellectual power in modern times, Note F 240
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat—Boerhaave's views as to the distribution of heat</td>
<td>642</td>
</tr>
<tr>
<td>Vague speculations of Wolfsius ibid.</td>
<td></td>
</tr>
<tr>
<td>Dr Martin the first judicious writer on heat ibid.</td>
<td></td>
</tr>
<tr>
<td>Construction of the thermometer proposed by Celsius 643</td>
<td></td>
</tr>
<tr>
<td>Discovery of the conglutination of quicksilver ibid.</td>
<td></td>
</tr>
<tr>
<td>Discovery of latent heat by Dr Black 644</td>
<td></td>
</tr>
<tr>
<td>Leslie's observations on the increase and diminution of temperature by the chemical union of bodies ibid.</td>
<td></td>
</tr>
<tr>
<td>Experiments of Wilcke and Lavosier 645</td>
<td></td>
</tr>
<tr>
<td>The introduction of the term specific heat ibid.</td>
<td></td>
</tr>
<tr>
<td>Determination of the absolute zero ibid.</td>
<td></td>
</tr>
<tr>
<td>Philosophical views of Dr Crawford ibid.</td>
<td></td>
</tr>
<tr>
<td>Experiments and views of Scheele 646</td>
<td></td>
</tr>
<tr>
<td>Invention of the pyrometer 647</td>
<td></td>
</tr>
<tr>
<td>A thermometer to measure the higher degrees of heat still a desideratum ibid.</td>
<td></td>
</tr>
<tr>
<td>Description of metallic and register thermometers ibid.</td>
<td></td>
</tr>
<tr>
<td>Invention of the differential thermometer 648</td>
<td></td>
</tr>
<tr>
<td>The instrument first intended to serve as an hygrometer, but modified so as to form a photometer 649</td>
<td></td>
</tr>
<tr>
<td>Various applications of the hygrometer 650</td>
<td></td>
</tr>
<tr>
<td>This thermometer employed to ascertain the mode of the propagation of heat amongst bodies 651</td>
<td></td>
</tr>
<tr>
<td>Prodigious elasticity of heat ibid.</td>
<td></td>
</tr>
<tr>
<td>Reflection and radiation of 652</td>
<td></td>
</tr>
<tr>
<td>Description of the pyroscope 653</td>
<td></td>
</tr>
<tr>
<td>Invention and description of the refrigerator ibid.</td>
<td></td>
</tr>
<tr>
<td>Change produced in the mechanical arts by the application of heat 654</td>
<td></td>
</tr>
<tr>
<td>Invention of Papin's Digester ibid.</td>
<td></td>
</tr>
<tr>
<td>Gradual improvement of the steam-engine ibid.</td>
<td></td>
</tr>
<tr>
<td>Helmont, Van, contributions of, to chemistry ibid.</td>
<td></td>
</tr>
<tr>
<td>Helvetius, remarks on his extension to metaphysical subjects of Leibnitz's law of continuity 135</td>
<td></td>
</tr>
<tr>
<td>Quotations from his work De l'Esprit concerning the origin of ideas 136</td>
<td></td>
</tr>
<tr>
<td>His theory of the inferiority of the souls of brutes 180</td>
<td></td>
</tr>
<tr>
<td>His observations on modifications of genius 185</td>
<td></td>
</tr>
<tr>
<td>Henry VII. the laws of, eulogised by Lord Bacon 37</td>
<td></td>
</tr>
<tr>
<td>Herschel, Dr, discovered that the hottest part of the spectrum lies beyond the red ray 636</td>
<td></td>
</tr>
<tr>
<td>Discovery of a new planet by 672</td>
<td></td>
</tr>
<tr>
<td>Instance of the power of his telescope 675</td>
<td></td>
</tr>
<tr>
<td>Hervert, Chancellor of Bavaria, notice of his tables of the powers and products of numbers 590</td>
<td></td>
</tr>
<tr>
<td>Hevelius of Dantzic opposed the application of the telescope to astronomical instruments 497</td>
<td></td>
</tr>
<tr>
<td>Hipparchus, contributions of, to the science of astronomy 482</td>
<td></td>
</tr>
<tr>
<td>Hobbes, philosophical principles of 40</td>
<td></td>
</tr>
<tr>
<td>Arrogant confidence of his character, Note II 241</td>
<td></td>
</tr>
<tr>
<td>Estimate of human nature involved in his fundamental doctrine 41</td>
<td></td>
</tr>
<tr>
<td>His ethical interwoven with his political system 42</td>
<td></td>
</tr>
<tr>
<td>Addison's opinion of his writings ibid.</td>
<td></td>
</tr>
<tr>
<td>Their extensive influence 43</td>
<td></td>
</tr>
<tr>
<td>His antagonists; Cudworth ibid.</td>
<td></td>
</tr>
<tr>
<td>Coincidence between his followers and the Antinomians 44</td>
<td></td>
</tr>
</tbody>
</table>

Hobbes—His remark upon the comparative utility of reading and thinking 45 |
His principles traced by Cudworth to the remains of the ancient sceptics ibid. |
Obsolete as a writer on the law of nations 90 |
His doctrine regarding the origin of our knowledge coincided with that of Gassendi 114 |
Servility of his political principles 144 |
Quotation from, on necessity, Note MM 268 |
Account of his early studies, and works in general 317 |
Causes to which he owed his influence ibid. |
Arrogance and dogmatism of his character 318 |
His style a permanent foundation of his fame ibid. |
His system moral, religious, and philosophical, depended upon his political principles 319 |
Debasing character of his ethical system ibid. |
He does not distinguish between thought and feeling 320 |
Errors which have crept into moral philosophy from this original confusion 321 |
No trace of the moral sentiments to be found in his writings 322 |
He represents a deliberate regard to personal advantage as the sole motive of human action ibid. |
His low estimate of human nature agreeable to the court of Charles II. ibid. |
Compared by Dryden to Lucretius in haughtiness ibid. |
Antagonists who rose up against him 323 |
Honour, observations on the law of 375 |
Hooke, Robert, laid claim to Huygens's discovery of the application of the pendulum to clocks 479 |
First applied spiral springs to watches ibid. |
Opposition of, to the optical discoveries of Newton 551 |
Made a near approach to the truth relative to universal gravitation 559 |
Horner, Francis, extract from a letter of his, relative to Machiavelli 235-6 |
Estimate of his character 397 |
Horrox calculated the transit of Mercury in 1631, and accurately foretold the time 495 |
He was among the first who appreciated the discoveries of Kepler ibid. |
Died very young, but left behind him matter which Newton adopted ibid. |
Hume, David, his estimate of Machiavelli 24 |
On the improvements made in modern times on monarchical government ibid. |
On the statutes of Henry VII. 37-8 |
On the influence of the civil war of 1640 48 |
Anticipated by Malebranche in his reasoning on cause and effect 78 |
Appearance of his Treatise of Human Nature 206 |
Objects of the work 207 |
The execution did not correspond with the design ibid. |
Effects produced on the literature of his country by the publication of the Treatise 208 |
His division of the objects of knowledge ibid. |
Admitted only the existence of impressions and ideas 209 |
His aim was to establish universal scepticism ibid. |
INDEX.

Hume carried his sceptical mode of reasoning further than any modern philosopher except Bayle ibid.
His refutation of the attempts to demonstrate self-evident truths 210
Benefits which have resulted from his reasonings ibid.
Examination of certain conclusions contained in his theory of causation 211
His distinction between the sensitive and cogitative parts of our nature 212
His demonstration that our belief in the permanency of the laws of nature is not founded upon any process of reasoning ibid.
Extract concerning the course of nature and the succession of our ideas ibid.
His conclusion regarding causation did not affect the doctrines it was brought forward to subvert 213
Different opinions regarding the laws of nature ibid.
His reformation of the philosophical vocabulary ibid.
His remarks on cause and effect quoted ibid.
Letter of, containing an account of his Theory of Causation, Note C C C 286
Light in which his scepticism was viewed by Sir Gilbert Elliot and others 215
His answer to the arguments of the former ibid.
Instance of his sincerity in the search after truth 216
Opinion of his essays entertained by Butler 217
His notion that only the images of external things are perceived by the mind 219
His treatise unfavourable to the progress of metaphysical science 221
Virtuous private character of, represented in Mackenzie's story of La Roche 352
General scope of his Treatise of Human Nature 353
Anticipated in some of his doctrines, Note Q 425
Absurdity of universal scepticism 354
Considered his Inquiry concerning the Principles of Morals as the best of his writings ibid.
His style distinguished by elegant perspicuity ibid.
Did not imitate Voltaire, as Dr Johnson asserted ibid.
The Inquiry affords the finest specimen of his style 355
Chief merit of the work ibid.
Distinguishes justice from other parts of morality ibid.
Treats vice with too much indulgence ibid.
In his Inquiry he failed to bring domestic fidelity prominently forward 356
It is also disfigured by paradox ibid.
His general doctrine stated 357
His Inquiry entitled to rank with the greatest ethical treatises in our language ibid.
Account of his last illness, by Dr Cullen, Note P 424
Humility, remarks concerning
Hutcheson, Dr Francis, the father of metaphysical philosophy in Scotland 204, 349
Chief object of his writings 205
Tried his strength by writing letters to Dr Clarke 348
Coincided with Butler in maintaining that there are disinterested affections, and a distinct moral faculty, in human nature 348
Superior in style to Butler, but inferior in originality and philosophical courage ibid.

Hydrodynamics, fundamental principles of
Important treatise on, by Daniel Bernoulli ibid.
Subject discussed by D'Alembert and Euler ibid.
The chief difficulties of the theory discussed by Lagrange ibid.
The theory of the motion of fluids has not arrived at more precise conclusions than those assigned to it by Newton ibid.
Theoretical and practical treatise of Bosse ibid.
Experiments of Smeaton ibid.
Method of investigating the resistance of fluids ibid.
Experiments of Robins, Borda, Hutton, and Coulomb, on the velocities of moving bodies 610
Observations on the flow of water and air through pipes ibid.
Amperé's experiment on the projection of water through a vertical slit 611
Hygrometer, invention and description of
Various applications of the instrument 650-1

Hypothese, the true use of
INDEX.

I.

Iceland crystal, double refraction of 514
Ideal theory, by whom first assailed 80
Berkeley's theory of idealism 165
The object of Dr Reid to refute it 218
Idealism, meaning of the term as employed in philosophy 190
Ideas, M. Allamand's criticism on Locke's argument against innate ideas 107
See also Note T.
Arnauld's doctrines 250
Cudworth's views 194-5
Diderot's erroneous estimate of Locke's discoveries 109-11
Gassendi's views, see Gassendi.
Hume's doctrine 209
Helvetius's views 136
Kant's opinions, Note X X 279
Leibnitz's views 123
Locke's views 109
Shaftesbury's opinions 118
Voltaire's views, Note X 251
Remarks concerning, Note Q 247
Identity, personal, Dr Butler on 217
Imagination, D'Alembert's identification of, with abstraction, incorrect 6
The province of, narrow when compared with that of observation and reason 79
Addison's papers on the pleasures of 161
Pleasures of, in most cases originate in association 388
India, metaphysical and ethical remains of 203
Influx, definition of the word, Note A A 234
Instinct, signification of the term 388
Paley's view of 226
Integration, problem of 528
Intellectual system of Cudworth 44
Italy, notice of the metaphysical writers of the eighteenth century belonging to 202
Imaginative and reasoning powers exhibited by the natives of 203
Ivory, Mr, his estimate of the earth's ellipticity 601
Completed the demonstration of the earth's figure ibid.

J.

Jaquelot, M. quotation from, illustrative of Leibnitz's theory of pre-established harmony 124
Johnson, Dr, his opinion of ROCHEFORCAUD'S maxims 54
Jenson, Ben, his eulogium on Lord Bacon's forensic eloquence, Note F 239
His connection with Bacon 240
ibid.
Jupiter, planet of, see Astronomy.
Jurisprudence, philosophical, Bacon on 36
Natural, system of Grotius 86
Origin of the law of nature and the law of nations 89
Opinions of different philosophers concerning 90
Alliance established between the law of nature and the law of nations productive of good 91

K.

Kames, Lord, merits of his Elements of Criticism 221
Kant, the leading idea of his philosophy analogous to what is expressed by Cudworth 43
Appearance of the Critique of Pure Reason, and idea annexed to the title 189
Success of the work 190
Madame de Staël's account of it ibid.
Identity of Kant's doctrine with that of Cudworth 191, 194-5
His remarks on Hume's theory of causation 193
Hume's theory gave a new direction to his inquiries into speculative philosophy 194
His claims to originality not well founded ibid.
Remarks on general ideas not derived from experience, Note X X 279
His argument for free will 196
View of his principle called practical reason 197
The impression which his great work made in Germany accounted for by Reinhold 198
Decline of his system 199
Schools which have emanated from it 200
Opponents of his system 201
Evil which has arisen from his writings, Note A A A 263
His ethical system framed to protect principles placed upon an insecure foundation 412
The performance of duty the chief end of man in his system ibid.
Explanation of what is implied by practical reason 413
Kater, Captain, pendulum of 660
Kepler, an account of his tract on stereometry 438
He introduced into geometry the idea of quantities infinitely great and small ibid.
Generation of solids by means of ibid.
Conceived circles to be composed of an infinite number of triangles ibid.
The laws of, discovered at the expense of great labour and ingenuity 463
Change which astronomy underwent in his hands 488
Early studies of ibid.
Observed that the orbits of the planets are in planes passing through the sun ibid.
Discovered the most favourable time for observing the planets, the ellipticity of the planetary orbits, and that in any two planets the squares of the
INDEX.

<table>
<thead>
<tr>
<th>Page</th>
<th>Law, Roman, reasons why it ought to be fixed on as a work in framing a code of laws</th>
</tr>
</thead>
<tbody>
<tr>
<td>489</td>
<td>Law of nature and of nations, see Jurisprudence, Natural.</td>
</tr>
<tr>
<td></td>
<td>Leibnitz, his estimate of the merits of Descartes, Hobbes, Bacon, and Campanella</td>
</tr>
<tr>
<td>29</td>
<td>His objections to Malebranche's principles relative to cause and effect</td>
</tr>
<tr>
<td>78</td>
<td>His high veneration for the Roman law</td>
</tr>
<tr>
<td>92</td>
<td>His misapprehension of Locke's doctrine concerning the origin of knowledge</td>
</tr>
<tr>
<td>113</td>
<td>The school of which he was the founder strongly discriminated from that of Locke</td>
</tr>
<tr>
<td>122</td>
<td>His comprehensive correspondence led to a more extensive literary commerce amongst nations</td>
</tr>
<tr>
<td>123</td>
<td>Coincidence between him and Cudworth concerning innate ideas</td>
</tr>
<tr>
<td></td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>Doctrines which he directed the force of his genius to establish</td>
</tr>
<tr>
<td>124</td>
<td>Pre-established harmony, summary of the theory</td>
</tr>
<tr>
<td></td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>Objections to this doctrine</td>
</tr>
<tr>
<td>125</td>
<td>Contrast between the visionary speculations of, and the doctrines of Locke</td>
</tr>
<tr>
<td>126</td>
<td>His theory of pre-established harmony led to the scheme of optimism</td>
</tr>
<tr>
<td></td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>Character of his work entitled Theodices</td>
</tr>
<tr>
<td>126-7</td>
<td>Difference between his optimism and that of Plato</td>
</tr>
<tr>
<td>126</td>
<td>His scheme of optimism leads to the annihilation of all moral distinctions</td>
</tr>
<tr>
<td>127</td>
<td>Zealously propagated the dogma of necessity, but opposed materialism</td>
</tr>
<tr>
<td>128</td>
<td>Uniformly speaks of the soul as a machine purely spiritual</td>
</tr>
<tr>
<td></td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>Injurious influence of his doctrine of fatalism</td>
</tr>
<tr>
<td>129</td>
<td>Circumstances which gave occasion to his Theodices ibid.</td>
</tr>
<tr>
<td></td>
<td>We are indebted to this work for the reasonings of Dr Clarke against fatalism</td>
</tr>
<tr>
<td></td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>His account of the principle of the sufficient reason</td>
</tr>
<tr>
<td>130</td>
<td>His theory of monads explained</td>
</tr>
<tr>
<td></td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>See also Note CC</td>
</tr>
<tr>
<td>255</td>
<td>Vagueness of his idea of a sufficient reason</td>
</tr>
<tr>
<td>131</td>
<td>Commentary of Charles Bonnet upon</td>
</tr>
<tr>
<td></td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>His principle of a sufficient reason legimately adopted by mathematicians</td>
</tr>
<tr>
<td></td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>This principle, when applied to the phenomena of the material universe, identical with the maxim, that every change implies the operation of a cause ibid.</td>
</tr>
<tr>
<td></td>
<td>Motives which induced him to substitute the word reason for cause</td>
</tr>
<tr>
<td>132</td>
<td>Objections urged against a sufficient reason may be extended to his law of continuity</td>
</tr>
<tr>
<td></td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>Vagueness of the language in which his theory is enunciated, favourable to its popularity with a certain class of thinkers ibid.</td>
</tr>
<tr>
<td></td>
<td>John Bernoulli's defence of</td>
</tr>
<tr>
<td>133</td>
<td>Opposition of Maclaurin and Robins to</td>
</tr>
<tr>
<td></td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>Extension of his principle to mind as well as to matter, and the consequences</td>
</tr>
<tr>
<td>134</td>
<td>ibid.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>times of the revolution are as the cubes of their mean distances from the sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>490</td>
<td>Kepler's discoveries at first not duly appreciated</td>
</tr>
<tr>
<td></td>
<td>Exploded the idea of Copernicus, that the earth had a third motion</td>
</tr>
<tr>
<td></td>
<td>Perceived the inertia of body, and considered all motion as naturally rectilinear</td>
</tr>
<tr>
<td>509</td>
<td>Was the first to analyse the structure of the eye</td>
</tr>
<tr>
<td>538</td>
<td>Views regarding gravitation</td>
</tr>
<tr>
<td>170</td>
<td>King, Archbishop, account of his work on the Origin of Evil</td>
</tr>
<tr>
<td>16-19</td>
<td>Causes which combined to accelerate its progress after the revival of letters</td>
</tr>
<tr>
<td></td>
<td>Its diffusion has improved the science of government</td>
</tr>
<tr>
<td>24</td>
<td>L.</td>
</tr>
<tr>
<td></td>
<td>Lagrange, his application of continued fractions to the solution of numerical equations</td>
</tr>
<tr>
<td>590</td>
<td>His invention of the calculus of variations the last great accession to the higher analysis</td>
</tr>
<tr>
<td>609</td>
<td>Sketched the method of derivative functions</td>
</tr>
<tr>
<td>601</td>
<td>Discussed the chief difficulties which encumber the theory of hydrodynamics</td>
</tr>
<tr>
<td>608</td>
<td>Brilliant calculations of, regarding the lunar and planetary motions</td>
</tr>
<tr>
<td>609</td>
<td>Gave a general solution of the problem of disturbing forces</td>
</tr>
<tr>
<td>189</td>
<td>Lambert, character of, as a philosopher</td>
</tr>
<tr>
<td>584</td>
<td>First demonstrated the incommensurability of the circle</td>
</tr>
<tr>
<td>633</td>
<td>Notice of his treatise entitled Photometria</td>
</tr>
<tr>
<td>659</td>
<td>Lambton, Colonel, his measurement of a degree of latitude in India</td>
</tr>
<tr>
<td>601</td>
<td>Landen, John, account of his life, writings, and contributions to mathematics</td>
</tr>
<tr>
<td>39</td>
<td>Language, improvement of, tends to accelerate the advancement of science and learning</td>
</tr>
<tr>
<td>300</td>
<td>Speculations of Rousseau and others regarding the origin and history of</td>
</tr>
<tr>
<td>174-7</td>
<td>Inadequacy of the words of ordinary language for the purposes of philosophy</td>
</tr>
<tr>
<td>224</td>
<td>Laplace on the advantages of learned societies</td>
</tr>
<tr>
<td>47</td>
<td>Citation from, concerning cause and effect, with remarks thereon</td>
</tr>
<tr>
<td>236</td>
<td>His calculation of probabilities</td>
</tr>
<tr>
<td>224</td>
<td>His analysis of capillary attraction</td>
</tr>
<tr>
<td>616</td>
<td>His discovery of the moon's secular equation</td>
</tr>
<tr>
<td>670</td>
<td>Gave a complete theory of the motions of Jupiter's satellites</td>
</tr>
<tr>
<td>ibid.</td>
<td>Law, Dr, account of his notes to his translation of Archbishop King's work on the Origin of Evil</td>
</tr>
<tr>
<td>170</td>
<td>Account of his ethical works</td>
</tr>
<tr>
<td>171-2</td>
<td>Law, Roman, the study of, contributed to accelerate human improvement on the revival of letters</td>
</tr>
<tr>
<td>14</td>
<td>Veneration in which it was held by Leibnitz and others</td>
</tr>
<tr>
<td>92</td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>ibid.</td>
</tr>
</tbody>
</table>
INDEX.

Leibnitz—Charles Bonnet's remarks upon this principle
The metaphysical argument in proof of the law of continuity unsatisfactory, Note D D 134
Remarks on the states of rest and motion of bodies, Note D D ibid.
Citation from, respecting the history of the law of continuity, Note D D 257
Citations from, concerning the existence of the soul after death, Note E E 259
His mind, in reasoning upon metaphysical subjects, misled by the bias it early received from geometrical studies ibid.
Extension of his principle by Helvétius 135
Remarks on his thoughts regarding the etymological study of languages 136
See also Note I I 262
Remarks on his assertion, that all proper names were at first appellatives, Note F F 260
Versatility and power of his genius 137
Instance of his credulity 138
See also Note G G 261
Value of his speculations in accelerating the advancement of knowledge ibid.
Estimate of his character by Bailly, Note I I 262
Great variety of subjects upon which he wrote ibid.
Remarks on his controversy with Dr Clarke 139
His notions regarding space and time 142
Small progress of his tenets in France 146
Contrast between the form of his writings and the character of his mind 337
Favourite and often-repeated maxim of ibid.
His ethical principles contained in a preface to a collection of documents on law ibid.
Citations from, on ethics 337
See also note N 422
Approximated to the truth on the subject of disinterested affection 338
Egregious fallacy contained in a statement of 338-9
Account of the correspondence between him and Newton relative to geometry 529
He was the second inventor of the new infinitesimal analysis, and ignorant of its being previously discovered by Newton ibid.
Rapid spread of his geometry on the Continent ibid.
Greatly advanced by the Bernoullis ibid.
An account of the controversy relative to the new calculus ibid.
His rejection of the higher powers of the differences of the variable quantities objectionable 526
Explanation of the principle of a sufficient reason 536
Sometimes carried his principle too far 537
Statement of the law of continuity ibid.
Not the first to discover this law, although the first to regard it as a principle in philosophy ibid.
His error consisted in pushing the metaphysical principles of science into extreme cases ibid.
His demonstration of the force of moving bodies 539
Comparison between him and Newton 571
Notice of his algebraical discoveries 595

Leonardo, a merchant of Pisa, first introduced algebra into Europe 440
Leonardo da Vinci first distinctly stated the principle of the effects of oblique force 602
Letters, the period from which the revival of, may be dated 15
The Reformation a natural consequence of ibid.
Effects of, on the advancement of physical, and also of metaphysical, moral, and political science 16-20
L'Hôpital, Chancellor de, character of 26
Published a work of merit on the new analysis 530
Leviathan, anecdote relative to Hobbes's work so entitled, Note H 241
Leyden jar, invention and description of 618
Liberty and necessity, see Necessity.
Lines, see Geometry.
Light, Aristotle's definition of,
See also Optics.
Polarization of, discovered by Malus 636
Light-houses, principles of optics applied to the improvement of ibid.
Lightning identified with electricity, see that head.
Locke, John, his division of the objects of human knowledge 8
Identity of his division with that generally adopted by the ancient philosophers of Greece 9
Less decided than Descartes respecting the essential distinction between mind and matter 57
Citation from, on the varieties of mind 76
Warburton's opinion of his system of philosophy 30
The publication of his Essay on Human Understanding a new era in the history of philosophy 100
Some account of his early studies and pursuits 101
Circumstances which occasioned his undertaking his great work 102
Merits of the several books of the Essay ibid.
Causes of the partial inconsistencies which may be detected in the work 103
Desirous that his work should be judged as a whole, and not by isolated passages ibid.
Had diligently studied the metaphysical writings of those who preceded him ibid.
Peculiar character of his style of composition 104
Reception which his work met with ibid.
Alarm which it excited at Oxford ibid.
Steps there taken to prevent its being read 105
Warmly received in the University of Cambridge ibid.
And in the Scottish Universities ibid.
See also Note S 249
Its success on some parts of the Continent 105
The merits of his Essay first appreciated in Switzerland 106
Influence of, on Crousaz ibid.
Diffusion of his principles in France 108
Found their way into the French drama, Note U 250
His constant appeal to reason, an antidote against the errors involved in some of his conclusions 108
Has been mistaken by many of his successors, on two fundamental points: 1. On the origin of
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locke—Diderot’s limited view of his doctrine regarding the formation of ideas</td>
<td>109</td>
</tr>
<tr>
<td>Quotations from, concerning ideas resulting from sensation, and those from reflection</td>
<td>109-12</td>
</tr>
<tr>
<td>The use which he makes of the term reflection not peculiar to himself, Note Y</td>
<td>253</td>
</tr>
<tr>
<td>Does not uniformly employ the word reflection in the same sense</td>
<td>111</td>
</tr>
<tr>
<td>Passage of his works from which apparently the misunderstanding amongst his followers has arisen</td>
<td>112</td>
</tr>
<tr>
<td>Uniformly represents sensation and reflection as distinct sources of knowledge</td>
<td>113</td>
</tr>
<tr>
<td>Misinterpretation of his doctrine sanctioned by Leibnitz</td>
<td>ibid.</td>
</tr>
<tr>
<td>Zeal displayed by, against innate ideas, accounts for the mistakes committed by his followers</td>
<td>115</td>
</tr>
<tr>
<td>Mistaken view of his argument on the origin of our ideas served as a groundwork for the whole metaphysical philosophy of the French Encyclopédie</td>
<td>116</td>
</tr>
<tr>
<td>Sense in which his reasonings concerning innate ideas have commonly been understood</td>
<td>117</td>
</tr>
<tr>
<td>Quotation from, containing a disavowal of the conclusion which some of his commentators drew from his reasonings</td>
<td>ibid.</td>
</tr>
<tr>
<td>Lord Shaftesbury’s attack on him</td>
<td>118</td>
</tr>
<tr>
<td>Remarks on his tracts respecting Education, and the Conduct of the Understanding</td>
<td>119</td>
</tr>
<tr>
<td>Letter of, to Sir Isaac Newton</td>
<td>ibid.</td>
</tr>
<tr>
<td>Defects of his intellectual character</td>
<td>120-21</td>
</tr>
<tr>
<td>Probable reasons why some of the maxims in his tract on Education are severe</td>
<td>121</td>
</tr>
<tr>
<td>Rash assertion of, regarding the intercourse carried on between mind and matter</td>
<td>125</td>
</tr>
<tr>
<td>Principal individuals by whom attacks were made on his Essay during his lifetime, Note Z</td>
<td>233</td>
</tr>
<tr>
<td>Contrast which his doctrines presented to the visionary speculations of Leibnitz</td>
<td>126</td>
</tr>
<tr>
<td>Injustice done to, by Leibnitz, Note B B</td>
<td>255</td>
</tr>
<tr>
<td>Remarks of, concerning the scale of beings</td>
<td>138</td>
</tr>
<tr>
<td>His argument in favour of free will</td>
<td>143</td>
</tr>
<tr>
<td>Quotation from a letter of his to Anthony Collins, Note K K</td>
<td>264</td>
</tr>
<tr>
<td>Effects of his writings in promoting the cause of education, Note N N</td>
<td>269</td>
</tr>
<tr>
<td>Quotation from, on the perception of colour and figure</td>
<td>166</td>
</tr>
<tr>
<td>Logarithms, invention of, by Napier of Merchiston</td>
<td>447</td>
</tr>
<tr>
<td>See also Napier. Louis XIV., character of the court of</td>
<td>53</td>
</tr>
<tr>
<td>Lowth, Dr, his opinion of the common English translation of the Bible</td>
<td>18</td>
</tr>
<tr>
<td>His opinion of Hooker’s style</td>
<td>39</td>
</tr>
<tr>
<td>Lucretius, notice of his philosophy</td>
<td>186</td>
</tr>
<tr>
<td>Luther, Martin, his contempt for Aristotle</td>
<td>16</td>
</tr>
<tr>
<td>Remarkable credulity of, Note E</td>
<td>238</td>
</tr>
<tr>
<td>Mosheim on his theological system</td>
<td>21</td>
</tr>
</tbody>
</table>

M.

<p>| Machiavelli, moral and intellectual character of | 22 |
| Principles of, as laid down in his Prince | ibid. |
| Practical effects of his precepts | ibid. |
| Real intentions of, in writing his Prince, Note C | 234 |
| His maxims have been subsequently refuted | 23 |
| No friend to the priesthood | ibid. |
| Hume’s estimate of his character | 24 |
| Surpassed all his contemporaries in genius | 25 |
| Letters of | 235-6 |
| Machiavelism, religious, bad effects of, on philosophy and morals | 23 |
| Machin, John, mathematical talents of | 584 |
| Mackenzie, Henry, has affecting delineated Hume’s character in the story of La Roche | 352 |
| Maclaurin, his steady opposition to Leibnitz’s law of continuity | 133 |
| Contributed to the advancement of science by expounding Newton’s Principia | 576 |
| His method of expounding forces by co-ordinates | 604 |
| His view of the figure of the earth | 656 |
| Magnet, Gilbert’s Treatise on the | 454 |
| Magnetism, phenomena and origin of | 624 |
| Importation of the compass into Europe | 625 |
| First notice of its variation | ibid. |
| Account of the discoveries made by Dr Gilbert | ibid. |
| Halley’s hypothesis | ibid. |
| Variation of the compass proposed by Halley as a method of finding the latitude at sea | 626 |
| Experiments to determine the relation of the intensity of the magnetic force to the distance of its action | ibid. |
| True law discovered by Coulomb | ibid. |
| Nature of the principle itself still a mystery | ibid. |
| Theories of various philosophers | ibid. |
| Generally supposed to be a fluid | ibid. |
| The magnetic virtue resides near the surface | 627 |
| Coulomb’s experiments to ascertain the substances most susceptible of magnetism | ibid. |
| Account of the variation of the needle at different places | ibid. |
| Changes to which it is liable | 628 |
| The dip of the needle less changeable than its declination | ibid. |
| At every place it depends nearly on the latitude | ibid. |
| Direction of the needle affected by local attraction on board of a ship | ibid. |
| Invention of Barlow to prevent this | 629 |
| Two principles on which magnetic phenomena may be explained | ibid. |
| Discoveries of Arago and other philosophers | 630 |
| Malebranche, Father, quotation from, on the secondary qualities of bodies | 63 |
| Also on the sensations produced by objects, and the judgment thereupon formed | 64-5 |
| Assertion of, that mistaken judgments relative to objects of sense result from original sin | 65 |
| Cause which led him to study philosophy | 74 |</p>
<table>
<thead>
<tr>
<th>Index Entry</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malebranche, character of his work, The Search after Truth</td>
<td>74</td>
</tr>
<tr>
<td>Imagination the chief characteristic of his genius</td>
<td>ibid.</td>
</tr>
<tr>
<td>His disposition to blend theology and metaphysics</td>
<td>74-5</td>
</tr>
<tr>
<td>the cause of his being now neglected</td>
<td></td>
</tr>
<tr>
<td>Controversies on grace in which he was engaged</td>
<td>74</td>
</tr>
<tr>
<td>His boldness and freedom of inquiry when treating</td>
<td></td>
</tr>
<tr>
<td>of subjects purely philosophical</td>
<td>75</td>
</tr>
<tr>
<td>Sagacity of, displayed in his observations concerning sorcery</td>
<td>ibid.</td>
</tr>
<tr>
<td>His powers of observation and discrimination</td>
<td>ibid.</td>
</tr>
<tr>
<td>Excellence of his strictures on men and manners</td>
<td>76</td>
</tr>
<tr>
<td>Citation from, illustrative of this</td>
<td>ibid.</td>
</tr>
<tr>
<td>Estimate of his character</td>
<td>77</td>
</tr>
<tr>
<td>Developed the fundamental principle of Hartley</td>
<td>ibid.</td>
</tr>
<tr>
<td>Remarks on the formation of habits</td>
<td>ibid.</td>
</tr>
<tr>
<td>Views of, relative to cause and effect</td>
<td>78</td>
</tr>
<tr>
<td>Objections of Leibnitz to his principles</td>
<td>78-9</td>
</tr>
<tr>
<td>Reasons which led him to conclude that we see</td>
<td></td>
</tr>
<tr>
<td>all things in God</td>
<td>79</td>
</tr>
<tr>
<td>Coincidence between his speculations and those of some Hindu philosophers</td>
<td>ibid.</td>
</tr>
<tr>
<td>Resemblance of, to Berkeley, and interview with</td>
<td>79, 80</td>
</tr>
<tr>
<td>Warburton's opinion of his talents</td>
<td>80</td>
</tr>
<tr>
<td>Advancement which he made towards the true theory of vision</td>
<td>168</td>
</tr>
<tr>
<td>Anecdote of, evincing his belief in the Cartesian system regarding the soul</td>
<td>181</td>
</tr>
<tr>
<td>Quotation from, on the love of universal order</td>
<td>339</td>
</tr>
<tr>
<td>Remarks on the passage</td>
<td>340</td>
</tr>
<tr>
<td>Was the first who adhered to the principle that virtue consists in pure intentions</td>
<td>ibid.</td>
</tr>
<tr>
<td>Value of his observations relative to a religious society and an established church</td>
<td>ibid.</td>
</tr>
<tr>
<td>Malus, M. his discovery of the polarization of light</td>
<td>638</td>
</tr>
<tr>
<td>Manfredi, sketch of his life and scientific character</td>
<td>599</td>
</tr>
<tr>
<td>Manner, an index of character and disposition</td>
<td>305</td>
</tr>
<tr>
<td>Marie, a French Capuchin, gave the first notions of photometry</td>
<td>637</td>
</tr>
<tr>
<td>Mariotte the first who proposed to apply the barometer to measure the heights of mountains</td>
<td>542</td>
</tr>
<tr>
<td>Experiments and conclusions</td>
<td>613</td>
</tr>
<tr>
<td>Martin, Dr, the first judicious writer on heat</td>
<td>642</td>
</tr>
<tr>
<td>Maseres, Baron, services rendered to science by</td>
<td>593</td>
</tr>
<tr>
<td>Mascheroni of Bergamo, mathematical talents of</td>
<td>565</td>
</tr>
<tr>
<td>Materialists of the last century</td>
<td>57</td>
</tr>
<tr>
<td>Fallacy of their reasoning exposed</td>
<td>58</td>
</tr>
<tr>
<td>Mathematics, ancient works on, preserved in religious establishments during the dark ages</td>
<td>434</td>
</tr>
<tr>
<td>Language of, must always consist of two parts</td>
<td>445</td>
</tr>
<tr>
<td>See Geometry and Algebra</td>
<td></td>
</tr>
<tr>
<td>Maupertuis the first mathematician of eminence who taught the Newtonian philosophy in France</td>
<td>577</td>
</tr>
<tr>
<td>Maurolycus of Messina, contributions of, to mathematics</td>
<td>430</td>
</tr>
<tr>
<td>Distinguished for his skill in optics</td>
<td>508</td>
</tr>
<tr>
<td>Formed a right judgment of the defects of short-sighted and long-sighted eyes</td>
<td>ibid.</td>
</tr>
<tr>
<td>Explained why light admitted through a small hole of any shape, and received upon a plane, was al-</td>
<td></td>
</tr>
<tr>
<td>ways round, and through a large one always of the shape of the aperture</td>
<td>508</td>
</tr>
<tr>
<td>Supposed that light acquired colour by refraction</td>
<td>508</td>
</tr>
<tr>
<td>in passing through the water drop of the rainbow</td>
<td>508</td>
</tr>
<tr>
<td>Mayer framed a standard body of lunar tables</td>
<td>579 & 665</td>
</tr>
<tr>
<td>Changed the sextant into a circle, and produced the repeating circle</td>
<td>433</td>
</tr>
<tr>
<td>Mechain, measurement of a degree of latitude by</td>
<td>639</td>
</tr>
<tr>
<td>Sketch of his life and scientific character</td>
<td>ibid.</td>
</tr>
<tr>
<td>Mechanics, small progress made in the science before</td>
<td></td>
</tr>
<tr>
<td>the end of the sixteenth century</td>
<td>474</td>
</tr>
<tr>
<td>Guido Ubaldi the first who went beyond Archimedes</td>
<td>ibid.</td>
</tr>
<tr>
<td>Stevinus the first who determined the force necessary to sustain a body on a plane inclined at any angle to the horizon</td>
<td>ibid.</td>
</tr>
<tr>
<td>Discoveries of, relative to a chain laid on an inclined plane</td>
<td></td>
</tr>
<tr>
<td>Revolution effected in the science by Galileo</td>
<td>475</td>
</tr>
<tr>
<td>He was the first who discovered the principle of virtual velocities</td>
<td>ibid.</td>
</tr>
<tr>
<td>Analysis of his treatise Della Scienze Mechanica</td>
<td>ibid.</td>
</tr>
<tr>
<td>Discoveries of Torricelli, Descartes, and Huygens; see those heads.</td>
<td></td>
</tr>
<tr>
<td>The principle of virtual velocities enunciated</td>
<td>535</td>
</tr>
<tr>
<td>The science advanced by Varignon's Projet d'une Nouvelle Mécanique</td>
<td>535-6</td>
</tr>
<tr>
<td>The Principia Mathematica of Newton marks an era in the history of human knowledge</td>
<td>536</td>
</tr>
<tr>
<td>Improvements in mechanics by Leibnitz</td>
<td>ibid.</td>
</tr>
<tr>
<td>Manner in which the force of a moving body was estimated by Descartes and Leibnitz</td>
<td>538</td>
</tr>
<tr>
<td>The scientific world divided into two parties</td>
<td>ibid.</td>
</tr>
<tr>
<td>Account of the controversy which ensued</td>
<td>539</td>
</tr>
<tr>
<td>Termination of the controversy</td>
<td>540</td>
</tr>
<tr>
<td>Principles relative to the force of moving bodies</td>
<td>ibid.</td>
</tr>
<tr>
<td>Both sides partly in the right</td>
<td>541</td>
</tr>
<tr>
<td>The controversy as to the via visa</td>
<td>ibid.</td>
</tr>
<tr>
<td>The question whether the quantity of the via visa remains always the same</td>
<td>542</td>
</tr>
<tr>
<td>Enumeration of the problems solved in the times of Newton and Leibnitz</td>
<td>ibid.</td>
</tr>
<tr>
<td>Contributions to science by Halley</td>
<td>542-4</td>
</tr>
<tr>
<td>Medicine, the study of, calculated to develop the powers of the understand-</td>
<td>101</td>
</tr>
<tr>
<td>Melanchthon, his sanction of the doctrines of the peripatetic school</td>
<td>16</td>
</tr>
<tr>
<td>Citation from, on moral distinctions</td>
<td>20</td>
</tr>
<tr>
<td>Metaphysical, misapplication of the term</td>
<td>238</td>
</tr>
<tr>
<td>Influence of metaphysical studies</td>
<td>ibid.</td>
</tr>
<tr>
<td>Metaphysicians in all ages have made the nature and essence of the soul a subject of discussion</td>
<td>57</td>
</tr>
<tr>
<td>Those of the last century belong either to the class of Gassendi or that of Descartes</td>
<td>114</td>
</tr>
<tr>
<td>Metaphysics, little advance made in, before the seventeenth century</td>
<td>20</td>
</tr>
<tr>
<td>Progress of, during the eighteenth century</td>
<td>217</td>
</tr>
<tr>
<td>Change in the meaning of the word since the publication of Locke's Essay</td>
<td>ibid.</td>
</tr>
<tr>
<td>Benefits resulting from the study of</td>
<td>288</td>
</tr>
</tbody>
</table>
INDEX.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metaphysics—The term affords a specimen of all the faults which the name of a science can combine</td>
</tr>
<tr>
<td>Micrometer, discovery of, by Huygens</td>
</tr>
<tr>
<td>Microscope, invention of, by Galileo</td>
</tr>
<tr>
<td>Mill, Mr, in treating of benevolence, has overlooked the inward delight which springs from virtuous conduct</td>
</tr>
<tr>
<td>Derives his theory of government from the fact that every man pursues his interest</td>
</tr>
<tr>
<td>Remarks on his Essay on Education</td>
</tr>
<tr>
<td>Mind and matter, phenomena of, entirely different</td>
</tr>
<tr>
<td>Remarks on the relation subsisting between</td>
</tr>
<tr>
<td>Bacon's reflections on the philosophy of mind</td>
</tr>
<tr>
<td>Its advancement accelerated by the improvement of language</td>
</tr>
<tr>
<td>Mistaken application of the word substance to</td>
</tr>
<tr>
<td>Montaigne, M. merits of, as a writer on the philosophy of mind</td>
</tr>
<tr>
<td>Possessed little scientific knowledge</td>
</tr>
<tr>
<td>Preoccupied to scepticism</td>
</tr>
<tr>
<td>Carefully educated by his father</td>
</tr>
<tr>
<td>Character of his scepticism</td>
</tr>
<tr>
<td>Radical fault of his understanding</td>
</tr>
<tr>
<td>His Apology for Raimond de Sebonde</td>
</tr>
<tr>
<td>He died a Christian</td>
</tr>
<tr>
<td>His opinion of Sebonde's Theologia Naturalis</td>
</tr>
<tr>
<td>Poetical description of, by Voltaire</td>
</tr>
<tr>
<td>Reasons why the name of, should be united with that of La Rochefoeur</td>
</tr>
<tr>
<td>Effects of his maxims on the higher orders</td>
</tr>
<tr>
<td>Monge, Gaspard, account of his life and writings</td>
</tr>
<tr>
<td>Moon, gravitation and revolution of</td>
</tr>
<tr>
<td>Theory of, by Newton, a work of genius almost superhuman</td>
</tr>
<tr>
<td>Montesquieu, M. de, the main object of his work on</td>
</tr>
<tr>
<td>His claim to the idea of connecting jurisprudence with history and philosophy</td>
</tr>
<tr>
<td>His speculations directed to the practical conclusion pointed out by Bacon</td>
</tr>
<tr>
<td>His spirit of Laws gave the first blow to the study of natural jurisprudence</td>
</tr>
<tr>
<td>Quotation from, respecting natural religion, Note U U</td>
</tr>
<tr>
<td>Moral philosophy, little advance made in, prior to the seventeenth century</td>
</tr>
<tr>
<td>Philosopher, difficulties he labours under</td>
</tr>
<tr>
<td>More, Sir Thomas, character of, Note A</td>
</tr>
<tr>
<td>Dr Henry, his assertion that Descartes was a Nul- libist, Note O</td>
</tr>
<tr>
<td>Mosheim on the theological system of Luther</td>
</tr>
<tr>
<td>Motion, see Mechanics.</td>
</tr>
<tr>
<td>Mudge, Colonel, measurement of a degree of latitude by</td>
</tr>
<tr>
<td>Music, principles upon which it is founded</td>
</tr>
<tr>
<td>Mystics, account of the</td>
</tr>
<tr>
<td>Napier, Baron, of Merchiston, invention of logarithms</td>
</tr>
<tr>
<td>Displayed depth and originality of mind</td>
</tr>
<tr>
<td>Ingenious supposition on which he proceeded</td>
</tr>
<tr>
<td>Unrivalled merit of the inventor</td>
</tr>
<tr>
<td>Talents of, as a geometer</td>
</tr>
<tr>
<td>Brought the notation of decimals to its utmost simplicity</td>
</tr>
<tr>
<td>Nature, the word used by philosophers for the name of God</td>
</tr>
<tr>
<td>Necessity, zeal of Leibnitz for the doctrine of Locke's opinion</td>
</tr>
<tr>
<td>Anthony Collins's views</td>
</tr>
<tr>
<td>See also Note M M</td>
</tr>
<tr>
<td>Schemes of, connected with atheism in modern philosophy, Note M M</td>
</tr>
<tr>
<td>Opinion of Hobbes concerning, Note M M</td>
</tr>
<tr>
<td>Definition of the terms liberty and necessity, Note M M</td>
</tr>
<tr>
<td>Remarks on the argument for, drawn from the divine prescience, Note N N</td>
</tr>
<tr>
<td>The Baron de Grimm and M. Diderot upon</td>
</tr>
<tr>
<td>See also Note P P</td>
</tr>
<tr>
<td>Nerves, Quesnai's views regarding the vibrations of</td>
</tr>
<tr>
<td>Newton, Sir Isaac, remarks on some queries of</td>
</tr>
<tr>
<td>His discoveries were first publicly taught in Scotland, Note S</td>
</tr>
<tr>
<td>Letter of, to John Locke</td>
</tr>
<tr>
<td>Exhibited in his Principe and Optice an exemplification of the logic of Bacon and Locke</td>
</tr>
<tr>
<td>Effects of his discoveries</td>
</tr>
<tr>
<td>Contributions of, to metaphysics</td>
</tr>
<tr>
<td>Method by which he ascertained the nature of the rainbow</td>
</tr>
<tr>
<td>State of the sciences when he appeared</td>
</tr>
<tr>
<td>Problem of the quadrature of the circle</td>
</tr>
<tr>
<td>The binomial theorem</td>
</tr>
<tr>
<td>The principle of fluxions</td>
</tr>
<tr>
<td>Did not publish his discovery till forty years after it had been made</td>
</tr>
<tr>
<td>Newton the first and Leibnitz the second inventor</td>
</tr>
<tr>
<td>Controversy regarding the discovery</td>
</tr>
<tr>
<td>Solution of problems proposed by the friends of Leibnitz</td>
</tr>
<tr>
<td>Manner in which he proceeded respecting the calculus</td>
</tr>
<tr>
<td>Manner in which he integrated fluxionary equations</td>
</tr>
<tr>
<td>Works of, on the new analysis</td>
</tr>
<tr>
<td>Account of his tract upon the quadrature of curves</td>
</tr>
<tr>
<td>His partiality for the synthetical method</td>
</tr>
<tr>
<td>Merits of his book of Fluxions</td>
</tr>
<tr>
<td>Discoveries contained in his Principia Mathematica</td>
</tr>
<tr>
<td>Commencement of his optical researches</td>
</tr>
<tr>
<td>Experiments on the decomposition of light</td>
</tr>
<tr>
<td>Discovered that light was not changed by the colour of the body reflecting it</td>
</tr>
<tr>
<td>Explained the phenomenon of the rainbow</td>
</tr>
<tr>
<td>Experiments to ascertain the cause of the permanent colours of bodies</td>
</tr>
</tbody>
</table>
INDEX.

Newton.—Discovery of coloured rings by two object-glasses 548
Measurement of the thickness of the plates of air through which the light was transmitted ibid.
Discovery of fits of easy transmission and easy reflection 549
Explanation of refraction ibid.
Newtonian theory of light preferable to that of Huygens 550
Discovered, by means of light, important facts relative to the constitution of bodies ibid.
Determined the inflammable nature of several bodies, as the diamond, by their powers of refraction ibid.
These discoveries opposed by Hooke, Father Parries, and others 551
Succeeded in constructing a telescope 552-3
His conclusions relative to the inflection of light 553
Views contained in his third book of Optics or Queries ibid.
Enumeration of the most remarkable of these 553-4
His optical works 554
His discovery of gravitation ibid.
First ascertained that the principle applied to the moon 555
He discovered that the laws of Kepler completely proved the principle 556
Conditions on which the law of gravity depends 557
Demonstrated as truth what was formerly merely a conjecture 559
Causes of the irregularity of the moon’s motion 560
Determined the mean quantity of the retrogradation of the line of the moon’s nodes ibid.
Ascertained that the earth must be an oblate sphere 561
Precession of the equinoxes 562
His philosophy has received repeated improvements, all confirming its truth 563
His explanation of the tides 563-4
Showed, by the comet of 1680, that the orbits of these bodies agree with the principle of gravity 565
Slow progress made by his doctrines 566
First taught in the universities of St Andrews and Edinburgh 567
Progress of his philosophy in France ibid.
His speculations on the nature of gravity 568
Did not consider it as a property of matter ibid.
Comparison between him and Leibnitz 571
Progress of his philosophy in England and France 576-7
His mode of graduating the thermometer 641
His theory of the moon 663
Nieuwentyt, opposition to the geometry of Newton 533
Nitsch, F. A., his account of Kant’s views regarding free will 196
Nizolius, Marius, his revolt against the authority of Aristotle 25
Nollet, John Anthony, sketch of his life and character 618
Nominalists and Realists 312
Norwood, measurement of an arc of the meridian by 502
Notation, Arabic, an acquisition from the East 440
Nullism, doctrine of, Note O 246

O.

Observatories, astronomical, the establishment of 500
Ockham, William of, doctrines held by 310-12
Quotations from, on moral evil, Note O 419
Oersted of Copenhagen, improved Canton’s experiment as to the compressibility of water 607
Experiment proving the identity of electricity with magnetism 624
Optics; Euclid’s two propositions which laid the foundation of optics proper and catastropies 504
The principles of that philosopher as to the magnitude of bodies, and the place of any point of an object seen by reflection ibid.
Recovered work of Ptolemy, its most valuable part that on refraction ibid.
Alhazen, an Arabian writer, explained why the heavenly bodies appear larger when near the horizon 505
Aristotle’s definition of light ibid.
More correct notions of Epicurus ibid.
Burning mirrors of Archimedes 506
Work of Alhazen superior to that of Ptolemy ibid.
Commentary on the work by Vitello 507
Advancement made in optics by Roger Bacon ibid.
Probably knew the properties of lenses 508
Invention of spectacles ibid.
Maurolycus distinguished for his skill in optics ibid.
Considerable steps made by Baptista Porta ibid.
Invention of the camera obscura ibid.
Structure of the eye first analysed by Kepler 509
Discoveries relative to the rainbow ibid.
Dioptics of Kepler 510
The true law of refraction discovered by Snellius 511
Descartes’ and Fermat’s theories of light 512
Discoveries of Descartes relative to refraction 512-13
James Gregory’s work, Optica Promota 513
Dr Barrow’s Lectures 514
Discovery of the diffraction of light ibid.
Huygens’ theory of light ibid.
His explanation of the double refraction of Iceland crystal 515
Commencement of Newton’s researches 545
Means which led to the discovery of the different refrangibility of the rays of light ibid.
Experiments by which he decomposed light 546
Importance of the science 630
Chief properties of light, refraction and refraction 631
Discoveries of Snellius, Descartes, Bradley, Newton, Hadley, Gregory, Mayer, Borda, Euler, and Dolland 631-34
Attempts made by Dr Blair to improve the achromatic telescope 635
Varieties of colour generated by three primary ones ibid.
Discoveries of Fraunhofer 636
Experiments to ascertain the heating powers of the rays of light ibid.
Discovery of Herschel, that the point of greatest heat lies beyond the red ray ibid.
INDEX.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perception and emotion, difference between</td>
<td>329</td>
</tr>
<tr>
<td>Pergaes, Apollonius, contributions of, to astronomy</td>
<td>482</td>
</tr>
<tr>
<td>Peripatetic school of philosophy, Melanchthon's sanction of its doctrines</td>
<td>16</td>
</tr>
<tr>
<td>Photometry, first notions of</td>
<td>637</td>
</tr>
<tr>
<td>Advanced by Bouguer</td>
<td>638</td>
</tr>
<tr>
<td>Lambert's systematic treatise on</td>
<td>ibid.</td>
</tr>
<tr>
<td>Physics, different meanings attached to the word</td>
<td>9-10</td>
</tr>
<tr>
<td>Should be confined to the phenomena of matter</td>
<td>ibid.</td>
</tr>
<tr>
<td>Ancient physics; first attempts to unravel the mysteries of nature necessarily feeble</td>
<td>449</td>
</tr>
<tr>
<td>The definition of motion, the first attempt to explain phenomena</td>
<td>450</td>
</tr>
<tr>
<td>Definition of motion by Aristotle and Epicurus</td>
<td>ibid.</td>
</tr>
<tr>
<td>Crude views of the ancients relative to the rise and fall of bodies</td>
<td>ibid.</td>
</tr>
<tr>
<td>Branch of mechanics in which the ancients made important discoveries</td>
<td>ibid.</td>
</tr>
<tr>
<td>Discoveries of Archimedes</td>
<td>ibid.</td>
</tr>
<tr>
<td>Efforts made by the ancients in astronomy</td>
<td>451</td>
</tr>
<tr>
<td>Their progress impeded by the want of accurate instruments</td>
<td>ibid.</td>
</tr>
<tr>
<td>The true system of natural philosophy not known to the ancients</td>
<td>452</td>
</tr>
<tr>
<td>Notions of Anaxagoras, Empedocles, Democritus, Plutarch, and the Chaldeans</td>
<td>ibid.</td>
</tr>
<tr>
<td>Notions entertained by the ancients on comets</td>
<td>ibid.</td>
</tr>
<tr>
<td>The system of ancient physics as a whole full of error</td>
<td>ibid.</td>
</tr>
<tr>
<td>Sense in which Dr Campbell employs the word</td>
<td>9</td>
</tr>
<tr>
<td>Modern physics; notions and theories of the first experimenters in chemistry</td>
<td>453</td>
</tr>
<tr>
<td>Analysis of Bacon's Novum Organum, see Bacon.</td>
<td></td>
</tr>
<tr>
<td>Astronomy, Mechanics, Optics, Dynamics, Hydrostatics, Hydrodynamics, Pneumatics, Acoustics, Magnetism, Electricity, and Heat; see these heads.</td>
<td></td>
</tr>
<tr>
<td>Physiology, sense in which Dr Campbell employs the word</td>
<td>9</td>
</tr>
<tr>
<td>Picard, Abbé, measurement of an arc of the meridian by</td>
<td>502</td>
</tr>
<tr>
<td>Planets, see Astronomy.</td>
<td></td>
</tr>
<tr>
<td>Pity one of the sources of benevolence</td>
<td>367</td>
</tr>
<tr>
<td>Plato, account of his system of optimism</td>
<td>126-7</td>
</tr>
<tr>
<td>Philosophy of</td>
<td>300-1</td>
</tr>
<tr>
<td>Playfair, Professor, remarks on his assertion that Galileo was the first who maintained the law of continuity, Note D D</td>
<td>258</td>
</tr>
<tr>
<td>Plenum, Leibnitz's theory of a, see Leibnitz.</td>
<td></td>
</tr>
<tr>
<td>Plutarch, the notion of centrifugal force implied in his statement, that the moon's motion prevents that body from falling to the earth, as the motion of a stone whirled round keeps it from falling to the ground</td>
<td>452</td>
</tr>
<tr>
<td>Pneumatics, invention of the air-pump</td>
<td>480</td>
</tr>
<tr>
<td>Experiments on the passage of air through pipes</td>
<td>610</td>
</tr>
<tr>
<td>Method of determining the relative density of any gas</td>
<td>611</td>
</tr>
<tr>
<td>Observations on the escape of air and vapour through an aperture</td>
<td>ibid.</td>
</tr>
</tbody>
</table>

Notes:
- **Optics**—Principles of the science applied by the French to the improvement of light-houses.
- **First notions of photometry given by Marie**
- **Discovery of the polarization of light by Malus**
- **Orbit, see Astronomy.**
- **Oscillation, centre of, account of James Bernoulli's original mode of treating the problem respecting**
- **Osymandias, circle of**

P.

- **Paley, Dr. quotation from, concerning the merits of Tucker's writings**
- **He disputed the existence of a moral faculty**
- **His view of instinct**
- **Attached himself to the opinions of Bishop Law**
- **His views relative to a moral sense**
- **Entitled to be ranked amongst the brightest ornaments of the English church in the eighteenth century**
- **Did not owe his system to Hume**
- **The frame of his mind fitted him for business rather than philosophy**
- **Character of his genius**
- **Practical bent of his nature**
- **His style near perfection in its kind**
- **His Evidences formed out of Butler's Analogy and Lardner's Credibility of the Gospel History**
- **Remarks on his Moral and Political Philosophy**
- **His Natural Theology shows a knowledge of anatomy which places him amongst the first physiologists**
- **Peculiarities of his mind shown in his mode of treating of happiness and virtue**
- **His error in defining virtue**
- **Erroneous views contained in his chapter on honour**
- **He was occasionally a lax moralist**
- **Remarks on his political and ecclesiastical views**

Pallavicino, Cardinal. His History of the Council of Trent, Note I

- **Papin, invention of his digester**
- **Paracelsus, character of, by Le Clerc and Bacon**
- **His application of chemistry to pharmacy conferred a lasting benefit on the world**
- **Parallax, lunar and solar, description and amount of**
- **Pascal, the reputation of, rests chiefly on the Provincial Letters**
- **Merits of that work**
- **Character of his fragment entitled Thoughts on Religion**
- **Patriciate, Roman, character of**
- **Patricius, Franciscus, works of**
- **Pelitarius, a French mathematician, discoveries of**
- **Pendulum, discoveries of Galileo and others respecting the**
- **Its vibrating slower at the equator, and explanation by Newton and Huygens**
INDEX.

<table>
<thead>
<tr>
<th>Page</th>
<th>Quesnai, M. observations of, concerning the vibrations of the nerves</th>
<th>171</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quicksilver, first discovery of the congelation of</td>
<td>643</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>R.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rainbow, method by which its nature was ascertained</td>
</tr>
<tr>
<td></td>
<td>Speculations of Maurolycus respecting it</td>
</tr>
<tr>
<td></td>
<td>Discovery of Antonio de Dominis</td>
</tr>
<tr>
<td></td>
<td>Ramsden simplified the quadrant and sextant by his dividing engine</td>
</tr>
<tr>
<td></td>
<td>Ramus, talents and accomplishments of, as a writer</td>
</tr>
<tr>
<td></td>
<td>Raynal on the effects produced by the discovery of America, and the passage to India by the Cape of Good Hope</td>
</tr>
<tr>
<td></td>
<td>Raynaud, M. remarks of, concerning language</td>
</tr>
<tr>
<td></td>
<td>Realists, see Ethics.</td>
</tr>
<tr>
<td></td>
<td>Reason, sufficient, of Leibnitz, see Leibnitz.</td>
</tr>
<tr>
<td></td>
<td>Extension of the term to the moral faculties</td>
</tr>
<tr>
<td></td>
<td>Recorde, Robert, introduced into algebra the sign of equality now in use</td>
</tr>
<tr>
<td></td>
<td>Sketch of his life</td>
</tr>
<tr>
<td></td>
<td>Reflection, clear perception of, by Descartes</td>
</tr>
<tr>
<td></td>
<td>The last faculty of the mind which unfolds itself</td>
</tr>
<tr>
<td></td>
<td>Locke's views regarding ideas resulting from</td>
</tr>
<tr>
<td></td>
<td>Use which Locke makes of the term, Note Y</td>
</tr>
<tr>
<td></td>
<td>Definition of, by La Harpe</td>
</tr>
<tr>
<td></td>
<td>Reformation, the Protestant, a consequence of the revival of letters</td>
</tr>
<tr>
<td></td>
<td>Refraction, discovery of the true law of, by Snellius</td>
</tr>
<tr>
<td></td>
<td>See also Optics.</td>
</tr>
<tr>
<td></td>
<td>Regiomontanus advanced mathematics by his works</td>
</tr>
<tr>
<td></td>
<td>Introduced trigonometry and decimal fractions</td>
</tr>
<tr>
<td></td>
<td>Contributed to the progress of astronomy</td>
</tr>
<tr>
<td></td>
<td>Refrangibility of light, observations on</td>
</tr>
<tr>
<td></td>
<td>Reid, Dr, ambiguity of a passage in his Inquiry, relative to colour</td>
</tr>
<tr>
<td></td>
<td>Sense in which he used the word suggestion</td>
</tr>
<tr>
<td></td>
<td>Great object of his Inquiry into the Human Mind</td>
</tr>
<tr>
<td></td>
<td>Rested his chief merit on this</td>
</tr>
<tr>
<td></td>
<td>Dr Adam Ferguson's encomium on his works</td>
</tr>
<tr>
<td></td>
<td>Merits of his Essays on the Intellectual and on the Active Powers of Man</td>
</tr>
<tr>
<td></td>
<td>Unfortunate in his choice of the terms common sense and instinct</td>
</tr>
<tr>
<td></td>
<td>Reinhold, M. his opinion of Kant's principle called practical reason</td>
</tr>
<tr>
<td></td>
<td>His reasons why Kant's Critique of Pure Reason made so great an impression in Germany</td>
</tr>
<tr>
<td></td>
<td>Remorse, see Ethics.</td>
</tr>
<tr>
<td></td>
<td>Rhetoric, Aristotle on the principles of</td>
</tr>
<tr>
<td></td>
<td>Riccioli, an useful astronomical writer, but without much originality</td>
</tr>
<tr>
<td></td>
<td>An enemy of the Copernican system</td>
</tr>
<tr>
<td></td>
<td>Probable cause of his opposition</td>
</tr>
<tr>
<td></td>
<td>Right and wrong, see Ethics.</td>
</tr>
<tr>
<td></td>
<td>Roherval, originality and mathematical genius of</td>
</tr>
<tr>
<td></td>
<td>Claimed the discovery of the area of the cycloid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>Pneumatics—Experiments on the density of the air at different heights</th>
<th>613</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Explanation of Bouguer's rule relative to the barometrical measurement of mountains</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>Experiments of Deluc and others</td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>Polarization of light, discovery of, by Malus</td>
<td>638</td>
</tr>
<tr>
<td></td>
<td>Idea of, may be traced to Newton's Optics</td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>Poetry, definition of, by D'Alembert</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>By Bacon, see Bacon.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Political science, little advance made in, prior to the seventeenth century</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Economy, inadequacy of the term to express the nature of the science</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>Pope of Rome, Aquinas on the power of, Note H</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>Pope, Alexander, mistake of, concerning the dogma of necessity</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>His censure of Newton and Clarke relative to their reasoning on the existence of a deity</td>
<td>140, 146</td>
</tr>
<tr>
<td></td>
<td>Spinozism and Pantheism, with which he charged</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Clarke, brought against himself</td>
<td></td>
</tr>
<tr>
<td></td>
<td>His veneration for Berkeley</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Porta, Baptista, made a considerable step in optical discovery</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>Invented the camera obscura</td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>Popularity of his work Magia Naturalis</td>
<td>509</td>
</tr>
<tr>
<td></td>
<td>Praise, the love of</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td>Its existence proves the power of disinterested desire ibid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Price, Richard, notice of his work on the Principal Questions in Morals</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>Considered the understanding as an independent source of simple ideas</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>Does not explain the independence of the conscience over the will</td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>Priestley, Dr, his views respecting the soul</td>
<td>57-8</td>
</tr>
<tr>
<td></td>
<td>Prior, Mathew, passage from his Alma as to the seat of the soul</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Prince, Machiavelli's, a favourite with sovereigns</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Printing, benefits resulting from the invention of</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Revolution in the republic of letters 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probabilities, calculation of</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Ptolemy, the epicycles necessary in the ancient system of astronomy</td>
<td>482</td>
</tr>
<tr>
<td></td>
<td>Language in which he speaks of them</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>His recovered work on optics</td>
<td>504</td>
</tr>
<tr>
<td></td>
<td>Merits of the work</td>
<td>ibid.</td>
</tr>
<tr>
<td></td>
<td>Improvements made by, in arithmetic</td>
<td>587</td>
</tr>
<tr>
<td></td>
<td>Puffendorff the most noted follower of Grotius</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Pump, air, invention of, by Otto Guericke</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>Improvements made on, by Robert Boyle</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>Punishment, reformatory, see Bentham.</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>Purbach contributed to advance astronomy</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>Pyrometer, invention of</td>
<td>646</td>
</tr>
<tr>
<td></td>
<td>Pyroscope, description of</td>
<td>663</td>
</tr>
</tbody>
</table>

| Page | Quantities, infinitely great and small, the idea of, first introduced into geometry by Kepler | 438 |
INDEX.

Roberval improved the method of quadratures 439
Robins, Benjamin, sketch of his life, writings, and contributions to mathematics 601
Method which he employed to determine the impulse of balls 610
His remarks on Leibnitz's law of continuity 133
Rochefoucauld, La, influence of his writings 54
Voltaire's and Johnson's opinion of ibid.
Manner in which he polished his writings ibid.
The tendency of his maxims unfavourable to morality ibid.
Excellent private character of 55
Narrow sphere in which he studied mankind ibid.
His writings tended to vitiate the tone of French philosophy ibid.
Reasons why the name of, should be united with that of Montaigne ibid.
Effects of his maxims on the higher orders 56
Roemer, Olus, discovered that light takes a certain time to travel to the earth 498
Rolle, objections of, to the differential calculus 534
Rome, the church of, we are indebted to, for much of what we now enjoy 14
Its most objectionable tenet opposing revelation to reason 21
Remilly, Sir Samuel, character of 376
Rousseau, M. concerning the origin and history of language 174
Estimate of the merits of Emile 164
Roy, General, experiments of, on the barometrical measurement of mountains 614
Rutherford, Dr, construction of the simplest and most commodious register thermometer 647

S.

Sage, M. le, remarks of, on gravitation 133
Sanctorio of Padua, his invention of the thermometer 640
Sanderson, Nicholas, account of his life and writings 507
Sanscrit language, an account of 204
Saturn, planet of, see Astronomy.
Suard, M. his character of Cornelle 135
Sceptic, description of, by Bishop Earle 51
Scheele, experiments of, on heat 646
Schelling, notice of his system of philosophy 200-1
Schiegel, Frederick, remarks on his writings 214
Scholium, Sir Isaac Newton's, remarks on a passage in, relative to the existence of a Deity 140
Schoolmen, ethical philosophy of the, see Ethics.
Sciences, classification of, by Bacon and D'Alembert 1-3
Classification of, by Locke 2
Scotland, reasons why no great writer appeared there in the age of Locke 105
Manner in which the youth of, were formerly educated, Note S 249
Rise and progress of the metaphysical philosophy of, and writers on that subject; Hutchesson, Baxter, Hume, Reid, Campbell, Kames, and Beattie. See these heads.

Scotland, authors belonging to, who wrote on metaphysics prior to the union of the crowns, Note B B B 204
Merits of the works of Scottish metaphysicians 230
Their contributions to philosophy 222
Most popular objection made to them 224
Scotus, account of his doctrines 309
He acquiesced in the Augustinian doctrine, Note D 418
Scriblerus, Martinus, the authors of 242
Sebonde, Raimond de, Montaigne's apology for 51
Principles of his Theologia Naturalis 52
Grotius's and Turnebus's opinions of ibid.
Segner, professor at Göttingen, original principle expanded by 604
Gave a solution of the property of capillary attraction 615
Self, love of, the desire of a man's own happiness 344
Significations assigned to, by Hartley, Note W 429
Seneca, philosophical remarks of, regarding comets 402
Sensation and reflection, Locke concerning ideas which result from 110-12
Sense, common, signification of the term 327
Shaftesbury, Lord, his attack upon Locke concerning the theory of innate ideas 118
No essential difference between his sentiments and those of Locke ibid.
England indebted to him for the Habeus Corpus act 332
Fluctuations in public opinion regarding the merits of the Characteristics ibid.
This work applauded by Leibnitz and Le Clerc ibid.
Merits and defects of, as a writer 392-3
Character of the Moralists 393
His Inquiry concerning Virtue ibid.
Original ethical views of which he gave some intimations 334
His demonstration of the utility of virtue to the individual ibid.
Shenstone, judicious reflections of 119
Signs, or written characters, remarks relative to 66-7
Silurus Electricus, vivid electrical sparks drawn from 622
Simpson solved several questions of physical astronomy with much neatness 573
Simson, Dr Robert, attainments of, in mathematics 582
Sketch of his life and character ibid.
Sismondi, M. Simeon de, his opinion of Machiavelli's views in writing the Prince, Note C 234
Smith, Dr Adam, superiority of his theoretical history of philosophy to that of D'Alembert and others 3
Remar of his respecting the ancient Greek philosophy 9
Citation from, on the Law of Nations 91
Also on French metaphysical writers 172
His dissertation on language 175-6
Immediate and irrevocable change effected by his work on the Wealth of Nations 358
Merits of his work entitled Theory of the Moral Sentiments ibid.
Character of his style ibid.
Was the first who drew the attention of philosophers to the workings of sympathy 359
Merits and defects of his theory of sympathy 360-61
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith, John, of Cambridge, on the immortality of the soul</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Passages from, illustrative of the Cartesian philosophy of mind</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Snellius of Holland the first who measured with any degree of accuracy an arc of the meridian</td>
<td>502</td>
<td></td>
</tr>
<tr>
<td>Discovered the true law of refraction</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>Explanation of the law</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>Societies, learned, advantages to be derived from</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Society, Royal, establishment and influence of</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Socrates, his peculiar method of reasoning</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Answer given by, to those who maintained that the superiority of the soul of man to that of a brute arises from superior organization</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>A teacher of virtue rather than a searcher after truth</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Solids, see Geometry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorcery, sagacity displayed by Malebranche in his observations concerning</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Soto, Dominic, a Spaniard, the first writer who condemned the African slave trade</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>Soul, the nature and essence of</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Presumption of its immortality afforded by studying the analogy of the laws of nature</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Argument of Addison for the immortality of</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Futility of the attempts to assimilate to each other the faculties of men and those of brutes</td>
<td>179-181</td>
<td></td>
</tr>
<tr>
<td>Space and time, Clarke's, Leibnitz's, and D'Alembert's views regarding the nature of</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Kant's notions respecting</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>See also Note Y Y</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Spain, writers on ethics belonging to</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>Spectacles, invention of</td>
<td>508</td>
<td></td>
</tr>
<tr>
<td>Spinoza, account of his origin</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Fontenelle's opinion of his system of philosophy</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>His doctrines, in their practical tendency, the same as atheism</td>
<td>ibid.</td>
<td></td>
</tr>
<tr>
<td>Points on which he has been misunderstood</td>
<td>ibid.</td>
<td></td>
</tr>
<tr>
<td>Coincidence of his principles of government with those of Hobbes</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>Tendency of his speculations to degrade human nature</td>
<td>ibid.</td>
<td></td>
</tr>
<tr>
<td>Account of his private life and character, Note L L</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>Sprat, Dr, his estimate of Bacon's genius, Note P</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>Staël, Madame de, her remarks on the literary life of Voltaire, and the French philosophy of the eighteenth century, Note U U</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>Her account of Kant's Critique of Pure Reason</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Mistakes of, respecting the philosophy of Locke, and Leibnitz</td>
<td>ibid.</td>
<td></td>
</tr>
<tr>
<td>Her account of Fichte's system of philosophy relative to the pronoun I</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Stair, Lord, quotation from, regretting the reception which the doctrines of Spinoza and Hobbes had met with</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Notice of his Physiologia Nova Experimentalis, Note B B B</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>Statics, principles on which the science depends</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>Stephillus, or Stifels, notice of his mathematical attainments</td>
<td>442</td>
<td></td>
</tr>
<tr>
<td>Account of his life and inventions</td>
<td>591</td>
<td></td>
</tr>
</tbody>
</table>

Stereometry, notice of a tract on, by Kepler | 438 | |
Stevinus, or Stevin, an engineer of the Low Countries	474	
Discovered that the pressure of fluids is according to their depth	490	
Was the first who introduced the practice of decimal fractions	587	
Reduced statics and hydrostatics to their simplest principles	592	
Stewart, Dugald, his parentage and early studies	306	
Purity and elevated morality of his lectures	ibid.	
His great merits as a lecturer	307	
Embraced the philosophy of Dr Reid	ibid.	
Amidst excellences of the highest order, his writings afford room for criticism	388	
Multiplies his illustrations to excess	399	
Possessed a peculiar susceptibility and purity of taste ibid.		
Singular felicity of his style	ibid.	
His works pervaded by philosophical benevolence ibid.		
He modestly concealed his reforms of Reid's doctrines	390	
Quotations from, on the associations of ideas ibid.		
Remarks on his opinions as to the moral sense, and the origin of the affections ibid.		
Estimate of the merits of his Elements	392	
In essays of this kind he excelled most other writers ibid.		
His abstention from metaphysical speculation did not arise from inability to grapple with its most abstruse questions ibid.		
Merits of his Outlines of Moral Philosophy ibid.		
His Ethical Theory contains much original speculation, though studiously concealed ibid.		
He blended the inquiry into the nature of moral sentiments, with the power which discriminates between moral and immoral feeling	393	
His Dissertation on the History of Philosophy the most profusely ornamented of his compositions ibid.		
Philosophic serenity of the last years of his life	394	
Stewart, Dr Matthew, sketch of his life and character	582	
Possessed uncommon powers of invention as a mathematician ibid.		
Completed the Newtonian theory of the moon	664	
Stirling, account of his life and writings	595	
Stoics and Epicureans	302	
Notice of the most celebrated	303	
Evils which resulted from their attempts to stretch their system beyond the limits of nature	304	
Substance, mistaken application of the word, Note I	242	
Suggestion, as employed by Drs Reid and Berkeley	167	
And by Dr Thomas Brown	400	
Sydenham, Dr, praise bestowed by Locke upon his work on the History and Cure of Acute Diseases	101	
Sympathy, Adam Smith's theory regarding this moral sentiment	359-360	

T. |

Tartales, discovery of, in algebra | 441 | |
| Taylor, Brook, account of a new branch which he added to the analysis of variable quantity | 532 | |
INDEX.

<table>
<thead>
<tr>
<th>Page</th>
<th>Tucker, Abraham, borrowed from Hartley in relation to the intellect, and concealed his offence by changing the technical terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Slid unawares into selfishness</td>
</tr>
<tr>
<td></td>
<td>The neglect of his writings shows a want of taste for metaphysics</td>
</tr>
<tr>
<td></td>
<td>Turgot, M., meaning attached by, to the word physics</td>
</tr>
<tr>
<td>17</td>
<td>U.</td>
</tr>
<tr>
<td>474</td>
<td>Ubaldi, Guido, an Italian, the first who surpassed Archimedes in mechanical science</td>
</tr>
<tr>
<td>233</td>
<td>Usury, argument of Calvin respecting, Note B</td>
</tr>
<tr>
<td></td>
<td>Bentham's tract on, see Bentham</td>
</tr>
<tr>
<td>379</td>
<td>Utility, the principle of, proclaimed by Mr. Bentham with the zeal of a discoverer</td>
</tr>
<tr>
<td>429</td>
<td>Fully discussed in Hume's works, Note V</td>
</tr>
<tr>
<td></td>
<td>See also Ethics.</td>
</tr>
<tr>
<td>600</td>
<td>V.</td>
</tr>
<tr>
<td>164</td>
<td>Variations and differentials, distinction between</td>
</tr>
<tr>
<td></td>
<td>See also Geometry, New.</td>
</tr>
<tr>
<td>184</td>
<td>Vauvenargues, the Marquis de, notice of his life and writings</td>
</tr>
<tr>
<td>584</td>
<td>Vega, mathematical talents of</td>
</tr>
<tr>
<td>535</td>
<td>Velocities, virtual and actual, the principle of, enunciated</td>
</tr>
<tr>
<td>442</td>
<td>Vicia, a learned mathematician, the first who employed letters to denote known as well as unknown quantities</td>
</tr>
<tr>
<td>442-3</td>
<td>Discoveries of, and improvements made by, in trigonometry</td>
</tr>
<tr>
<td>65</td>
<td>Virtue, see Ethics.</td>
</tr>
<tr>
<td></td>
<td>Vision, observations on the new theory of</td>
</tr>
<tr>
<td>244</td>
<td>Refutation of a fallacy contained in Dr. Berkeley's work on, Note M</td>
</tr>
<tr>
<td>164</td>
<td>Chief aim of Berkeley's work</td>
</tr>
<tr>
<td></td>
<td>Misapprehensions of the ancients on this subject ibid.</td>
</tr>
<tr>
<td>165</td>
<td>Voltaire's explanation of</td>
</tr>
<tr>
<td></td>
<td>Progress made by philosophers previously to Berkeley's time</td>
</tr>
<tr>
<td>167</td>
<td>Vives, Ludovicus, character of</td>
</tr>
<tr>
<td>15</td>
<td>The ancients and moderns compared by</td>
</tr>
<tr>
<td>30</td>
<td>Viviani, a disciple of Galileo, success of, in supplying a lost book of Apollonius</td>
</tr>
<tr>
<td>580</td>
<td>Volta, Alexander, sketch of his life</td>
</tr>
<tr>
<td>621</td>
<td>His invention of the pile known by his name, a new epoch in physical science</td>
</tr>
<tr>
<td>623</td>
<td>Voltaire, M., his estimate of Montaigne's talents</td>
</tr>
<tr>
<td>53</td>
<td>The first who assigned La Rochefoucauld his proper station amongst the French classics</td>
</tr>
<tr>
<td>54</td>
<td>Quotation from, respecting innate ideas, Note X</td>
</tr>
<tr>
<td>251</td>
<td>Clearly understood Berkeley's theory of vision</td>
</tr>
<tr>
<td>166</td>
<td>Madame de Staël's division of his literary life into two epochs, Note U U</td>
</tr>
<tr>
<td>277</td>
<td>Quotations showing that he advocated liberty at one time and fatalism at another</td>
</tr>
</tbody>
</table>
INDEX.

Voltaire took a part in the controversy respecting the force of a moving body 540
Proved instrumental in establishing the Newtonian philosophy in France 577
Vortices of Descartes 404
See also Descartes.

W.

Wallis, account of his Arithmetic of Infinites 518
Was the first who founded a system of statics on the quality of the opposite momenta 535
Account of his life and writings 589
Walmsley completed the Newtonian theory of the moon 664
Sketch of his life ibid.
Walsh proved that the benumbing power of the torpedo depended on electricity 622
War, civil, of 1640, influence of, on the intellectual character of the country 48
Warburton, Dr his opinion of Malebranche's talents 80
Instance of his hostility to Dr Clarke 146
Ward, Bishop, astronomical system of 495
Waring, Edward, account of his life and writings 396
Water, compressibility of, first determined by Canton 607
Oerstedt's improvement of his method ibid.
Wedgewood, Mr, his contrivance of a pyrometer 647
Werner, contributions of, to mathematics 436

Wheeler and Gray, their accidental discovery of the conducting and non-conducting powers of bodies 544
Willeke of Stockholm, his experiments on the distribution of heat 645
Wilkins, Dr, treatises of, on an universal language and a real character, of small value 46
Will, free, Locke's argument in favour of 143
St Augustin's and Descartes's assertion of the liberty of, Note M M 267
Kant's and Galiani's arguments for 196-7
Willieh, A. F. M. his account of Kant's philosophy 191
Wolfius, the disciple of Leibnitz, merits of, as a philosopher and writer 188
Futile attempts of, to introduce the philosophy he taught into France ibid.
Vague speculations of, regarding heat 642
Writing, fine, Addison's definition of 162

Y.

Young, Dr Thomas, gave a complete solution of the principle of capillary attraction 616
Character of, as a philosopher ibid.

Z.

Zeno, character and philosophy of 303
See also Ethical Philosophy.
on the history of media, physical, and ethical, and of mathematical and physical science

MAR 22 1921
JAN 28 1924
JAN 20 1926
AUG 31 1926
MAY 10 1926
MAY 19 1927
PR 8 1928
APR 10 1928
APR 17 1928
MAR 25 1928
MAR 25 1928
APR 19 1930

UNIVERSITY OF CALIFORNIA LIBRARY