[image: Cover]
 A treatise on the mathematical theory of elasticity 
Love, A. E. H. (Augustus Edward Hough), 1863-1940
This book was produced in EPUB format by the Internet Archive.
 The book pages were scanned and converted to EPUB format automatically. This process relies on optical character recognition, and is somewhat susceptible to errors. The book may not offer the correct reading sequence, and there may be weird characters, non-words, and incorrect guesses at structure. Some page numbers and headers or footers may remain from the scanned page. The process which identifies images might have found stray marks on the page which are not actually images from the book. The hidden page numbering which may be available to your ereader corresponds to the numbered pages in the print edition, but is not an exact match;  page numbers will increment at the same rate as the corresponding print edition, but we may have started numbering before the print book's visible page numbers.  The Internet Archive is working to improve the scanning process and resulting books, but in the meantime, we hope that this book will be useful to you.
 The Internet Archive was founded in 1996 to build an Internet library and to promote universal access to all knowledge. The Archive's purposes include offering permanent access for researchers, historians, scholars, people with disabilities, and the general public to historical collections that exist in digital format. The Internet Archive includes texts, audio, moving images, and software as well as archived web pages, and provides specialized services for information access for the blind and other persons with disabilities.
Created with abbyy2epub (v.1.7.6)

Google 
This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online. 
It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficuk to discover. 
Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a librai'y and finally to you. 
Usage guidelines 
Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying. 
We also ask that you: 
+ Make non-commercial use of the files We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes. 
+ Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help. 
+ Maintain attribution The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it. 
+ Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement habihty can be quite severe. 
About Google Book Search 
Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web 
at http://books.google.com/ 

        
        [image: Picture #1]
        

        ^ 
r^T 
Uc>ve. 

        
        [image: Picture #2]
        

        
        
        [image: Picture #3]
        

        A  TREATISE 
ON THE 
MATHEMATICAL  THEORY 
OF 
ELASTICITY 
">K 
CAMBRIDGE UNIVERSITY PRESS WAREHOUSE, 
C. F. CLAY, Mahaoeil 
I^mton:  FBTTBR LANE, E.p. 
•luooto:  BO. WELLINGTON STBfiBT. 

        
        [image: Picture #4]
        

        mcivita: r. a. bbookbaus. 
Jltfai Ink:  THB HACHILLAN OOHPANT. ISambtB ann ZtlmUt;   HACHILLAN AND CO.,  Ltd. 
[Atl RiffhU rttmied,] 
THE I:E^7 YORK PUBLIC LIBRARY 
834806 
ASTOn   LENOX AND TILDEN  FOUNDATIONS R 1918 L 
raimxjt bt johm ci^t, x^. 
AT THB CaiTBBIinr ?BU8. 
PREFACK 
riiHTS book is a ftecond edition of one with the same title which was -*- publi»hed by the Cambridge University Press in two volumes bearing llie dates 1892 and 1893. At the time, about five years ago, when it first became Dcccssaiy to think seriously about a new edition, a number of friends had sent me criticisms of particular sections of the book and saggcstions for improvement in matters of detail. Among' these friends Prof. W. J. Lewis and Prot W. M^F. Orr must be named with especial gratitude. I knew then that two or three Chapters ought to be rewnttcn, and that the resttltA of •eveml new researches ought to be incorporated, but I did not contemplate a verj- extensive revision. The task of rearranging the old matter, with some onusddentble additions and a few slight omissions, became so distastoful, and the result appeared so unsatisfactory, that at length I abandoned the attempt, and ■wrote a new bcx>k containing some extracts from the old one. The science of Elasticity—the mechanics of solid bodies as they really are—ia so important in itself, and the phpical notions and analytical processes belonging to the theory are so widely used in other bi-anches of Physics, that no apology aeems to be necessary for the course that has been pursued. In the selection, and the mode of prt^sentation, of the matter three objects have been kept in view : to make the book useful to engineers, or others, whose aims are chiefly practical, to emphasize the bearing of the theory od general questions of Natural Philosophy, to afford a reasonably complete picture of the state of the science as it is to-day. The desire to be useful has led me to undertake some rather laborious arithmetical computatinns, physical interest has prompted something more than a passing reference to several matters which lie outside the strict scope of the mechanical theory, completeness has required the inclusion of some rather long analytical investigations. At the same time, purely technical raattera^ such as descriptioms of apparatus and calculations relating to particular structures, have been excluded; related subjects, such as the production of straiu by unequal 
VI 
PREFACE 
heating, the rendering of ghiss doubly refi-octiug by strain, the theorj'- of the luniimferous medium regarded as an elastic solid, have received but a slight measure of attentiou ; detailed discussion of problems of which the interest 
mainly  mathematical   has   been   kept   within   rather   narrow   bounds. fuuicrous references to authorities on these, as well as on other, matters have, however, been introduced. 
One change which has been made may perhaps require a word of defence. The notation fur cvinpononts of stress and ooinponents of strain is different ftuOQ that adopted in the first edition. A wi»h for this change was expressed to me in ttevenil quarters, and I have myself been much impressed with the advantages of a natation which conveya its (t'H'n meaning. Although I still think that Kelvin and Tait'tt notation, which was adopted before, has many merits, yet I did not feel that I should be justified in neglecting the repre* scntationa that hod been made to me. 
The student to whom the subject is new is advised to bum as early as pOMflible to Chapter V, where he will 6nd a condensed recapitulation of the iiiuHt edHenlial |uirtH of previous Chaptem, some indicaliuim of the kind of problems which can be treated mathematically, and of methods of dealing with them, and a number of results of which the verification, or direct inveetigatton, will be useful to him as exercises. 
It remains to attempt to express my thanks to thotie who have helped me with this book. Three friends have laid me under especially heavy obligations: Prof. J. Larmor and ProC U. Lamb have read most of the pi'oob, and have sent me many kindly criticisms and m&ny helpfid suggestions in regard to matters of principle; and Prof H. M. Mac<)onald has read all the proofs, and his vigilance has detecte<l many misprints and errors of detail. l>r A. Timpe, who is translating the book into German, has also kindly called my attention to a few passages which needed correction; and the scrupulous care which he has bestowed upon the translation leads me to hope that few serious errors remaiiL To the Syndics of the Press my thanks are due for their kindness in acceding to my proposal to print the new edition in a smgle volume, and the readiness with which the staff of the Press have met all my wishes in regard to printing and diagrams deserves more thiui a word of recognition. 
A.  E.  H.  LOVE. 
OZIORIN />MwhW, 1905. 
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p. 10, footnote 37.    Add " Reprinted in Stokes's Math. andPh^t. Paper», voL i. (Cambridge 
1880), p. 75." p. 27, line 1.    For"U. Phillips" rearf "E. PhillipB." p. 65, line 16.    Intert " square of the " before " central radius vector." 
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p. 470, line 2.    For "M. Barth^Mmy" read "A. Barth^Wmy." 
HISTORICAL   INTRODUCTION. 
Thk Mathematical Theory nf Elasticity is occupied with an attempt *.* reduce to lulciilatirin the state nf strain, or relative displacement, within 
Ia solid body which is subject to the action uf au ei^uilibrating system of 
lfon:e5, ur Is in a state of slight internal relative motion, and with endeavour? to  4ibUiin  I'estilts which shidl  be praotically  important in   applications  lo 
[architecture, engineering, and all other usefiil arts in which the material >f confltruccion is Rolid.    Its history should embmco that of thtj progress 
}o( our experimental knowledge of the behaviour of strained bodies, so f&r u it has been embodied in the mathematical theory, of the development of onr conceptions in regard to the physical principles necessary to form a foundation for theory, of the growth of that branch of mathematical anal>*8is in which the process of the calculations coiiitists, and of the gradual »e<[oisition of practical rules by the interpretation of analytical resulte. In a theory ideally worked out, the progress which we should be able to trace would be, in other particulars, one from less to morcj bnb we may say that, in regard to the assumed physical principles, progress consists in passing from more to less. Alike in the experimental knowledge obtained, and in the analytical methods and results, nothing that has once been discoverod ever loses its ^Tilue or has to be discarded ; but the physical principles Come to be reduced to fewer and more general ones, .so that the theory is bnnight more into accoi-d with that of other branches of physice, the samo genera! dynamical principles being ultimately requisite and sufficient to iierve as a basis for them all. And although, in the cast! of Kla^ticiby, we find frwpient retrogressions on the [Kirt of the experimentalist, and errore on (he p&rt of the mathomatician^ chiefly in adopting hypotheses not clearly establiahed or already discredited, in pushing to cxtreines methods merely approximate, in hasty generalizationn, and In nilsuTiderstandingH of physic^il principles, yet we observe a continuous progress in all the respects mentioned when we survey the history of the sniene* from the initial entpiirioa of Oalileo to the conclusive investigations of Saint-Venant and Lord Kelvin, 
UK. 1 
HI8TOBICAL INTRODUCTION 
The 6rst raathemaliciau tu coiimder the nature of the resistance of solids to rupture was Galileo'. Although he treated solids aa inelastic, not being in poeBesnon of any law connecting the displacements produced with the foTves producing thein, or of any physical hypothesis capubte of yielding such a law, yet his euquiries gave the directiou which was subsequently followed by uiauy investigators. He endeavoured to detemiiue the resistHnce of a beam, one ead of which h built into a wall, wheu the teudeucy ui break it arises from its own or an applied weight; and he coucluded that the beam tends to turn about an axis perpendicular to its length, and in the plane of the wall. This problem, aud, in particular, the detenninatiun of this axis i» known as Galileo'^ problem. 
In the history of the theory started by the question of Galileo, undoubtedly the two great landnmrks ai-e the discovery of, Hooke's Law in 1660, and the funnulation of the geueral equations by Navier in 1821. Hooke's Law provided the iiecessaiy experimental fuimdation for the theory. When the general equations had been obtained, all questiuuH of the small sti-aiu of elastic buiiies were reduced to a matter of inatheiiiatical calculation. 
In England and in France, in the latter half of the 17th ceutun,', Hookc and Mariotte occupied themselves with the experimental discover^' of what we now term streas-straiu relations, Hooke' gave in 1678 the famous law of proportionality of 6tru»8 and tstraiu which bears his name, in the words " Ut tenaio sic vu; that is, the Power of any spring is in the same proportion with the Tension thereof." By " spring" Hooko means, aa he proceeds ta ex[>taiii, any "springy body," and by "tension" what we should now call "extension," or, more generally, "strain." This law he discovered in 1660, but dill not publish until 1676, and then i>niy uiuler the form of an anagram. ceiiinosssttuu. This law forms the basis of the mathematical theory uf Elasticity, and wc shall hereafler consider its generalization, and its range of validity in the light of modem experimental research. Hooke does not appear to huve made auy application of it to the consideration of Galileo's problem. Tbis appUcation was made by Mariotto'^ who in 1680 enunciated the same law independently. He remarked tliat the resistance of a beank Lo Hexuro aiiscs from the extension and contraction of its parts, some of its longitudinal filaments being extended, and others contracte<l. Ue aasumed ttial half art' extended, and half contracted. His theory led him to assign the position of the axis, required in the solution of Galileo's problem, at one-half the height of the section above the base. 
In the iulcrval between the discovery of Hooke's law and that of the genem! differential cipiations of Ehisticity by Xavier, the attention of thoee mathentaticuins  who  ixrcupied   tlieniM-'lves  with  oui* science   was chiefly 
* (ifelilto Onlilvi, h'lKorH t Dimottratioai maUmuttieiie, Lw'iltn, 16S8. ■ Robert Hookfr. it* I'otmtia rtfliiuttru, I^imIod, 167S. 
• E. MarioUe, Trniti du wtcwettunt 4ft taur, P»rU. 1086. 
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to the solution and extension of Galileo's iimblein, and thft related of the vibratioDs of bare and plates, aiid the (Stability of columns. The finit investigation of any importance is that, of the elastic line or elavtica ibv James Bernoulli* in 1705, in which the resiptance of n bent rod is assumed to arise from the extension and contraction of its longitudinal fiUunents, and the equation of the curve assumed by the axia is formed. 'I'his efjuation practically involves the result that the resistance to bending ifi a couple proportional to the curvature of the rod when bent, a result which was aseumcHl by Kuler in his later treatment of the problems of the dastica, and of the Tibrations of thin rods. As noon as the notion of a tlexaral couple proportional to the curvature was established it could be noted that the work done in bending a rod is proportional to the square of the curvature. Uaaiel Bemoulli* sng^ated U> Eulor that the ditiferential et^uation of the eiattica could be found by making the integral of the square of the curvature taken along the rod a minimum; and Kuler*, acting en this suggestion, was able to obtain the differential equation of the curve and to classify the various forms of jt. One fonn is a curve of sines of small amplitude, and Euler pointed out' that in this case the Hue of thrust coincides with the unstmined axis of the rod, so that the rod, if of sufticicnt length and vertical when unstrained, may be bent by a weight attached to iia upper end. Further investigations' led him to assign the least length of a column in order that it may bend under its own or an applied weight. Lagrange' followed and used hia theory to determine the strongest form of coluiim. These two writers found B certain length which a column must attain U) be bent by its own (rr an applied weight, and they concluded that for shorter lengths it will be nmply compressed, while for greater lengths it will be bent. These researches are the earliest in the region of elastic siabHity. 
lu Euler's work on the elastica the rod is thought of as a line of particles which resists bending. The theory of the flexure of beams of finite section was wHisidcred by Coulomb"*. Tlii.'* autlior tnok account of the equation of er{iiilibnnm obtained by resolving horizontally the forces which act upon the port of the beam cut off by one of its normal sections, as well ae of the oquatioD of momenta.    He was thus enabled to obtain the tnie position 
* BemouUi's tDenwtr i« untitled, 'V^tiUIiIo hypotb^M de la rfuRtanctt des eolid«fl, sveo ta •baoostntian da la courburs d«s corp« qui font renort,' and will be founxl in ki« collected •odu. t. 3, Oeneva. 17ii. 
* Boe the 3i'>Ui leUcr of Duii«1 Peniontll to Euler (Ootober, 1742} in Fiuts, Corre*pouJaucf mat^imaliyur rl phyiiquc, t. 3, Ht Fetersbarg. l^-IS. 
* Rm the Adtiitamfntum ' De cnms cliwtlcis' in the MethoduM invtitiettdi linetu ainnu mAximi \mtdmir*prvprietale gnuiifnta, Lansannt;, 1744
'^ Ihrlin. Hittoire de I'Aaut^mie. t. IS (17o7K 
* dcii dead. Petropnlit4nue at 1779. Pan prior, pp. 131—198. 
* MtKtllanta Ttnnnttaia, i. 5 (1773). ** ' EiMu Mir une BppJioalion dM r^1«« dt ititiimu tt Minimia k qoclquu ProbUma ile 
Slatiqae. nlatita i I'AKihitectare,' 3Um.,.^r dittri lataiu. 177C. 
1—2 
mSTOKlCAL.  INTKOUUCTION 
of thn "neutral liac," or axis of ccjuilibrium, and he alito mode a correct calculation of ihe inoin«nt of the elastic furcos. His theory of beanift !s the moal exact of thuiiQ which proceed on the assumptioa that the stress in a bent bean] arista whully fniin the exten-simi and contraction of its longitudinal filaments, and is doilucL'd mathoiiiatically from this assunijitiun and Hooke's Law. Coulomb was also the first to consider the resistance of ihtn fibres to torsion", and it is his account of the mattor to which Saiut-Vonant refers under the name Vwtcienne theoi-ie, btit his formula for this resistance was not dudiiced from any elastic theory. The formula makes the torsioiuU rigidity of a fibre pi-uportional to the moment of inertia of the normal section about the axis of the fibre. Another matter to which Conlomb was the first to pay attention was the kind of straiu we now call shear, though he considered it in connexion with rupture only. Hin opinion appears to have been that rupture" takes place when the shear of the material is greater than a certain limit. The shear considered is a permanent set, not an elastic strain. Except Coulomb's, the most impoitaut work of the period for the genural mathematical theory' is the physical discussion of elasticity by Thomas Young. This naturalist (to adopt Lord Kelvin's name for students of natural science) besides defining his modulus of elasticity, was the first to consider shear as an elastic strain". Uc called it "detrusion," and noticed that the elastic reaititance of a body to sheur, and its resistance to extension or contraction, are in general difi'erent; bnt he did not introduce a distinct modulus of rigidity to express resistance to shear. He defined " the modulus of elasticity of a substance"" as "a column of the same substance capable of producing a pressure on its base which is to the weight caiising a certain degree of compression, as the length of the suKtlance is to the diminution of ita length," What we now call "Young's modulus'' is the weight of this column per unit of area of its base. This intruductiun of a definite physical concept, associated with the coefficient of elasticity which descends, as it were from a clear sky, on the reader of niatliematical memoirs, marks an epoch in the history of (he science. 
Side by side with the statical developmentii of Galileo's enquiry there were discussions of the vibration^) of solid bodii^s.    Euler* and Daniel Bernoulli" 
■' Itiitoirt dt VAcadimie (ot 1764. pp. 22S~2G9, Parts, 1787. 
" 8«c tlw iotrodootion in the memoir first qooted, M(m...jpar divert $avan»t 1778. 
'* A Couth oJ Leetvrtt on Halurat PhiUnophif ahd the Meehanieul Artt, LoDdoD, ltl)7. Leetara xiii.    It U in Evlluid'fl Uter editJoD (l^R) on pp. lOS tt »«f. 
'* Loe. cil. (fooLootfi IS). Xbe detiniUoD wu gina in BeottOD tx of Vol. 2 of tb« finl editiont And omillMl in Kelliuid's odition, bat it ia rapruduoed in the MitfUatxeotu Wuriu of Dt I'cwn^. 
" 'De i'tbraUoailniJi...liuninanim elutioaram...,' and ■ De aooia maltibriiB qooa luntnu «laatic&«..,edunt...' publtAhtd io Commtnturti Aviidtmitr Scifituirum tmpenatit Petrojfoliltintr, t. 13 (17511. The reador muni b« caDtioiKd that in writioKB of ilie ItUli century s "lamiiu" OMauft a otrai((hl rod or «ar««d bar, auppoaed to be out out from a thia plate ot cjrluidnoal Bliell by two nomial wetiooa tutar together.   This usage liagiTS in many booki. 
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obtained the difierentiat Mjimtion of the lateral vibrationt; of bars by variation of the runction by which they had previously expressed the work done in bending". They determined the furms of the functions which we should DOW caII the "normal functions." and the equation which we should now call the "period equation," in the six ctifnes of terminal conditions which arise according aa the ends are free, clamped or ainiply supported. Chladni" investigated these mwles of vibration experimentally, and also the longitudinal and torsional vibrations of bars. 
The suooeas of theories of thin rods, founded on special hypotheses, appears to have given rise to hopes that a theory might be developed in the same way for plates and shells, bo that the modes of vibration of a bell might be deduced from its fonu and the manner in which it is supported. The first to attach this problem was Kuler. He ha<l already proposed a theory of the resistance of a curved bar to bending, in which the change of curvature played the same port as the cur\attare does in the theory of a naturally straight bar". In a note "De Sono Cainpanarum*"" he propitseii to regard a bell as divided into thin aunuli. each of which behaves as a curved bar. This method leaves out of account the chanjje of curvature in sections through the axis of the bell. James BemoulU" (the younger) followed. He assumed the shell to consist of a kind of double sheet of curved bars, the bars in (HK sheet being at right angles to those in the other. Reducing the t^hell to a plane plate he found an equation of vibration which we now know to be inci>m*ct 
Jame;^ Bernoulli's attempt appears to have been made with the view of diitoovoring a theoretical basis for the experimental results of Chladni concening the nodal figures of \'ibrating plates". These results were still unexplained when in 1809 the French Institut propose*! fw a subject for a prize the investigation of tht; tones of a vibrating plate. After several attempts the prize was adjudged in 1815 to Mdlle Sophie Germain, and her work was published in 1821". She a-ssumiKl that the sum of the principal curvatares of the plate when bent would play the same part in the theory of plates as the curvature of the elastic central-line does in the theory' of rods, and she proposed to i-egard the work done in bending a.s pi-oportional to the 
'* Tlw form of tfau «ner;^-rnnc|ioii iuic] tho notion of obl«ininj( tb>e cliflereotutl ci)nati(>n 1>y vilTiug it are doe to D. BerDotilli. Tho |iroi»it> wnn cnrrk'd utit b,v Euler, and tti« Qiinnai iinrtioaa anil th« p*rlod cqtuuiutis ^er* ilt'i«ri»inf»] \>y him. 
'' E. F. F. ClUadni, Hie AftvHik. Leipzig, 1802. The aulhor givna an soootiat uf the history of bU own flxperim«ntal rMtterchcn nith the dat«a of fixBl piiblioadon. 
** In the IStthodni itntHitndi... p. '274. i^ altia liia tster writing 'OtinmiM priDCi|nil... dtiUtna)qalIibrii<?t tm.'.m cotponino....'.Vor. tVmm. Acad. Ptirvj>oUtantr, t. 15 (1771). 
* .VoT-. Camn. Arail. Petropolilamr. 1. 10 |ltt>6). 
* ■£■*«] tbtorfqoc far Im vibrations d«s plaqaea ^U*ti<iaea...,' }too. Acta PttropolUame, U A (ITm). 
f Pjrsl pablished »l Lefpsif) (n 17S7.    8m l>h Ahutik, p. vii. ftffhrrrkr* rnr It tW«ri> Hft ttir/ata itattiqvrt.    Paris, 1S21. 
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BUTOBICAL niTBODCCTION 
of Uw iK^uim! uf the dum of the principal curvatures taken over but. Kroin thin assumption and the principle of virtual work she ibu «|uation of flexural vibration in the form now generally admitted. VaUsf mutmUgaUiitiB have shown thAt the formula assumed for the work «Iao« in btffMling vm» incorrect. 
lJurinf{ the finit period in the histoid' of our science (1G3S—1820) while ik^KK varioii* iut^estigations uf special problems were beiug made, there was • nuMt at work which was to lead to wide generalizations. This cause was fiijr«ical ffpeoulatioD concerning the cousticution of bodies. In the eighteenth moiury tho Newtonian conception of material bodies, as made up of small |Mru which act upon each other by incuiis of central forces, displaced the Cwtoaiaa conception of a plenum pervaded by "vortices." Newton regarded lUM "molecules" as possessed uf finite sizes uml deHnttc shapes", but his •MtavMon gradually simpltiied them into material poitU9. The most definite •pucutotion of this kind is that of Br>si'ovicb", fur whom the material points w«n nothing but pereistent centres of force. To this order of ideas belong Jjtplacu's theory of capillarity** and PijiHsati's first iuvcsligation of the cquilihrium of an "elastic surface"," hut for a long time no attempt eecma to have been made to obtain general equations of motion and equilibrium of ulafltic solid bodies. At the end of the year 182U the finit of all the ingenuity cilMjuded ou elastic problems might be summed up as—an inadetiuate theory of flexure, an erroneous theory of torsion, an unproved thoory of the vibrations of bun and plates, and the definition of Yuung's modulus. But such au I'StimAl*; would give a very wrong imprwssion of the value of the older refu>ari.'hes. The rocwgnition of the distinction between shear and extension Woa a prelimirwry to a general theory of strain; the recognition of forces aorow tlio elements of a section of a beam, producing a resultant, was a ■top towards a theory of stress; the use of differential equations for the dL'Hiixion of H bent beam and the vibrations of bars and plates^ was a foreahaduwing of the employment of differential equations of disptacemeut; the Nawtuninii conception of the ooDstituti<»i of bodies, combined with Uooke'a I^w, otfrred means for the formation of such equations; and the generalization t>f the principle of virtual work in the Micanique Anali/tiqiie tbrew open a brumi jMitli to discovery in this as in every other branch of mathematical phyiiicH. Physical Science had emerged from its incipient stages with de6nite ntellindt of hyiKithcsia and induction and of observation and deduction, with Lltu cloar aim to discover the laws by which phenomena are connected with Mioh other, and with a fund of analytical processes of investigation. This waa UiD hour for the production of general theories, and the men were not wanting. 
" Hm, in psrliouUtr, Kewlup. Optitk*. 3ud Edition. LQndon, 1717. tlw 31*1 QtMty. 
** K J,  BoHOvioh, Tkfoiia PAUoMpAui Sitturaiit rtdacta ad ututam Uftm rfrinm in uatura ftialntlium. VmIm, 1743. 
■ AZ/MNfyuf t'iU»tf, Suppt/mnt nu 10* Livf*, P»ri«. 1806. 
■■ Vtrh, iHm. at I'liuUtMU 1914. 
BIRTORICAL INTRODUCTION 
I 
Ka<rier" was tlie Rrst-to investigate the geooral eqiiatioDS of equilibrium and vibration of elastic solidB. He set out from the Newtonian cou<^ption of the constitution of bodies, and assumed that the clastic reactions arise from %'arialiouti in the iuteriuolecutar furces which result from chan^eH in the utolecular eonfiguratiou. He regarded the molecules as material points, and assniraed that the foree between two molocules, whose dishince is slightly increaeed, is proportional to the product of the increment of the distance and wme function of the initiiil dtstaoce. His method coiutittls in forming an expression for the component in any direction of all the forces that act upon a displaced molecule, and thence the equations of motion of the molecule. The equations are thus cpbtained in terras of the displacemenis of the molecule. The material is asaumed to be isotropic, and the equations of equilibrium and vibration contain a single constant of the same nature as Young's modulus. Navier next formed an expression for the work done in a small relative displacemeDl by all the forces which act upon a molecule; this he described as the sum of the moments (in the sense uf the M^aim'ipie Aunhjtiqne) of the farces exertei) by all the other molocules on a particular molecule. He deduced, by an application of the Calculus of Variations, not only the differential equations previously obtained, but also the boundary conditions that bold at the surface of the body. This memoir is very important as the fir^t general investigation of ita kind, but its argumenU have not met with gcneml acceptance. Objection has been raised against Navier's expression for the force between two " molecules," and to his method of simplifying the expressious for the forces acting on a single "molecule." Thewe expressions iim>ive triple summations, which Xavicr replaced by integrations, and the validity of this procedure has been disputed**. 
In the same year, 1821, in which Xavicr's memoir was read to the Academy the study of elasticity received a powerful impulse from an unexpected quarter. Frcsnol announced his conclusion that the observed facta in reganj to the interference of polarised light could be explnincd only by tlio  hypothesis  of  transverse  vibrations"'.     Ho  showed   how a medium 
■" Pari*, V/m. Arari. Keifucc, i. 7 (tf''27).   Th«mpinoirir»8 rend tn May, isai. 
^ JKoi vTiticisiDS of NftTLvrV minuoir miii ao Kocuant al the tliecuBxioni lo which it gave riKe, aee Todhunt«r and Prarsoo, HUtiiry of iht Thrortf of ElntlicUy, vol. 1, CawliriilftP, lS»t(>, pp. 1S9, m. 277: aud ct. the bcooojpI gir«ii by H. JJurkhatdt in bia Hcport wii 'Eiitwickelungen lueh o«iiIlim)d«u Functionvn' puVjIivliod in tti« Jahrefberieht der DrnUehin ilalJifnuitikfrVtrtinifuttf, Bd. 10, Ueft ^, Li6fcmD){ 3 (lifOS). It ma; not be auporduoiu to Kniarlc that lb« coneepUon of n)ol«o[il«a as raM^riaL points at refti io a' state of stable eijnilibrium under tlieir nntoftl br«es of altraotion and repaiuon, aud lii-ld in alightly displaced posiciooH by «zt<nial ferOM, laqoite diftereni frou th« conception of mo](?cu]<» with which caodern Thormod.viiauuoB haa made us ftuniliar. The "molecalar" theorLtin. of Navj^r, Poiiimin and Caucby have no TNpr inuraat4 mlstion to modem notions about niDl^culoii. 
* Sm E. V«rd«t, tEttvret cvmpliUt d'Juyntlm ^'rctrirt, t. 1, Pariit, I(*HO, p, l«xvi. ulao pp. 6W «l fey. Vndfll point* out that Frmnel arrived at hi» hypotb«sis of tran^rerse vibiatiirna ia 1816 [toe. eit. pp. lv. 885, 3a4). ThoitiaJi Young in hia Articln 'CbromatioB" {Enci/cl. Unt. Sufjtletiunt. 1817) regarded the luminonii vibrationii ah having relatively feeblo tranRverse cotnpooenta. 
HisrowcAL INTaODCCnOK 
«# * »c4cca]e»" ooaoected l^-oentral furces might be expected t oianlc Mck TilcmtuNU aod to transmit waved of the required type. Befo ti» IIb* «# Taong ami Fix^iicI xuch (.'xamples uf tmnsrerse waves ns were OB water, transverse vibnitioos of strioj^. bars, membtuncs anil eT« in uo case examples of waves tnuismitted through a medium; aad arilihrff the supporters nor tlie opponents of the undulatory theury of ^^A «pp«ar to bare coiiceired of light waves otherwise thau as " longttrntm^" fnvtm of condeneatioa and rarefaction, of the type rendered familiar iy Uhi IraaaaiiMioD of sound. The theory of elasticity, and, in particular, III* yfobfaiD of the transmiBsion of waves through an elastic medium now •MMetad the attention of two mathematicians of the highest order: Caucfay" flod PoiMofi"—the former a discriminating supporter, the latter a sceptical critic M Frmal't ideas. In the future the developments of the theory of elasticity w* to be cloeely associated with the question of the propagation of light, and tkima d«TclopmeatH arose in great part from the labours of these two savants. By the Autumn of IK22 Oauchy** had discovered most of the elements of the pare theory of elasticity. He had introduced the notion of stress aB a point dctenninetl by the tractions per unit of area across all plane elements Utfough the point. For this purpose he hml generalized the notion of bydroetatic prestiurc, and he had shown that the stress is expressible by nouMi of rix component stresses, and also by means of three purely normal iraclions acroHs n ccrtaiu triad of planes which cut each other at right angles— ibe " principal planes of stress." He had shown also how the diSerential ooefficionts of the three components of displacement nan be used to estimate lh« dxtcnuiou of every linear clement of the material, and had expressed the ■tat« uf strain near a point in tt^rms of six componcnt<i of strain, and also in tcnuB uf the exteusiuos of a certain triad of lines which are at right angles ^ to eaoh other—the "principal axes of strain." He had dotemiiued the^H e«[uations of motion (or oquilibriuni) by which the stress-components ai-9^ c»nnL*cteil with the forces that are distributed thn>ugh the volume and with thv kinetic reactions. By means of relations between stress-components and stntin-con)|Mincnts, he hod eliminated the stress-components from the equatiiihn iir motion and eijuilihrium, ami had arrived at equations in l«rn)s of the diMplaoenifUts.    In the later published version of this investigation Cauchy 
" Cso«hy'« ■ludiot in KiMtiotlj wtn first pt<>iupt«d hy hit being t aHoobor of th« CommisBio^^H ^fffoinUnl to r«iM>rl ti|>on ■ memoir by Nkrier on elutio plates whieh «rs§ pnMntMl to lliu P«H« £mimtuy Iti AuHiKl, imo. 
V V» l)a*f iioti'il llml i'nlMun )iad nlruady writtfn on rlsKtio plates to 1814. 
A^urliy'a iiiviDoir ww (lomiminiuntvd to ibo Tbiu Acadeuir in  S«pt«iDb«r 1923. bat It «M mil inihllBtti'il.    An ftlMlmcl wk* InMrlnl in tbr ButUtin des ScUne/'t <t In Saciflf philo' •Mni&ti/a*. iN'Jn, ftitit lb* voutpnlM uf tti* iiiKiDoir wcm tirea in Utei pablkatioQs. viz. in two Al(U)U« In Dim vniiHiHt far  ISIIT (vf Ciuichy'ii  h'Tfrriffs Je matUmtiliqut and an  Article in thfi '•jliiui* 'vr IhW.   Tb« UIIm of tlMw AJlioIwi uv ^t 't)« U pr«Miou oa tcauoa dans un eo' •"HAf,' fU) ' Nui la oiiniUuiaUoa «l la dilatation dot corps aolidea,' |iii) *Sur !■■ AqnaliiNi* ^i »k|ribKMil 1m oumllUufta il't^gtitlibn ou loa lob dff mouvMiiaitt inlMenr dHin oorpa toUi Tlw Uat mI Ut«M nmUtni lli» earrecl ei|iuliona of EUstlcity. 
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        UlSTORICAL  INTRODUCTION 
obtained liis stress-strain relations for isotropic materials by means of two assumptioDs, viz.: (1) that the relations in question arc tinear, (2) that the principal planes of stress are normal to the principal axes of strain. The experimental basis on which these asenraptions can be made to rest is the same as that on which Uooke's Law rests, but Cauchy did not refer to it. The equations obtained are those which aie now admitted for isotropic solid bodies. The methods used in these investigations are quite different from those of Navier's memoir. In particulur. no use is made of tlie hypothesis of materia] potuta and central forces. The resoltiog equations differ from Navier's in one important respect, viz.: Navier's equations contain a single eoostaut to express the elastic behaviour of a body, while Caucby's contain two such constants. 
At a later date Cauchy extended his theory to the case of cr)*atairme bodies, and he then made use of the hypothesis of material points between wliicb there are forces of attraction or repulsion. The force between a pair of pointji was talcen to act in the line joining' the {>oint,«, nnd tc be a function of the distanco between them; and the assemblage of points was taken to be bomogeneous in the sense that, if A, It, C are any three of the point8, there is a point D of the assemblage which is situated so that the line CD is equal and parallel to AB, and Che sense from C to /^ is the same as the sense from A to B. It was assumed further that when the system is displaced the relative displacement of two of the material paints, which are within each other's ranges of activity, is small compared with tlie distance between them. In the first memoir* in which Cauchy made use of this hypothesis ho formud an expression for the forces that act upon a single material point in the s>'9tem. and deduced differential equations of motion and equilibrium. In the case of isotropy, the equations contained two constants. In the second memoir** expressions were formed for the tractions across any plane drawn in the body. If the initial state is one of zero stress, and the material is isotropic, the stre^ is expressed in tenns of the strain by means of a single constant, and one of the constants of the preceding memoir roust vanish. The equations are then identical with those of Navier. In like manner, in the general case of eeototropy. Cauchy found 21 independent constants. Of these 15 are true "elastic constants," and the remaining 6 express the initial strens and vanish identically if the initial state is one of zero stress. These matters were not fully explained by Cauchy.    Clansius", however, has shown that this is  the 
" hlierriea At mathtnatiquf, I92ri, ' Hnr t't^Mtiiililim rt 1r mnnvcroent d'an syit^mo dc pointa mu^riela lolUetWfl p&r d«a Forccii d'«llnotiou on cl« r^-pnlMoa inutueUi^.' Ttis memoir follows unmedimtel7 ftftcr lliat Ust i|untcd and imniodtattfly ptGC<M)f« tbat nrtit f^noU^. 
** Extrcicf* de mathimatiqwr, 1S!M, ' Du U praesion ou teougD dans un B^nttoie die point* malArieK' 
** ' UvUn-div Tniadvniii9;t], welobe in dnn binhor geWlUichlialien Fonndo flir da» Gl«icheevicht ood diu Bawt^unK elantfnher leBt«r K6rper dureli aeiittv BeobachimiKeti Dotliweodiff (iwordcD sind.' Jmt, th^t. Chtm. (Po^tftftdorff), Bd. 76 (IMlJ). 
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uiAToKicAL iirreoDCCTioy 
inoAiiiiiM of lii« work. Clauaiofl criticized the restricUve ooadiUonA which CAlloliy itii]H>mHl ii|>oii ihe ftnuugemeot of his material pointa, but he argued Llwtl l\\vm^ (uiiiilitiuimare not ueccmary for the liediiction of Cauchy'tteqaadana. 'I'lio Ami nii'iiiuir by PoIhou** relating to the same sabjeet was read hi'Toru tho Pkhh Acsuitrmy in April, 1H28. The memoir is rery remarkable fiir ilM iiuiiir>nMiM applira&tiomi of tho general theory to special problems- In bin iiiVDitiiguridii fif tlie general eqiiatiouA PoissoD, like Cniicby, first obtains thi< ui|iinli'i(in Iff fc|iiilibnum in tvnnn of KtresA-coiii|}<>nentK, and then estimatee tliM Iriuslioii wruM any plane resulting from the "intermolecular" forces. The oxprifwiioiiN for the ttlniMiefl in t«nnB of the ntrains involve Bummalions with nwiNirt U> ull thu "molecnles," situated within the region of "molecular" ADttvity of A fpvt'n une. Poiacon decides agniost replacing all the summations by lutogmtionv, Imt hi< auumes that thia can be done for the summations with raipoot to Angular ipitco about thu given "mulecule," but not for the NUiniiiitiinri* with nsHpoct to ili»tAnce from this " molecule." The equations of .0*|iiilil>rlniii anil inoliun of isotropic cln8tic solids which were thus obtained iiii> id«>nli(THl with Nnvicr's. Tho principle, on which summations may be ropliu'inl hy iiitegnitions, ban been explained as follows by Cauchy**:—The number of mnhtouloN in any volnrne. which contains n very targe number vf miilMruli>N, and whiwu liimeuaiuoti are at tho same time small compared with tlitt rndiiiN of l\\tt Mphoro of feasible ninleciilar activity, may be taken to be pht|M>rti[itiat tn the volume. If, then, we make abstraction of the molecules in iho imuii)(|ia(e niMKldmurhoiMl of the one considered, the actions of all the nljttiiti, fioMlaim tl ill luiy one of the suiall volumes referred to, will be equivaliiiit t*i A forctt, anting in n line through tho centroid of this volume, which will ltt> |trv>|tiM'tioniil !■«> the vtttiMni> and to a function of the distance of the iMtrhouUi' nuilei'utr fuuu the reiiUtiid uf the volume. The action of the rviUMter uiolccuttw )■ wud to bo " regular." and the action of the nearer ones, lltni^nUr", and thu* IViimon ruoiuntt'd that tho irregular action of the lutai\<r nioltH^uK«ii nmy Ixi negleotet), in oiunpari!wn with the octiini of the lvmol«tr ititea, which i» regular. This assumption is the text upon which Stotkiw** atViWwrtk fimudwl hi« criiiciim of P^tisson. As w» ha»e seen. i'atK'ht atuv#tl al iVimuiiK n'Multa hy the aid vtf « difivnot aasunption* CUH>au»** hrld thai bi>th l\iiMHm» aiMl (.\iu«4iy'9 methiok cuaM be presented iu titMt^xtvplit«uahl« fiiiiua. 
•ii>iUi k i^ i9iMUW Ifiiiiiia oiluvM «mtUkml ^«te alwiW k« ikftl <f r» i ilij jiiihaiH M). •Mt^«t^«MiallM«h'ii^tott»rM«JUaim9wUaiMlraMtatela*>vMidMtk ia 
UISTORICAL  IN-IRODUCTIOK 
11 
The theory- of elasticity established by PoiasoD and Cauchy on the then accepted basts of tuaterial points and central foixes vins applied by them uid also by LauK^ and Clapcyron* to numerous problems of vibrations and uf statical elasticity, and thus mimns were provided for testing its con* sequences experimentally, but it wiis a long time boforo adequate expehmcntA vere made to test it. Poisson used it to investigate the propagation of Wave's through an isotropic elastic solid medium. He found two types of waved which, at great distances from the sources of disturbance, are practically " loo^tndinal" and " transverse," and it was a consei]uence of his theory that Iho ratio of thn velocities of waves of the two types is \i3 : 1*". Cauchy" applied his equations to the question of the propagation of light in crystalline as well as in isotropic media. The theory was cliatk-nged first iu its application to optica by Green", and afterwards on its statical side hy SV'kes". Green was dissatisfied with the hypothesis on which the theory wiis based, and he tought a new foundation; Stokes':; criticisms were directed rather against the process of deduction and some of the particular results. 
The revolution which Green effected iu the elemeuta of the theory is corapai-able in iniportance with that produced by Navier's discovery of the general equations. Starting from what Is now called the Priitcipie of the CoHtiervation o/" Energy he propounded a new method of obtaining these equations. He himself stated his principle and methofl in the following words:— 
** In whatever way the elemcuts of any material ayatem may act upon '•each other, if all the internal forces exerted be multiplied by the elements " of their respective directions, the total sum for any signed portion of the " ina-ss will always be the exact differentia! of some fuucLion. But this ' function being known, we can immediately apply the genend method "given in the Mecaniqm Analytiqiie,&ni\ which appears to be more efipocially "applicable to problems that relate to the motiotis of systems composed "of an immense number of paiiicles mutually acting upon each other. One "of the advuntage.s of this method, of great importance, is that we are "necessarily led by the mere process of the calculation, and with little care "on our part, to all the equations and conditions which are r&iuinite and "gufficient for the complete solution of any problem to which it may be "applied." 
* 'M^moire «ir l'^iiilihr« intfrieur iIm «orpit nolidw hoInoftftI3ei^* Paris, Slfm. par divert Mmmfa, t. 4 (143S). Ttw mruiDir vms published aUo \a J. /, Math. iCretle], Bd. 7 (IS31)\ it tud been ptMMitwl to the Paris Academy, aod th>? ivpoTC on it, by Poiasot snd N&vier is dated 14M.    In ngwd to the f^enflraJ thaory the method adapted was tliat uf Naviur. 
* Sw tite tddiliiui. of date Novembei 182S. to the memoii qaot«d in fooLuntc S4l. Catiiiby CWoidtd the aatne result la the K£fivie^ dt uiatMamtqiw, 1§JI0. 
*' Ex*reict$ de Malh^maluiur, IHUO. 
** 'Oo tbs laws o( refieziau and retraction of lit{ht at ibo coiiiDiDn surface of two nonOfTMAililcd iMdia,' Cambridge Phii. Soe. Traiu. vol. 7 (I93y). Tbe date ot tlw m*moir is 1837. U a teprinted in ilathmuiti^al Pap^n of the lau George Grem, London, H71. p. 245. 
12 HISTORICAL  INTRODtrCnON 
The function here spoken of, with its sign changed, is the potential energy of the strained elastic body per unit of volume, expressed in terms of the components of strain; and the differential coefficients of the function, with respect to the components of strain, are the components of stress. Green supposed the function to be capable of being expanded in powers and products of the components of strain. He therefore arranged it as a sum of homogeneous functions of these quantities of the first, second and higher degrees. Of these terms, the first must be absent, as the potential eneigy must be a true minimum when the body is unstrained; and, as the strains are all small, the second term alone will be of importance. From this principle Green deduced the equations of Elasticity, containing in the general case 21 constants. In the case of isotropy there are two constants, and the equations are the same as those of Cauchy's first memoir". 
Lord Kelvin" has based the argument for the existence of Green's strainenergy-function on the First and Second Laws of Thermodynamics. From these laws he deduced the result that, when a solid body is strained without alteration of temperature, the components of stress are the differential coefficients of a fiinction of the components of strain with respect to these components severally. The same result can be proved to hold when the strain is effected so quickly that no heat is gained or lost by any part of the body. 
Poisson's theory leads to the conclusions that the resistance of a body to compression by pressure uniform all round it is two-thirds of the Young's modulus of the material, and that the resistance to shearing is two-fifths of the Young's modulus. He noted a result equivalent to the first of these**, and the second is virtually contained in his theory of the torsional vibrations of a bar". The observation that resistance to compression and resistance to shearing are the two fundamental kinds of elastic resistance in isotropic bodies was made by Stokes", and he introduced definitely the two principal moduluses of elasticity by which these resistances are expressed—the " modulus of compression " and the " rigidity," as they are now called. From Hooke's Law and from considerations of symmetry he concluded that pressure equal in all directions round a point is attended by a proportional compression without shear, and that shearing stress is attended by a corresponding proportional shearing strain. As an experimental basis for Hooke's Law he cited the fact that bodies admit of being thrown into states of isochronous vibration. By a method analogous to that of Cauchy's first memoir", but resting on the above-stated experimental basis, he deduced the equations 
" Sir W. ThomBon, Quart. J. of MatK vol. 5 (1865), reprinted in Phil. Mag. (8er. 6), toI. 9 (1878), and also in Mathematical and Phytteal Paperi by Sir William Tkonuon, vol. 1, Cambridge, 1882, p. 291. 
" AnnaUs de Chimie et dt Phytique, t. 36 (1827). 
" This theory ie given in the memoir cited in footnote 36. 
<* Bee footnote 37. The distinction between the two kinds of elasticity had been noted by PoDcelet, Introduction h la Mieaniqtu induttrielU, phytique et expirimtntale, Hetz, 1839. 
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with two constanU which had been given by Cauchy and Green. Uavicg regard to the varying degrees in M-hich dififei-eut classes of bodies—Iic|uid9^ soft solids, hard solids—resist compression aud distortion, he refused to accept the conclusion from Poisson's theory' that the modulus of coraprcsston has to the ligidity the ratio 5:3. He pointed out that, if the ratio of these motiulusea could be regarded as infinite, the ratio of the velocities of " longitudinal " and " transverse " waves would also be infinite, and then, as Green had already sbowu> the application of the tbeor)' to optics would be facilitated. The methods of Navier, of Foisaon, and of Cauchy's later memoint lead to equations of motion containing fewer constants than occur lu the equations obtained bv the methiKlti of Green, of Stokes, and of Gauchy's fimt memoir. The impiirtance of the discrepancy was tirst emphasized by Stokes. The questions in dispute are these—Is elastic aeolotropj' to be charact.(?rized by '2\ ciin<(tanu or by 15, aud is elastic isotropy to be chunicterized by ttvo constaats or one? The two theories are styled by Pearson*^ the " multi-constant " theory and the '" rari-constant" theory respectively, aud the controversy concerning them has lasted almost down to the present time. It is to be understood that the rari-constant equations can be included in the miilticouKtant ones by equating certain pah's of the coefficients, but that the rah-constaui equations rest upon a particular hypothesis concerning the constitution of matter, while the adoption of multi-constaucy has been held to imply denial of this hypothesis. Discrepancies between the results of the two theories can be submitted to the test of experiment, and it □light be thought that the verdict would be tiual. but the difficulty of being certain tliat the testetl material is isotropic has diminLshad thu credit of many experimental investigations, and the tendency of the multi-constant clasticians to rely on experiments on such bodies us coik, jelly and india-rubber h:i3 weakened their arguments. Much of the discussion has turned upon the value uf the ratio of lateral contraction to longitudinal extonsion of a bar under terminal tractive load. This ratio is often called " Poisson's ratio." PoisHon* deduced from his theory the result that this ratio must be ^. The cxpcrimenta of Wertheim on glass and braa^s did not support this i-esult, aud Wertheini" proposed to take the ratio to be ^—a value which has no theoretical foundation. The experimental evidence led r.4iin^ in his treatise"* to adopt the roulti-coustunt equations, and after the publication of this book they were generaily employed. .Saint-Vennnt. though a firm believer in rari-constancy, expressed the results of his researehes on torsion and flexure aud on the distribution of elasticities round a point" in terms of the 
" To<ihnnt«r and Peftiaon. Hittors of tiu Theory of ElOMtieilff, ■vol. 1, CambridKe, ISSfi, p. 496. 
■ drnialtt de Chimie, t. 23 (1S4SJ. 
• J>fi^iw »ur la tMvrie iitaihiiiMli'iu/: de i'^lattie^iti (tea ci>rpg hoHiUm, Parin, 18C2. 
" The memoir oq wniion U in itdn. de» SaiaitU (trans/tTt, t, il [l^u^t^ t^iat O" Hexuie ia in J. ik Math. (iMunttt), {3^. 2], t. 1 {IH5Q}, and that on the duitrlhution of claalLoilifiB U iaJ.de M*tK iUowitU), (iWr, i), t. 6 (1S6S). 
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multi-constant theory. Kirchhoff" adopted the same theory in his investigations of thJD rods and plates, and supported it by experiments on the torsion and flexure of steel bars"; and Clebsch in bis treatise" used the language of bi-constant isotropy. Kelvin and Tait" dismidsed the controversy in a few words and adopted the views of Stokea. The beat modern experiments support the conclusioD that Poisson's ratio can differ sensibly from the value I in materials which may without cavil be treated as isotropic and homogeneous. But perhaps the most striking experimental evidence is that which Voigf" has derived from his study of the elasticity of crystals. The absence of guarantees for the isotropy of the tested materials ceased to be a difficulty when he had the courage to undertake experiments on materials which have known kinds of leolotropy**. The point to be settled is, however, more remote. According to Oreen there exist, for a material of the most generally seolotropic character, 21 independent elastic constants. The molecular hypothesis, as worked out by Cauchy and supported by Saint-Venant, leads to 15 constants, so that, if the rari-constaut theory is correct, there must be 6 independent relations among Green's 21 coefficients. These relations I call Cauchy's relations". Now Voigt's experiments were made on the torsion and flexure of prisms of various crystals, for most of which SaiotVenant's formnhe for teolotropic rods hold good, for the others he supplied the required formulfe. In the cases of beryl and rocksalt only were Cauchy's relations even approximately verifled; in the seven other kinds of crystals examined there were very considerable differences between the coefficients which these relations would require to be equal. 
Independently of the experimental evidence the rari-constant theory has lost ground through the widening of our views concerning the constitution of matter. The hypothesis of material points and central forces dpes not now hold the field. This change in the tendency of physical speculation is due to many causes, among which the disagreement of the rari-constant theory of elasticity with the results of experiment holds a rather subordinate position. Of much greater importance have been the development of the atomic theory in Chemistry and of statistical molecular theories in Physics, the growth of the doctrine of energy, the discovery of electric radiation. It is now recognized that a theory of atoms must be part of a theory of the tether, and that the confidence which was once felt in the hypothesis of central 
" J. /. Math. [Crelle), Bd. 40 (1850), and Bd. 56 (I&59). 
w ^nn. Phyi. Ckfm. {Pofffiettdorff), Bd. 108 (1859). 
M Theorie dtr ElatticitUt/filer KHrpn; Leipzig, 1862. 
" Thomson and Tait, Xalural Philotophy, Ist edition Oxford 1867, 2nd edition Cambridge 1879-1883. 
» W. Voigt, Ann. Phyt. Chrm. (Wiedemann), Bde SI (1887). 84 and 35 (1888), 38 (1889). 
" A certain aBsumption, first made by F. E. Nenmann, ia involved in the statement that the awlotrop; of a crystal as regards elasticity ia known from the cryatallographic form. 
"' They appear to have been first stated explicitly by Saint-Yenant in the memoir on torriou of 1865.   (See footnote 60.) 
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forces between material points was prematiire. To determine tbc laws of the elaaticity of solid bodies witliuiit knowing the nature oF the tetherea) inedium or the nature of the atoms, we can only invoke the knowD laws of enei^ as was done by Green and Lord Kelvin; and we may place the theory uu a firm basis if wtt apjical to experiment Ut support the Htnteraeitt that, within a certain range of strain, the Ktrain-energy-function is a quadratic funetion of the comjKint^ntA of strain, instead of relying, as Green did, upon au expansion of the function in series. 
The problem of determining the state of stress and strain within a fHilid body which is subjected to given forces acting through it» volume and to given tractiuoH across its sur&ce, or is held by snrface tractioos so that its surface is deformed into a prescribed figure, is reducible to the luialytical pmblem of finding functions to represent the components nf dis* placement. These finictions roust satisfy the differential eciuations of equilibrium at all points within the surface of the body and must also satisfy cerluQ special conditions at this surface. The methods which have been devised for integrating the equations fait into two classes. In one class of methods a special solution is sought and the boundary conditions are HatisAed by a solution in the foi-m of a series, which may be infinite, of special solutions. The special solutions are generally expressible in tonna of harmonic fuDClions. This cla»« of ftolutious may be regarded as constituting an extension of the methods of expansion in spherical harmonics and in trigononietrical series. In the other ela-ss of methoris the quantities to be determined are expressed by definite integrals, the elements of the integrals representing the effects of sinffuiarities distributed over the surface or throQgh the volume. This class of solutions constitutes an extenMon of the methods iuirotluced by Green in the Tiieory of the Potential. At the time of the discovery of the general equations of Klasticity the method of series had already been applied to astronomical problems, to acoustical problems and to problems of the conduction of heat"*; the method of singularities bod not been invented* The application of the method of series to problems uf e<]uilibrium of elastic solid bodies was initialed by Lam^ and Clapeyron". They considered the case of a body bounded by an UQlimited plane to which pressure is applied acconling to an arbitmry law. Lam<J** later considered tho probletn of a boily bounded by a spherical surface and deformed by gi^en surface tnictions. The piublem of the plane is eissentially tlmt of the transniissiou into a solid body of forcic applied locally to a small part of its surface.    The problem  of the sphere has been developed 
*■ 8e« JJarkhordt, 'Eatvickclnng^un&ob osotUirenden VoDctionea.' Jahmleriehtder DeuUcken MnihfUuiilker-VfTfinigunff, Bd. 10, Hefl 2. 
* It was iiiveQt«d by Ureeii, An Huay on the ApjilicntioH of .Vathcmalinii Analijfii to the Tbtarif* o/ Elfrtrieirjf atul UngntUsm, Nottiiighin), 1828. Ueprintcd in Malh^nwtieat Paper* oflkt tate Qtorpe Grteu, London, 1971. 
» J.df ilatb. ILkHivilU). (. 10 (1854). 
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by liorH KelviD", who sought to utilize it for the ptirpoee of iDvestigating the rigidity of the BArth", and by G. H. Darwin io connexion with othor problems of cosminil physics**.    Tho atrial Bolutions employed are expresseti in terma of spherical harmonics.    Solutions of the equatioua in cylitidrical coordinatefl can be oxpre^ed in terms of BeBsel's functionK**. but, except for spheres and cylinders, the method of series has not been employed very successfully.    The mcthoil of singularities was tirst applietl to the theory of Elasticity by E. Betti'", who set out from a certain reciprocal ibeorcm of the type that is now familiar in many branches of mathematical physics.    From this theorem he deduced iucidentally a formula for determining the average strain of any type that is produced in a body by given forces.    The method of singulanties has been developed chiefly by the elasticians of the Italian school.     It has proved more effective than the methoJ  of series in the solution of the problem of transmission of force.    The fuodairienUl particular solution which expresses the displacement due to force at a point in an indefinitely extended solid  wjih given by Ixiitl   Kelvin**.    It was found at a later ihite by J. Bousaincsq* along with other pfii ticulai* solutions, which can, as a matter of fact, be derives] b}' synthesis from it.    Boussinesq's results led liitii lit i\ solution of the pmblem of the plane, and to a theory of " local perturbations," according to which the effect of force applied iu the neighbiKirhood of any point of a body falls off very rapidly as the distance fram the poiut increases, and the application of an e^juilibrating system of forces to a small part of a body produces an effect which is negligible at a considerable distance from  the part.    To estimate the effect produced at a distance by forces applied near a point, it is not necessary to take into account the mode of application of the forces but only the statical resultant andmomeot.  The direct method of integration founded upon Betti's reciprocal theorem was applied to the problem of the plane by V. Cerruti".   Some of the results were found independently by Hertz, and led in his hands to a theory of impact and a theory of hardness*. 
A different method for determining the state of stress in a body has 
« PbU. Tratu. Itog. Sor., vol. l.^S (ISCS). S«« al>o Math, cind Phf/i. Paper*, vol 3 tCftmbridge, 1990>, p. B&l, kixl K«)vin MnA Tnit, Sal. Phil., Part 2. 
n Brit. .-IwiMr. Hep. IS76, ATufA. and PAyi. Papcn, to). 9, p. 312. « Phil. Traiu. Roy. Soe., w\. 170 (1879), and vol. ITS (lft82). « L. Fochbanunw. J.f. Math. (Cr«»*), Bd. 81 (1876J. p. 88. 
• /I Suoro Ciaento (8cr. 3), tt. 6-10 (1872 et le^.). 
*> Sir W. ThooMOa, Camtiridfft and Dublin Slalh. J., I&IA, KpriuteJ tn UtHh. ««f /"Ayj. Paperi, vol. 1. p. 97. 
■I For lloQBAUMii'i euller KMarcbes in T«Kud to limple lohilionfl, aw Parit, C. A., tt. W—M (1878—1679) Rnil tt. 93—96 (1681—ISSS). A mora completD mooqiiI i» giv«n in hU book, Appli. eaUona det polmXitU a T/fiuIr 4t rt^HiUbrt et da ihounrmM da totidti €l'uii^uet, Pnrii, ISSo. 
• Honw, J«. J.me<i, .Vem,Jl». mat.. 188J1. 
• /. /, Uath. (Crttte). Dd. n (1089). and Verhandtimfm da V«r*im nr D^Srdtnnf df* Otie^rhf/ltUtn, B«rUn, 1883. TLv meoioin an ttpnulad in 0«f. Wtrkt vow Ufinrieh atrlt. Dd. 1, Uipsi«, IStf^ pp  1« »nd 174. 
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hevn   developed from a result  noted  by G. B.  Airy™.    He observed   that, in the   case of two dimensions, the etjuations  of equilibrium   of a   body defonned  by  surface  tractions  show   that  the  stress-cciuponeuts  can   be ex^Mressed as partial differentia! coefficients of the second order of a single function.    Maxwell" extended the result to three dimensions, in which case three such "stress-functions" are required.    It appeared later that these functions   are connected  by a  rather complicated system  of differential eqnatious".    The stress-compnneuts  must in fact be connected with the strain-cumponenUi by the stress-strain relations, and the strain-components are not independent; but the second differential coefficients of the straiucomponcnts with respect to the coordinates are conneclcd by a system of linear equations, which are the conditions necessary to secure tbal the :^lraiucoraponcnts shall correspond with a displacement, in accordance with the otdiitary fonniilas connecting strain  and displacement".    It is  possible by laking accniinc of these relations to obtain a complete system of equations wlti«h iQUBt  be satisftBd  by stresu-coiapoiientA, and  thus the  way  is open for a direct determination of stress without the intermediate steps of forming I and solving differential eipiations to delermini* the components of displace
^B me&t'*. In the case of two dimensions the rct«ulting equations are of a simple ^^ chiftictor, and many interesting solutions can be obtained. ^^ Tlic theory of the free vibraiions of solid bodies requires the integration ^H of the equations of Wbratory motion in accordance with prescribed boundary ^^K^Btttitions of stress or digplncenient. Poissou^ gave the solution of the ^■^wbltfni of free radial vibrations of a solid sphere, and Clebsch" founded the general theory on the model of Poisson's solution. This theory included the eikasion of the notion nf "principal ctiordinates" to systems with an infinite Doiober of degrees of freedom, the introduction of the corresponding " normal functions," and the proof of those properties of these functions upon which Uk expansions of arbitrary functions depend. The discussions which had IftkflD place before and during the time of Poisson concerning the vibrations of firings, bars, membranes and plates had prepared the way for (Jlebsch'a gen<?ralizations. Before the publication of Clebsch's treatise a different theory Aid been propounded by Lam^*. Aa^nainted with Poisstm's discovery of two types of waves, he concluded that the vibrations of any solid body must fall into two corresponding classes, and he investigated the vibratiouK of various bodies on this assumption. The fact that his solutions do not satisfy the conditions which hold at the boundaries of bodies free from surface traction 
9* Brii. A$toc. Rfp. 1862, and Phit. Traiu. Itoy. Soc., vol. 158 (186»), p. -IS. 
^ Edinharifh Has- Soe. Trun*.. vol. '36 {\^7Q)=ScieRtiJl: Paper*, vol. 2, p. I61. 
^ W. J. Ibbvlson, An Ettwtentar]/ Treatise >m tin j;ufJ*rt»a«c<U Thtory of jxr/eetln Kta»tie MJ«b, LoDdoB. 1887. 
n Sftiat-Vftoiutt ga«tt Ut« id«Dtic*l rulAlianD bMwit<m strain ■components in liiii (tdition of Striei*! Rfmaitt dt»Lepmt rar i'appticalioii ile la Micuniiiue, TarU. ISfyi, 'Afpeudioe 3.' 
'* J. B. IGcbcU, London 3I*th. Sm. Ptoc» rol. SI (1900), p. 100. 
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ifi a snfficient rliitproof of hw theory: bvit it was finally diBpoaetl of wfien all the mode* of tree vtbralioti of a hornqgeneous inotropic sphere were delermined, aiid ii wan proved that the clasRen iuto which they fall do not verify Jjuai's Bappoisition. The nnnlyRis of the general problem of the TibrationN of a gphere was first completely given by P. Jaerisch", who obowed that the iolution CDtild be expressed by means of spherical liarmonit^ and certain^ functions of the distance from the centre of the sphere, which are practically Bessel's functions of order integer-i-^. This result was obtained independently by H. Lnmb", who gave an account of the simpler modes of vibrntioD and of the nature of the nodal division of the sphere which <>ccurs when any normal vibration is executed. He also calculated the more important root»^ of the fre<)uency equation. L Pochhammer" has upplied the iiiethixl of normal functions to the vibrations of cylinders, and has found modes of vibration analogous to the known types of vibration of bars. 
The probli>m of tracing, by means of the eqiiatiitTis of vibratory motioD,] the propagation of waves through an elastic solid m^iiun requires investi'] gatinns of a different character from thase concerned with normal modes of vibration.    In thi^ citne of an isotropic medium Pois-soii" and Ostnigradftky"* adopted methodic which involve a eynthesit) of solutions of simple harnioniej type, and obtained a sijlutjon expressing the displace men t at any time in terras of the initial distribution of displacement and velocity.    The investigation  ffas afterwards conducted in a different fashion   by Stokes**, wht» showed that  Poisson's two waves are wavei* of irroiational  dilatation aud 
the :hy*' and Green" disciiiwed the pi-opagatiou of plane waves through a crystalline medium, and obtained equations forj the velocity of propagation in terms of the direction of the normal to the wave-front In general the wave-surface has three sheet*; when the medium is i.s>tropic all the sheets are spheres, and two of them are coincident. Blnnchet" extended Poisson's results to the case of a crystalline medium. Christoffel" discuBscd the advance through the raefltuui of a surface of iliscontinuity. At any instant, the surface separates two portions of the medium in which the di.**pl it cements are expressed by different formulnr; and C^iriwloffel showed that the surface  moves  normally to   itself with   u 
" J.J. Uuth. (CretU), Bd. «i (1880). ^ I.wHilm Muth. SiK. Pn>r.. vol 13 {ISM). " J.y. M^th. (VrflU). Bd. fll (167(5), p. 8«4. ** Peril. INm.dffAcad.^t. 10(LSgif. »• fit Pelmbvrif. Mtm. de fAcad.. I. 1 (1881). *■ 'On  Um  Djiikinicftl Tlwor; of DiSmitiM,' Cambridfit PhU. Soe. Trttm^ vol- 9 (1949). Bs|innl"d in Stokra'a Uath. and Phyi. Pjjtrr*. vol. 9 (CftmbrMfto. lawt). 
*■ CamMdiii- Phil. S&c. Trunt., rol. 7 (1K19).    ]t«|>nuUil in Oii>«u'<t .Vilhemnhr^t Pafert^] 
p. ns. 
■> J. 4t Math. [tJowiU^l t. 5 (1940). t. 7 (IMS). «> JM. il J/flt. (Her. 3). t. 8 (1677). 
waves of  equivoluminal distortion,  the  latter involving rotation  of elements of the medium.    Cauchv" and Green" disciiiwed the pi-opacs 
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ly whk-h is determined, at, noy point, by ihe dirwtion of the uomial to 
surface, acconlia^ to the same law as holds for plane waves propagated I in that dircctdoD.    Besidca the waves of dilatation and distoHioD which can 
pnipngated through an isotropic solid body Lord Rayleigh** has investia third type which can be pro[Kigated over the surface. The velocity wav€« of this type is less than that of cither of the other two! 
Before the discovery of the geiu'-i-al otpiat.iona then* existed theories of the Uiniion and flexure of beams starting fn)ni Cralileo's en<[uirv and a HUggestion of Coulomb's. The problems thus prop<»sod ari> anumg i-lit! moHt important for practical applications, a.^ most problems that have to be dealt with by engineers can, at any rate for the purpose of a rough approximation^ be reduced to quet>tion.s of the resistance of Iwams- Cauchy was the first to attempt to apply the gpneml et^uations to this class of problemi!, and his investigation of the torsion of a rectangular prism**, though not correct, is historically important, as be rccogDized that the normal sectious do not remain plane. His result had little influence en practice. Tlic practical treatises of the earlier half of the last century contain a theory of torsion viih a result that we have already attributed to Ouulumb, viz.. that the resistance to torsion is the product of an elastic constant, the amount of the twist, and the moment of inertia of the cros-t-Hectioii. Again, in n-gard to flexure, the practical treatises of the time followed the BernoiilliKulcrian (really Coulomb's) theory, attributing the resistance to flexure entirely to extension and contraction of longitudinal filamente. To Saint-Venant belongs the crwlit of bringing the problems of the tursion and Heiurc of beams under the general theory. Seeing the tlifficulty of obtaining general solutions, the pressing need lor practical purjjoses of some thf-ory that could be applied to the strength of structures, and the improl^Nibility of the precise inodo of applieatiun of the loa<l to ttio parts of any apparatus being known, he was led to i-etiect on the methods used for the solution of special problems before the fommlation of the general eiiiiations. Thew rcHexions led him to the invention of the aemi-iiiverse niuthod of solution which bears his name. Some of the habitual assumptions, or some of the resulus commonly deduced from them, may be true, at least in a large uuijority of cascf.; and it may be pu!<ttible by retaining mme of these aaBumptions or results to simplify the equations, and thus to obtain M)lutions —Dot indeed .»iuch a« natisfy arbitrary surface conditiony, but such as satijtfy practically important types of surface conditions. 
The first problem to which Kaint-Venant applied his method was that of the torsion of prisms, the theory of which he gave in the famous memoir (in torsion of IftSS**. For this application he as-iumed the state uf strain to c^'insist of A simple twist about the axis uf the prism, such as Is implied 
■• j4m4on itAlh. Sm. Proe., to). 17 {X^l) = S^itntifit Paptn, vol. 3. CftmbridRe, IWH). p- 4il. KxfTtittt de mathmditlqiut, 4m% Aanie, IS39. 
2—3 
oi strain that is implied by a, 
' itm lawit rectiou of the prisoi.    The 
tMautettd ill a distortion of the mectious 
9Mb» of stiTfun having this character 
, bimis app)it;d at ibi iiu\\s only, and thai 
,mmi ■* fc^ euds arc statically equivalent to 
A posok    The iiia^utttde of the wuple can 
..> *ii the iwist, the rigidity of the material, the 
■tji^wrion nnd a niimmoal fnct.<>r which dopendn 
t .M^^twcttuii.    For n  targe class of aecttons  this 
'    ~ r>>f>ortional to the ratio of the an!a of the 
i- of gymtion about the axis of the prism. 
. louit have shown that the analysis of the problem is 
'istiiict probleniH in hydrodynaniia**, Wz., the flow 
' tow pipe of the same Ibrm as the prism**, and the 
I frttltooleex liquid tilling a vessel of the same form as the 
•V k«HMl is rotated about ica axis^.    These hydrcdyuamical 
...^  rwiulletl in a considerabte simplitication of the analysis of 
i>M Qk«Qr»» of Hexure involveiJ two contradictory assumptions: I. - -(rain consists of extensions and contractions of longitudinal thai the stress cuusista of tension in the extended Rlalu^^ <u*) 0^ "^^^ remote from the centre of curvature) and pressure ^lirtig fL ■ -nictod filnmenta (on the side nearer the centre of curvature). 
\f hhb ■ correctly given by the second asMtiniption there must be 
UtenU oootrthctions nccompauying the longitudinal extensions and aliw extensions acconnjanying the longitudinal contractions. Again, the i\ of tho tractioDB ncrosw any nonnal section of the bent beam, oh givtttt by the old theories. vaniaheK, and ihene tractiims are statically equi««li>u| to a couple about an axis at right angles to the plane of bonding. UooM the thoorieH are inapplicable to any oute of bending by a transverse hwi Saint-Vonant'* adoptod from the older theories two aftsumptions. He aaaumed that the extensions and contractions of the longitudinal filaments too proportional to their distances from the plane which is drawn through the lin« of centroids of the normal sections (the " central-line ") and at right angles to the plane of bending. He assumed also that there is no normal kiULCtiou across any plane drawn parallel to tho central-line. The states of ■Ireas and strain which satisfy these conditions in a prismatic body can be maintained by forces and couples applied at the ends only, and include two vtm*.   One coitc is that of uniform bending of a bar by couples applied at iL^ 
« J. llAiwinowi. J. <U Math. {Lwufille), (S^. S), t. 16 (1871). 
" Kelvin Kiul Tftlt, .V<i(. Phit., P«rt '2, f>. 2ii. 
*■ Bm lb* morooin of ISfifi and 1S56 cited in footnoto 60. 
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6ad& In ihia CAse the stress is correctly given by the older theories and tho' curvature of the central-tine is proportional to the bending eonple, as in thuse theories; but the lateral ajntnictions and exten8ii)nH have the effect of distorting those longitudinal sections which are at right angles to thii plane 1^ bending into anticlastic surfaces. The second ca»e of bending which ifr included in Saint-Venant's theory is that of a cantilever, or beam fixed in & horizontal position at one end. and bent by a vertical load applied at the other end. In this case the stress given by the oldftr theoritwi rerpurcs to be corrected by the addition of shearing stresses. The normal tractionf! across any normal section are statically equivalent to a couple, which is proportional to the curvature of the central-line, at the section, as in the theory of simple bending. The tangential tractions across any normal section are statically equivalent to the terminal load, but the magnitude and direclion of the tangential tniction at aiiy point are entirely determinate and follow rather complex laws. The strain given by the older theories reijuirea I*) Ik; cnrrecteil by the aildition -if lateral contractions and extensions, as in the theory of simple iH^nding, and also by shiaring strains corresponding witli the shearing stresses. 
In Saint-Vcimnt's theories of torsion and flexure the couples and forties applied to produce twisting and bending are the resultants of tractions ejcerted acniss the terminal secLioim, and these tractions are distributed in perfectly definite ways. The forces and couples that are applied to actual sLnictnres are seldom distributed in these ways. The application of the theorieti to practical probleras rewts npon a principle intruduced by SaintVenant which has been called the "principle uf the elastic equivalence of statically equipollent systems of load." According to this principle the effects produced by deviations from the assigned laws of loadinj^ are uninportant except near the ends of the bent beam or twisted bar, and near the ends they printuce merely " lt)cal perturbationH." The condition for the validity of the results in practice is that the length of the beam should be a considerable multiple of the greatest diameter of its cross-secti'm. 
Later researches by A. Clebsch" and W. Voigt* have resulted in considerable simplifications of Saint-Venant's analysis. Clebsch showed that the single a.iJ)umption that there is no normal traction across any plane parallel to the central-line leads to four cases of e<piiltbriuni of a prismatic body, viz., (1) simple extension under terminal tractive load, (2) simple bending by couples, {'i) torsion, (4) bending of a cantilever by terminal truisverse load, Voigt showed that the single [isHuinption that thn stress at any point is independent of the coonlinate measured along the bar led to the first thi-ee cases, and that the assumption that the stress is a linear function of that counlinHtw leads to the fourth case. When a quadratic function is token instead of a linear one, the ease of a beam supported at 
•• ■ Theoretiacbt) Studi«o iiber die IilaBUcitat»rerhuilai««o dor Kiy«tftU«,' GUttinrjen Abkaiul. lungen, hi. »i (ISST). 
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the ends ami bent by a load which ia distributed uuifornily aluiifr itt} length can be included**. The case where the load is uot uuifunn but is applied hy means of surface tmciions which, s« fur as they <le]>end on the coordinate tnoosured alung Uie bcuin.are rnliDtiul inU;gral functions, can be rcduc'od to ihe ca^ie where the load is uniform'". It appeal's from these theories that, Avhei) Idtcial forces nre applied to the beatri, the relation of pnjportionality betweeu the curvature of the central-Hue and the bendiug moment, verified in Saiiit-Venimt's theory, ia no longer exact". UnlesH the conditions of loadmg are rather unusual, the modification that ought to be made in this relation is, htiwover. of little practical importance. 
Saint-Venant's theories of toreion and of simple bendiug have found their way tuto technical treatisoH, but in most current books on applied Mcchanicfl the theory of bending by transverse li>ad is treated by a method inventeii by Jouraveiki" and Rankiue**, and subsequently developed by Oraahof^. The components of Rti«ss determined by this method do not satisfy the conditions which are necessary to secure that they shall correspond with any possible displjicement". The distribution of strefw that is found by this method is, however, approximately correct in the case of a beam of which the bre-adth is but a small fraclion of the depth"*. 
The most important practical application of the theory of dexttre ia that which was made by Navier*' to the bending of a beam resting on supports. The load may consist of the weight of the beam and of weights attached to the beam. Young's motJulus is usually determined by observing the deflexion of a bar supported at its ends and loaded at the middle. All such applicatiuim of the theory depend upon the pro[K*rtionality of the curvature to the bending moment. The problem of a contmiious beam resting on several supports was nt first very difficult, as a solution had to bo obtaiued for each span by Navier's method, and the solutions compared in order to determino the constants of integration. The analytical complexity was very much diminished when Clape^Tou*" noticed thut the bending moments at three coDsecutivo supports ai-e connected by an invariable relation, but in many particular coses  the analysis is still formidable.    A methm)  of graphical 
•• J. H. Michdl. i^uart. J. i\f Mtith.. Tol. 32 (lUOl). 
*' E. Alnuiei. Htune. Ace.. I.itKfi Rend. (Sn-. f>). t- 10 (IMl), pp. 1133, 400. Is the aeccud ot thftc pApen a Boliition of the probltun of bending by uotfonn la«d is obtitined by r ini.'tiKMl which difTem tintii Ihnt atwsl by MiclitU in Uj« pit]>er jiutt uit«d. 
■* Thin remit tru* fint noted hj K. I'ennuo. Quart. J. of Matk., vol. 34 (litfW), in mnsexion with a parucular taw for tb« dUtiilutiua of Lbe load otvt Um orosaMOtioD. 
* Ann, de* jumtt it ehtiua»fe», ISi'Cl. 
>* Apftied JtfechuHicf, 1st vdilion, LoodpQ. 18M. Tlic metbod bw beoB ntviaed in later •dllifliui. 
*• Ebnticiini und Fntit/krit. Sod edition, Berlin, 1S7H. Orvhof givM Baiat-Vroant'i ihtwy *» well. 
*■ HMOl-Venuit aol«d thn rnniU in his oditton of Kaviw'a Lfforu, p. 8M. 
*' In ihf wcnnit edition of his r^^fOM* (isas). 
" i^rit. C. It., t. 45 {IMi't). Tbii historjr of OUpeTron's tbeoretn is given by J. V. lleppel, Proc. itoy. Soc., London. vcA. ly (1871). 
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lias, however, been iaveDtetl by Mohr", aud it haa, lu a f^reat Uteot, superseded the caictilatiini.s that were rannerly conducted by means of Cb^yron's " Theorem of Three Moments." Many other applications of the theory of flexure to problems of fratneworkn will be fuuuil in such books h8 MiUler-Breslau's Die Neaeren Methoden der Festigkeitslehre (Leipzig. 1886), Weyrauch'a Theorie Klastischer Kiit-per (Leipzig, 1884), Hitter's Aitwendung^n der ffraphische)! Statik (Zurich, 1888). A coni<iderable litomturtj hua spniDjij up in this subject, but the use made of the Theory' of Elusbicity is snmll. 
The theory of the bending and twi^sting vf thin rods and wires—inolnding the theory of spiral springs—^was for a long time developed, inde])eridentty of the general equations uf Elasticity, by metlnHiy akin to thu6e employed by Euk-r. At tirst it was supposed that the He^tuml couple must be in the oscmating plane of the curve formed by the central-line; and, when Lhu equation of moments about the tuugent was introduced by Binet'", Poissou"" concluded from it that the moment of torsion was conataut. It woh only by elow degrecH ibai the notion of two flexural couples io the two principal planes sprang up, nnd that the lucusure of Iwiat came to be understood. When the^e elements of the theory were mode out it could be seen that a knowledge of the expressions for the tiexural and toreiunal couples iu terms of the curvature ami twist"" would be sutlicient, when combiuod with the ui-dJnary conditions uf equilibrium, tu dctermiuo the form of (he curve assumed by the central-line, the twist of the wire around that line, and the tension and shearing forces across any section. The flexural and toraional cj:mpleg. as well as the resultant forces across a section, cuujst arise fivm tractions exertetl acroN^ the elemente of the section, aud the correct expi-essiona for them must be sought by means of the general theory. But here a difficulty arises from the fact that the geiieml e<)ualioU8 are applicable to small di.^placements only, while the displocoments in such a body as a spiral spring are by no means small. Kirchhoff"" was the first Co fitce this diflicuUy. Hti pointed out that the general situations are strictly applicable U* any small portion of a thin roil if all the linear dimen.'iions of the portion are of the same order of magnitude as the diameters of the crosssections.    He held that the equations of equilibrium or motion of such a 
•* 'Beitr»g r.ur Tbeoric des Fachwerk*,' ZtiUchrift drs AreliitrkUu- umi Ingenieitr-Vfreint lu Hunmivrr, IHH. Thia itt Ihe rvfuiKUcitt {{iven b; UuIlu-BreiiUn. liiiv; givon a.D koomdI of 1)10 RMtbod in hi* S'lulffv^ Graphiqur, t. 2, nnd attributeM it to MaLr. A sUf^lttly ditTerent aocuuat ia^TUi bjr CKiMvaxai in .Vrinone dtW AecatUittUt di Itotu^na (Set. A), i. 1 (ISSO). Tli« oietliod )iu beta cxtvnd«d b; Culmu, r>U tiritykifcbf Slatik, Hd. 1, J^tlHoh, 18Tn. Hee also Itittar. hi* tkutiMti* Unit UHd ikre AnKendniii) auf den eotititmirliehen Balken. Ziiriull, 1SH3, 
'* J. df P^leolr polijlfchniijttc, t, 10 (18161. 
'"' Cirtretpvndanet lur V^eott pul^uehm'iite, t. 3 (181E>}. 
»•• Tli*y ftre das to Skint-Vcn&nt, /'.in*. C\ R.. ». 17. 19 (1848, UAi). 
'^ 'Obot d«R Ulfliohftawiiiht und ilie Uewi^juiiK eiaen auendlioh duDnoD •laatiacb«Q fitabes,' J. f. Math. {CrvtU). Bd. '>6 (1669). Tb« Uie<(^r]r ta ai>o given in EirchbofTa VorUmntf^n Ober math. Pk^rik, Mtchanik (Srdeditiun, I.«tpzig, 1883). 
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portion could be simplifitid, for a first approximation, by tho omission of kinetic reactions and forces distributed tlirough the volume. The pniceos by which Kirchhotf developed hia theory was, to a ^reat extent, kinematica). When a thin rorl is bent and twinted, every element of it undergoes a strain analo^ou? to that in one of Saint-Veuont's prisms, but neighbouring elements must cortinue to fit. To express this kind of continuity c<>rtain conditions are necesnary. and ihew conditions toko the form of difierential equations connecting the relative displacements of points within 11 Hninll portion of the rcHl with the relative coonlinatos of the points, and with the quantities that define the position of the portion relative to the rod as a whole. From these difTercntial equations KirchhofT deduced an approximate nccount of the strain in an element of the i-utl, and thence an expre>«iuu for the ptitential energy per unit of length, iu terms of the extensioD, the components of curvature aud the twist. He obtained the equations of equilibrium and vibration by varying the energy'-function. In the CAAe of a thin rod subjected to terminal forces only he showed that the equations by which the form of the central-line is determined are identical with the equations of motion of a heavy rigid body about a fixed point. This theorem is known as " Kirchhoft's kinetic analogue." 
KirchhofF'a theory has given rise to much discussion. Clebech" proposed to replace that part of it by which the fiexural and torsional couples can be evaluated by an appeal to the results of Saint-Vetiant's theories of flexure and torsion. Kelvin and Tait" propo8e<l to establish Kirchboff'a formula for the potential energy by general reasoning. J. Boussinesq'** proposed to obtain by the same kind of rcasouiug Kircbhuti's approximate expression for the extension of a longitudinal filament,. Clcbsch" gave the modified formube for the flexural and torsional couples when the central-line of the rorj in ihe unstressed state is curved, and his results have been confimieil by later independent investigations. The discussious which have taken place have cleared up many difficulties, and the results uf the theory, as distinguished from the methods by which they were obtained, have bee&n confirmed by the later writers'*. 
The applications of KirchhotTs theory of thin rods include (he theory of the einxiica which lias been invfstigaled iu detail by means of the theorem of the kinetic analogue**, the theory of spiral springs workvd out in detail by Kelvin and Tait**, and various problems of elastic stability. Among the latter we may mention the problem of the buckling of an elastic ring subjected to pressure directed radially inwards and tho same at all points of the circumferenco**', \ 
'•« .T. He Math. {Uour.HU). (S*r. S). I. IQ (l«71). 
)■* 3««. f<.>r vxatuplc. A. B. D«K»ct, lAtid'm Math. Soe. Proe., vol. SS (1892}, and .«Mrr. J. w/ Malh., vol.  17 (I8ur>). uid J. n. Uichrlt. UmdoH Math. Sac. Proe., vol. 81 (1900), p. ISa 
<■* W. H«Mi. .V'li'i. ^nn., Bdo. 2» llHS'l) Rad 2S f 1S8£). 
'" Tliu problem »ii|>mirH to hnve bf«n di<t«u»scd Brst b; Broaao, Coun A* n^Mfitf iie appH^^, i'rtiHAtt parlit. Puri*. 1S69. 
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The theory of the vibmtions of thin rods was brought under the general equations of vibratorv' motiou of elastic flolid bodies by Poisson". He regarded the rod as a circnlar cylinder of small section, and expanded all the quantities that occur iu powBrs of the distance of a particle frnm the lutis of the cylinder. When terms above a certain order (the fourth power of the radius) are neglected, the equations for iloxiiml vibrations are identical with Eulcr's equations of lateral vibration. The equation found for the longitudinal vibrations ha4l l)een obtained by Mavier"*. The equatioo (or the tor!iional vibrations was obtained first by Poisson**. The chief point of novelty in Poisson's result* in regard to the vibrations of rods is that the coefficients on which the frequencies depend are expressed in terms of the constants that occor in the general equations; but the deduction of the generally admitted s|>ecial ditferential equations, by which these modes of vibration are governed, from the general equations of Elasticity conetitut-ed an advance in method. Reference has already been made to L. Pochhanimor's more complete investigation". Poi.'won's theory is verified as an approiimate theory by an application of Kirchhoif's results. This application has been extended t^o the vibrations of curved bars, the first pmblem to be itolved being that of the tlexural vibrations of a circular ring which vibrates in its own plane"". 
An important problem arising in conne.vion with the theory of longitudinal vibrations ia the problem of impact. When two bodies collide each is thrown into a state of internal vibration, and it appears to have been hoped that asolntion of the prt>bltiMi of the vibrations set up in two bars which impinge longitudinally would throw light on the laws of impact. Poisson"' was the first to attempt a solution of the pn>bleir from this point of view. His method of integration in trigonometric series vastly increases the ditlicnlty 
dodncing general results, and, by an unfortunate error in the analyaiii, he 
ived at the paradoxical conclusion that, when the bars art- nf the same ■rial and section, tbey never separate unless they are equal in length. Saint-Venant'" treated the problem by means of the solution of the equation of vibmlinn in terms of arbitrary functions, and arrived at certain results, of which the most important ix-late to the duration of impact, and to the existence of an apparent " ciKjfficient of restitution" for pei"fectly elastic bodies'". Tliis theory is not confirmed by experiment. A correction snggeifted by Voigt'", when worked out, led to little better agreement, and it 
1* Bulletin d^ Seiencfn H ttt Sttci^Uphilomathiqtu, 183-I. 
'• B. Hoppe. J.f. Math. {CrtlU). Bd. 73 (1871). 
uo In h» 7Vrt.(/ ff< Mffaniqaf. Ifl33. 
m •Sarlecliocloiigitndinal^ieiieux barres£U]>Uquee„.,V.(f9 JtfaM.(LiiHirjifc).(Sir. 3}, U 12 
"^ Cr. Uoi>kinsoti. U*t»tn^r <>( Mathfmutict, vol. 4. 1974. 
■t) Ann. Phyn. Chrm. (H'Mcnuiiiii), Bd. 19 (1862).    Ses  bIko HanBmaninfter  In  tlie aame .-JaiMif-n.Ud.SA (16185). 
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thus appears that the attempt to trace the phenomena of impact to vibrations must be abauduned. Much more sucojskJ'uI was the theory of Hertj!"*, obtained from a solution of the problem which we have named the problem of the traiiRmii>K)oii of force. Hertz made an itidependeul iiivBHtigutiun of a particular case of this problem—that of two bodies pi-cssed together. He proposed to regard the strain produced in each by impoct a» a Uwal statical effect, produced gradually and subsiding^ ffradually; and he found means to detenninc the duration of impact and the size and shape of the parts that come into contact.    The theory yielded a satisfactory compikHbon with experiment. 
The theory of vibrations can be appliwl to problems concerning variouR kinds of shocks and the effects of moving luoilit. The inertia as well as the elastic reactions of bodies oome into play in the resistances to stiaiu under rapidly changing condibtoiiN, luid tho resistsnces called into action are sometimes described as "dynamical resistances." The special problem of the longitudinal impact of a massive body upon one end of a rod was discussed by S^bert and Hugoniot"" and by Uoussinesq"*. The conclusions which they arrived at are tabulated and illustrated graphically by SaintVcaant"'. But problems of dynamical resistance under impulses that tend to produce Hexure are perhaps pnicttcally of more importance. When a body strikes a rod perpendicularly the rod will be thrown into vibration, and, if the body moves with the rod, the ordinary solution in tenna of the normal functions for the vibrations of the rod becomes inapplicable. Solutions of several problems of this kind, expre-ssed in terms of the normal functions for the oorapouud system consisting of the rod and the striking body, were given by Saint-Venant"*. 
Amuug problems of dynamical resistance we must not* especially Willis's problem of the travBlling load. When a train crosses a bridge, the strain is uot identical with the statical strain which is produced when the same train is Btmidiug on the bridge. To illustrate the problem thus pi-esented Willis"* proposed to consider the bridge as a straight wire and the train as a heavy particle doHecting it. Neglecting the inertia of the wire he obtained a certain diffei'ential equation, which was .sub«tequentiy solved by Stokes'*. Later writers have shown that the effects of the neglected inertia are very 
■" • U«b«c die Derlihrani; tester lAmaliacher KHrper.'J./. Mulh. [CrerU). Bd.\H{lSSi). 
»' Pari*, V. R., t. W (188a). 
*■* ApjtUcalitmt dn PattntirU..., FftrU, 18B5.   Tlie r«vu1U wnr givon in ■ oote IQ Ptria C. K,, 
I. 97 aws). 
**' Im pkpcra in Ptirit, C. R., t 07 (1R8ft>, rpprinM ax nn it]i|)riii]ix tn liU Tramlallun of Olebnh's TtmUm (Paris. 1IM)3). 
>■■ In thf> - .\QDoUiml CI«lMoh* just eit«i1. Xotf dv | t]l. Cf. Lor<i lUyliiiRh, Thfory of Sotittd, aupUff vui. 
■'* Apfirnilix lo the Report t^ the ComiKiutfmtn...to emtutrt inln the Applifalitm of Iran fa /fai/wdji atrueiartt (1840). 
■" Camhndar, Phil. Soe. TntM., vol. 8 (lH41)) = BtokM, JU.itU. nnd Ph^t. Ptiptn, TOl. 9 (Cftmbn<lff«, 1863). p. 178. 
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important. A more complete solution has been obtained by M. Phillips'" ftwj Saint-Veuaiit'". and an lulmirablo^r^cw of their rcanlttt may be read in the second volume of Todhiinter and Pearaon's Uigtory (Articles 373 et stq.). 
We have seen already how problems of the equilibrium and vibrations of plane ptalea and curved shells were attempted before the discovery of the general equations of Elasticity, and how these problems were among those which led to the investigation of such equations. After the equations had beeti formulated little advance seemn to have been made in the treatment «f khe problem of sheila for many years, but the more special problem of plates attracted much attention. Poisson'" and C'auchy *" b<tth treated this problem, proceeding from the general equations of Elasticity, and supposing that all the quantities which occur can be expanded in powers of the distance from the middle-surface. The equations of equilibrium and tree vibration which hold when the rlisplocement i»t tlirccled at right angles to the plane of the plate wciv deduced. Much controversy has arisen con'Cenuug Poissou's boundary conditions. These cxpre^^sed that the reaulranb forces and couples applied at the eilge must be equal to the forces and «ouples arifiing fruin the strain. In a fanHMm memnir KirchhufP" »howed that these oondilions are too numerous and cannot in general be aatisfied. His method rests on two assumptions: (1) that linear filatnents of the plate initially nornud to the middle-surface reuiaiu straight and normal to the middle-surfiice after strain, and (2) that all the elementa of the middlesuHace remain unstreiched. These assnmptirnis enabled him Ut express the potential energj' of the bent plate in terms of the curvatures produced id its middle-surface. The equations of motion and b<iundary conditions were then deduced by the principle uf virtual work, and they were applied to the prublem of the flexural vibrations of a circular plate. 
The problem of plates can be attacked by mejins of cons if derations of the aame kind as those which were usod by Kirchhoff in his theory of thin rods. An investigation of the problem by this method wa» maile by Gehring'*' ami vu afterwards adopted in an improved form by Kirchhoff'". The work is very similar in detail to that in Kirchhoff's theory of thin rods, anri it leads to an exprcminn for the potential energy per unit of area of the miridic-surface 
■" Pari: Amt. 4n Minrt. t. 7 (ISSS). 
<*> Id th« *AnuouU><l C)«b«cli,' NoU du $ (jl. 
"> to lLd mouioir of 182S. A largu {iwt of Urn iovealigmtion u reproduced ia Tudhuotur tnd P«knon'» Uittun/. 
'** In «ii Artiole 'Hur I'^jDilibra et le roouTetnent d'une plaqne aoltilo' in tbo Kxereirn de mathfrnatii^ntf. voL 3 |1S'2M).    Mont uf tliifl Article also in reproduced b; Todhcotor and Peftraoa. 
'» J. /. iiath, {CnlU), Bd. 10 (laWt. 
'"* 'l>e .'EcjuittioiiibuM diOereuUklitiun qaibnn laquilibnuDi et motutt Umm» crmt&Uinie de&nJaetnr' (Dies.). Berlin. ISilO. Tho ajiftlj^n* m»x be rr-tkA in KirdihoS'a VarUmtgen tthrr RM(A. Phj/i., MeclMHik. ftod putt ot it abo in OlolMch'i Tr(«Uii«. , 
•" Vorlemmgfn aUr nnih. Phyt., Utehanik. 
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of the plate. This expression consists of two parts: one a quadratic function of the qu&ntities delining^ the extension of the middle-surface with a coefficient propurtioniU to the tbickuuss of the plate, and the other a quadratic function of the quantities defining the flexure of the middle-surface with a eocfBcicnt profiortiniiHl to the cube of the thiekneHs. The equations of small motion are deduced by nn application of the principle of virtual work. When the displacement of a point on the middle-surface is very small the flexure depends only on displacements directed at right angles to the plane of the plate, and the extension only on dlsplaoenionts directed parallel to the plane of the plate, and the equations fall into two sets. The equation of normal vibration and the boiuidary conditions are those previonsly found and discussed by  KirchhofF'*. 
As in the theory of itkIs, so also in that of plates, attention in directefl rather to tensions, shearing forces and flexural couples, reckoned acrfisfi the whole thickness, than to the tractions across elements of area which give ri»e to such forces and couples. To fix ideas we may think of the plate as horizontal, and consider the actions exerted across an imagined vertical dividing plane, and on this plane we may mark out a small area by two vertical lines near together. The distance between these hoes may be called the "breadth" of the area. The tractions aci-oss the elements of this area ore statically equivalent to a force at the centroid ot the area and a couple. When the " breadth " is very small, the magnitudes of the force and couple are proportional to the breadth, nnd we estimate them as go much per unit of length of the line in which our vertical dividing plane cuts the middle plane of the plate. The component^' of the force and couple thus estin^ated we call the "stress-resnltants'' and the "stretw-couples." The streiw-resultantjn eone>ifit of a ti^nsion at right angles to the plane of the area, a horizontal shearing force and a vertical shearing force. The stress-couples have a oompooeiit ab«»ut the normal to the di^nding plane which we shall call the " torsional couple," and a component in the vertical plane containing this normal which we shall call the "flexural couple." The stress-resultants and Btreas-conples depend upon the <lirection of the dividing plane, hut they are known for all snch dire<;tions when they are known for two of them. Clebsch** adopted ftx>ni the Kirchhoff-Gehring theory the approximate account of the strain and stress in a small portion of the plate bounded by vertical dividing planes, and be formed e<|uaCioDs of equilibrium of the plate in terms of stross-resultonts and str(»w-cuuplcs. His eq<mtioiis fall int^i two sets, one set involving the tensions and horixontal shearing forces, and the other set involving the stress-couples and the vertical shearing forces The latter set of equations are those which relote to the liending of the plate, and thoy have such forms that, when the expressions for the stross-eouples are known in terms of the deformation of the middle plane, the vertical shearing forces can be determined, nnd an itpiation can be formed for the deHexion of the 
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plaie. The expreasiotis for the couples can be obtained from KirchhoflT'a theory. Clebach solved bis equation fur the detlexiou of u circular plate clamped at the edge and loaded in an arbitrary' manner. 
AH the theory'uf the (H|uatioas of equilibrium in termaof stress-resultantf* and stress-couples was placed beyond the reach of criticism by KelWu and Tait**. These authors noticed also, that, in the case of uniforra bending, the expressions for the stress-couples could be deduced from Saint-Venant's thettry of the anticlastic fluxure of a bar; and they explained the union of two of Foisson's boundary conditions in one of KircfahofiT's as an example of the principle of the elawtic etitiivaltmce of statically equipollent 8>'stetti8 of load. More recent rei^earches have assisted in removing the difficulties which had been felt in reftpeci of KirchhofTs theory"*. One obstacle to progretts has been the lack of exact solutions of pniblenis of the bending of plates analogous to those found by Saint-Venant for beams. The few solutions of this kind which have been obtained"* lend to cun6nu the main result of the theory which has not been proved rigorously, viz. the approximate expression of the streas-couples in terms of the curvature of the middle* Burface. 
The problem of curved plates or Hhellii was fir^t attacked from tlie point of view of the general equations of Elasticity by H. An>n'* He expressed the geometry of the middle-j;urface by means of two parameters after the msnaer of Gauss, and he adapted to the problem the method which Clebwh hail used for plates. He arrived at an expression for the jxitential energy of the strained shell which is of the same form as that obtained by Kirchhoff for plates, but the quantities that define the curvature of the middle-surface were replaced by the differences of their values in the strained and unstrained fftaten. E. Mathieu'" adapted to the problem the method which Foiaaon had used for plaiea. Uc observed that the modes of vibration possible to a shell do not fall into classes characterised respectively by normal and tangential displacements, and he adopted equations of motion that could be deduced from Aron's formula for the potential energy by retaining the terms that depeud on the stretching of the middle-surface only. Lonl Rayleigh"" proposed a ditferent theory. He concluded from physical reasouing that the middle-burface of a vibrating shell remains uiistretcbed, and determined the character of the displacement of a point of the middlc-tturCELce in acr^urdance with this condition.    The direct application of the KirchhoB-Gchring 
>» See. for examplv. J. BoDMiscflq. /. dt Atath. [LiMfUle}. iSfit. 3). t. Iti (l^t) »od (BAr. 3), I. 5 (1879 1; H, Lamli. Lontian italh. Sor. Proc.. toL '21 (ISWO); J. H. Michell, Londmt Math. Soe. Pror., vol. 31 (l!>00). p- 121 : J. Hmdiunird, Tram. Amu-r. Math. Soc., vcl. 3 (IW2). 
'* Some tolulionii were giwa by SAint-VciiKDt in itia 'Aiuolatod Clabaeb,' pp. SS7 ft teq. Otbov will bo tound io Cbapler XXU of this book. 
»»■ J. /. J/alA, (Crtilt). Bd. 78 (1874). 
*M J.dt r ^roU pQiglfchniqar, I. 61 (1888). 
« LtfMton Uath. Soc. Proe.. vol. 13 (1889), 
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method'" led to a foi-iniila for the- pit^ntial energy of the same form as Atod's nod to 6f|italious uf motion aiid Imiiiidary conditions which were difficult to reconcile with Lord Rayloigh's theory. Later investigations hiive shown that the extensionnl wtrain which was thus proveil to be n neccsaarv concomitant *ti' l-ho vibn»tion« may bo practically c/jiitineH to a narrow region near the edge of the shell, but that, in this region, it may be e>o adjnsted as to secure the Kfttisfaction of the boiindaiy conHitions while the greater part of tht* shell vibrates according to Lord llayleigh's type. 
Whenever very thin riKia or plates are employed in constructionB it becomes necessary to consider the pos-sibiHty of buckling, and thus there arises the geneml problem of elastic xtalnliti/. We have already seen that the (irat investigations uf problems of ihia kind were made by Enler and Lagrange. A number of isolated problems have been solved, In all of thetn two modes of equilibrium with the same type of external force* are po«ftihle. and the ordinary proof'** of the determinacy of the solution of the equations of Elasticity is defective. A general theory of clastic stability has been proposed by O. H. Bryan'* He arrived at the result that the theorem of Heterrainacy cannot fail except in eases where large relative displacements can be accompanied by very small strains, as in thin rods and plat«s, and in cases where displncements dififering but slightly from such as are possible in a rigid body can take place, as when a sphere is compix-ssed within a circular ring of slightly smaller diameter In all cases where two modes of et|uilibrinm are possible the criterion for det<!rmining the mo«lc that will be adopted is given by the condition that the etiergj' must be a minimum. 
The history of the mathematical theory of Elasticity shows clearly thnt the development of the theorj' hnn not Wnrn guided exclusively by considerations of ite utility for technical Mechanics. Most of the men by whose researches it has beon founded and shaped have been more intoreeited in Natural Philosopliy than in material progress, in trying to understand the world than in trying to make it more comfortable. From thiit attitude of mind it may [xissibly have resulted that the theory has coutrihtited less to the material advance-of mankind than it might otherwise have done, he this as it may, the intellectual gain which haa accrued from the work of those men must 1* estimated very highly. The discussions that have taken place concerning the number and meaning of the elastic constants have thrown light on most recondite ijuestions conceniing the nature of molecules and the mixJu of their interaction. The etforts that have been made to explain optical phenomena by means of the hypothesis of a medium having the same physical character as an elastic soliil hotly led, in the first instance, to the understanding of a concrete exampie of a medium  which can   traoBmit 
>" A. E, U. Lov«. PM. IVdiu. Uotf. Sm. (8«r. A), vol. 179 |l*«), IM Kirebboff, i'orleiwiffen Bbtr math. I'liff*., Ur<haHik. '» Cttmhhitffe Phil. Soc. Pr»c,. vol. IS a8«9;. p. 19V. 
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transverse vibrations, and, at a later stage, to the definite conclusion that the hiwiniferous medium has Dot the physical character aa8uinr-d in tlie hypothesis. They have thus issueiJ in an esKential widening' of our ideas ctmoeroing the nature of the a;tiier and the nature of luminous vibrations. The methods that have been dcvistKl for solving the ei^uatious of ^-quilibriuni of an isotropic solid body form part of an analytical theory which is of great importance in pure mathematics. The appticatiou of thetn.- methods to the pmbleiti iif the iiitt-nial constitutiun of the Kiirth has letl to results which must influence profoundly the course of speculative thought both in Geology aud in cosmical Physics. Kven in tht? iiunv tt^rhnical pnjbleins. such as the truismifision of foi-cc and the rcftistancc of lmi-» and plates, attenlJou has been directed, for the most part, rather to theoretical than to practical aspects of the questions. To get insight into what goes on in impact, to bring the theory of the behaviour of thiu bars and platea into accord with the general equations—these and such-like aims have been more attractive tn most of the men to whom we owe the theory than endeavours to devise means for effecting economies in engineering constructions or to ai^erlain the conditions in which structures become unsafe. The fact that much inateiial progress is the indirect outcome of work done in this spirit is not without significance. The equally significant fact that most great advances in Natural Philosiiphy have Wen maile by men who had a fii-st-hand acquaintatice with practical needs and experimental methods has often been emphasized; and, although the uames of Green, Poisson, Cauchy show that the rule is not without important exceptions, yet it is exemplified well in the history of our science. 
CHAPTER I. 
ANALYSIS OF STRAIN. 
i^   Extension. 
Whenever, owiu^ to any cause, changes take pUoe in the relative pwitionij of the pai-ts of a body the body is said to be "atniined." A very simple example of a strained body is a slrelclied bar. Consider a bar of square section suspended vertically and loaded with a weight at its lower end. Let a line be traced on the bar in the direction of il8 length, let two points of the line be marked, and let the distuuce between these pointa be moaaured. When the weight is attached the distance io question is a littlu greater than it was before the weight was attached. Let 1, be the length before stretcbiDg, and / the length when stretched. Then (/ — /,)//, is a number (generally a very small fraction) whicli ia called the extension of tlie line in question. If this number ia the same for all lines parallel to the length of the bar, it may be called " the extension of the bar." A steel bar of sectional area 1 square inch (= 6'4515 cm.*) loaded with 1 ton (= 1016*05 kilogrammes) will undergo an extension of about 7 x I0~* It is clear that for the measurcmeat of such small quantities as this rather elaborate apparatus and refined methods of observation are required* Without attending to methods of measurement we may consider a little more in detail the state of strain in the stretched bar. Let e denote the extension of the bar, 9o that its length is increased ia the ratio 1 +e : I, and consider the volume of the portion of the W contained between any two marked sections. This volume is increosed by sti-otching the bar, but not in the mtio 1 +e ; 1. When the bar is stretched longitudinally it contracts laterally. If the linear lateral contraction is e, tho sectional area is dimiuishod in tho ratio (1—o')*: 1, and the volume in question is inoreasod in the ratio (1 +e)(l —^y : 1- In the cawe of a bar under tension e* is a certain multiple of e, say ae, and a is about | or ^ for very many materials. If e is very stuall and e* is neglected, tho arcal contraction is 2o-e, and the cubical dilatation is (1 — 2cr)e. 
* 8<f, for naraplo, Ewing. Strnigtk i(f JiaUtiaU (Oanbridfe. 1899). pp^ 73 tt wf. 
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For the aDalytical descriptiou of the state of strain in the bar we should rake an origin of coordinates J, y, z on tht axis, and measure the coordinate s uloug the length of the bar. Any particle of the bar which has the couidinates a:, «, x when the weight iti not attaehed will move after the attachment of the weight into a new position. Let the particle which was at the origin move through a distance «,, then the particle which was at (J, y, s) moves to the point of which the coordinates are x{\-<re), y(l-ae), z„+ (r-io)(I+»). The state of strain is not very simple. If lateral forces could be applied CO the bar to prevent the lateral contraction the State of strain would be. very much simplitied.    It would then be described as a "simple exteoaiou," 
2.    Pore shear. 
As a secood example of strain let us suppose that lateral forceii are applied to the bar so as to produce extension of amount f, of tines parallel til the axis of X aud extension cf amount e, of liuc-s parallel to the axis of y, and that longitudinal farces are applied, if any arc requinsl, to prevent any extension or contraction parallel to the axis of z. The particle which was at (j, y. *), will move to (x + t^r, if + tjf, i) and the area of the section will be increased in the ratio (I + f,)(l+ e,) : 1. ff e, aud f, are related !j« that this ratio is equal to unity there will be no change in the are-a of the section or in the volume of any portion of the bar, but the shape of the section will be distorted. Either «, or c, ts then negative, or there is contraction of the correspmding set of lines. The strain set up in the bar is called "pure shear." Fig. 1 below shows a square ABCD distorted by pare shear into a rhonibus A'H'CTiy o! the same area, 
3.    Simple shear. 
As u third example of strain let us suppose thai the bar oiler being distorted by pure shear is turned bodily alK)iit its axis. We suppose that the axi.s of x is the direction in which contraction takes plat.-e, and we |]ut 
£, — €i = 2 tan or. Tlien we can show that, if the rotation is of amount a in the sense from tf to X, the position reached by any particle is one that could have been reached by the sliding of all the particles in the direction of a certain line through distances proportional to the distances of the particles from a certain plane containing this line. 
Since (I+»()<!+#,)= I, Aud <,-f^ = St&ii a, we have 
1 + f, =Beca-tar»a,    1+(,=HOCa + tAli a. By the piuv tibeiir, the {uirtide which wns at (x, y) iri moved to {Xi, ^j), where 
.r, = jt (bcc a — taa a),   yi "=y (sec a + tau a); ftnd by the rutatiou it is uttived ugiuri to (x,, yj), where 
Xt=XiO*jaa+tfj tfiuo,   y,= - Xj aia o+y, cob a ; L.   K. 3 
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        Fig. 1 sliowe A square ABCD distorted by pure shear into a rhombus A'BCjy of the same area, which is then rotated into the poRition A"B^Ciy'. TU*f angle of the shear is A'OA", and the angle AOX is half the complement of this angle. The lines A A", BB\ CC", VJ/' are parallel to OX and proportional to their distances firom it. 
We shall find that all kinds of strain ran be described in terms of simple extension and simple shear, but for the discussion of complex state« of strain axtd for the expression of them by means of simpler strains we require a general kinematical theory*. 
4. Displacement. 
We have, in every case, to distinguish two states of a body—a first state, and a second istate. The particlfe<i of the body pass from their prjiMtions in the first state to their positions in the second state by a dispUwettieHt. The displacement may be such that the line joining any two particles of ihe iMxly hnst the same length in the second state as it has in the first; the displacement is then one which would be possible in a rigid body. If the displacement otters the leDf^th of any line, the second state of the body is described as a " strained i^tatc," and then the first state is described as the " unstrained state." 
In what follows we shall denote the coordinates of the point occupied by a particle, in the unatrained state of the body, by x, y, z, and the coordinates of the point occupied by the same particle in the strained state by *+u, y + w, « + «. Then u, v, w are the projections on the axes of a vector quantity—the displacement. We musti take «, p, w to be continuous functions of x, y, s, and we shall in general assume that they are analytic functions. 
It is clear that, if the displacement {u, v, w) is given, the strained state is entirely determined; in particular, the length of the line joining any two particles can be determiiie<1. 
5. Displacement in simple extension and simple shear. 
The diaplocemcnt in a sunplo oitciuiiou parallel to the mis uf x in given hy th« faqmtiona 
when)« U the Amount of ibo ext«aaion.    if e is Degativ« tbere in roHlruction. 
The di8{jlacemeiit io u tiienitlo shear of ammint j{a>2 t&n a), hy which Wnfn jtarallel to ihe axis oF a: hIiiIr alui^ kheniittlvi!^, antl [uLrticle» in any [)lRne ^mmllel to the plane of (x, y) remaia in that {>Ua«, ia givoii by the oqiiatinns 
• The greatCT part of the thoorj U dne »o Caochy (3ee JntrodncUon). Some iiDptorein«DW wen made by ClebMh id Ua tnatim of 1862, aud otben were mmdie lijr Kelvin and Tait, NaU PhiL Patt I. 
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[ii Fig. 2, AB\»» iMgueut of a line parall«l to tba axU of x, wbich subtends lui angle 2o at 0 and w tisectod by Oy. By the siiaple sbedr pdrtictes lying on the line OA are displftt-ed so as to lie on OB. The particle at any point /' on .-1B U diifiihuwd to V "" AB no that PQ= A B, and the paiticlost on OP arc dtt4|iUced to points on OQ. A |uiral1elograni Mucb as OPNM hcH^tnint a pArallelo^nuu 8uch aa Oi^K.V. 
P   B 
M 
FiR. S. 
U tiu aug\t xOP^0 ve way [aova that 
^^,, 2tanatau'd .       ,„. tmS 
'*"'^'=«eCfl + 2tai.«taur    ^'""^^T+gW-tantf" 
In particular, if ^^jir, i!iit;70iii'=«, m that, if i ih niaall, it is the complement itf the ongk in the straitMsd state )>etwe«u tvro linen of particles which, iu the unstrained ktate, wen at rijfht augloa tx> each other. 
6.   Homogeneous strain. 
Id the cast's nf Kimple extension and simple sbe&r, the amiponcnt displacementa are expressed as linear ftmcUonti of the cooniinnles. In general, it' ii bixly is Ktmii)e<l »o that the component displacements can be expressett in  this vntiy, the strain  is t>aid  to  ba homogeneuus. 
Let the displacement corresponding with a homogeneous titniin be given by the equations 
Sinn* A', y, t kk changed into jc + u, .y + v, x+w. that is, are transfonniMl by a linear siibatitiition, any plane is tranmlonnud into u plane, and any ellipsoid it! transformed, iu general, into an ellipsoid. We infer at once the following charactcrii^ttcj) of hoinogeneous strain:—(i) Stmight line* remain straight, (ii) Parallel straight lines remain parallel, (lii) All straight lines in the same direction are extended, ur coulracted, in the same ratio, (iv) A sphere is tratisfomied int<j an ellipsoid, aitd any three orthogonal diameters of the sphere are transformed into three conjngate diameters of the ellipsoid. (v) Any ellipsoid of a certtun shape and orientation is transformed into a sphere, and any set of conjugate diameters 
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of the ellipeoid is transformed into a set of orthogonal diameters of tlie sphere, (vi) There is one set of three orthogonal lines in the unstrained state which remain orthogonal after the -strain; the directions of these lines are in general altered by the strain. In the unstrained f'tate they are the principal axes of the ellipsoid referred to in (v); in the strained state, they are the principal axes of the ellipsoid referred to in (iv). 
The ellip8«)id referred to in (iv) is called the strain ellipsoid; it has the property that the ratio of the length uf a line, which has a given direction in the strained state, to the length of the corresponding line in the unstrained state, is proportional to the central radios vector of the surface drawn in the given direction. The ellipsoid referred to in (v) may be called the rvcrproctil $trai» elltpnoid: it hfis the ])roperty that the length of a line, which has a given direction in the upstraiued state, is increased by the strain iu a ratio inversely proimrtiorial to the central radius vector of the surface drawn in the given direction. 
The principal axes of the reciprocal strain ellipsoid ore called the principal axes of the etrain. The extensions of lines drawn in these directions, in the unstrained Htute, are stationary for Huiall variations of direction.    One of them is the greatest extension, acid another the smallest. 
7.   Relative diaplaoement. 
Proceeding now to the general came, iu which the strain is not neoest^arily homogeneous, we take (x+x, y+y, z + %) to be a point near to {x,y,t\ and (u + u. i-+ t, w + w) to be the corresponding displanenient. There will be expressions for the components u, v, w of the relative displacement as series in powers of x, y, z, viz. we have 
hu 
du 
Sir 9y 3j 
dv 
dv 
dv 
dx'        dy        dz dw r^ro        dw 
w=x^ + y T- +«2- •+
(0 
where the terms that are not written contaiu powers of x, y. « above the filSt. When x, y, * are sufficiently small, the latter terms may be neglected. The quantiiios u, v, w arc the displanements of a partielG which, in the un-straincd stjite, is at {x + x, y+j, ^ + x), relative In t-lie particle which, in the same state, is at (x, y, s\ We may accoi*ditigly say that, in a .Aofficiently smiiU neighbrjiirhnnd of any point, the relative displacements are lineur fumrtiuns of thi- mlative eoonliuates. In other words, the strain about any point is sensibly hoviogeneoua. Ail that we have said about the effects of homogeneous strain upon straight lines will n*mftin true for linear el«nnonts going out  from  a point.    In partiuuUr, there will be one set of 
S8 
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three orthugonal linear elements, in the unstrained stale, which remain orthogonal after the strain, but the directions of these lines are in general altered by tbo strain. The directions, in the unslraiiiefl state, of these linear elements at any point are the " pnnci|>al axes of the strain " at the points 
8.    Analysis of the relative displacement*. 
In the discuiaion uf the furuiulu: (1) we shall confine our attention to the displacement near a point, and shall neglect terms in z, y, x above the 6ret.   It is convenient to inLrodnce the following notations:— 
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Cjq, — 
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dvf 
dv     du 
2ar, 
.(2) 
du    dw dt    ex 
The formula* (1) may then be written 
▼  =ie^+    (!^+i<ry^-««l + WjK.l      (8) 
The relative displacement is thus represented,as the resultant of two displacements, expressed respectively by such forms as e^x + ^e^^j + ^e„% and — vr^y + OyX; and there is a fundanioutal kincniatical distiuction be* tween the cai^es in which the lutter dii<plaeumeut vuuislies and the cases in which it does not vanish. When it vanishes, that is when v^, Vy, tr, vanish, the component displacements are the partial ditferential coefficients, with respect to the coordioates, of a single function ^, so that 
oA ca dp 
ac" aj a*' 
anil the linc-intpgral of the tangential compunetit of the displncemetit taken round any closed ciir\'e vanishes, provided that the curve can be contncted to a point without passing out of the s|>ace ociHipied by the body. Such a function as <f) would be called a " displaccment-potfntial." Through each point (X, y, «) there passes one qnadric surface of the family 
e„x' + e„,y» + e„i"+ e^yx ■¥ e^ttx + e^Tj = comt (-1) 
and the displacemeut that is derived, as above, from a displacemeiit-poteiitial, is. at each point, directed along the normal to that surface of the family (4) which passes through the point. The linear elements that lie along the principal axes of these quadrics in the unstmiucd state continue to do «o in the strained state, or the three orthogonal linear elements which remun orthogonal retain their |irimitive directions.   The strain involvud in such 
' StokM. CamMdfft Phil. Soc. Tnint. vol. 8 (1843), Math, and Pbyt. Paptr*, *oI. 1, p. 75. 
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diKp]»cement« is described as a " pure strain." We learn that the relative displacement is always compounded of a displacement involving a pure .etrain and a displacement rF^pn^aeuted by such expreasinns o.s — Wiy + w„«. The line-integral of the latter displacement taken round a closed curve does not vauish (cf. Article 15. infra). If the quantities «,, »„, w, are enaall, the lemis such as — ta-,y + w^B represent a displacement that would be possible in a rigid body, viz. a small rotation of amoimt v'(w«' + w,," + vr^') about an axis 
in direction (i 
: a-i).    For this reason the displacement corresponding 
with a pure strain ie often described as " irrotational." 
9.    Strain corresponding with small displacement*. 
It is clear that the changes of t^izc and shape of all parts of a body will be determined when the length, in the strained state, uf every line is known. Let /, m, n be the direction cosines of a line going out from the point (x, y. t). Take a very short length r along this line, so that the coordinates of a neighbouring point on the line are x + Ir, y + mr, z + iir. After strain the particle that was at (x, y, r) comes to («-(-u. y + v, e + w), and the particle that was at the neighbouring point comes to the point of which the 
coordinates are 
,du 
V + "* a. 
ox dy 
y+mr + r+rfi^- +m'|+r,g-). \    (5) 
-J- t» 
rided r is so small that wo may neglect its square.    Let r, be the length strain which corresponds with r before strain.    Then we have 
«+ir+K + rf(— +"*g: "•■"s")' m .5- + 
+ HI- - + 
+ \li,- + m -   4-1 
1 + 
dz' 
.(6) 
When the relative displacements are very small, and squares and products of sacb qnantitiee as ?-.•'• can be neglected, this formula pasftos over into 
r, «»r[l +^P+«j,ym*+«an* + ey,mB -f tfa^ni + ff^iwi] (7) 
wbore the notation is the same as that in equations (2). 
* la llw ftpplicatiutM of tb« tbeorjr to ittiwciii iu etutio ■oliil bodiet, tbc diMpla«emeQte tb&t 
Yane to be eonndered are in (teni'ntl %o small Lhat i^fiuareo aod prodiicU of tiritt diftcrentinl 
' coeAoiwiU of H, V, if with r«B)H»:t lu x, y, j can be ncf^k'cted in oamporipon with their firRt |>ow«n. 
The more ^aeral iheor; in which ihit nlinplificatioii ia not made wiU bediacataediDthL-Appeodix 
to thia Chapter. 
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10.    Components of Btr&in*. 
By the formula (7) we knnw the length r, of a line which, in the unstrained state, hint an assigned short longth r and an assigned direction (/, HI, n), as soon as we know the values of the mx (|nantities (?jai ^^k *»■ *w *w. *»r These six tjuantities are called the " components of strain." In the case of homogeneous strain they are constants; in the more general case they are variable from point to pomt of a body. 
The extension e of the short line in direction {I. m, n) u given at once by (7) in the form 
e = Brxl'+ Cyytn'+ ea"^-^ e„x-mn +eanl+erylm (8) 
80 that the three quantities e^. e„„. e„ are extensions of linear elemente which, in the unstrained state, are parallel to axes of coordinates. 
Again let (I,, r/t,, n,) be tlie liirection in the strained state uf a linear element which, in the unstrained state, hntt the direction {I, m, n), and lot e be the corresponding i-xWifsion, and let the same letters with atwents refer to a second linear element and its extension. From the formuhn (3) it appears that 
with similar expressions for m,, h,. The cosine of the angle between the two elements in the strained state is easily found in the form 
/ii,' + jn,in,' +«,«,'»(//'+ mm'+ ««')(! —« — «') + 2(«g^U' +^Tnfn'+ eann') 
+ ey,{mn' + m'n) + e„ (nf + n't) + «„ (im' + TrnX  (9) 
If the two lines in the unstrained state are the axes of x and y the cosine of the angle between the corresponding lines in the strained stJite is e^. In like manner e^, and ?„ are the cosines of the angles, in the strained state, between pairs of lines which, in the unstrained state, are parallel to pairs of axes of coordiuHtett. 
Another interpretation of the strain-components of type e,^ is atTorded imniediutely by such LH|uations as 
fiom which it appears that e^^ is made up of two simple shears. In one of these simple shears planes of the material which are at right angles to the 
* When the nUtive duplaoement is not bhuII Ok sLniu ia aot «p«cified compWU'lj b> the qiliuititie<« <•„,... f„, .. . Tbii m&tteria eoniitd«r«dlu the Appendix to tbuC)iapt«r. Lotd Kelvio huH Rdllwl atlentlon to the nniirntoetricsal cltanetei vf tli* strtui-omnpoDrata ben «pecifi«d. Tbree uf (hem. ta Cnot. &re extvusious and tb« remsintDg t1irp« to* ahoaring ittTftiit«. H« hu mrked oat k nyTDnK^trical syEtem nf Btnin-componeDta which would Im the extenilona of lln«* pvaUd to the •>!««• of ft teU&b«droii. S«e Edinburgh. iVm-. A>y. &K.. vol. 94 (1903), and PkiL Hag. (Scr. 6), vol. 3 (1903), |ip. IMi aiiU 444. 
Iftxis of ar slide in the direction of the axis of y, while in the other tbese axes \vn interchanged. The strain denoted by e^^ will bo called the "shearing strain corresponding with the directions of the axes of x and y!' 
The change uf volame of anj' small portion of the body can be expressed 
in terms of the components of strain.    The ratio uf corresponding very small 
[Tolumes ID the strained and unstrained sttatcit is expressed by the functional 
I determinant 
du Bu 
1 + ^ 
9i' 
drif 
9y' 
1 + 
dv 
dt 
ds 
, when aqaares and prudncts of du/dv,,., are neglected, this becomes ^ -r ^ -r 3_ , wi «vj  . -r «•    The quantity A which is defined by the 
,    5u    3p    3w ,     * 
dz 
'«qaation 
_3«    9p    &w 
.<10) 
dx    oy     ds 
fi» the increment of volume per unit of volume, or the " cubical dilatation," 
.ofu?n called the "dilatation." 
With the iutrodnctioD of the components of stmiu, the interpretation of these components and the expression of the cubical dilatation in terms of them, we have achieved a general kineuiatical theory of the strains that accoDipaoy small displacements. The rest of this Chapter will be devoted to theorems and methods relating to small strains which will be useful in the develupment of the theory of Elasticity. 
11.    The Strain Quadric. 
Through any point in the neighbourhood of {x. y, s) there passes one, only one, quadric surface of the family 
CmX' + «wy' + "a** + "vty^ + ""** + e^xy = const (4 6m) 
of these quadrics is called a strain (fuadric; such a surface has erty that the reciprocal of the square of its central radius vector in *iif direction is proportional to the extension of a line in that direction. 
irthc quadric is an ellipsoid, all lines issuing from the point (x, y, g) are *-'*t«nded, or else all are contracted ; if the quadric is an hj'pcrboloid, some liiHs are extcnde«l and others contracted; and these sets of lines are «f*rated by the common asymptotic cone of the surfaces. Lines which undergo no extension ur contniction are generators of this cone. 
The directions of lines, in the unstraine*! state, for which the extension is a maximum ur a minimum, or is stationary without being a true maximum 
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« ■nikimain. are the principal axes of the <|uadric8 (4). These juies are tfcutfotv the principal axes of the strain (Article 7), and the exteustona m the directioiw of theite axes are the " principal extensioiits" When the qsadrka are referred to their principal axes, the left-hand member uf (4) take« the form 
wherein the coefficientH e,. e,, Os are the valuett of the principal extensions. 
We now see that, in order to specify completely a state of strain, we require to know the directionfl of the principal axes of the strain, and the magiiitildes uf the principal extensions at each point of the body. With the point we may awtociate a certain quadric Hurface which enables us to express the strain at the point. 
Tim directions uf the priiiciEMl axea of the strain arc detovniined m fullows;—let £, m, h be the tUrectioD coaiueu of cue of these axeH, then we have 
( " m » ' 
and, if « i« written for either of these throe qitAntiti««, the three possible valutt of « arfr the ruot« of the equation 
Kf    ««-«    1*1-   -«t 
these roots are renl, and tbcy are tho voluctt of the iirincipal cxtonaions e,, «,, t^. 
12.    Transformation of the components of strain. 
The same state of strain may be specified by means of itA component* referred to any system uf rectangular axea; and the components referred ta any one system must therefore be determinate when the components referred to some other syfllem. and the relative situation of the two syntems, are known. The dctcrmiuatioa can be made at once by using the property nf the strain quadric, viz. that the recipix)cal uf the 8<|uare of the radius vector in any direction is proportional to the extension of n line in that direction. We shall take the coordinates of a point referred to the tirst system of axes to be, as before, x, y, x, and those of the same point referred to the second system of axes tu be x'. y, a', and we shall suppose the second system to be connected with the first by the orthogonal »chcine 
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Further we shall suppose  that  the determinant of  the transfurmation   is 1 (not — 1), so lliab the second system cau be derived from the first by au 
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opcralioo of rotatiou*.    We shall write t^^, e^y-, ttt, e^t. e^^, e^^ for the conipiiDenU of strain referred to the second system. 
The relative coordinates of points in the neighbourhood of a given point inay be denoted by x, y. x in the first system imd x*. y*, %' in the second system. These i|uantitieK are tiunsformed by the same substitutions as *, y, « and tf, y', t^. 
When the form 
*«»' + e^y + eo«* + fy,y* + e^tK + e^xy is transformed by the above mibstituiion, it becomes 
It follows that 
These are the fonnulie of transformation of strain-components. 
(U) 
13.   Additional methods and results. 
(a) The funjiulw (11} might have lieeti infeiTed from tbe iiitcri>retnti4a of «^^ ii« the oxtenioou of & linear olemeut panillel to the axiit of x\ And of e^-^ tut thv cuaioe of the angle Wtween the ^MiBitHina after Htrain of the Linear eleiumitM which l>cf«re atmiii are pamlkil tu tbe axes ofy and ^. 
(b) Tbe furmnlai (11) might »l1w> \i&vt^ been dbtainod hy intruduc^iiii;; the (iisi>]Acement (m*, i<, iK) raferred to tbe axea of {/^, y, t'), and forming ch,hf,.... Thedijiplucomont being A rector, K| v, ir are cugredient with x, y, e, and we have for example 
, . (hi . (iff „ Pw /?«      5ff\ ,   /PK      P«f\      ,        /f^P       M»\ 
ax 
This method ma)- be applied to the*transfomintion of v,, a-,, v,.    We should find for euunple 
Tr^e»i,ora + »»,w, + ii,w„ (IS) 
and we might hvticc infw the voctuml fhjinu-t-er of (or,, m„ w,).    Tbe tuime inference might he drawn from tho intur]>rotAtion uf bt,, w^, w, a« comiKmonta of rotation. 
(c)    According to a well known theoroui t concemiug the tnuinforuj»tion of qiiudratic MiaiiH, the following iinantitieH are invariajit in rminct of trainsfoimiatinnH from one of rectangular axeet to liiiotlier: 
«f»P«+««'^+«»*«-i(v*+««*+<^*). ■  (13) 
Tbe fint of them ini-ariautH in tbe oxpreasion for tbi> ciibtval dilatation, 
* ThU TMlriotioa makes no diffurcaca to tbe relatiooa bvtwocn the ocinpoeeats of etrain retened to the two Hjfilcinii.    Il affnrtv Ibo co]Ti[K)nentH of rotaliou tUj,, a,, si,. t Salmon, Oafrnttry o/thrtt dimemion*. AXh eA.. Publin. 18H3, p. C6. 
IKVABIANT8 OF A 8TRA[N 
[ca. 
{d}   It may be sbovni directly tliAt tbe following quantities are iovariaats:— 
luid the direct vcriflcation m«y serve as au exorcise for tho student.   Thnw inv&risDl could be inferred from the fact thAl w,, tr,. w, are «>gredient with x, }/, s. 
(«)    It niaj lie shown aim that the following qiiuitities are invariaata*:— .....    /Sip ?»    du ?v\     /du etc    r^ rv\     /cv dn    w ?u\ ^•"^   V^ S " ^ rW     l^' ^ " ?^ ^^    V?*i •> " ^ 'W • {i»)   ^>+V+''«* + * W + »»"+0 + 2 (ar,' + ar/+".*). 
(/)    It may he shown t ft3«> that, in the notAtlon of Article 7, the in%-nri(Uit {ir^ eqaiU to 
where the integmtions an taken throtiifh a very nmall njihero vilk its centra at the point 
(*. y. «)■ 
(y)   Tliu following nmult is of some iinportnncet:—If the stmin can he expressed by' "1''^*'" *>•• *r> *>nlyi the remnining cnmi>nneiit8 boing zerti, thou the sinun in a «hearing stmio «n-: and the magnitude of this nhear, And the dirwtion of the nxift r in the plane of .r, y, Are Ut )>e foinid fr^no 0,. And e„ l>y treating thme quantiti«« tut the itrojoctioiMi of a^ vootor on the axes of .r and ft, 
14.    ^peB of strain. 
(a)    I'ni/orm <iHatatio». 
When th« strain qiiadric in & 8pb«re. tho pnncip&l azos of the fttrain are inUeterrainAte, And the extension (or contrucUon) of all linciu- eloiotintM iiMinng from a point is tho samot^ or we h&vo 
*«.-*» 
■ iA,   ff,. = ««"*«-0. 
where 4 ia the ciiWcat dilftUition, and the aiew of s, y, i are any three orthi^onal linfK. In thia cane the linoar extenniori in Any direction isono-thini of the cubical dilAtAtion^ a roHiilt which dotw not hold hi general, 
{b)    Stm/A' fj-tiiuirm. 
We may exeuiphfy the use of the uietliodH luid formuiaa of Article U by Kutlin); die ooupouoiitM, referred to tbo axm of x, y, i, of it stniiii which is a simple exteiwion, of ommtnt r, parallel to the direction {/, m, »). If tliis direction were that of the Axis of J^ the form (4) would V* <x^; and we have thorefore 
=*f». 
■eit" 
A Mioi>lo tixteusion  la accordingly equivalent to a HtrAiii spointied hy these six imujponente. 
It hu been pro|M»Gd|{ to call any kind of (|iuuitily, related to direetioDB, whioh ia' oquivalent to componenta in the aame way an a fiim]>]o eitecution, a Muor.   Any Htrnin iis 
* The iurariaut (ilil uiU be uitcful in « iiul>»«>|u»nt ior«aU^slion (CbapUr VIl.J. t E. Belli, ;/ A*riw'« Cinifuio (Her. 2). t. 7 (I87a(. t Cr. Oiaptcr MV. in/ni. 
i W. VuiKt, mttiNffm Saehr. 4IOOO), p. 117.    Cf. M. Abraham in Jincy. tL math. Wio. Bd. i.^ Art. 14. 
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MH wc iiA^'C alreodv ttccii, equiv«Iciit to three Hiinple extciufions immUel to the {iriucipAl &ieM of the stnuii. It has been proimscd tu cull nnv kind iif tiiuititit)', related Ui dirvetioiis, whioli is equivalent to i-omixtnentii itt the ntaae wAy an k strain, a tvttttyr^riad. The discoauuii in Artklc«i \i and 13 {h) hnnjpt out clearly the duttiactioci betweea teil»on niid vvKAtm. 
(tf)    Shearing ttraiu. 
The Mtrftin denote*! \iy e„ in called " the tihruriiig Ntmiti corn»|Mjiidiug with the dinx;tioD9 of the axes of x uid t/.^ We have already ubeen'ed that it ta equal ti> the ixisinc uf tlw liable, in the strained atato, between two linear elemenU* whioh, in the iimttmin**! vtate, are purallcl to ihe^ axes, axxtX that it in equivalent to -two oimple »he*i«, ^'unxistiiig of tbe nilatiTe iilidiu^, iwrnllcl tu nich of thcMC dircvtinms of plaoM at right angles to the other. The " slieuhng airain " is uteaHiired by the mini of the twoHinipleHh«an and is iudc> liandeni of their ratiiii. The change in the length of any lino and the dhange in ibe angle Iniween any two lineo depend u|K>n the ttttm of tlie two xiniplf* tth^^nt niid not on the ratio of their (ininiuitK. 
The components of n strain, which is a shearing stnin corresiumdlng with tbe directions of the axes ofy and y, are given by the equiUiortii 
where > ia the ain«Huit of the eib<w.riiig ntniin.    The atrnin iiivolvoH no cubical dilatation. 
If we take the atee of xf and y t^i Ite in the ]>lauL uf x, y, mill HUpixMo tha>t the aseH nf K^jffi are parallel to the princijuLl lucs of the stnun, wv lind that e„ \ auishcs, ur thorn is DO fixteuaion at right anglta to the plane uf the two dirwtioiiH concemod. to this cam wo have tbe funu tj-'ji' equivalent to the form f^J^ + ^^^tf-. It follows that i'^= —^n^ ±i*» and that the principal axen of the stnun bit«ect the n.ngleH l>etween the two direotioiia concerueil. In other word« equal exteiiMiou and contraction of two liciear elements at right IU){^ to each other are equivalent to shearing strain, which ix nuiuencully equal to tvirc the extension or contraction, and corresiKxnU with directions bisoctiug the anglea between the elenienta. 
We may enquire how to cbooA3 two directions nii that the shearing strain lutrresponding with them may be as gnat aa poasible. It may be shown that the greatest sheai-lng strain is equal to the difference between the algcbruicslly greatest and least phiii'tikal extennous, aikd that the corrMponding dircctionfi bisect the unglci t)ctw(>cn those principal axes of tbe atfaio for which the extensions arc the luuxiuiiun and niitninuiu cxtonsiona* 
(rf)   Ptatu strain. 
A moro geuentl lyy^t wtiich includes simple exteusiou iuid tiheariiijf struiu m particular caacs, is obtAined by (WHuming that rme of the principal cxtcnaions is zuro. If the oorrcspnodiug princi|ial axis is the axis of t, the stmin qnudrii; bocomos a cyliuder, standing CO a cimic iu the plane of X, y, wEiich may be Hilled tbu strain cuuic; and its equation wm lie written 
•» that tbe shearing stmins e^, and e„ vatiiih, as well as the cxtooHiou e„. Iu tbe |«ztiea]ar esse of atniplc extension, the conic conaiats of two iiarallel lines; Jn tbe case of ■hearing atraiu, it Ja a rectangular hyjicrbob. If it iii a cirule, theru is extuuaiuu or con> tnction, of the aame amount, of ull lineiir clempjit^ issuing from the [mint (x, y, :) iu diteetiona at right angles tu the axis of s. 
* Tbe iheofem ben stated is ilac to W. Hopkins, Cambridgt Pkit. Soe. Trant., vol. 8 (184gj. 
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The relative dimidaoeiiieDt eorrespooding with plane strain is pamlM to the |daw of the strain; or we bare ir^coast, while » and v am functitMis of x and y only. The axia of the resultant rotation is oonual to the plane oi the stzain. The cahictl dilatation. A, and the rotation, v, are ooonected with the diqdaoement by the equations 
ex    cy' ax    cy 
We can hare states o^ plane strain for which both A and a- vanish ; the atrain in pan shear, Le. shearing strain oomlnned with such a rotation that the principal azea at the strain retain their primitive diracticMia. In any such state the diqtUoanent components v, u are conjugate functions of x and jr,f»-r-l-fH ia a function (tf Uie complex variable r-I-qr. 
15.   Relations connecting the dilatation, the rotaticm and ttie dim* placement. 
The cubical dilatation A is connected with the displacement («, v, v) bj the equation 
cu    cr    dit 
^^ — + ^ + — , 
ex     CJf     « 
A scalar quantity derived from a vector by means of this fMmala is described as the divertfence of the vector.    We «-ritfl 
A = diT. («,»,«:) (14) 
This relation is independent of ooordinatee, and may be expressed aa fbUowa:—Lei any closed surface S be drawu in the field of the rector, and let JV* denote Uie projection ot the vector on the normal drawn outwards at any point on •S', also let dr denote any element ot volume within S, then 
jjyds^jjji^ (16) 
the integration on the right-band side being taken through the ^'otiune within S, and that on the left being taken over the surface S*. 
The rotation (v., or,, or,) is connected with the displacement (h, v, w) by the equatitms 
5w    ?»      „        Cu    c»      „        CO    du '   cy     cz '    «    cj:' *   ex    qy 
A vector quantity derived from another vector by the prooew here indicated is described as the curl of the other \'ector.    We write 
2(or„ w„ w,)-cur](i(, r, w) (16) 
This relation is independent of coordinatesf, and may he expressed as follows:—Let any closed cun'e s be drawn in the field of the vector, and let any surface S be described so as to have the curve $ for an edge; let 7* be the resolved part of the vector (k, v, «) along the tangent at any point of «, and let 2arp be the [ovjection of the vector S(irx,i]ry,vJ on the normal at any point of S, then 
JTd*~jjiw,dS, (17) 
* The result is a partionUr case of the theorem known as * Green's theorem.' See £ney. d. math. H'iti. 11. A 2, Nub. 45—47. 
t It is assumed that the axes of j:, y, x form a right-handed system. If a transformation to a left-handed eystem is admitted a convention mutt be made aa to the sign ot the oarl of a vector. 
|4-16] DILATATION   AND   ROTATION 47 
iiitCKntiun ou Uio right being tAkoD over tho Burfiice S, and that on the lofl being alon;; the cuno #♦. 
16.     Reaolntion of any strain into dilatation and shearing strains. 
When the tttrain involves no cubical dilatation the invariaut Ba +Oyv + en loifihes, and it is possible to ohoose rectangular axes of x', if, s' m* that the 
«W.«" + ^f + ««*• + ewy + e«r«* + e«„^ [ia tr»Qsturn)6d into the forai 
ill which there are no terms in r**, y*. i^.   The strain is then equivalent to (hewing strains corresponding with the pairs of directions 
</.*').  (^.^0.  {^'.y'). 
When the strain involves cubical dilatation the displacement cau be ual^sed into two constituent displacements, in such a way that the cubical dilalatioii corresponding with one of them is zero; the strains derived from this constituent are shearing strains only, when the axes of reference are chosen suitably. The displacement which gives rise to the cubical dilatation is the gradientf of a scalar potential (^), and the remaining part of the displacement is the curl of a vector potential {F, G, H), of which the divergeDce vanishes. To prove this statement we have to show that any rector (tt, p. w) can be expressed in the form 
(tt,v, 1*7) = gradient of ^+curl {F, G, II) (18) 
inrolving the throe equations of the type 
di>dH   dO ... 
?^r.     d'j     tie ^    ' 
which F, 0, H satisfy the equation 
if^i^^- ^-) 
the case of displacement in a body this resoliitiou must be valid at all ii>int« within the surface bounding the body. 
There are many different ways of effecting this resolution of (u, u, kj)*. 
' Tito tMOlt i« gvaonUy atlribuled to titokea. Cf. Knaj. d. math. TTin. ii. A a. No. if). It implies tluil tbeni Ji « certain rdaiioo bctwocn tho sense in which the integration alon^^ dt U Utkeu and Uut in «hkb Lbe nonnaJ r is drawu. Tbu reiation is Die same as the relation of rotacioa lo Iraiulation in a right-handed virew. 
It The aradiew of ^ U the rector &.  "S,  ^^) . * Sm, •■g., E. B«tU,  n SU0VO Cimentv (Ser. 2), t. 7 (1972), or P. DulLem, J. de itath. (aoplltf). (SAt. 5), i. a (1900).    The ronulutiun nas first cUcctcd b; Stakua in hij memoir on DtSrafitMo.   (S«* lotrcduotion, footnote 80.) 
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We observe that if it is eflecled the dilauitioti nm) rotation will be exprcsstfd in the forms 
A = V»^,    2w. = - V'F,   2w,, = - V--G,    tvF, = ~ ^'H (21) 
the lattt three holding goiid becftuee 3f/3jr + 9G/5y+9J3'/9«=0. Now solutions of (21) can bo written in the forms 
where r is the distance between the point (a/, y\ z) and the point (*, y. t) nt which ^. F,.,. are estiiuatol, A' mid (ar/, or^', w^') are the values of A and (w^, Wj,, w,) at the point {x, y', r*), and the integration extends thi'ough the body. But the sohitions given in <22) do not always sjitisfy the equation div (/', G. //) = 0. A case in which they do satisfy this wiualioii is pre^enteil when the body extentls indefinitely in all directionH, and the displacements at infinite distances tend to zero in the order r~* at least. To see tiiis we take the body tn be bounded by a snrfaee S, and write the 6rat of eijuationi^ (22), via. 
in the equivalent form 
^ = -^ W^ («'co8(ir,>') + r'co8(y.y) + »tf'oo8{ff.i')}rfS 
■ad omit the surface-inte^^l when 8 is inhnitely distant.    In the sauio case we may put 
vv, since dr~*jBx' = — dr~^/Bit:, ... we have 
with similar forms for G and H.    From these forma it 'm clear that 
The oxpreHsionR into which the right-hand members uf equations (22) have been transformed in the ajx-cial case are possible fonns for ^, F, G. H in uvery caae, that in to say one mode of resolution is always given by the cqiiotious 
40 
} 
.(23) 
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wliere the uitcgmtion extends throughout the body; for it is cleai- that these make div(/', G. H)=0 and also make 
dJB     dy     de        *7r     Jjj r        '* 
17.   Identical relations between components of strain*. 
The values of the wmiponentH of strain «»«.•■-«j/*i ■•• ^ functions of j:, y, * cannot be given arhitmriiy; they mnst be subject to such relations as will secure that there shall be fimctions m. v, w, which are connected with them by the six ec^oations 
(24) 
ar*- ""'"ay"""a*' 
The relations in question may be obtained by taking account o( the three equations 
for all the dlfferetitial coefficients of m, v, w win be expressed in terms of *»(... e^,... w«,....    We have in fact three pairs of equations such as 
and the condition» that the^e may be compatible with the three equations Huch as Su^'Sa; —e„, are nine equations of the type 
and these eqnatioiw express the first differeiitial coefficients of or,. «r,y. w, in tuTtDS of those of e„,.,. fyt     If we write down  for example  the three 
* Thes* tdatioo* ir«ro glTOn by Sikiat-Venant in hie edition of Navier's Lei;tiit», Apf*endix in. The proof then Indieatdl wu d«veloped by Kiiohhofl. Mech<tnik, Vorieaong 27. Tlie pioot in iha lest ia doe to Bcttnuut, Parit, C. R., t. 108 <ISffl)j, ef. Kocnigfl, f.<^n< de CinftiMliiju^, Parla 1897. p. lU. 
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equations that contain v^ we can. see at once how to obtaia the conditions that chey may be compatible.   These three equations are 
dx      dif      dz ' 
and from the set of nine equations of this type wecau eliminate Oxi ^v ^t and obtain the six identical relatiuus between the components of strain. They are 
" byds    hcB\    dx      dy      ds J ' 
3^    3^ 
cTe, 
_V^ft 
^5» , 3*«„ _ 9*<« 
9^, 
'«v 
9y'      S**     dxdy'     *" ^dy 
3r3x    3y \    3jf     Sy      ?«/' I V    9a;      9^      5r / ' 
L..(25) 
0V. 
16.    Displacement corresponding with given strain*. 
When the cumponente of strain are given functions, which satisfy the identical relations of the last Article, the components of displacement are to bf deduced by solving the equations (24) as difTercntial equations for u, r, to. These equations ai'e linear,and the complete solutions urtbem are compounded of (1) any set of particuliir iioluttons, (2) compleincntaTy solutions cootaiDiug arbitrary constants.   The complementary solutions satisfy the equations 
du _^ ^dw_dw    di*^du    buf _^    <*u 
dx    By     vz    dy     dz    dz    9*    dx    dy 
If wc differentiate the letVhand members uf these equations with respect to .T, y. s we shall obtain eighteen linear equations connecting the eighteen second differential coefficients of u, v, w. from which it follows that all these second difTercotial cocfficientfl vanish. Hence the complementary », v. w are linear functions of x, y. s, and, in virtue of equations (20), they must be expressed by equations of the forms 
uss w, - ry + qz,   r = v, - p« + rar,    w^w^-gr+py (27) 
which are the formulae for the displacement of a rigid body by a translation (u«, Vf, tcr,) and a small rotation (p, q, r). 
In the complementary solutions thus obtained, the constants p, q. r must be small quantities of the same order of magnitude as the given functions <„,,.., as otherwise the equations (6) of Art. 9 show that these functions 
* Ct. Kiichiiofl, itechanik, Votlnang 97. 
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would not express the strain in the body correctly, aniJ the terms of (27) that contain p. q, r would not rcprcsenl n displacement possible in a rigid body. BeariDg ibis restriction in mind, we conclude that, if the six compouents of strain are gi%'cu, the corresponding displacement is arbitrary to the extent of an additional displacement of the type expressed by (27); but, if we impose six independent conditions, such as that, at the origin, the displacement (u, V. w) and the rotation (m^, Vy, Wt) \'anish, or again that, at the same point 
3"   «, 3w    «   ^ 
U' 
,0.«=0,«; = 0.   5^=0, 3- = 0. ^- = 0, 
.(28) 
the expresGiou* for the ditiplucenietit with given strains will be tiiiique. The particular set of equations (28) indicate that one point of the body (the origin), one linear element of the body (that along the axis of x isBiiing from the orig^in) and one plane-element of the body (that in the plane of z, x containing the origin) retain thoir [wwiitions after the strain. It is manife«tly possible, after straining a body in any way, to bring it back by translation and rotation so that a given point, a given linear clement through the point and a given plane-element through the line shall recover their primitive positions. 
19.    Curvilinear orthogonal coordinates*. 
For many problems it is convenient to use systems of curvilinear coordiuatcs instead of the onliimry Cartesian coordinates. These may be iiitrodu(*ed as follows:—Let /(i-, y, j) = a, some cunstant, be the equation of a surface. If a is allowed to vai'y we obtain a family of surfaces. In general one surface of the femily will pass through a chosen point, and a neighbouring point will iu general lie on a neighbouring surface of the 
^family, so that a is a function of x, y. s, viz., the function denoted by/.    If a + t^ is the parameter of that surface of the family which pa^^^es through («+(/*, y + dj^,i + rfi), we have If we have three independent families of surfaces given by the equations p /i («. .y.«)=".   /i («. y.«) = j9.    /i (^. y,«) = y. 
so that in general one surface of each family pas-ses through a chosen point, then a point may be determined by the values of a, ^, y which belong to the surfaces that iiatus tlirough iff", and a neighbouring point will be • Thu tbmry is dne lo Lam*. See hi* Lf^om tur Ui eoordouitfet cutriUsut*, Pari*. 1B69. t TbA d«U)rmiD«Uon of ihvpuitit luaj' aul hv Uw from ambiguity-, o.g., iu tlliplif coonlliiutce, *n oUipocid &nil Iwu cuiifucsU hyjicrbuloidit pii-tx tliroiiKh any point, and th»^- nmoi in Keren other pmnti, Tht ambiguity ia removed if the rejjtuii uf i7E>ace considerod is euitably IJiaited, e.g., in ib« COM of cUijftic courdiQakfl, if it is an uotant b»uudcd by principal planes. 
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determined by the neighbouring values a + rfor. ff+d0. y + rfy.    Such quantities as a, /3. 7 are udled " curvilinear coordinates" of the point. 
The moat convenieDt systems of curvilinear coordinates for applicatione to the theory of Elasticity arc det-eruiined by families of surfaces which cut each other everywhere at right aogles. In such a case we have a triplyorehugonat family of surfaces. It is well known that tbei-e exists an infinite number uf Bets of mich surface!', and, according to a celebrated theorem dne to Dupin, the lino of intersection of two surfaces belonging to different families of such a set ia a line of curvature on each*. Id what follows we shall take a, /9, y to be the parameters of such a set of surfaces, so that the following relations hold: 
dx tin-    dif tty    9* 3^      ' 
dy da    dy da    ^da 
dx cijF    dy <h/    Bz de 
0, 
dxdx    9y 3^     OS hs The length of the normal, rfn,, to a surface of the family a intercepted between the surfaces a and a+da is determined by the observation that the direction-cosines of the normal to a at the point (x, y, g) are 
IVCL 1 8« 1 So 
/i,?a:'       A, ay'       h,dl'  ^^^' 
where A, is expressed by the first of equations (31) below. For. by projecting the line juiniug two neighbouring points on the normal to a, we obtain the e<) nation 
''"■-«; 1 ai "^+r/J'+9. "^j"*: <*•> 
lu like manner the elements dn„ dn^ of the normals to j9 and 7 are d^/A. and drffh,, where 
^-f)'MD"-(lf)'. "'•=^J<g)'-(^)'-) 
.(SI) 
The distance between two neighbouring puiuts being (rfij,' + rfn/ + tirt,^^. we have the expression for the "liue-elemeJit,"' rfs, i.e. the ilistance between the points (a, fi, 7) and (« + rfo, ^ + dff, 7 + dy), in the form 
id^r = (rf«yA,)» + {d0lKy + idyih,)'.    (SS) 
In general A,, /»,, A, are regarded as functions of a, 0, 7. 
* Salmon, Oeomttry ofthrtt dimtniu»u, 4lh ed., p. 3x}9. 
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30. Components of strain referred to curvilinear orthogonal coordinaiea*. 
The length in the unstrained state of tbe line joiniog the points (a, ^, 7) and (a 4- da, ^+d^, y+df) is given by (32); we seek the length in the strained state of the line joining the same pair of particles. Let w., u^, il, be the projections of the displacement of any particle on the nonnaU to the surfaces a, fi, 7 that pass through its position in the unstrained state. When the displacement is small the ooonliuates of the point occupied by a particle are changed from a,;9,7 to a + A,u,, y3 +A>Us, 7+A,u,. The a-coordinato (a+ da) of a neighbouring point is changed into 
a + da+lh,iu + da^ (/,,».) -f d0 ^(h^n.) + d^ ^(h^uA . 
and fiimilar changes are mode in the fi- and 7-coordinotes (0 + rfj9 and 
y + dy).    Again, the values of h at a displaced particle differ from thtwe 
at its undisplaced position.    Fur example, 1/A, is ehangetl iijto 
1   . t      3 
It follo«-s that da/k, must be replaced by 
^da |l + |^(A.K.) ]+d0^^ (/.,«.) + dy^ (VjJ 
and, when products of quantities of the order u. are neglected, this is 
h^{^ 
•*-^'"'e|{/!.)+''^'^a-7©} 
+ d0 
1 d 
1 a 
.(33) 
Similar changes must be made in d$ih^ and ^^7/^3. The length of the line joining two particles in the strained statu is found by funning the square root of the sum of the wjuares of the three expressions of the type (33). Let da be the length of the linear element in the unstrained state, and let /. m, « be the direction-cosines of it referred to the uornials to the surfaces a, j9, 7 at a point, so that t/o/fci = i(ls,.... Also let ds{\ +e) be the length of the correspondiug linear element tn the strained state. Then e is given by the equation 
ha d ,,     .       A, D ,,     ,1' 
.(34) 
" Tbt awtbod hen gireo in due Ui Barctianit, .1. /. Math. [CrelU). B<1. 76 (1^73).    Anotber nHh»d iM flit«D iB ibc ' "Sou on •)>[>UcMtoiiit of tnoviug »x«a * »t tli» «iid ot this book. 
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Negi««tiDg squares aitd producta of u^. ««, Uy, we may write the result in the fonti 
ess 0^1* + efigin* + eyy7i*-he0ymn + e^rii + eaf^t,    (33) 
in which 
The quantities e„,... epy, ... arc the nix com|K>nents of strain referred to the orthogonal coordinates. In fact e„ is the extension of a linear element which, in the unstrained state, Mes along the normal to the surface a; and fy^ is the cosine of the angle between the linear elements which, in the unstrained state, lie along the Dornials to the surfaces jS and 7. 
21. Dilatation and Rotation referred to curviUne&r orthogonal coordinates. 
Tb« ramilta of Art 15 can bo uUliisod tu cipresN tbe cubical ditatntJou &, wnd the comjumEiit rotatiumt ar,, wft, Wy about the nurmolB to tfao three Miirfmoes, in terms of tbu ri)uip<iiiGntH u., Hg, Uy uf tlio (liMjjtaoemout 
To obtain the expresHJmi f»rA wc fonu the mirfiK'e integral uf thp iioniial ct)iajKHient af the diHiilnc'eiueot* over tbo mirfooe of an element of Uin lioiljr boiuidcd hy tbe throe \mivn of MirinccA (a, a+da), {S, fi+ti^}, (y, y+dy), the uonual being drawn a.viAy from ttie iiilmor of the element The contributions of tbe tanxs of titc element can be put down Ju iiu«h loruuM 
oontribuLioi) of n= - «„   - J*, 
''1 *s 
^. tl&iiy^ ,   ^ f    dffdy\ 
and, on adding the nix coutributknw, vro obtain 
tbiH mutit bo the Home u AcUtd^dy/iih^li,,   We tbereforc havo 
-v.Mi(M;)-4(a;)^4(5;)} <"> 
This n»ult ia the iwme M would be found bj Rdding the c:(]>re«8ionii for «m> «$fit ^ in (36). 
* Thi« ni«lhod if da« to hoti Kelvin. (Sir W. Tbomion, Math, aiuf Phjfi. Pofm. Vol 1. p. i!i.    'J'he dalfl of the iiivoBtiKation w ISiS.) 
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        TTiiu must Vw the Mine an 2sryAK/i9/A,A,, ami w« hiiv« thiia an eiprc-Hsion for tCy wliU-h ts given in tha third uf eqiutiona (38); the other (HjiiatimiH nf tbi^ not can be nbtnined in tbc some way.   The foniiiila'* are 
* The totmalm (Sfl). a» aIro (36) ani (87), nra due to Larn^. The inethod here used to otrtalD (38), and nsed aJw in a "liRhlljr more anolylical lorm by CcsiVro. tntrodmUint aila le/}ria mahmatiM lUlla Ela*lu:iu'i. (Turin. IH'M), p. IDS, is rnmili&r in £)e«trod>-iiamicB. CC. U. Lamb, PhiL Tmiu. Rot/. Sae., toI. 178 (18SM), p. 150, or J. .'■ Thomson, lirteiit Ret^Mrchit in Eieetrieity unJ Jt/ajriulurm, Oxford, 1893, p. S6?. The underlyinR phyaicnl notion Ih, or uoiirse. identical with th« r«Ution of 'oirculation' to ' voitvs fltrvugtli' brought to light in Loid Kelvin'i memoir 'On Vortox Motion,' Edinburgh, Roy. Roc. Trans., vol. 25 (1S69). 
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22.    Cylindrical and polar coordinates. 
In the case of cylindrical coordinates r, $, t we have the liue-element 
aDd the displacements Ur, u^, u,.   The general formuleQ take the foUowiug forms :— 
(1) for the strains 
_hir _1 duo    «r &»*■ 
1 ?K,      3w# _JbUr      dttg _5ws      lie      1 3«r 
(2) for the cuhicul dilatation 
(3) for the components of rotation 
1 S«,    hit 
13,       ,     1 3«r 
In the caae o{polar coordinates r, 6, tf), we have the line-element {(dr)* + r* (rftf)< +r> sin< fl (d.^)*}*, and the displacements u,, u», u^.   The general formulss take the following forms :— (1)   for the strains 
dUr 1 due      Ur 1        ^t<4      U<      . .     Ur 
?r '     "   r 35      r '   ^^   rainfi 3^     r r ' 
1 /3«4 ^ A 1 
^   r\3e    ^        y     rsiL 
3u« 1     3ur , 3u4    u« 3u«    u« , I dur 
■Bind 3*'   ^   rain5 30^3r      r '    "     3r      r ^r 35 
(2) for the cubical dilatation 
(3) for the components of rotation 
2w*=—i—al^v — ai("***i"*')rt rBm51.30     3r^ ^        'y 
The verification of these formults may serve as exercises for the student. 
APPENDIX TO CHAPTER I. 
GENERAL THEOKV OF STRAIN. 
23. The preceding part of this Chnptcr contnins al! the results, relating to strains, which are of importance in the mathematical theory of Elasticity, as at present developed. The discussion of strains that correspond with displacements in jj^neral. as opposed to snmW displacement's, is an interesttug branch of kinematics; and some account of it will now be given*. It may be premised that the developmenta here described will not be required in the remainder of thiH treatise. 
It is customary, in recent books on Kinematics, to base the theory of lins in general on the result, stated in Article 7, that the strain about a point is sensibly homogeneous, and to develop the theory of finite strain in the case of homogeneous strain only. FnJOi the point of view of a rigorous analysis, it appears to be desirable to estHblish the theory of strains in general on an iudcpendeut basis. We shall begin with an account of the theory o( the strain corresponding with any displacement, and shall tifterwarda investigate homogeneous strain in some detail. 
24. Strain corresponding with any dispLacement. 
We consider the effect of the displacement on aggregates of particles forming given curves in the uustrained state. Any chosen particle occupies, in the onstrained state, a point (or, */, z). The simie particle occupies, in the strained state, a point (x + u, y + v, s-{■ w). The particle.'^ which lie on a given curve in the first state lie in general on a different curve in the second state. If ds is the differentia! rjlemont of arc of a ctirve in the first state, the direction-cosines of the tangent to this curve at any point are 
Qg        flV dt 
J *   ff '   J •    If <^i is the differential element of arc of the corresponding 
* fi«Cm!DC« tniLy Im inadu to Caucfaj, Kxerdeei tie nfithdmntitfuft, Ana^e 18'J7, Uio Articio 'Bar la eoDilcnuUnn rt U dilalRtioa dex corpti RolidoB'; Orocn'ti mcinoir on the iPtl<9xion of Itsbt qaotod in the Introdactian (footnoU) 42); Saiat-Venant, 'Mdmoirv aur I'^uilibre den corps 8aIU«,, *Hi«id lMdApUoem«aU...n« sout pa-" Ui» pvtitfi,'Par!; C. It..t.'H {ItHl): Kelrio and TmI. Ifat. Phil., I'art i. pp. 115—144 ; Toiiliuiitrr and Poatnon, mtlury, toI. 1, Article* 1619— 1622 ; J. HaiIaiiiaH. Lt^wu iur ia propagation d<» oniiet. I'axU 1903. Chapter ri, 
curve are 
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curve ia  the second st«te, the dir«ction-co«iues of the  tangeoi to  this 
cZ (jT + tt)    d(y + v)    d(z+w)      „ . , 
~-~ ,   —^ ,      - ■-—— .    nereiD, for example, 
dSi     '       as,     '        da, *^ * 
djx+u) _ ds /rfa:    vrt dx    du dy    du di\ ,_. 
(^ thi\d8     Vie ds     di/ds    dzdsj' 
with similar fomiuio} for the other two. 
Let {, m, n be the direction-cosines of a line in the unstrained .state, lit m,, n, the direction-coeines of the corresponding tine in the strained Btete, d», d»i the diifi^reotial elements of arc of correRpouding curves having these lines respectively as tangents.    In the notation used above 
i = 
dx ds' 
m = 
, _d(ce+u) diy + v) d{t + w) 
^'"ds,     '   '""'—ds—*   "•"    "d^~' 
and the e<]uations of t^'pc (1) may be written in such forms as 
'■=£,i'(»-'£)-4:-s} <^' 
On squaring and adding the right-hand and tefl-haud members, and remembering the etpiationft 
we Hnd an equation which can be written 
(^•y =(1 + 2«„)i'+<l +2e„) m»+ (I + 2t„)n^+i€„ mn + 2e„nt + 2€„^ft. 
(3) 
whei-e *aa,... are given by the formuiip 
•w 
fa 
^m-iw-it)]
"di 3«r    dv    dudtt    dvdv    dio dw 
> 
_dtt    dw    dv du    dvdv    dmdyt 
dv     du    du du    dv dv    dwdw ^    dx    djf    dx dy    dx dy    dx dy' 
...(+) 
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The state of strain i» entirely determined when we know the Icnf^hs in the atT&ined ajid unstrained states of correflponding tinea*.   The quantity 
-r —l is the extension of the linear element ds.    This is determined bv the 
formula (3).    We observe that the extensions of linear elements which, in the uostrained state, are parallel to the axes of e^iordinates are respectively 
where the positive ralaes of the square roots ore taken. We thus obtain an interpretation of the quantities 4„, e^^, e„. We shall presently obtain an interpretaiioQ of the quantities e^, e„, e^, in terms of the angles, in the strained state, between linear elements, which, in the nnsbrained state, are llel to the axes of cocrdinatea. In the meantime, we observe that the lin at any point is entirely determined by the six quantities tat, ftnr> *"> ««. <«y These cumntities will be called the comjionertis of gtniin. The quantities ^r*)--- which were called "components of strain" in previous Articles are sufficiently exact equivalents of e«r,... when the stjnares and products of such quantities as dnfdx are neglected. 
25.    Cnbicai Dilatation. 
The ratio of a differenlial element nf volume in the strained state to the corresponding differential clement of volume in the unstrained st-ato is equal to the functional determinant 
3(»-f-H, y-n>, g+«) 3(x.y.r) 
or It 18 
1 + 
aw 
This will be denoted by I + A. Then A is the increment of volume per unit Tolnme at a point, or it is the cubical dilatation. The ijuantity <„ + ^ + ff„ is a sufficiently exact equivalent of A when the displacement is small. 
We may express A in tenns of the components of strain.    We find by the process of squantig the determinant that 
(l+A)» = (l+2f„)(I+2f„)(l+2f„) + 2e„,€„e„-(l+2e„)€^,' 
-(l + 2c^)6„"-(l+2*„)fV- (5) 
* Lord Eelrin'* method (Article 10, footnote) U itpplicaJilc, u he points ont, la et»ina of tuuestrielol magnitade. 
OENERAI. TUEORV 
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26.    Reciprocal strain ellipsoid. 
The ratio dsi: dt. on which the extension of a lioear element issuing fctun a poiufa depends, is expressed in tbe funuula (3) in ternis of the dirc-tiiiuu-Conines of the clement, in the unstrained state, and the components of >itrAtu at the point. The forntulti shows that, for any directiuu, the ratio in quttsliun is inversely "proportional to the central ratlins vector, in that diroctiou, of an ellipsoid which is given by the equation 
(I + S*„) x^ + (1 + 2e„) y' + (1 + 2e„) i' + 2e„,yi + 2«„ sx + 2<^ xy = const. 
<6) 
TbiM is the reciprocal etrain ellipstnd already defined (Article G) in the case of homogeneous strains. Its axes arc called the princtpitl axes of the strain; Ihoy are in the directioos of those linear elements in the unstrained state which undergo stationary (maximum or minimum or minimax) extension. The extensions of linear elements in these directions are called the principat tjctttisiom, «,, <„ e,. The values of 1 + «,, !+€,, l+c, are the positive itquaro roots of the three values of k, which satisfy the equation 
1 + 2<B - K, 
cjyi 
.(7) 
e^, l+2ey„-«, e„ 
<w> V l+2f„-/e 
The invanant relation of the reciprocal sti'ain ellipsoid to the state of strain may be utilized for the purpose of transforming the components of strain from one set of rectangular axes to another, in the same way as the strain quadric was transformed in Article 12. It would thus appear that the quantities <«,... fry ai*© components of a "tensor triad." Throe invariants would thus be found, viz.: 
+ «W + fJ 
*«fwr*o + i \'w:^t»'x» ~ *jcr**w ~ *«»**«■ ~ *» 
^m.)
...(8) 
27.    Angle between two carves altered by strain. 
The etfect of the strain on the angle between any two linear elements, issuing from the point (x, y, *), can be calculated. Let /, nt, n and /', m\ n' be the direct ion-cosines of the two lines in the unstrained state, and 0 the angle between them; let 2,, m,, n, and //, m/, n,' be the direction-cosines of the corresponding lines in the 8tratnc<l state, and 0, the angle between Ihem.    From the formulie such as (2) we find 
008^, 
d« (U 
+ e„<nr + «'/) + e^(/in*+rin)), (9) 
where ds^lds and (Uild^ are the ratios of the lengths, after and beforv strain, of corresponding linear elements in the two dire^^tiuns. 
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I 
Wo observe that, if the two given directioas are the positive direcllous of the Axes off/ and s, the forniulu becumes 
f,,= v'!(l + 2€„)(l + 2«„)]co3^: (10) 
aad we thas obtain an intLTpretation of the quantity e^,. Similar int^-TpretatioDfl can he fouod lor tac and «iy. From the above fortuula it appears also that, if the axes of j-, y, z are parallel to the principal axe& of the strain at a point, linear elements, isaiiing from tbc point, in tho directions of these axes continue to cut each other at right angles after the strain. 
We may show that, in general, ibis is the only set of three orthogonal linear elements, isHuiiig from a point, which roinain orthogonal aflc-r ihe strain. For the condition that linear elemonts which cut at right angles in the unstrained state should H\no cut at right angle^i in the Rtrainc-d state is obtained by putting coa $ and cos^, both equal to zero in equation (0). We ihus tind the equation 
1(1 + 2«„) I + €„m + r«n] V + [e^?+ (I + 2ey») to + e^,"} m' 
+ !*«' + iy.™ + (1 + 2e„)n)n' = 0, 
wherein K' + mm' + nn'^ 0. This equation Rhows that each of two snch linear L*lement«, (besides being at right ang1c» to the other), is parallel to the plane which is conjugate to the other with respect to the reciprocal strain ellipsoid. Any set of three such elements must thei-efore, (besides being at right angles to each other), be parallel to conjugate diameters of this ellipsoid. 
The formuUe so far obtained may be interpreted in the iicnsc that a »mall element of the body, which has, in the unstrained state, the shape and orientation of the reciprocal strain ellipsoid, corresponding with that point which is at the centre of the element, will, after strain, have the shape of a sphere, and that any set of conjugate diameters of the ellipsoid will become three orthogonal diauietera of tho sphere. 
28.   Strain ellipsoid. 
We might express the ratio ds^: ds in terms of the direction of the linear clement in the strained state instead of the unstrained. If we solved the «(]uattoni* of type (2) for /, m, n we should Hnd that the.se are linear functions of /,, m,, M, with coefficients containing dsi/dtt as a factor; and, on squaring and adding and replacing I* + ni' + n* by unity, wc should find an equation of the form 
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Tbt! ullipauid repi'eoMited by the equation 
{QiJi + 6,y + City + (ttjx + 6jy + Cj«)* + (a,* + b,y + c,f)»« const. 
vvuUI bavt» the property that its centi-al radius vector, in any direction, \b 
|iri>[H/rUoual to iho ratio ds,: ds for the linear olement wliich, in the straiued itlfttv, Ucti iduiig that directiou. This ellipi^iiic) is calli^H the strain elUpsord. 'I'hv Ivugihti of the principal axes of this ellipsoid and of the reciprocal iibnuii ulliptH'id are inverse to each other, so that, as regards shape, the . ' I .^s un? keciprocal to each other; but their principal axes are not in ^ ! . in thi' Miiuo directions. In fact the princi^ml iixes of the strain bllipNvid art" in the directions of those linear eletneatii in the strained state vihii'h havf undergone stationary (maximum or minintutn or niinimax) vxtuuMi'iii- The simplest way of rinding these directions is to observt? that tbo currOMpuhding linear elements in the unstrained state are parallel to the princijud axes of the alraio, so that their directions are known. The formulffi of iypo ^2) express the direction-cosines, in the strained state, of any linear oloinent of which the direction-cosines, in the unstrained state, are given. Thi' direction-cosines of the principal axes of the strain ellipsoid can thus be fiiinid from these forniiilse. 
29.    Alteration of direction by the strain. 
The correspondence of directions of linear «.lcments in the strained and tiQstrnincil states can be made cloirer by reference to the principal axes of the strain. When the axes of coordinates are parallel to the principal axes, the etpiation of the reciprocal strain ellipsoid is of the form 
(1 + e,)'j^+ (1 + f,yjr* + {l + e»)'2» = const whei'e £i, c„  fj are the principal extensions.    In the formula (0) for the cosine of the angle between the strained positions of two linear elements we have to put 
Let the line (/', m', n') of the formula (9) take suecessivyly the p<isitions of the three principal axes, and let the line {t, m, n) be any chosen line in the unstrained state. 
We have to equate ds'/ds,' in tin-n to<l + e,)-', (I +*,)-', (I +«,)-*, and we have to put for dsjds, the expression 
[(1+*,)''* + (!+«.)'w'+(l+e.V«»]-*. 
The formula then gives the cosines of Uie angles which the corresponding linear element in the strained state makes with the [irincipal axes uf the atrain ellipsoid.    Denoting the«e cosines by X, ^ ■>, we 6nd 
(\,/*,i.) = [(l+r,)»/'+(I + f,)'m» + (l+f,)'»']-*l(l+e,)^(H-eOw.(l+<i>Bl. 
(H) 
By aolving these for t, in. h wt> tind 
ft? . V* 
-i 
(i + e/r^/aTTj--^^^* 
Here I. m, n are t)ie direction-cosines of a line in tlie unstrained state referred to the principal axes of the strain, and X, ft, v are the directioncoainea of the oorreaportding line in the strained .ttate referred to the principal axes of the strain ellipfwid. The operation of deriving the second of these directions from the first may therefore be made in two steps. The 6rst stop* is the operation of deriving a set of direction-cosines (X, >i, v) ironi the set {I, m, n); and the second step is a rotation of the principal axes of the )*train into the positions of the principal axes of the strain eiltpsoid. 
The formulie also admit of iuterpretotion in the sense tliat anv small element of the body, which is spherical in the unstrained state, and has a given point as centr«, assumes after stnuu the shape and (irientation of the strain ellipsoid with its centre at the corresponding point, and any set of three orthogonal diameters of the sphere becomes a set of conjugate diameters of the ellipsoid. 
30. Application to cartography. 
The method* of thU Cbaptor would juiioit of ftpjiHcation to the proWetn of coostrocfting tn^n. The surfnce to be mH]i|MHl anrl lh(> jilatiR irivp of it are tlio nimln^eti of a bodj iti the unatxniiieil and ^trniiicd stjiUM. 'I'lie Minnreni tlint tho sti-ain iilioiit iiii; point U tieiuiililjr bomojfcueou» in the thoiircm that aiiv Htufill piirLioii uf tlie utu}) is aiiniUr to one of ttie urLhugnipliic pnijcctioiis of the correHfiiiitliii^ {purtioti of thi; origitukl surface. The analoj^o of tbe froi>eri>OH of the strain-elli|MioiJ is fuund in tho tbieonmi tliat with an;' uumU ctrcls OD the original surface there <:orre8poDds a suikII eUijNte un the ma]); ttie dimeiuiofi» «lid orientation of the elliiuw, with iU centre at auy poiut, bein}; known, the aoslo of tbe map near tho point, and all di»tortiuiitt of len^li, area and angle are detcrDnoale. These theorcma form the finuidii.tioii of tlie thoorj- of cartngraph t. [Cf. Tiasot, Uimaire tar la repreatmtation de* aurfatea pI let projection* de* rarta ffeo^rtipAi^iut, Paria, 
im.] 
31. GonditionB satisfied by the displacement. 
The components of displaccun-'ut u, v, w ure not alaolutely arbitiary fonctioDB of «, t/, t. In the foregoing discussion it has been asRunied that tboy are subject to such conditions of difi'crcntiability and continuity as will Mcore the validity of the "theorem of the toul differential+." For our pur|KWo this theorem is expressed by such equations as 
du_du. dx    '^i dy    tiudz ds    dx da     dy ds    dx ds' 
this analytical   restriction,  there  are  others imposed   by  the lition that tbe displacement must be such an ran be conceived to take place in a continuous body.    Thtis, for example, a dinpluceuieiit. by 
" Tbia operation in one of 'hotnoKoneotM pnro gtrain.    8«e Article S3.1'm/m. i Ct [lamack. Introduction to tht CrUevln*. Londnn, 1*401, p. ^2. 
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vkidi «vvry pouit is replaced by its optical image in a plaDe, would be excluded. The expression of any conipoDont diN{>laceinent' by functions, vbicli become iuRiiite iit any point within the n^giun of spiice occupied by the UkIv, is also exchided. Any anaiyticftlly possible displacement, by which ihe Wngth of any line would be reduced to zero, is alsu to be excluderl. We arc thiw concerned with real transformations which, within a certain region of Kpaco, have the following properties; (i) The new coordinates 
(*■ + It, y + r, » + w) KK iH>ntin«oiis functioDS of the old coordinates (j-, r/, z) which obey the theorem of the total differential,     (ii) The real functions u, o, w are such that the ([uadratic functiou 
(I + 2«„) P + (1 + 2<„) m' + (1 + 2e„) n«+ 2«„m7i + ie^iU + ^e^lm is deSnite and positive,    (iii) The functional determinant denoted by 1 +A ia positive and does not vanish. 
The condition (iii) secures that the strained state ts such as can bo produced from the unstrained state, by a continuous scries uf small real displacements. It can be shown that it includes the condition (ii) when the transformation Is real. From a geometrical point of view, this amounts tu the observation that, if the volume of a variiible tetrahedron is never reduced to zero, none of its edges can ever be reduced to zero. 
In the particular case of homogeneous strain, the displacements arc linear functions of the coordinates. Thus all homogeneous strains jirt* inchidetl among linejir homogeneous transformations. Tlie condition (iii) then excludes such transformations as involve the operation of reflexion in a plane in addition to transformations which can be produced by a continuous series of small displacements. Some liitttar homogeneous transformations, which obey the condition (iii), express rotations about axes passing through the oiigin. All others involve the strain of t^omu line. In discussing homogeneous strains and rotations it will be convenient to replace (ix + u, ^-i- v. z + w)hy 
32.    Finite homogenoons strain. We shall take the emiatians by which the coordinates tn the strained state arc connected with the cooi'dinatcs in the unstrained .state to be ar, = (I + Ou)« + a„y + a„*, 
y, = Uaj: + (l + ««)y + u»;,     ....(!3) 
z, =rt„x-Kt,y + (l+a„)r. The corresponding components of strain are given by the equations 
Em' 
i Ob + ffw + a„U„ + O-jOb + OttOa, 
.(H> 
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The qaantities e„, .,., dofiiied in Article 8, do not lose their importaace when the dit^placemontH are not small. The notation used here may be ideolified with that of Article 8 by writing, for the expressions 
On. **«, "as. Ow + Ob, a„ + au.tt„ + a„,aa-a,. o„-u„, o„-a„. 
the expressions        e^g, e„, e„. Cy,, e„. e^, 2w^, 2vrg, 20,. 
Denoting the nuhiis vector from the origin to any point P, or (x, y, s), by r, we may resolve the dinplaccinent of P in the direction of r, and consider the ratio of the component displacement to the length r. Let E be this ratio. We may define E iohe the etonfftUion of the material in the direction of r.    We find 
J? = ^{(^-<+(y.-y)^-t-(*>-«)p}; .03) 
and this is the same a« 
jFf* = Cjax" + fyyy» + ?c«'+*»»y' + *tt«P + e«y*.V-      (^6) 
A (|tia(1ric Kiirfm^c obtained by equating the right-hiiitd member uf this etiiiation to a constant may be called an elmigatioti qiuidric. It ha^ the properly that the elongation in any direction is invdrsoly proportional to the central i-adius vector in that direction. In the caae of very small displacemeiitti, tlie elongation tjuadric becomes the strain cpiadric previously discussed (Article 11). The invariant expressions noted in Article 13 (c) do not cease to be invaiiant when the displacements nre not omatl. 
The displacement expressed by (13) can be analysed into two constituent di«placenients. One coustitueut Is derived from a potential, equal to half ^e right-hand member of (16); this displaccmcDt is directed, at each point, aluug the normal to the elongation quadric which posses through the point. The other constituent may be derived from a vector potential 
-i[w.(ir' + «').   »^ (*' + *'),   w^Ca^ + y-)]  (17) 
by the operation curl, 
33.    HomogeneoQS pure strain. 
The direction of a line passing through the origin is unaltered by the ftrun if the coordinates x, y, x of any point on the Hue satisfy the e<.(uatioos 
each of these quantities is put equal to X, then X. is a root of the cubic equation 
1 + Oil — X rt„ Ou 
l+u.--\ «.„ =0.  (19) 
1  + B„ - \ 
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The cubic tia» always one real root, so that there is always one line of which the direction is unaltered by the strain, unci if the r«Jt is positive the sense of the line also is unaltered. When there are three such lines, they are not necessarily orthogonal; but, if they are orthogonal, they aro by definition the principal axes of the strain. lu this case the strain is said to be pure. It is worth while to give a formal definition, as follows:—Pure strain is such that the set of three orthogonal tines which remain orthogonal retain their directions and senses. 
We nmy prove that the sufficient and necessary conditions thai the strain corre»poiK)ing with the equations (13). may be pure, aro (i) that the quadratic form on the lefl-linnd side of (20) below Is definite and positive, (ii) that Vx. Vy, «< vanish.    That thesis conditions arc sufjidenl may be proved as 
follows:—When w,, Wy, xo-j vanish, or (t^ — <\^ the equation (19) is the 
discriminating cubic of the quadric 
(1 + OiOx*+ (l-(-(i^)y- + {l+a»)«*+2aayi + 2a„Mr + 2a,a«y = const.;   (20) the left-hand member being positive, the cubic has three real positive roots, which determine three real directions according to equations (1ft); and these directions are orthogonal for they are the directions of the principal axes of the surface (20).   Further they are the principal axes of the elongation qnadhc 
0,1(1? -h a^y -*- Ow** + 2a«yff + ^Oa zx + 2a„ay = const. (21) 
for this surface and (20) have their principal axes in the same directions. 
The vaoishiug of Cc, v^ and t7, are necessary conditions iu order that the strain may be pure. To prove this we suppose tiiat equations (13) represent a pure strain, and that the principal axes of tlic strain are a set of axes of coonlinates f, t;, f The effect of the strain is to tnmsform any point (f, i^. \^) iiito (fi, t;,, 5^,) in such a way that when, for example, ij and f vanish, i;, and Xi also vanish. Referred to principal axes, the equations (13) must be equivalent to three equations of the form 
f = (l+f.)f    % = (l+e,)»F.    t. = (l + e.)r»     (22) 
where ei, ««, «■ are the principal extensions. We may express the coonlinates ^, 17, ^ in terms of m, y, z by means of an orthogonal scheme of substitution. We take this scheme to be 
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Then we have 
-'(l + *i)^(^* + niiy+ni') + (l+e»)^('iic-l-m,y-»-n,«) 
+ (l+«.)'i(^* + »«,y + «.«). Hence Ow = (l-^ff,)/,m, +(1 -t-«,)/,w*, + (1 + e,)/,m,. 
3»-35] 
HOHOOEN'EOUS STRAIN 
67 
We should find the same expression for o,,, and in the same way we should find identical exprcsisions for the paini of cocfticients a„, a„ and a,,, a^
It appears from this discussion that a bomo^jcneoiis pure straiu ia equivalent to three simple extensions, in three dirtKitions imitually ut right angles.    These dircctioos are those of the principal axes of the strain. 
34. Analysis of any homogeneous strain into a pore strain and a rotation. 
It is geometrically obvionn that any homogeneous strain may be produced io a body by a suitable pure strain followed by a suitable rotation. To determine these we may pruceed as follows;—When we have found the strain-components ci<rrespou<Jing with the given strain, we can find the equation of the reciprocal strain ellipsoid. The lengths of the principal axes determine the principal extensions, am) the directions uf these axes are those of the principal axes of the strain. The required pure strain has these principA] extensiona and principal axes, and it is therefore completely determined. The required rotation is that by which the principal axea of the given strain arc brought into coincidence with the principal axes of the strain ellipsoid. According to Articio 2S, this rotation turns thr^e orthogonal lines of known position respectively into three other orthogonal lioea of known position. The it!quiri;tl angle and nxis of rotation can therefore be determined by a well-known geometrical oonstruction. [Cf Kelvin and Tait, JVu*. PhU. Part i. p. 69.] 
35. Rotation*. 
When the oomjM>neiits of stmin vanish, tlm diH(j|Boenient exiiressed by (13} of Articio 32 is A rutACion Al^xit mi iixin pnMsirig Uirwigh tha origin. Wc Nhail take 0 tn he the angle nf mtfltinii Ud sliall Kiipponc the directinn-conineti {, m, » of tJie &it« to be taktn ho that the ■'ntnlioit '\» righthaoded. Any point /', ur (x, i/, t\ cuoves on a, circle luring it« centre (C) on the axis, and comes into a poaition /*,, or (x*,, 3^1, «,). Let >. ^ p be the directiou-vc«ines of C'J' in Uic rtwisc from f to /*, mid k-t X,, ^i. ►, be those of ('>*, in tho utetiae trvio C to t\. Froiu P, U-l fyJI i\A [icriJCiKliuiiIiir to CP. Tlie dirwtion-oasincs of yj\ in the- soiim? from UtoPi aret mw - nit,   «A - Iv,   tfi - nik. 
Lei £.7, f be tho DOooHtiattM of C.   Then those tttktj the ciuatioiut 
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        ' Cr Kelrrn and Tait, Sal. PhU. Port 1. p. 59, find Minohlo, Stattet, TbErd Edn., Ozrord 1886. TvL 2. p. Iil3. 
t The conrdliul* sxm are taken to be a ligbt-handed B3rst«m. 
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The taxirdiufttejs of /', i*ro olitaincd by eqtiating Uio projection of CP^ on nny coordiuaU* AxU t« the sum« t>r the ])it»j«;ti«u« of f'A'aiul NPy Prujeetiiig ou tbo ajus of r we find, taking fi for ihe length of CP or C/*,, 
X|fi=Xp aw S-k-imv - «>*) f> sin $, 
x,-£=Cjr-{)«»fl+(*N(i-f)-'»(y-9)l»i»iA 
or 
or j:,='*+(n«-«y)i!intf- {j:*-/(;a--t-uijr+iu)} (1-ooe tf). 
Similar exiiresiiioni! for 5^1 And :, can be written down by syromotry. Ttie coefflciontA of the linmr tmntifurmutiui) (IS) booome in thia case 
a,,— - n«a(J+/m(I-coatf), ««=   m ain tf+i« (l -coa 5), 
.(23) 
.<M) 
and it ajipeam, ou culculatkin, thiit the oomponentA of atmin vatiiflb, as they oi^ht to do. 
36.    Simple extension. 
In the example of )tinti>l« «xt«iution given by the eqnatiotw 
tin co&iiKmoDts of atmiii, with the exception of c„ ramHh, and 
Tbo tiivariaiit pix»iM:rty of tb« reciprocal strain elli)Moid way be applied to £ud the cotttponentA of a »tntiti which is a tumple extension of amount « and dir«<:tiou /, m, n. We should find 
^■•••"■"  a«»   ■••  •"  ****^
The same property may be applied to determine the conditions that a jrtrain «pecifi«<l by nix oompuuezittt tuay be a simple extcusiun.    Tlwee couditioua run that tbe invariant^i 
rauiflb. The lunoont of the cxtcuMon in ex)>r»H»ed in terms of the reuuiinitiK inrariaiit by tbo foriuLiIa ^'11+2 (♦« + »„+*«)!- I. the po(*itive value of tlie Jtqnan! root being t^iken. Two vfivAM of llio cubic in «, (7) of Article 86, are equal to unity, and the tliiixi in equal to l-l-2(«0 + r„+rM}- I'hu direction of the cxtenniun ia the direction {/, m, it) thai \% gireii by the equatiuiiK 
2/ 
Sn 
2h 
■•«+•»+«■ 
37.    Simple shear. Ill tbe example of (»ini|ile ahear given by the equatioita 
the cornponeiita ofiitnun are given hy the equationa 
By putting «~2 tana ve may prove that tlie two principal extaoMona which are not asro an ^reti, as in Article 3, by tbe eqiiationa 
i + «i«aoca-tAUfl,   l+«,e=itoca+tauit. 
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Wo ttMf |)r(>v« tlut the area of a G^ita in the pUiic of .r, y in utuIteKd bj tbe sbe&r and that the rljffijrauce of the two )irindptii L'sUumioDH w equal to tlio omotint of the shear. FartUer wc inay show that tho directiiaw of the jirinciiwl nxm of the atrMin are kho bweotnrB of tbe angle AOx in Fig. i of Article 5, aud lUat the aiiffic Uimiigh which the Iirincip*] axm are tum«ii is the angJe a. So that the simple aboar is oqtiivolent to a " pure »b«'tf* CoUowed hy a rotation through an angle a, ax wm exi>Iiuiied before. 
Ily u»Df; the iovariaata noted in Article 39, we may pro™ that the uonditioiw that n strain with given compoufnta <-„,... may lie n shenrinx aLraJu are 
»«. 
and that tbo unonDt oftheitlicar i» ^/{S ita-*-*»t+tM)'38.    Additionail resulte relating to shear. 
A gtK«l fjaniple of Bliear* is jirGM^nted by a K[)bere built up of circular canlit in pnralM plailMi If Biu;li imnl in Hhtfteii in itM owii phiiie, ho that tiie linu of centres Ixxvitiien a atratght Uiu] inclined ohUiinely tu Uit- pkuui of the varda, the sphere iMJcomes an ollipsniil, and tbe carda uoinckle with one set of circular iMx^iona of the elUptwid. It tnaniiutnictive escnride to datenuine th« phui-Ipal axe» of the atnun and tho priuc-ipal extensiona. 
We may notice the foUt>u'ini{ uiutb'^t of prodiuiug any liooiograioous iitraiQ by a Mquence of operatiuos:— 
(4) Any tuch strain can \jv pruihtcod by a sttuplo aboar )p«raUel to one axia of [tlmief j«qKt>diatUr to another, a simple cxt«ii^on in the direction at rigbt an^ee to both axes ■n uniform dilatation and n rotation. 
(A) Any »\Kh atraiD can be pi-oducod by threo simple sbearb eocli of which it a ahear I«araUcI to one axU of planes al rigbt nnglco to aoolhcr, tbe tbrce ues being at right angloe to each utho-, an xiniform dibttation and a rotatiuo. 
38.    Composition of strains. 
After A body has been subjected to a homogeneouB strain, it way agaia be subjected to a buniogeneoiift strain; and the result is a displaceiDent of the body, which, in general, could b« effected by a single homogem^ous strain. Store geuerally, when any aggregate of [HnntK is trauHformed by two honiogoDcoufl linear transformations successively, the resulting displacement is equivalent to the effect of a single linear homogeneous transformation. Thiti statement tnay be expressed by saying that linear homogeneous transformations form 9, group. The particular linear homogeneous transformations with which we are concerned are subjected to the conditions stated in Article 31. and they form a continuous group. The transformations of rotation, described in Aftioh- 3*5, also form a group; and thi« gmup is a anb-f/roup included iu the linear homogeneous group. The latter group also includes all homo- fitraiii*; but tliew; do not by themselves form a group, for two ive homogeneous strains^ may be uquivatent to a rotation. 
• Soc«wud by Mr R. R. Webb.   Of. Kflrta and Tait. .V^r. Pkil. Part L p. 123. 
i Cf. Kulrttj and Tait, .Viir. j>Jb7. Purt 1. jj \7A rt trif. 
X A tranAfomatioti fuch M (13) of Ailiole 32, tappoacd to Mti«fy condition (iii) of Artiol* 31, ^ninawa a rotatiuo If all the aomponanta n( strain (14) vaiiiab. In any other cast ft txpnaaH a 'bamiif.>vnooit8 atniiii. 
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The reault of two successive linear homogeneous transformations may be expressed conveniently in the notation of matrices. In this notation the ecjiiations of tnmsformation (13) would be written 
1 +ff. 
.(26) 
a„       «„    1 + (i» 
and the equations of a second such tmusfonnation could in the same way be written 
(«"9. y». *t) — ( 1 + ^31    ^»       ^     ) (*>• y" 'i^in      1 + 6»  ^ 
By the fimt trausfonnation a point {x, y, z) is replaced by (x„ y„ «,). and by the Hecond (ai,, y,. »,) is replaced by {x^, y,, »|). The result of the two operations is that («, y, s) ia replaced by (a^, y„ «,); and we have 
(x,. y„ /.) = ( l+c,,    c,       c„     )(x. y. «), (27) 
i    C        c„      1 + o» 
^n = frii + Oil + 6)1 till + 6«»«i + fri3"ii. 
Ctt - &« + Oi, + iiiOi, + 6j,aB + frijOw* 
whei-e 
(28) 
In regard to this result, we notice (i) that the tmusformatioos are not in general commutative; (li) that the result of two successive pure stmias is not in general a pure strain; (iii) that the result of two succesfiivc transformations, involving very small displacements, i.s obtaini?d by simple superposition, that is by the addition of corresponding coefficients. The result (ii) may l»e otherwise expressed by the statement that pure strains do not form a group. 
40.   Additional results relating to the oompoaltlon of strains. 
Wheii the tmnsfoniiAtimi <26) i« oqiiivalent to a rotation about an mxM, oo thAl ita ooeffioenU are tbtmc given in Article 35, we mny show tli&t tlie oouipoiwuta ot otraiii oomipociding with tlie tr&imfonii&tioQ (27) axe the s&iue ah thoac corrwixniditig with the tnuiMfonuatioD (2&}, lu it u g«ometncally evident they ought to be. 
In the {nrticiiliir eane wbero thr- tmnHfnrniatinti (2fi) Ih a |iure stntiii reremtd to itA l>riiicip)it aic*, [sn that (r], = r,, ift^*j> "s — *m '^"' tbe reiaairiing coefficients vaiiiKli], aitd the tranafoniiatiun ^26) ih h rotatiun alKmt an &x}», [an that lU* i;(wtlid«iita are those given ill Aritole 3Si\, t)ie i-cieflioiotiU of tlic reniiJtant Htraiii are given by such equations « 
|+r„-{»+'i){»-(1-^)0-o«>«)l. 
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The qtiuiUticH iv„ w,, tv,, ooiTM|>oudiiig with this strain are Dot oompotieiiU uf rotjitioii, the dh|ilaceweat not boiug iimAll.   We ahoiild find for cxatQ|>le 
23r, = f3,-Cj3 = 2f din tf+|f, + «j)isill tf + (»a-f,) mik (1 -cob(J). 
We may ileduuc ibe result ttint, if the com}K>tiont« of Hfcnun corTestK>Dding with tlie imnafomiAtinn (27) vanish, ami the cnnditinit (iii) of Article 31 is SHtisfiod, the rotatlOQ e-i,|>rC8Red by (87) ts of aDKiunt ^abniit nn aAis [l^ m, n) deteniiined hy the equatioiw 
I m n 
We may ahow that the trau«fonu&iion expre«4od by the equations 
npraaante a bomogeoooua strain compauudttl of uniform extt^iHinn n( ail linea which are at rigbt aiigle« to the diractiuu (or^: tp,: nr^ and rotation about a Una in this direction. The amount of the exteoMon is s'(l-f ar/+v/+9r,*)-l, and the tangent of the angle of routjon i« s/(wj,'+or,'+w,*)
In tlie general case of tbe compositiou of Htrnins, we may seob exprasaions for the naallAnt 8trmn-c«in|>unent« in teniiit of the »tmEii-uom[K)neiit« of the uonstitucnt strains and the cuefliuicntu uf tlic traiiKfuniiatiuns. If yta duiioto tbu coui)iouonte uf siratu corresponding with (25), (26), (27) ruHjxMiti^'cly by (,ta)ni ••• 'ibni ••• (*h)m ••• i *c ^"J sucb forniiil» tui 
(««)t={««).+{l+«ii>'t«.«.+a*»i«f.f.+«Si««i, 
CHAPTER  II. 
ANALYSIS OF STRESS. 
41. TuE uotiou of stress in general is simply that of balancing tntornal action and reactiDn lietweeii two parts of a body, the force which either part exerts on the other being one aspect of a stress*. A familiar example is that of tension in a bar; the part of the bar on one aide of any normal section exertH tension on the other part across tlie section. Another familiar example is that of hydrostatic pressure. At any point within a fiuid, prepare is exerted across any plane drawn through the point, and this pressure is estimated as a force per unit of area. Fnr the complete .specification of the stress at any point of a body we should {"equirc to know the force per unit of area across every pta:ie drawn through the point, and the direction of the force as well as its magnitude would be part of the specification. For a complete specification of the state of stress within a body we should require to know the stress at every jwint of the body. The object of an analysis of stress is to detorroinc the nature of the quantities by which the stress at a point can be specified't'. In this Cliapter wu shall develope also tfaoec consequences in regard to the theory of the equilibrium and motion of a body which follow directly Irom the analysis of stress. 
42. Traction across a plane at a point. 
We consider any anta S in a given plane, and containing a point 0 within a I>ody. We denote the normal to the plane drawn in a specified st^nso by », and we think of the portion of the body, which is on the side of the plane towards which v is drawn, on exerting force on the remaining {wrtion across the plane, this force being one a.spect of a stress. We suppose that the force, which is thus exerted across the particular area S, is statically' equi* valent to a force R. acting at 0 in a definite direction, and a couple 0, about a definite axis.   If we contract the area 8 by any continnons process, keeping 
* Fdi ft iliictiKiuoii of tliQ nution of utreea Crom the point of view of BatiDiial Medutnlo^ Ke NoU D. itt tti« end of thU book. 
f The tbrary ot the apeciflcation of atrcjN wftit given by Cftucliy id the Article ' I^ Ift presdoa ou tootioa duu an ooqM »olide ' io Ili« volunv tor IH87 of thv E^tirkei dt mathfmaliqut$. 
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the poiot 0 alwaj's within it, the force R and the couple G tend towards zero limits, and the direction of the force tends to a limiting direction (I. m, n). We assume that the number obtained by dividing the number of units of force in the force R by the number of units of area in the area S (say RIS) tends to a limit F, which is not zero, aiid that an the other hnud 0/S tends to zero as a limit. We define a vector quantity by the direction (/, m, n),the namerical measure F, and the diuieasion symbol 
(ma8s)(length)~' (time)"'. 
Thi« quantity is a force per unit of area ; we call it the traction across the plane v at the point 0. We write X„, F,, Z, for the projectiuna of this vector on the axes of coordinates.    The projection on the normal v is 
X,coa(u:, f) +F, eo«(y, v)-k- Z, cos (z, v). 
If this component traction is positive it is a tension; if it is ne;;Ative it is a pressure. If dS is a very small area of the plane normal to p at the point 0, ihe portion of the boJy. which is on the side of the plane towards which v is drawn, acts upon the portion on the other side with a foree at the point 0, specified by 
this is the traction upon the eleiiient nf area dS. 
In the case of pressure in a Buid at rest, the direction {I, m, n) of the vector {X„ Y,, ZJ) is always exactly opp*)site to the direction v. In the cases of viscous fluids in motion and elastic solids, this direction ie in general obliquely inclined to v. 
43.    Surface Tractions and Body Forces. 
When two Ixxiies are in contact, the nature of the action between them over the surfaces in contact is assumed to be the same as the nature of the action between two portions of the same body, separated by an imaja;ined surface. If we begin with any point 0 within a body, and any direction for p. and allow 0 to move iip to a point 0* on the bounding surface, and » to coincide with the outward drawn normal to this surface at 0\ then X„ Y,, Z, tend to limiting values, which are the components of the mr/txcetraction at 0'; and X,BS, Y,BS, Z,BS arc the forces exerted across the element &S of the bounding surface by some other botly h.iviiig irontact with the body in question in the neighbourhood of the poiut 0'. 
In general other forces act upon a body, or upon each part of the body, in additifm to the tractions on its surface. The type of such forces in the force trf gravitation, and such forces are in getienU pruportifiniii to the masses, of particles on whicli they act. and, furthcj', they are determined as to magnitude and direction by the positions of these particles in the field of i'orce. If r, Y, Z are the components of the intensity of the field at any point, m the of a particle at the point, then mX. viY. mZ are the forces of the field 
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that act OD the particle. The forces of the field may arise from the action of particles forming part of the body, as in the case of a body subject to its own gravitation, or of particles outside the body, as in the case of a body subject to the gravitational attraction of another body. In either case we call them body forces. 
44.    Eqnationa of Motion. 
The body forces, applied to any portion of a body, are statically equivalent to a single force, applied at one point, together with a couple. The components, parallel to the axes, of the single force are 
jjjpXdxdydt.   jjjpYdj:dydt,   jjjpZdjcdydz. 
where p is the density of the body at the point (x, y, g), and the int^ration is taken through the volume of the portion of the body. In like manner, the tractions on the elements of area of the surhce of the portion are equivalent to a resultant force and a couple, and the components of the former are 
jfx^dS,   jJY,d8,   jjz,dS, 
where the integration is taken over the surface of the portion. The centre of mass of the portion moves like a particle under the action of these two sets of forces, for they are all the external forces acting on the portion. If then (/«> /y> ft) ^^ ^^^ acceleration of the particle which is at the point (x, y, z) at time t, the equations of motion of the portion are three of the type * 
jjjpf^da;dyd2=jJlpXdxdydi+Jlx,d8, (1) 
where the volume-integrations ore taken through the volume of the portioo, and the surface-integration is taken over its surface. 
Again the equations, which determine the changes of moment of momentum uf the portion of the body, are three of the type 
fjjpiiifz~^^)dxdydz=^jjlp{yZ-zY)dxdydz+jj{yZ,-MY,)d8; 
(2) 
and, in accordance with the theorem f of the independence of the motion of the centre of mass and the motion relative to the centre of mass, the origin of the coordinates x, y, z may be taken to be at the centre of mass of the portion. 
The above equations (1) and (2) are the types of the general equations of motion of all bodies for which the notion of stress is valid. 
* The equation (1) is the fonn asBumed by the eqnatioiu of the type £mJf=£.Y, of my Theoretical Meckanict, Chapter VI.; and the eqnation (2) is the form asBomed by the equations of the type £m {yS -iy) = Z (yZ - zY) of the same Chapter. 
t Theoretical iteekaniea. Chapter VI. 
\ 
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46.   EquUibriajn. 
Vhna a bodr u nt rent tinder the action or body TurceB and mirface trsctiotw, tbese are subject to tb« conditicins of eqiiilibriatn, which are obtained frum equatiora (I) nod (2) hy oiaissaon of the tenns ooiilaiiiiiig/,,/„ /,■ We have thith sis equations, vit: three of the type 
IflpS(ttclydt + jj.WdS^O,  (3) 
aw) three of tfau tyiw 
11jp(yZ~tr)drdy<U+1j{^Z,-tn)dS=0. (4) 
It fbUowB tbftt if tlie b<x)y forom and surfaoo tntc-tiunti arc given orliitmrily, there will not be oqoilibniiTii. 
In tlie portictUar ca.<«c whore there iire no body foro», eqiiili briiim cannot W uaintaiaed nilw the surface tractions ^ttj-ify >tix o<;iialBans of the ty[ic.s 
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        If XrdS=0,    and  j j (j,S!,-sr,)<iS^O. 
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46. Law of Equilibrium of surface tractions on small volumes. From the forms alone of equations (1) and (*2) we can deduce a result of 
importance. Let the volume of inlegrattou be very small in all its ons, and let I* denote this volume. If we divide both members of •qttation (1) by ^, and then pas.s to a Itnilt by Uimiuishing t indetinitely, we find the cquatiou 
1=11 , if we take the origin within the volume of integration, we obtain by a prvcesH from (2) the equation 
lim. 1-* (J{fjZ, ~ z r,) dS = 0. 
itions of which these are types can Iw interpreted in the statement: 
The tractiona on the eUmentu of area of the surface of any portion of a body, whkh it very snwU in ail its dimeimons, are xdUmaieiy, to a Jirai appr-oxijnatiany a system of forces in eqmlihnum. 
47. Specification of stress at a point. 
Through any p>>int (J in a bixly, there passes a doubly inlinitc svstem of pbneft. and the complete spt^ciiiciition »f the stress at 0 involves the knowl«Ige of the traction at 0 acrom all these planes. We may use the results obtained in the last Article to express all these tractions in terras of the cnmpODent tractions across planes pai-allel to thi^ coordinate planes, and to obtain relations between these components. We denote the traction across a pluke X">const, by its vector component {X^, V%, Z^) and use a sitnilar lUttaUoD fur the tractions across plnnt'^ y = must, and s =oijust. Thu uipital letton show the directions of the componont tractions, and the aufifixes the plftDM acrom which they act. The sense is such that X^ is positive whi^n it ICBBon, negative when it is a pressure.    If the axis of ar is supposed 
7fi 
SPECIFICATION  OP RTRGSR 
[CH.   II 
Pig. 5. 
drawn upwards torn the paper (cf. Fig. 5), and tlie paper is placed so as to pass through 0, the tractiou in question is exerted by the part of the body above the paper upon the part below. 
We ooDsider the e(]uilibrium of a totraliedral portion of the body, having one vertex at 0, and the threo alges that meet nt this vertex parallel to the axes of coordioatea    The remaining vertices are the intersections of these 
edges with a plane near to 0. Wc denote the diiHictioE of the nomml to this plane, drawn away from the interior of the tetrahedron, by If, sn that its directiou coainea are co8(;7, v), c<is(i/. v), cos(«, v). Let A be the area of the face of the tetrahedron that in in this plane; the areas of the remaining taces are 
A co« (jc, v),  A COS (y, v), A coft (<, v). For a first approximation,  when all the edges of the tetrahedron are small, we may take the resultant tractions acroiw the face 
v to be ^,A and those on the remtun
ing faces to be — A'iAcoa(«, j/), ....    The 
sum of the tractions parallel to j: on all the (aces of the tetrahedron can be 
taken to be 
A',,A —uYeAco8(x, v)~ Xj,^coB(!f, y) — XtAC09(x. v). 
By dividiug by A, in accordance with the process of the last Article, we obtain the fir»t n( ccjnatiouft (a), and (ho other ecjuatioim nf this set are obtained by similar processes;  we thus find the three equations 
Jf, = Jf,cos(iF, I*) + Xj,eo8(^, v)-¥X,cxta(E, v), 
Y^= Y^coi{x,v)+ y^CQs(y,v)+ y,C08(*, r),      (5) 
Z, = Zx COS (x, v) + Z^cM (y, I*) + Zt cos («, v). 
By thet«e ei]Uiitions the traction acniHs any plane through 0 is expretwed in tenus of the traclionu across planes parallel to the coordinate planes. By these equations also the component tractions arrtisR planes, parallel to the coordinate planes, at any point on the honnding surface of a body, are connected with the tractions exerted upon the body, across the surface, by any other body in contact with it. 
Again, consider a very smalt cube (Fig 6) of the material with its edges parallel to the cwtrdinale axes. To a first approximation, the resultant tractions exerted upon the cube across the faces per|M'ndicular to the axis of X are A.V^, A/jr>AZx, for the focc for which ae is greater, and — AX^, —AFjT, —A^ie, for the opposite face, A lM;ing the ai-ea of any face. Similar expressions hold for the other faces.    The value of//(y^,-<K,.)rfS for the 
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By equations ((i) the number of quantities which imiRt be specified, in order that the stress at a |>oinL may be determiued, is reduced to six, vis. three normal compoueiit ti-actioiis X^, K,„ Z,, mid three tangential tnictions Yf Zg, X„. These six quantities are called, the components of stress* at tho point. 
The six components of stress are sometimes written icx, yy, Ti, yz, zx, xy. A notation of this kind is especially convenient when use is made of the orthogonal curvilinear coordinates of Article 1.4. The six components of iknBB referred to the normals to the surfaces a, ^, 7 at a point will hei-eafter be denoted by aa, ^Q, 77, ^7, 701, a^. 
48.    Measure of stress. 
The sUite of stress within ;i body is determined when we know the values at each point of the six components of stress. Each of these stress-components is a traction of the kind described in Article 42, so that it is measured as a force per unit area. The dimension symbol of any stress-component is ML'^T^. 
' A^mmctricftl metliod of apecifx>BK: ^^^ fettetm is worked out byLunlKelviu (AiCiclolU foolnote). The RiBtliod is e(]uivaleiit to taking &s th« sis compooenU at streaa at 11 point Lhe tLnsions p«r unit of aru MroK« six plaoee wbich aie perpeudicuLar raapectivel^' to the six (KigeH of » cbueen truUmli^droi). 
I 
78 
UEOMKI'KICAL   CIIARACTEK 
[CH.  It 
A Btrcss mfty accordingly be Dieasurod as bo many " tons per sqiiai^ inch," or so many "dynes per sqtiare ceutimetre," or more ^nerally, aa so inaoy units of force ptT unit of ai-cs. [One ton por stfuare inch = I'345 x 10* dynes per squitre uenlimelre.] 
For example, the pressure of the atmosphere is abouL lO* dynes per square ceolimetre. As exemplifying the stresses which have t*> be allowed for by engineers we may note the statement of W. C. Uiiwiu* (hat the Conway bridge is daily subjected to stresses reaching 7 tons per square inch. 
49.   TratLBformation of Streas-components. 
Since the traction at a given point across any plane ia dciennined when the six coniponeuts of stress at the point are given, it must be possible to express the six components of stress, referred to any system of axe?, in terms of those referred to another system. Let the components of stress referred to axes of (F*, y', / be denoted by XV. ■■; «"•! let the new coordinates be given in terms of the old by the orthogonal scheme of transformation 
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.(8) 
Then equations (5) show chat the component tractions across the plane x' (in the directions of the axes o( z, y, *) are given by the equations 
y^ = l,Y, + m,Y, + n,Y„ -     (7) 
Z^ = tiZ^ + m^Z, + n,Z,. i Also, ainco the traction across any plane ia a vector, we have the equations X'^^l^X^-^■v,^r^+n^Z^, 
Z'^ = kX^+nHY^+H,Z^. 
Ou substituting from (7) in (8), and taking account of (6). we Knd forniulee of the ty|>e 
A'V = (,«Jr, + m,'Y^ + n,% + 2m,n, Y, + 2ii,/,ir, + 2;,m,A'y, , X'^ ^ lil,Xs + mtrn,Yg+ njiitZt + {mtTt^+ ni,n,) K, 
+ (n»ii + nflr)Z^ + (Am, + i,r«,) X^. These are the formula for the transformation of stress-eornponenla. 
* The TtHinff of HateHaU of C'ofulntcf Jon, Lgodon ISW, p. tt. 
(9) 
4S-5I] 
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50.    The Btresa quadric. 
The formula! (9) »huw that, if the equatiuu of the quatlrlc surface 
jr,a* + I\y + 2ja»-f 2y,y« + 2ir,?ai+2jr^arys=-oon9t. (10) 
is transformed by an orthogonal substitution bo that the left-hand member bwomes a fiinction of a^, y', z, the coefficients of se*, ... 2^*', ... in the leflhaiul member are X'g. ... F*^ 
The quadric surface (10) ie called the »trexs rputdric. It has the proi>erty that the normal stress across any plane through its centre is inversely proportional to the square of that radius vector of the quadric which is normal to the plane. If the quadric were referred to its principal axes, the tangential tractions aci-oss the coordinate planes woulj vanish. The normal tractions across these planes arc called principal stresses. We learn that there exist, at any point of a body, throe orthogonal planes, across each of which the traction is purely nornml. Theae are called the principal phnes of ttresi. We alw learu that to specify couiplctc'ly the »tate of stress nl any point of a body we requii"e to know the directions ol" the principal planes of stress,and the magnitudes of the principal stresses; and that we may then obtain the six components of stress, referred to any set of orthogonal planes, by the proceiM of transforming the etfuatioii of a quadric surface from one set of axes to another. The stress at a point may be regarded as a single quantity related to directions; thiK quantity is not a vector, but has six components m much the same way as a strain*. 
51.    Types of stress, (a)   Purdy normal antt. ir the tnctiou acnxn every plu.ti« at a poicit Ik normal to the plac*^ thl tenuH ountoinii^ product* j^i. :r. xy arB alwaj-s abseut fi-oiu the equation of the Stress quadric, howe-k-er tbe rectattgulAr axes of coordiruiu^ may I>e ctioitcii.    in this cuAd any set of arth<jigcnal litKS iwMmg tiiruugli ttio |ioir>t can he taken \.<> \its thu prinapfil jises of the qtmdric.    It foOowa that the quadric '-m » itiihcre, anil thcnm that the Dormn] straw-compunont^ air« all equal in tnagnitndp and have the naitie Rigii.    K they are ixjH^itivc the strcm in n tecutiun, tbe aame in all dirocciooM round tlio point.    If they arc ticgntive tho Htre^ i» |>roe»ure, with tbe tike |iroperty of equality in all direotioust. (£)    SnupU tuasion or preature. A simple teiution or iireiuture ta a atAte of ntrees nt a point, whioh ia stuih tliat the tfictloo acrooa one plane through Iho {Xiiut ia noiuial to the plane, and the traction AorosH aay perpeDdtcular plane vanif4he».    Tbe equation i>f the streea quadric referred to ita principal axes voiild lie of thn rorm 
-VV-*^=const. 
au thai the quadri^j coiiMiMtit of a jiair of plimcvi normal to the direction of the tension, cr ptwmire.    The cajiiipi>iiuiitfl of «tn»a referred U} arbitrary axes of x, y, s would Iks 
jr,=xvp. K,-.vv"»'. z.=.\\.7i*,  r.=r,.mn, z,=r,pK x,=x'^im, 
wtuBR (i, a^n) is the direction of the toiuiion, or pi-CHHiii-e, and .I'V is it« tiiUHuitiido.  If tlie M tsosioQ J,'V ifl poaitive ;  if tho hItchb in prosauro .I'V Ja negaliro. 
* to Um laiigaa^ of Voigt it is a hminr.tn'ad.    Cf. Article 14 (i^) mprti. 
t TliU U a fnD<iaraciit«l tlieorein of rational Hydrodynaniioa, cf. Lamb, Ihjdrodyuamict, p. S. prond fint by Canchy, see Enry, d. math. Wiu., Bd. 4, Art. 15. p. 5*2. 
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(c)   Shearing Strega. 
The riesult expressed by equations ((!) is independent of the directiims of the axes of coordinates, and may he stated as follows:—The tangential IrHctiim, parallel to a line I, across a platu^ at right angles to a line /', tlie two lines being at right angles to each other, is ciiunl to the tangential traction, parallel to I', across a plane at right angles to /. It follows that the existence of tangential traction acr<»« any plaim implies the existence of tangential traction across a perpendicular plane. The term sheaniu/ stress is used to express the stress at a point specified by a pair of equal tangential tractions on two perpendicular planes. 
We may iim> Uic utuil^'Mis uf Artiulu 49 U> iloiflmiiiie tho omTeHjmnttin}; )iritici|>al sbmwn and ]iriiKn[ial [ilaiice uf Btnnt.-t. Let th<i tttreiiit (|iiadric bo iX'f^yy'='V^>iu»t~, mt that there in tangential tmutiou iiariillul tu tho asiii j/ on a [lUiw y = cuimt., Atid Miiiiil tangential tractiuu paraDel Ut tliu axia y vu a plaue y^^cututt. Let tbe axv& of x, y, c bo thti principal oxtt of the stress.    The form iX'fX'yia the saiueas 
aad tuia ought to be the Hamo as 
We iborafura hiwvo 2,=(i,    -V,= - }\= X\; 
•nd W» find timt the shfiaring strrew is fiqiiiviileiit to tension Bcro** one of the pbuic», that bisect the luigles* l;)etwpcii the two |jerj>piidiciilftr plane.'* ooiiocrTicHl, and prrasurp acnws the other of tbcnc planes. 'I*he tension and th<^ jiruMuro arc equal in alKtolutc mugnitude, and each of them im eqiin] to either tangentia] troctiuii of the ithc'iriiig xtress. 
;V 
liUUUM 
■—■•« 
^x' 
Fi«. 7. 
The dingrani (Pig. 7), ilhutrotes the equiraloncf of the aheariiig ntreiMRnd the )inncii>n1 strowce. Shearing Htrem cquimlent to xuch iiriticijial HtrcNWx as tboae Hhowii in the tofl-haod tigitre luay be expected to prcxluce shearing strains in n-blcfa ptanca of Che materia] thai arc |*erpciKliculiU' to the axis of y' bef'tre the appUvatton of the stroe» slide In a direotion jtamllol to the axis of a^, and planes |>cr[tcndiciilar to the axis of r* slide in a direction )>arallcl to the axis of y*. Thus sbeariDg MreK» of the typo X, may be oxpedod to produce Bhwiriiig HtnUn uf the type '„.    (See Art.UT)D 14 (c).) 
51-53] 
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{d) Plane Strest. A more getiival t;|>e of streaa, which iucludeo 8tniple tctiRioo aud sbeAriiig »tress as |Muticu1ar cm&*, is obtained by n&sumtng that one pnncipftl atrestt is zero. The otresa qiuidric is theti a. cylliiJer utanding on n conic as bone, und ttio latter may be called the MrtM ennie; its pUue cuiitaiim tho Jirectioiw of tho two principal (ttrctVHW which do not ranuh. Taldng this plauu lo bo at ri^UL luigloit tu tliQ asia uf z, the oquutiuii of tho Htnsa oooic is of the form 
X,.v*+ r,jf'+2X„.ty=con»t. 
aud tho ttbearitig strvasen Z, nud }\ ara mm, a» welt as the teuHiuii Z^. lu the piirticiilar cue of Kiuiplu tcitiniuti the stmw uoiiic (:oiiiiit(t» of a pair of piuvllfil Uuch, Iii Ihu aum of ahearing HtreiM it is a rectuu^ular b^Ewrbola. If it in a circle there in teitnion i>r pr&»sure the aame in all diructiotis iti the pliuic of the ulrclc 
* 
I 
I 
52. ResolutioQ of any streas-system Into uniform tension and Bhearing stress. 
The quantity X^ + Yy + Zt is iuvariiiiit as regards tmnsformatioDS from one set of rectangular axes to anuih«>r. When the streNK-i^ystein is iniil'iirrrt normal pressure of amount p, this quantity is — 3^. In general, we may call the quantity ^{Xg+ Y^ + Zg) the "mean tension at a point"; and we may resolve the stresa-system into components characterised respectively by the existence and non-existence of mean tension. For this purpose we may put 
Then the streas-aystem expressed by ^Xg — it{Yy + Zi), ... involves no mean leuaion. This system has the property that the sum of the principal stresses vanishes; and it in possible to choosy rectangular axes of coordinates x', -y, z in such a way that the normal tractiousj A'V, l^V* ^V. corresponding with these axes, vanish. Accordingly, atress-systems, which involve no mean teoaion at a point, are equivalent to shearing stresses only, ici the i^ense that three orthogonal planes cun be found across which the tractions are purely tangential. It follows that any stress-system at a point is equivalent to tension (or pressure), the same in all directions round the point, together with tangential tractions across three planes which cut each other at right angle's. 
63.    Additional results. The proofs of the following results* may i»enrc as exercises for the sitideiit: 
(i)   The quantitim 
x,^-r,^z„  r,z.-\-z.x,+x,7,-Y?-z,^-x,\ X. r,z,+2r,z,x, - x, iv- i;z,«-2..v 
: invariant aa regards orthogonal traouformattous of coonliiiftte.1. 
* The resolCa (i]—(v) are dae lo CaDohf and Lam^. LE. 6 
fiS 
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(ii) If A",, )',. ir, ftre prinoit«I atnwMw, the traction across «.ny plane is jirojiortioiuil to tlie ccniml iwrpondicitl&r on the imnillel tangent plane of tbe elUjiHoid 
■f'/.V.'+yV J7+r'/Z.»-con»t 
This M I<ani<^'H Mtivni-etiipsoift.   Tbu mnprvcal stirfaca was dtacutuied b; Caucbjr; cnutral rodiuK vectnr in any diroatiou is invcnfely pruixnlioDal to tha tractiuii ncnws thaj plane at right angl«a Ui that direction. 
(iii) The quadric »iiriac« *'/.V,+3f'/J'^ + «'/^,iwcoDst. (in which JT,,... arc |mnci|uU Btreseeii), uilled Lntni/'M *ir'}«*-director quadric, i» tJie reciprocfd i>f the strewt quadriu with respect to it^i ociilru; the rndiuH %'ector frotn the ventre to an; ixiint of the sur&oe is iu the direction of the traution ncroMt a plane parallel to the tatigent plajte at tlie point. 
(iv) The plancH iicioaa whk'h them is nu nurtiiiU traction at a i>oint envelope a cone of the second dugrw wliiuli is the ni:ipnK.^al of thu aityniptutic cone of tho stn»s quadric at the poitiL Thu fi^rniur ouiiu i» lAuiiv'it cone of ifteiirinff MtrsM. Wliuu it ta roal, it 8e{iarat«( the pUooH acrom which the normal traction \h tension from tho^ie acroiw which it in pre»ure; when it U imaginary the nomial tmction acni«w all j>lAnes is tension or prcaaure occordioff | aa the moon tciwlon J(-V,+ }\ + Z,) ia positive or noj^ative. 
(v)    If any two lines X and x' are dn^wu from iuiy jKiiut of a lindy in a atate of strcsH,' iuid plaiioa at right aoglee to tbeoi are drawu at the i>oiQt, the cfiuipuaoiit |>ara]l«l tit j.-' of the traction acroM the plane perpendicular to f is equal to th« cocupoueut parallel to x of the tnution acrosa the plane pcrpeodicular to V. 
This theorem, which may be expreased by the equation x'^^x^f, is a generalization of the results (6) of Article 47. 
(vi)   Maxwell's etectriMtatic atroNt-s^'etom*. I^et  y lie the jHiteutial of a aj-atem of electric ohargea, and let a atrem-nynteni be deteriained by the ei^uatioua 
z. 
y    1 ^1' if 
_I srsr 
tt VMS ^ ahnwn, by taking the ajS% of a: to Ite |)arallel to tlie iionnal at (r, jr, j) tol eqnipotentiul xurfai^e nt the point, thiiL one ))nnciiMl plane of the Mtroaa at any polut is \ tangent piano to the equijioteutial surtni-e at the (KMiit, and that the tnicUun acnna thia ]»lane is teiinion i>f tiuiomit lP;6tr, while the tr:w:tiim auro«a auy ]Ntr]ieudiuular ]>lani:; isproHHure of tlie Muite amount, /t being tho reauluut electric foroo at the point ao that 
-(XhC^^C^
(vii)   Ifd,!*, ware the oomponeiitM of any x-ector quantity, and.V«, •■•are the compunonl of any atreiw, the three quAutitiea 
.\\u+.X,v+^,v,   -V,tt+J>-f-J',w,   Z,H+r,r+Z,ip ATS the componenta of a vector, i.e. they are tnuufonnod from one aet at rectangular oxoa to onolbor by the aamo aubetitution aa », tr, lo, 
54.   The stresB-equations of motion and of equilibrium^ Iu the equations of the tvpc (1) of Article 44, wc substitute for A',, ... * UaKwoll. JHertritilv and i/ajraefim, Sod Edn., Oxlcgrd, 1881, vol. 1, ch. &. 
53, 54] 
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ss 
from equations (5).    Wt- then have, as the equatiou obtained by resolving all the forces parallel lo the ilxis of x. 
^ tht 
^M We apply Qrecn's troDBformatiou* to the surface-integral, and transpoHe, thus ^B obtaining the equation 
ip/xdxdi/tU= tjjpXdxdydz 
+ jjlJ',coB(jr. v) + XyCOs(y. v) + jr,co8(z, v)]dS. ...(II) 
K'+'^"4r+''^-«^')'^''^'"='' <*'> 
In this equation the integration may be taken through any volume within the buciy, and it follows that the equation caiinot Ik natisfied unless the subject of integration vamshea at every point within the body. Siniilur resulta would follow by transforming the equations obtained by resolving all the forcee parallel to the axes of y and i. We thus obtain three equatitms of mottoH of the type 
fj*f*ii-^^-^f' OS) 
If the bwiy i8 held in cquiiibriunQ. /x./y>/i arc zero, and the equatiojis of equilibrium are 
dXj^    dY. 
■iy^Z'^^^-'^' 
+ ^" + ~-'^- + pZ 
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0. 
.(H) 
dx      dy wherein Y,, Z^, X^ have been written for the equivalt^ut Z^, X,, I',. 
If the body moves 80 that the displacement {«, v, w) of any particle is always very small, we may put 
S'it    3*»    9*ty 
instead of ^, fy, f^y the time being denoted by t; the equatiom of small motitm are therefore 
dX^hX-dZ.      „      S'u 
+ pK=p 
.(15) 
dx      dy      cz     '^      '^ ^" 
iTAnalonnation is that expressed hy the equation 
6—2 
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EQUATIONS  OP MOTrON   AND  OF  EQUILIBRIUU 
[CH. II 
Other forms of equations of cquilibriura and of motion, containing fewer unknown (^uautities, will be given lu-reafter. We distinguish the above forms (14.) and (15) as the stress-equations. 
55.    Unifonxi stress and uniformly varying Btreas, 
We <A>-Hcrve  that tlifl stress-ef^iuitums nf pqiiitiiiriHtu (14) iw>lil within a  ImkIJi equatiniia (r>) hold at its boiii^dnry, jinivultMl that, in t)in Intter eqiiatJotiH, v is the direotic of tha iMimial to ihn bi^unding Kiirrnce dmwn mitwn,rd.s and .W, ■ ■. ftrn the mirfaoe trActiuns. The cqiiationa may he iiaed to detarmiiic tho fnrcw tliat muHt be n|ip]ieil to tk body to, raaiotaiu a given state of streait. 
When the rompoiient« of Htnvw iiru indc]KJndPiit of tho vuonJintttw, «jr the strtwa i» the Buue at nil {NiintH of the Ifxly, the body forces vaiiisii.    lu other wurdn, emy tttato of^ uoiform Htteas ctui h« niaintaineJ b; Btu-faou tractioux utity. 
We shall L'ondidor two cason: 
(a]    Vnifarm prttsun).    In tbtM cam wo have 
where p in the iimwiire. »uppi)sod to hu the name ut all |X)iiits ntid in itll Jiroi:ttmi.s ruuuct each point. Hie aurfitce tractions are uijual to tlic uuiu]K)iic>iit>t uf a premure p exerted across the surfacn of tlie body, whatovor th? nhatie of the body may be. Wo may conclude that, when a Vkody i» nubjected to constant prwaure p, th« aamo at all points nf its ittirface. and in free from tho action of body forcae, tht state uf strcaa in the interior can be a stato of mean pressure, equal to p at each point, unaeoomjianied by any «hcj»nng »tpo««. 
(6) Simple tftition. I*t 7* >k» the amoimt nf the tension, and the axis of Jt* its dirvctioo.' TIten WB have Xt~ 7*, and the reuinining titress-coraponentst vanish. We take T to be Uie wime at all jtoints, The tturfooe traction at any point is directed parallel to the axis of a', and its ummnit is Tw»{t, v). If Ibe body ia in the »bape of a cylinder or pri«n, of any form of (section, with iC« Icugth in tho dircctiuii uf th? axiii uf .r, there will be tonaiona on its eiids of anioiuit T per unit area, mid there will be uu trvetiouB acrotut itn uylindrioal surface. We may conclude that wbou a bar m xubjected to equal Mid opposite imifonn normal tensions o%'er tta ends, and is free from the action of any other forces, the atate oT stress in the interior can be a stAte of tenaion acroM the normal sections, of the saoio amount at all |}tMnt^ j 
Uniform traction across a plane area ia «t»tically (.-quivolont to a force at the ooutrold ' of the area.     Tho forpe has the aanie direction a«  thp tractjon, and ite magnitude is aoasured by the product of the ineoaureH of llie area and of the nuigtiitude of the traction. 
If the traction acroos an Area is unifomi aa regards dir<ection and, w* regATtU magnitude, is proportional to diatance, measured in a dednite seikae, from a definite line in the plans of tho area, wo have an example of uniformly vnrying nireu. Tho traction acrms the area a atatically H|uivalp,[it to s single force acting at a certain [loint of the plane, whiob ia identical with tbe "ixntre of pnvtNiire" inve»tigated in ireatiHeet on H>-drofitAtica. There la an exceptional caae, in which the line of isero traction iHusew through tbe coiitruid of the area; the traction across tbe area is then statically equivalent to a orriiple. When the Uue of »ru trautiof) doen not intersect tho boundary uf the area, the traction baa the aame sign at ail ]>oiiiU of the area ; and the centre of preasure must then lie within a c«rt*in curve surrounding tho ceotroid. If tbe area is of rectangular shape, and tho tine of w^^> traction b parultel to one aide, the greatest distance of the centre of prenaure fW>m tbe centroid is ||th of that side.    Tliis nautt ia the engineers' "rule of tbe middle third*." 
• Ewiog, Strfnglh of VaUriaU, p. 104. 
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56.   ObservatlocuB concerning the stress-equations. 
(a)    Tlic cqiiiitiotiH tif tjpi; (lA) may lia uLtBiiin) by a[)[ilyiii^ tlm uquiitioiM of type (L) [Article 44] to a sroAll paraUelepijiwd buiuiJod by pUnos [wmllcl bo the coordiimto [jIiuiuh. 
The oontribotioDsof tbe fkcoti x ftud jr+<^ to | jXrdSaui be Uk«D to ba -X^dydt and 
{-V,+(3vV,/^)rfj-jd!jr(/i, and siuiiliir expressioDis for the oontribntions of the reaiaiiimg pAits of faces CA.n be written Jowu. 
(£)   The cquatifuw of momenta of type (2) are already RatJKfied in conaeq^uenco of «quationti (6}.    In fitct (S) may he written 
/// 
f,(yZ-ty)dxd}/ds 
hy 8ubHtttBting for/,,... from the eqiiatioaa i>f tyjw (13), and fi>r IV, ^i> from (6),    By b«lp of (ireeo'H traoHfnrmation, thia equation beoomea 
/// 
{Zy-r,)th:dstit=0: 
aiid thua tbe equationN of tnninontA are 8nti8lied identically in virtue of equationa (6). It will be observed that, equationN (ti) might be proved by the above aiialyaiH iimteAd of that in Article 47. 
(c) When the eqmitiuua (14) are tt-itiuJied at all gx>iutii of a Ixidy, the couditioDo of eqtiilibriQtu of the body i\» a whole (Article 45) arc ncceasarily satisfied, and the rcaultaut of all the body forces, acting upon elements of volume of the body, i» hdlanced by the reBultAnt of i\l\ tho tractionH, acting; upon olumuutH of ito uurfuco. The like ittatumeiit is true of tlio rcHiiltaut ii»)uiant» ot th(.> budy forccu and tturfiioe tru«tiotut. 
(d) An example of thu appUcation of thii« remark is aftbrded by MftxwoIl'K Rtretta-nyHteiu described in (vi) of Article 63.    Wo ahould find for example 
3-1*,    riA\    ?Z.      1     .„rV 
..    ?^.__i^     ,; 
= 0, 
where v* Htanda for f^/djfl-\-^ldt^+&Jc^.    It follows that, in any region thronghuiit which VT=0, thif tttress-aystcm is aelf-efjitilibmting, aud that, in general, this streHs ftyntom is 
in equilibrium with body force specified by ~zi^*^{'=~' '^>   ■^) V^^ ^"^'^ volume. Hence the tractions over any cloned surface, which would be deduced from the formula] for 
1 
-V^, ..., are statically eqiiiv;dent in hotly forced, apccitied hy       v* I 
unit volume of tiie volume within the Hurface. 
(•)    Strtu-/unctiati4. 
Id the development of the theory we uliall bo much oc*:upied with bodies in oquUibriura imdor forccK applied over their surfatcs only. In thifi cawe there are no body forces and DO accelerationa, and the t.-c|uutiunK uf uquiliUriuui are 
c-x      dy      c£ ^
or. 
dZg ^ dV,    cK, 
^--^ _-+   .V=o,    ^* + "^'+ ,-'=0;    (16) 
while the enirfoce tractions are oquali to the values of (JV, IV. Z^) at tba surfaujc of the body. The differential equationa (IS) an: three iiide]>endent relatione between the aix compouenta 
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of stress at aay point; by means of them we might express theae six quantities iu terms of three independent functions of position. Such functions would be called "stress-functions." So long as we have no information about the state of the bod;, besides that contained in equations (16), such functions are arbitrary functions. 
One way of expressing the stress-components in terms of stress-functions is to assume* 
and then it is clear that the equations (16) are satisfied if Another way is to assumet 
Y _^X3,^Xi       r-^j-^Xs       7_^Xa , S^Xi 
^'    dt/dz'    '"'dzdx'    ^''hxdy' 
19/   a^   3,/,,  av^\ 13/ail  ^^i^'^\ 
''~    2^\     dx'*' dy'*' dzj'    ^'~    2dy\Sj!      dy ^ dz)' 11/9^1. 9i.    3i,\ 
'"   l^z\^x'^■^y    dtj
These formulae may be readily verified- It will be observed that the relations between the X functions and the ^ functions are the same as those between the quantities e„, ... and the quantities e^„ ... in Article 17. 
67.    Graphic representation of streBB. 
States of stress may be illustrated in various ways by means of diagrams, but complete diagrammatic representations cannot easily be found. There are cases in which the magnitude and direction of the stress at a point can be determined by inspection of a drawing of a family of curves, just as magnetic force may be found by aid of a diagram of lines of force. But such cases are rare, the most important being the stress in a twisted bar. 
In the case of plane stress, in a body held by forces applied at its boundary, a complete representation of the stress at any point can be obtained by using two diagrams J, The stress is determined by means of a stress-function Xi &o t'hat 
-^'-^j^'    -^"-3^'     -^"-"3x5^'    ^    ' 
the plane of the stress being the plane of r, y, and x being a function of x, y, z. If the curves ^^=con8t and ^=con8t. are traced for the same value of z and for equidifferent values of the constants, then the tractions at any point, across planes parallel to the planes of (j:, z) and {y, z), are directed respectively along the tangents to the curves J^ = const and 
ay 
^ = const. which pass through the point, and their magnitudes are proportional to the closeness of consecutive curves of the respective famiUes. 
• Maxwell, Edinburgh Roy. Sac. Tram. vol. 26 (l^'id), = Scientific Papers, vol. 2, p. 161. The particular case of plane stress was discuaBed by G. B. Airy, Brit. Atioc. Rep. 1862. 
t O. Morera, Bame, Ace. Lincei Rend. (Ser. 5). t. 1 (1892). The relations between ths two systems of stress-functions were discussed by Beltrami and Morera in the same volame. 
t J. H. Micbell, London Math. Soc. Proc., vol. 32 (1901). 
56-58] 
EXPRESSED  IN  TERMS OF  »TRESB-COHPONKNIIS 
87 
PArtift] wpresentaliotw by graphic nie«ns have sometinift* boen used in caaw* where a. complete rcprpjwntatinti cannot be ohtaiiinrl. Of tliis kind are tracing or mrwIelH of thn " \iiw» of stress," These liiiee nru fiiicli tliat the taiigpiit to any mie nf thoni nt any pnint is normal to a principal plane t»f utreKis at tho pnint. Thnmgin luiy point thrsrc! (toss three such ijn«ts cutting eiich Qthcratri^fhtii-ngles. ThcMo1ine»/?iriydntermini> a triply r>i-thngnna) set of (iiirfoces, but iu geaur&l no such set exiaba. When such Hurfar^t exint they are described as " isostatlc snr&ces*," and from a knowledge of them the directions of the pririci|xil f>tre3ft» at any (wint can be inferred. 
l>iiitributiona of stress may also be stiidiixl by the aid of polamed light. The mcthodf ia basi-d ou tbu oxperiiucntal fiuit that an inotropic tmnaparent body, when streamed, becomes doubly refnictinKi with its optical principal axes nt any point in the directiotia of the principal Axea of atreeu nt the point. 
58. Stress-equations referred to curvilineax orthogonal coordinates J. 
The required eqnations may be obtairiH by finding the transformed expression for nX^dS in the general equation (1) of Article 44.     Now 
we have, by equations (5), 
jr, = X,co8(a*, v)-\- XyCos(y. 1*) +A^ cos (a c). 
and cos (:r, v) — cos (o, v) cos {x, a) + cob (;9, v) cos («, j8) + cos (7, v) cos {x, 7), 
so that Xy = [Xg cos {x, a) + Xj, cos (y, a) + X, cos (*, o)j cos (a, i*) 
+ two similar expressiuns 
= X„ cos (a, v) + Xp cos (/9, v) + Xy cos (7, v), 
where, for example, X^ denotes the traction in direction x, at a point {a, ff, 7), across tlie tangent plane at the point to that surface of the a family which passes through the point. Accordiug to the result (v) of Article 53 this is the same iis a,, the tr«etion in the direction of the; normal to the a surface at the point, exerted across the plane .r = coii8L wliich passes through the point. Further we have, by eijuations (5), 
Um ^ aa cos (a, x) + ojS cos (/9, x) + ya cos (7, x). 
t 
Again, cos(et, v)(iS is the projection of the sui-face element dS. about any point of »Sr, upou the taugcut plane to the a surface which passes through the 
* These itnr(ave« vmxv first diHcniuwd by jAmt, ■!. (U hfnth. (.LintafiUf), t. d (I'^'ll), and r^cnna nr U$ eoordimHrft ctirvitiifHfM. The foci Ihiit th«y du iiot in K«ntrrBl exist wax poiuttid out by BoouiiMKi, P<inM C. It., t. 74 mm.    Cf. Weingnrtrn, J./. il.uh. tCr^-lUl, Bd. -JO (ISSI). 
t The tntthod oriyiiiateii with IK Urowstcr. fhii. 'I'ratu. lioy. Soc, lyiti. It was deTllOped by 1'. E. NQamaun, lirriin Abh. 1S41, aud by Maxwell. Ediiilwiiih Itoy. Soc. Tram., Tol. to (lS5a) = 5ciVwi/c Papert, vol. 1, p. 30. Fur a moru reoem experLtuentiU invc«ligation, ae« 1. Kan, FhH. Ung. {Her. o), vol. V6 {im^f. Beforenoe mny also be made to M. E. Maiwart, Xraitf d'Oplique, 1. 2 (PariB 1891), pp. Sail ei neij. 
Z Olber gietbods of otitiumnit tlieae equationa will be giTea ia Chapter Vlt. and in the Nete on the applicationB of mosinf; axes at the end ot thi» book. 
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point, and tbis projection is dBdyjfiJh-    f^fuce 
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d^dy 
+ jj{a^cos(a. x)+ ftScosC^, x) + 0^c<m(j, a)] -^ 
tf ^^ ^^ ^^ lift A ft 
+ U \ya cos (a, x) + ^y cos (;9, x)-\-yy co3 (7. «)] -^-. When TTG apply Oroen's transformation to this exprefvion wo find ((T,rf5= |l/rf«rfj9d7 j -    . y {aaco8(tt, x) + fly3cos (j9, fl:) + 7arcoft(7, x)] 
"•" 87 I A A ''^*^°^ ^'"'') + ^ *="« ('^^ «) + 77 COS (7. *)I I [; 
and, since (/tiA,A,)~'darf^d7 is the element of volume, we deduce firom (1) the equation 
p/t = pjr + Vi,A, 
+ 
[aot cos (or, x) + «tj9 cos (yS, a) + 72 cos I 
I [/,;A^ 1=5 cosCa. a-) 4-/9^coa(jS, a:)+ ^^cos(7, it)]J 
+ ^ I ^ l7« cos (or, x) + ^7 cos {$, x) + 77 cos (7. x)\   J. 
(18) 
The angles denoted by (a, x), ... are variable with a, A 7 because the normals to the surfaces a — conat, ... vary from point to point. It may be shown* that for any fixed direction of j: the ditlerential coefficients of cos(a, j;), ... are given by nine equations of the type 
^3 eos («. ^) = - A, ^ (^j. cos (^. X) - A. ^ (^] j . cos (7. X). 
^cos(«.r) = A.g^(^j.co9(5,*).   a;yC«(a,x) = /h^y.co8(7.*). 
We now take the direction of the axis of x to be that of the norma) to the surface a = const, which passes through the point (a, ^, 7). After the diBereniiatioDS have lieen performed we p\it 
cos (a, x) = 1, cos {fi, x) = 0, coa (7, x) = 0. 
V7g take /, for the component acceleration along the normal to the surface 
* Hee tbe Nol« aa applicstiuna of ronrinK a>«a M tlie end of this book. In Ihe BpMii«] ease at cjlindiicftl coordinates llie «otr««poiidin(t equKtioDB can he proved diiMllT wilhoul any difficullv. 
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a»const., and F,, for the component of body force in the same direction. Equation (18) tiien becomes 
The two similar equations containing components of ucce]eration and body force in the directions of the nornutU to ^ = const, and 7 = const, can be written down by Bymmetry. 
59.    Special  oases of Btress-equations referred to curvilinear coordinatea. 
(i)   In the case of o^'ltndrical ooordicmtea r, S, s (cf. Article S2} the atrow-equatioUH oro 
9iT . Ihrff    prs . rr-6B 
S^ + ?# + f/+' 
+ pK'=pfr, 
r 
^ + -r^'+^^ + '?   +.^=P/.. 
(U) Id the cane of plaiio »tre«» rcfcrrwl to cyliitdrical coordiiiRtoB, when there is equilibrinia under tmrface tractions only, tho HtrwtH-^Mtinpfinetibi, wheu csi>ro«wtcd iu terms of the itreis-function x ^^ eqiwtioD*! (17), ara given lij the equatiojw* 
(iii)    la Uio caaa of polar coordinatea r, ^, <^ the streM-equAtiona are 
(it) When tho mirfAcen o, ft y i*re JHoytatic fu> ttiJit j9> = 'ya=snS«=<lp the rqiiation(> can be written in auch fnnnst an 
hea. 
™ fw Pit 
wben Pi, and p,^ Km tlio principiU nulii of curvature of the mirfaoe (i = eanst. which currespond reMpfutivvI}' with the curvea of intersection of that surface and the fiurrm:uH jS = comt. and ■y=conHL 
• J. H. MJchrfl, London M'tth. Sot. iVoc., vol. 31 [199% p. 100, t Lsmf, Coorrlonniet evrviUffna, p. 874. 
CHAPTER  in. 
THE ELASTICITY OF SOLID  BODIES. 
60. Is thi> preoeding Chapters w« have developed certain kiDematical hikI (Iviiaiiiieal notions, which are neces-sary for the tfaeuretical (liscu.vt;ioD of tht* physical behaviour oi' material bodies in general. Wc have now lu itxplitiu how these notions are adapted to cilnsbic »oUd bodies in parlii-'iilnr. 
Alt ordinary solid body is constnntly subjocterl to forces of gravitation, and, if it is in equilibiimn, it is supported by otlier force-s. We have no experience of a body which is free from the action of all external foraes. I'Vom the equations of ArticU* ')4 we know that the upplication of forces to u body UL'Cc-ssitfttes the existence ot gh-ess within the b^dy. 
Again, solid bodies are not absolulel}* rigid. By the upplicalion of suitable furws they can be made to change both in size and shape. When the iitdueed changes of size and shape arc considerable, the body does not, in general, return to its original size aud shape after the forces which induced the chaugc have ceased to act. Ua the other hand, when the changes are not too great the recovery may be apparently complete. The property of recovery of an original size and shape is the property that is termed eiasiicity. The changes of size and shape arc expressed by specifying grains. The " unstrained state" (jVrticle \), with reference to which strains arc specified, is, as it were, an arbitrary zero of reckoning, and the choice of it is in our power. Wlien the tiiistraincd slate is chosen, and the strain is Eipecilied, the internal configunttioti of the body is known. 
We shall Biippo«e that tho diffen-ntial coetticients of the displacement (m, 1', u'), by which the body could pass from the unstrained state to the strained state, are sufficiently small to admit of the calculation of the strain by the simpMHed methods of Article 0; and we shall regard the configumtion as specified by this displacement. 
For the complete specification of any state of the b<»dy. it is necessary to know the tempemturt of every part, as well as the configuration. A change of configuration may, or may Dot, be accompanied by cliangea of temperature. 
61.    Work and energy. 
Uidess the body is in U4|uilibrium under the action of the external forces, 
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it will be moving tkruugh the cuufiguration that is specified by the displacemeiil. towai'(]K a new ciuifigiinition wliich could bo .spueifiud by a slightly different displacement. As the body moves from one ounfiguration to anuthor, the external forces (body forces and surface tractions) in general do Home work; and we can estimate the quantity of work done per imit of time, that is to say the rate at which work iu dona 
Any bodv, or any portion <if a body, esiii possess energy in various ways. If it is in motion, it possEisses kinetic energy, which depends on the distribution of mass and velocity. In the ejuie uf small displacements, to which we are restricting the discussion, the kinetic energy per unit of volume is expressed with sufficient approximation by the formula 
iom-i^j^m]
in which p denotes the density in the unstrained state. In addition to the molar kinetic energj', possessed by the body in bulk, the body possesses energy which dependx upon its state, i.e. upon its configuration and the temperatures of it« parta. This energy is called "iutrinsic energy"; it i« to be calculated by reference tu a standard stale of chosen uniform temperature and zero displacement. The total euorgy nf any portion of the body is the sum of the kinetic energy of the portion and the intrinsic energy of the portion. The total energy of the bixiv is the sum of the total energies of any parts*, into which it can be imagined to be divided. 
As the body passes from one state to another, the total energy, in general, is altered; but the chango in the total energy is not, in general, equal to the work done by the external forces. To produce the change of state it is, in general, necessary that heat should be auppliod to the body or withdrawn from it,    The quantity of heat is measured by its equivalent in work. 
The First Law of Thermodynamics states that the increment of the total energ)' of the body is equal to the »ura of the work done by the external forces and the quantity of heat supplied. 
We jatiy calculate the rate at which work is done by the external forces. The rate at which work is done by the body forces is expressed by tlie formula 
III' 
fJ[l^!+r^S+Z^J:,ayd^. 
(1) 
dt ' "^ dt ' " dtj 
where the integration is taken thi-ough the volume of the body in the unstrained state. The rate at which work is done by the surface tractions i» expressed by the fonnula 
Far Ui« validity of the analjisis of the eavrgy iiiti.> moUr kinetic «aergy &nd intfinmc ertexgy it U DCoefsary that tbc dituccLKioaa of the pnrt* iu qimsUou ehouid )>e iar^c cuiutiared wUb laoUoalar ditnensionH. 
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where the integration is taken over the sur&ce of the body in the unstrained state. This expression may be tmusfoniied into an iutegrat taken tlirough the volume of the body, by the use of Green's transformntion and of the formiiljE of the type 
A', = Xg cos (x, v) + X^ cos ( y, v) + X, cos (r, v\ 
We xise also the results of the type F,= Z^, and the notation for straincomponents Bgg     We find that the rate ut wliich work is done by the 
surface tractions is expressed by the Ibrmulu 
fdXy .dYy . dy,\dv 
+ 
9x ■*" ay ''" a» / at **■ I a^r "^ 9y "^ dij a* 
We may calculate also the rate at which the kinetic energy increa^ea. This rate is expressed with aufficront approximation by the formula 
where the iptegration is taken through the volume of the body in the niistraiucd state. If we use the equations of motion, (15) of Article 54, we can express this in the form 
^dX\_^dX 
3*      bi/ 
„ , dZx\ 3u ,       ,     1 J J J 
It appeaiv hence that the expression 
"■ J. V    ''w j_ 7 ^" J. V 
r^ + ^,^+X,^]rf^dydr (4) 
represents the excess of the rate at which work is done by the external forces above the rate uf increase of the kinetic energy. 
62.    Existence of the Btrain-energy-ftmctlon. 
Now lot ST, denote the iucrcment of kinetic energy per unit of volume, which is acquirod in a short interval of time S(. Let StT be the increment of iutrinaic energy per unit of volume, which is ac(}uired in the same interval. Let S H', be the work done by the external forces in the interval, aud lot BQ bo the mechanical value of the heat supplied in the interval. Theu the First Law of Thermodynamics is expressed by the formula 
jj({BT,-i-BU)dxdjfdK 
BW, + &Q.  (5) 
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Now, according to the final result (4) obtained in Article 01, we have 
wheru Be^a. ■•• represent the increaients of the components of strain in the interral of time Bt.   Hence we have 
jjJBUdxdydg = BQ +jfj{X,Be, 
, + ...)dxdyds (7) 
The differential quantity BU \s the differtmtial of a function U, which is an one-valued function of the temperature and the quantities that determine the configuration. The vahie of thia function V, correapondiug witli any state, \s the measure of the intrinsic energy in that state. In the standard state, the value of U is zero. 
If the change of state takes place a4liabatically, that is to say in such a way that du heat is gained or lost by any element of the body, BQ vanishes, and we have 
BU^ XsBe^-^YyiBeyy + Z^Be^-^'YtBiyt^Z^e„ + X^Be^ (8) 
ThuR the expreasiun on the right-hand side is, in this case, an exact differential; and there exists a fimctiou W, which has the properties expressed by the equations 
.(9) 
The function W represents potential energy, per unit of volume, stored up in the body by the strain; and its variations, when the body is strained adinbatically, are identical with these of the iutritisic energy of the body. It is probable that the changes that actually take place in bodies executing small and rapid vibrations are practically adiabatic. 
A function which has the properties expressed by equations f9\ is called a "'strain-energy-funciioii." 
If the changes of state take place isothermally, i.e. so that the temperature of every element of the bndy remains constant, a fiiiictlon W having the properties expressed by equations (fl) exists. To prove this we utilise the Second Law of ThoniKMiynamios in the form that, in any revyrsibie cycle of changes of state perfurmed without variation of temperature, the sum of the elements BQ vanishes*. The sum of the elements BU Jilsu vanifthes; and it follows that the sum of the elements expressed by the formula 
S {X,Ber^ + Y„Be^ ^■ Z,Be„ + F,Se^, + Z^Be^ + X^Be^) 
* Cr. Kelvin, Math, and Phyt. Papav, vol. 1, p. 291. 
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atao vai]ifihe% in a reversible cycle of changes of state without variation of teinperature.   Hence the differential expression 
is on exact differential, and the straiu-cn&r^y-rnnctiun W exists. 
When a body in strained slowly liy giudual ineriiase of the loait, and is in coutinual eqnilibrium of temperature with surrounding bodies, the changes of state are practically isothermal. 
63.    Indirectness of experimental results. 
Thfi object of experimental investigations of the bohavtonr of elastic bixlieij may be said to be the discovery of numerical relations between the ■quantities that can he measured, which shall be sufficiently varied and sufficiently numerous to serve as a basis for the inductive determination of the form of the intrinsic energy-function, viz. the function U of Article 62. This object has not been achieved, except in the case of gases in states that are far removed fivtm critical states. In the case of elastic solids, the conditions ai-e much more complex, and the resiilt.s of experiment are much less complete; and the indications which wo have at present are not sufficient for the fomiatioi] of a theory of the phyj^ical behaviour of a solid body in any circumstances other thsn those in which a etrain-energ}'-fnnotion exists. 
When such a function exists, and its form is known, we can deduce from it the relatione between the component-s of »\,xq^ and the components of Btrain ; and, conversely, if, from any experimental results, we are able to infer such relations, we acquire thereby data which can serve for the construction of the function. 
The components of stress or of strain within a solid body can never, from the nature of the case, L>e nieasun:d din<ctty. If their values can be found, it inu.st always be by a process of inference from measurements of quantities that are not, in genend, components of stress or of strain. 
Instruments can be devised for measuring average strains in bodies of ordinar}' size, and others for measuring particular strains of small superficial parts. For example, the average cubical compression can be measured by means of a piezometer; the extension of a short length of a longitudinal filament on the outside of a bar can be measured by means of an extensometer. Sometimes, as for example in experiments on torsion and flexure, a displacement is measured. 
External forces applied to a body can often be measured with great exactness, e.g. when a bar is extended or bent by hanging a weight at one end. In such cases it is a resultant force that is measured directly, not the component tractions per unit of area that are applied to the surface of the body. In the case of a body under normal-pressure, as in the experiments with the piezometer, the pressure p«r unit of area can be measured. 
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In aoy experiment designed to determine a reEatiou between stress and strain, some displocctucnt is brcught about, lu a body partially fixed, by the application of definitti forces which con be varied in amount.    We call these 
forces collectively " the loiwl." 
64.    Hooke's Law. 
Most harri solids show the same type of relation between load and measurable strain. It Is found that, over a wide range of load, the ineftsure<i Ktrain is pn')portioiial to thii load. This stateraenl may be expressed more fully by saying that 
(!) when the load increases the mea.siired strain increases in the name nitio, 
(2) when the load diminishes the meaiiured Mroin diminishes in the same ratio, 
(S)  when the load is reduced to zero no strain can be measured. 
The most striking exception to this statement is found in the behaviour of cast metals. It appears lo be iinpojvBible to assijju any finite range of loaU, within which the measurable strains of such metals increase and diminish in the same proportion as the load. 
The ex|K!rimerital results which hold for most hard solids, other thiui cast metals, lead by a process of iuductive reasoning to the GeneraXited Uookee Law of the proportionality of atttns and gii-uiu. The general form of the law is expressed by the statemeni:— 
Ea(^ of the six compunents of stress at any point of a bvdy is a linear fundioii of the six components of strain at Vie point. 
It U oceeaoary to pay aonie attention to the way in whioh thia Uw rci>K»ents th« »i(>eniuenta1 retttiltn. In xv.nni KX|ierimRritA the load tbut in inoreiiHod, or diminished, or rodvioed to zero con»i«tH of jtort <mly ol" tlie cxtenml furccw. The weight of the IickIj Hulgected to experiment must Iw balutiuul; untl neither the weight, nor the force employed to balaooe it, i», in gmi^rul, tncluiiod in the loud. At the hegimiitig aud end of the experiraent the body ia in a state uf Htrcxs; but thcro w no mcJiLsarod strain. For the atratn that is meaaured in rcckoncH from the stfitr (if the Ixidy nt the t>cgtnning of the experiment aa staodard irtAta The strain referred to iit the fitatemput of the Iftw niiist he reckonwl fn«H A difioreiit stat^ a» vtAtidnrd or " uriti^tmined " htate. Tliix fitii.tc in that in which the IxKly would be if it were freed friwii tlie lu^tioii uf all external forMw, >\m\\ if there were nn intornu] stresH at any puiiit of it. We (^iill this »Uite uf the body the " uiititrctMicd cttute." Reck<'ned from this state ak Mtandord, the body it* in a. .ttate of stmin at the beginning of the experiment; it ia aluo in a »tate of strcM. When the load is apjdiod, the Bti<erM ih altere-cl in aiummt and dt^tributioD \ and the strain also in altered. After the Fkpptiuution of the I'wd, the 8trc«« (y.ii»ist« i»f tw<i stretw-aystetuw : the- stress-systeni in the initial atate, imd a BtreB*-8y»rt*m by whiuh the load woxdil lie iMilatiL-CKl nil thruugh l\w body. Tlie strain, reckoned froni the un«trBHaed stftta, w likeiviBu cnmpomided nf two Htrtuns; the strniit frcsm the unstressed state to the initial xtatu, and tho strain frtim the initial state to the state aiwuuied under i\\e ]oad. The only things, nbtnit which tht; <>x)>n:rimeTita can toll u.f anything, are the neo^nd i^tre^n-Hyrite.ni and tlit^ n^conci strain; and it i^ consonant with the 
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nsult of the experiments to ossumo tbat the law of prti|>orti(>nALitjr holdit for tbU etresa and Ettroin. Tfw gen«m! RtATctnent of the Inw of pmiiortiunality ImpUes tliat the atrestt ia the initial state alsn in {ir(>]M)rLioiial to the stmtn in that stattf. It aiao implies that both tlie initial stAte, and thn Rtate aiwumed under the load, nm derivable from the utistresaed atato br di«]>lacQiDentK, nf amount HuBiciently emiUI tn admit of Uic culculatiim of tho Btralna by the ^tinplifiod methods of Article 9. If thin were not the t^uae, tho straitia would not be comjii-muded by simple 8iiperpu!itticn: and the proportiotiaUty uf lond and ineaHiired strain would not imply the proportionality of vtreiw-compoaentii lUid atrain-ocwuponeuts. 
65.   Porm of the Btrain-energy-fimotlon. 
The experiments which lend to the enunciation of Uooke's Law do not coustitiite a proof of the truth of the law, Tho law formulates iu alwtract tcrme the results uf many ubserv»tiuiis uad experiments, but it is much more precL-*o than these results. The mathetnatieiil connequences which can he deduced by assuming the law to be true are sometimes capable of experiineutal verification; and, whenever this TeriBcatiuti can be made, fresh evidence of the truth of the law ja obtained. We shall be occupied ia subsequent chapters with the deduction of these consequences; here we note some results which can be deduced immediately. 
When a body is slightly strained by giadual application of a load, and the temperature remainij constant, the stress-cc>mponent.<< are linear functions of the strain-components, and tbey are also partial differential coefficients of a function {W) of the strain-compuueuts. The strain-energy-ftinctiou, If, is therefore a homogeneous quadratic function of the strain-componduts. 
The known theory of sound waves* leads us to expect that, when a body is executing stimll vibrations, tho motion takes place loo (piirkly for any portion of the body to lose or gain any aensibto quantity of heat. In this case also there is a slrain-energy-fimction; and, if we assume that Hooko's Law holds, the function is a homogeneous quadratic function of the atraincompouenls. When the stress-components are eliminated from the equations of motion (15) of Article 54, thoRc equatious become linear eipmtiims for the determination of the displacement. The linearity of them, and the way in which the time enters into them, make it jmssible for them to possess solutions which represent isochronous vibrations. The fact that all solid btnlies admit of being thrown into states of isochronous vihmttou han been emphasized by Stokesf as a peremptory proof of the truth of Uooke's Law for the very small strains involved. 
The proof of the existence of W given in Article 02 |>uint>s to difTerenl coefficients for the terms of IK expressed as a quadratic function of strain-componeuts, in the two coses of iyothermal and adiabatic changes of state. Tliese coefficients are the " elastic c^instants," aud discrepancies have actually been 
^ * 8«t Ba>l«iRh, Ttuory of fiound. Chapter XI. 
t See IntroductioD. footnote 87. 
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fouDd in experimental determinations of the constants by statical methods, involving isothermal changes of state, and dynamical methiMla, involving adiabalic ohanges of state*.   The di!>cre[>anutes are not, however, very serious. 
To secure the stability of the body it is necessary that the coefficients of the terms in the homogeuL>ous (quadratic function W should be adjusted so that the function is always positivef. This condition involves certain relations of inequality among the elaa^tic constants, 
If Uoolce's Idw is regarded as a tirst approximation, valid in the case of very small strains, it is natural to assume that the tenns of the second order in the strain-energy-function constitute likewise a first approximation. If terms of higher order could be taken into account an extensiou of the theory light be made to circumstances which are at present excluded from it« ^Kope. Such extensions have been suggested and partially worked out by several writeraj. 
66.    Elastic oonstauU. 
According to the generalized Uookc-'s Law, the six components of stress at any point of an elastic solid body are connected with the six compoueutu of strain at the point by e^juations of the form 
.(10) 
The coefficients in these equations, t^,,... are the elagHc constants of the ftubstance. They are the coefficients of a homogeneous quadratic fiinctioa 2ir, where W is the .strain-energy-functiuu; and they are therefore connected by the relations which ensure the existence of the function. These relations are of the torm 
c» = c„,   (n«^l,2, ... 6) (11) 
and the numlier of constants is reduced by these equations from 36 to 21. 
• The diaorrpftiiCMXt Rppear to have "been Doti«r<] BrHl by P. LiLgorlijeliii in 1H27, bob Tod)iant«r aiid reatBon's Uittory, vol. I. p. tSS. TJiey vrpiv mjuJp clifi mibject of extenaive exp€rim«lita hy a. Wprth«ini, Ann. de ChimU, t. 1:^ (16-i4j. lofDriuiktioi) concerning the re»ah» uf iiiiire mwiil CKperimcnUl racearehea is rivcii by Lord Kelvin (Sir W. ThomBon) in the Arli^Iti * El&nticity' in Knq/. Ant.. tfUi edilioa, reprinc««l in Mnllt. and I'hyn. I'uptn, vol. 3. Utie alao Vf. Volgt. Ann. I'ky,. Clum. (iri^^t^uuijin). Bi3. !}i (1891). 
t Kircliliuff, VorUtuugun tibf.r....1lff^hanik, Vorlcaung 27. Far a diftcuitBtOTi of the llipor; cf sUhility rer»fftnoe may be madti to a jjrtpcr by li. Lipaohitz, J.f. Mmh. ICnlie). lid. "S (1874), 
X Bttmnaev way be made, in jiarltciilar, to W. Wigt, Ami, I'htff. Chem. (Wiedemann), Bd. 52, leM, p. &a« and A^rJi'n BerickU, IWI. 
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We write the expresRion for 2 W in the form 
+ Coe'„      + 2cBeVvea + 2cu«wvht + 2c«e,^tf„ + 2et,e„«^ 
+ Ctte"„      + 2cm«„«^ 
(12) 
The theory of Elasticity haa sometimes been baHod oa that hypothoais concerning the constitution of matter, according to which bodies are regarded aa made vip of matehaJ points, and these points ore supposed to act on each other at a distance, the law of force between a pair of points being that the force l» a function of the diKtauco between the puinU, and acta in the line joining the points. It k a consequence of this hypothesis* that the coefficients in the function IF are connected by six additional relations, wliereby their number is reduced to 15.    These i-elatiouK are 
;  U3> 
We shall refer to these as "Cauch^^s rehttious"; but we shall not assume that they hold good. 
67.    Methods of determining the strees in a body. 
If we wish to know the etate of stress in a body to which given forces ore applied, cither as body forces or as surface tractimis, we have to scjlve the stress-equations of equilibrium (14) of Article 54, viz. 
9^, 
Bx      dy 
+ 7'+/,j=o. 
dx 
9y     C2    *^ 
0. 
.(U) 
OX       di/       ds 
and the solutions roust be of such forms that they give riae to the right cxpres8ioD<« for ttie surface tractions, when the latter are calculated from the formuUe (5) of Article 47, via. 
1    ('*) 
The etjuations (14) with the condiliuna (15) are not sufficient to determine the stress, and a stresH-systcm may satisfy these equations and conditions and yet fail to be the correct solution of the problem; for the stress-compo
* 8m Nnt« U at (he end of thin book. 
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nenta are functions of the strain-components, and the latter satisfy the six eqiiatioDS of compatibility (25) of Article 17, viz. three ccjuations of the type 
and three of the type 
8«"      fl^f"     dydz' 
duds    dx \    dx      dv      Zs }' 
dtfds    dx\    dx      dtf 
Whet) account is taken of these relations, there are sufficient equations to determine the atrcas. 
Whenever the forces are such that the streBs-componcnts are cither coDstants or linear fiinctionH of the coordinates, the Hame is true of the Btrain-omponcnts, and the equations of compatibility are satisfied idontioally. We shall consider such cases in the sequel. 
In Che general case, the problem may In various ways be reduced to that of solving certain systems of differential equations. One way is to form, by tlie method described above, a system of equations fur the 8 tress-components in which aeconnt is taken of tho identical relations between straiii-enmponent*. Another way is to eliminate the stress-components and express the straincompouenls in tenns of displacements by using thi* fornudse 
e„ = 
dn 
Vyt 
_du     dw 
_ dv    du 
.(16) 
Both these methods will be illustrated in the sequel. 
If the displacement can be olttained, the strain-components can be found by differentiatioD, and the stress-components oon be deduced. If, on the other hand, tlie stre-ss can bo determined, tho strains can be deduced, and the displacement am be found by the method indicated in Article 18. 
It will be proved in Chapter vii. that the soEutiou of any problem of the kind considered here is effectively unique. We shall iwsume for the present that any solution, which satisfies aJl the conditions, is the solution. 
68.   Form of the strain-energy-ftinction for isotropic solids. 
If we refer the strcss-wiinpntieiits and stiuin-compotientK t<t a aew system of axes of coordinates x, y, z instead of x, y, z, the stress-components muBt be transformed according to the fonnulat of Art. 49, and the ft train-components roust be transformed according to the formulje of Article 12. Wlien we substitute for Xb, ... and egai, ••• iii the ei^uatiotis of the types (10) wo tind that the ^«t^eK8-componcnts.,V*y,... and the Btrain-compouents eVj,-,... are connected by linear equations. These may bo solved for the A'V. •■■ and the result will be that the X'g-,... are expressed as linear functions of e^t^ ■■■ ^^ith coefficients, 
7—2 
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which depend on the coefficients Cu, •■• in the formula (12), and also on the quantities by which the relative situations of the old and new axes are determined. The results might be found more rapidly by transforming the expression 2W according to the formulie of Article 12. The general result is that the elastic behaviour of a material has reference to certain directions fixed relatively to the material. If, however, the elastic constants are connected by certain relations, the formulse connecting stress-coinponents with strain-components are independent of direction. The material is then said to be isotropic as regards elasticity. In this case the function W is invariant for all transformations from one set of orthogonal axes to another. If we knew that there were no invariants of the strain, of the first or second degrees, independent of the two which were found in Article 13 (c), we could conclude that the strain-energy-function for an isotropic solid must be of the form 
We shall hereafter (Chapter vi.) perform the transformation, and verify that this is the actual form of W. 
At present we shall assume this form and deduce some of the simpler consequences of it. It will be convenient to write X+ 2/1 in place of A and fi in place of B. We shall suppose the material to be homogeneous, so that X and fi are the same at all points. 
69.    Elastic constaiits and modtdiuea of Isotropic solids. When W is expressed by the equation 
+ /* (t^y^ +e'^ + ^xy- 4ei»«« - 4f««« - 4!«<«e,w), (17) 
the stress-components are given by the equations 
X« = XA-|-2/i«^,   Fy = \A-I-2/ieyj,, Zt = \^ + 2fiea, i 
Ii=fieyt ,    £x-= fleet ,   ^y= fi^xy ,   ) 
where A is written for e«r + e^^ + e«. 
A body of any form subjected to the action of a constant pressure p, the same at all points of its surface, will be in a certain state of stress. As we have seen in Article 55, this state will be given by the equations 
According to equations (18), the body is in a state of strain such that e^=eyy = ea=-pf(BX + 2/i), 
The cubical compression is pl{\ + J/i). 
We write k = \ + lfi (19) 
Then k is the quantity obtained by dividing the measure of an uniform 
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prefumre by the measure of tho cubical compression produced by it.    It IB called the moduiua of compression. 
Whatever the atreas-eyatero may be, it can be resolved, aa in Article 52, into meau tension, or pressure, and shearing stresses on three orthogonal planes. The mean tension is measured by J(A'a+Kj, + ^,). Wu learn that the quantity obtained by dividing the measure of tho mean tetmion at a point by the measure of the cubical dilatation at the point is a constant quantity—the modulus of compression. 
A cylinder or prism of any form, subjected to tension ?'which is iinifonn over its plane ends, and free from traction on its lateral surfaces, will be in ift certain state of streKS. A» we have 8een in Article 55 ihia state will be given by the equations 
According to etiuations (18) the body will be in a stale of strain such that 
«« = 
/*(3X + 2^)' 
Bj,-fi«-    2^^3x + 2a*)* 
We write 
E
X+fi     ' \ 
.(20) 
a = 
(21) 
2(».+ M) 
Then E is the quantity obtained by dividing the measure of a simple loDgitudinal tension by the mt^asure of the cxteosion produced by it. It is knowTi as Young'9 modulus. The number <r Is the ratio of lateral contraction to lonfptudinal extension of a bar under terminal tension. It is known as Pou»on'$ ratio. 
Whatever the stress-syatem may be, the extensions in the directions of the axes and the normal tractions across planes at right angles to the axes are conuecled by the equations 
e„^E-*[V„-(riZ,+X,)\. 
.(22) 
e« = A'->|^, -<r(.Y,+ r,)|. Whatever the stress-system may be, the shearing strain corresponding with a pair of rectangular axes and the shearing etrefw on the pair of planes at right angles U> those axes are couuected by an equation of the form 
A\ = M*:rv (23) 
This relation is independent of the directions of the axes.    The quantity n is called the riffiditjf. 
70.    Observations concerning the etrees-strain relations in Isotropic soUds. 
(<t)    We tiwy note the reUtians 
E 
'0+o)ii-ia)*   '^    S(l+9-)' 3(1-2*)' 
.(24) 
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(b) If tr were >^, t would be negative, or the material would expand under pressure. If (T were < -1, ^ would be negative, and the function W would not be a positive quadratic fuDction. We may show that this would also be the case if i were n^ative*. Negative values for a are not excluded by the condition of stability, but such values have not been found for any isotropic materiaL 
(e) The constant t is usually determined by experiments on compression, the constant £ sometimes directly by experiments on stretching, and sometimes by experiments on bending, the constant ft usually by experiments on torsion. The value of the constant a- is usually inferred from a knowledge of two among the quantities B, k, /t-f 
(d) If Cauchy's relations (13) of Article 66 are true, X=^ and (r=i. 
(e) Instead of assuming the form of the strain-energy-^nction, we might assume some of the relations between stress-components and strain-components and deduce the relations (18). For example^ we may assume (i) that the mean tension and the cubical dilatation are connected by the equation J^(Zj.+F, + Z,)=*A, (ii) that the relation X'^—ftex-p' holds for all pairs of rectangular axes of ;t-'and y*. From the second assumption we should find, by taking the axes o( J!,y, zto be the principal axes of strain, that the principal planes of stress are at right angles to these axes. With the same choice of axes we should then find, by means of the formulee of transformation of Articles 12 and 4S, that the relation 
holds for all values of l^,... which satisfy the equation It follows that we roust have 
Then the first assumption shows that each of these quantities is equal to (lir - ^[x) A. The relations (18) are thus found to hold for principal axes of strain, and, by a fresh application of the formulee of transformation, we may prove that they hold for any axes. 
(/) Instead of making the assumptions just described we might assume that the principal planes of stress are at right angles to the principal axes of strain and that the relations (22) hold for principal axes, and we might deduce the relations (18) for any axes. The working out of this assumption may serve as an exercise for the student. 
(y) We may show that, in the problem of the compression of a body by pressure uniform over its surface which was associated with the definition of k, the displacement is expressed by the equationsg 
u_v _«>_     p 
(A) We may show that, in the problem of the bar stretched by simple tension T which was associated with the definitions of E and a-, the displacement is expressed by the equations 
M_v__oT \T IP    T      (X+h) T 
x~y~     E^    2^(3X + 2^)'      «°£:^;i(3X + 2^)' 
• 2 IT may be written 
(X + !^)((„ + «„ + 0' + lMj(fv,-ea)' + (''o-«,x)' + (''«-'«)'}+''(<r.* + «-' + '«')t Experimente for the direct determination of FoisBon's ratio have been made by P. Cardani, 
Pkyt. Ztiuchr. Bd. 4, 1903, and J. Morrow, Phil. Mag. (Ser. 6), vol. 6 (1903).    M. A. Coma, 
Parit, C.R., t. 69 (1869), and A. Mallock, Proc. Roy. Soc,  vol. 29 (1879) determined a by 
experiments on bending. 
X l^ie is the method of Stokes.    See Introdnotion, footnote 37. 
g A displacement which would be possible in a rigid body may be superposed on that given in 
the text.   A like remark apjdies to the Observation (A).   Cf. Article 18, tupra. 
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71.   Magnitude of elastic constants and modnluses of some isotropic aoUds. 
B      To give an idea of the order of magnitude of the elastic constants and modiiluses of some of the materials in everyday use a fow of the results of 
teiperimenta are tabulated here. The table gives the density (p) of the material as well as the elastic constantfi, the coiiHtantit being expre-sscd as multiples of au unit stress of oue dyne per square centimetre, Poiasoa's ratio is also given. The results markrtd " E " are taken from J. D. Kverett's Illustrations of the C.O.S. system of units, London, 1891. where the authorities for them will be found. Those marked "A" are reduced from results of more recent regearches recorded in a paper by Amagat in the Journal de Physique (S^r. 2), t. 8 (1889). It must be understood that considerable ditferencea are found in the elastic cont^tnnts of ditlercnt samples of nominally the sama Bubstancc. and that such a designation as "steel," lor example, is far trom being precise. 
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72.    Elastic oonstantB in generEil. 
Materials such as natural cry.stajs or wood which are not isotropic are said to be {xolotropic.     The analytical expression of Hoobe's Law in an lotropic solid body ia eflected by the equations (10) of Article 66.    In 'matrix nutation we way write the equations 
(A«, J „, Zi, i/, Zf, Jiy) = (   Cii     Cj,     Cm      Ch     C]b     Ch   ) (9», 9^, Cat *p»» ^«»» **/X 
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where Crt=c„, (r, «=1, 2, ... Oj. 
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These equations may be solved, so ils to express the strain-components in terms of the strcss-corapoDCnts. If 11 denotes the determinanl of the quantities c,,, and C^ denotes the minor detenninant that corresponds with Crt, so that 
n=CrtCrt + c«Crt + CrtC„ + c„C,, + CrtCrt + CrtCrt (26) 
the equations that give  the strain-components in  terms of the stresscomponents can be written 
U (4aci *|(»i *ai *i«i *«t **|i) 
=■ ( ^u     ^M     ^ta     "h     t7a     t7« )('^i Jt' ^«' '» ^»*  ■^A 
'0«   (27) 
where C„*C„[r. 8= I. 2.... 6). 
The quantities 4c„, ... c,,. ■■• are the coefficients of a homogeneous quaidratic function of c«,..... This function is the strain-energy-function expressed in terras of strain-components. 
The quantities JC,i/n, ... C,a/n,... are the coefficients of a homogeneous 
quadratic function of X,     This function is the strain-energy-function 
expressed in tenns of stres8H3omponent8. 
73.   ModtUnsea of elastiol^. 
We may in various ways detine t^'pes of stress and types of strain. For example, simple tension [Xg], shearing stress [Yg], mean tension [i (Jli» + Yf + Zf)] are types of strew. The coiresponding types of strain are simple extension [ex^]. shearing strain [ey,], cubical dilatation [e„ •¥■ Cf^ + Bo]. We may express the strain of any of these types that accompanies a stress of the corresponding type, w/i«/i there is no other stress, by an equation of the form 
8tres8=if X (corresponding strain). 
Then M is called a " modulus of elasticity."    The quantities n/C„. Il/C*, are ftxaniples iif Hiit^h inoduluses. 
The mo<lulus that corresponds with simple tension is known as Youiiff's mwiulus for the direction of the related tension. The modulus that corresponds with shearing stress on a pair of orthogonal planes is known as the riyidiiy fur the related pair of directions (the normals to the planes). The modulus that corresponds with mean tension or pressure is known as the iiwdxdrta of compresnon. 
Wo shall give some examples of the calculation of moduluses. (u)   ModiUvt f>f c(mpn$*iut\. We bare to SBNuae that Xg=T,=Z,, and the remaining strewt-couiwnenbi vanish; the oofTCkpoiKling t)tr*iti m cubic^d dilatAtion, and we must therefore c«lcnUt« ''m+S»'>*^* Wa find for tlie modulus the Dxi>ressioD 
n/(C„ + Ca+Ca+i(7B+2C'a+*'?u)-  tS8) 
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A* in Article 68, wo aee that the cubical comjircfiHion produoed in a body of anj fomi by the Ai>pIicAiion of uniform normal ppeuaiire, p, to itrt surfiice is p;i, where /■ now deiiatcB cbo attovo oxitrcfttiun (28). 
(6)    Biffidify. 
Wc may wippose that all tbe HtrctiK-cuiuiKiumitri vuiish mci^pt )',, and thi-ti we Itavfl n!^=» 6'4|}',, so that 0/C^^ m the rigitUty corr(»|xjiHiiii>' with the jiair of directioQH y, *. 
[f tbc Kbearing stresB is relatncl to the two ortliugoua] dinscttuiw (/, m, n) and (t, m.\ n% the rigidity can he ahown to be expresaod liy 
n+(C„, Ca,.:Ca,..>)(ill', S"""*, Znn', nm'+m'n, nf + H% lm' + rm)\  ...(28) where the dcuutniitator ia a couiplote quiulmtic functioo of the six arguments 2^^,... with poefficients T,,, C„,.... 
[e) Voun^t r>U)duttit and Foitaon't ratin. We may auiipom that all the HtireHB-uompcinentii vanish escei>t X^, and then wc have lli*„" C|, J*,, so that n/C\, ia the Young's modulus correBix>ndirijj; with the direction x. In the «aue case the Poissuu'ii ratio of tliu cuutni«tiou in Uiu diructimi uf the Hounof ji to the eitcosion in the directiou of the axia of x ia - Cij/C,,. The value of Poisiion's ratio depend.*) on the direction of the contracted transverse linear clenient« as well as on that of the extended longitudinal onefl. 
In the general cilsc w« may tako theutreHittu bu tcnsiuri A"^ acroaatbe planeH ysoonst,, of which the nonual is in the dirertion (t^ m, n).   Then wl- have 
x,=PX'^,    }',=«t*^V>  ir,=»«'J'Vi 
}',= MttX Vi    •^*~ "'-^Vi    Xf=hnX'^, and wo have alao 
fcr =•«»(/'+fiv***+c«n'+"m"*" + ^—^'^ "V"'! it follows that the Young's modulus £c>orret>[K]ndnig with this direction ia 
n^((;'„. C„, ... t',„ ...){P, m*, »^, vm, nl, lm)\     (30) 
where the denominator ia a comiilote quadratic function of .the six argiimentn ?,... with coedEci«DtB C„, .... 
If (/', m', n') ia any direction at right angles to x\ the contmctiou.  -v»'i '^^ '''>■ direction is given by the oquation 
and the winwwuonding I'oiiwon's ratio v ia expreasible in the form 
*vL    °(y) o(wr) «<N*) d{mn) <f^nt) 9(/m)J*    ^    ' 
is the nlmve-mentioned quat^ralic functioa of the argiiments P, ..., And the coetB^^^ienta are fonued as if thp^w argumenta ware indei^mlent. It nmy bo obccrved that aiE ia related syiumetriually ia the two dipactioiis in which Uie corrtw|jundiiig oodtntctiou and extensiou occur. 
If we tioustruet tite surfiu% of the fourth order of which the eqimtinn is 
(C,„ C'a.... (7ig. ...) (^,y, «•. yt, «r. jrp)»=conat. (32) 
then the radiu.i vector of this surface in any direction is itroiwitifHnd to the itositive fourth root of the Young's modulus of the material wrresponding with that direction*. 
The rvult in due to Csuofay, Kxertiett dt SJatMstatiquet, t. i (11^20], p. 80. 
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74.    Tfaenno-elastlc equations. 
The application of i\w two ftiiKlnmental laws of Thermodynamics to the problem of detcnnining the stress and strain in elastic solid bodiefi when viriatioDS nf l^injwsratun^ i>ccur has been discussed by Lord Kelvin*. The results at which he arrived do not permit of the fonnulation uf a Kytitein of difTorcDtia) etjuHticns to determine the state of streas in the body in the wanner explained in Article 67. 
At an earlier date Duhaaicit had obtained a set of e<{*iubi(iri.s of the reqniriKl kind by developing the theory of un elastic solid reganled an a system of material points, and F. E. Neumann, starting from certain assuniptioiis J, had arrived at the same system of etjuations. These assumptious niay, when the body is isotropic, be exprefwed in the following form:—The Btress-.syslem at any point of a body strained by variation of temperature consists of two superposed stress-KyBtem!*. One of these is equivalenc to uniform pressiirti, the same id all directions round a point, and proportional to the change of temperature; the other depends upon the strain at the point in the same way as it would do if the temperature were conetanU 
The$e assumptions lead to eijuations of the form 
+ pX = ff 
.(38) 
where y3 is a constant coefficient and 8 Is the excess of temperature above that in the unstrained stale. The stress-system at any point has com* ponente 
V 7 Y  ^^ 
in which -Yj,,... are exprensed in terms of di.splaccmcnts by the formulae (18) of Article 69. The equations are aderjuate to determine the displacements when d is given. When 0 is not given nn additional equation is retjuired, and this equation may be deduced from the theory of conduction of heat, as was done by Duhamel and Xeumann. 
The theory thus arrived at has not been very much developed. Attention has been directed especially to the fact that a ptate of gla«s strained by unequal heating becomes doubly refracting, and tt) the explanation of this ert'ect by tht- inequality of the stresses in difterent directiuna. The reader who wishes to pursue the subject is referred to the following memoirs in addition to  those already cited:—C.   W. Uorchardt,  Berlin  Muruitsberichte,  1873; 
* Sec lotTDdtwUiHi. fowtooto 13. t I'ari*, M^m,,..par divtn ttirdiii, t. & tl83S>. 
; Sm hU forletuMgen flhrr die Tkeorie d*r ElaitieiiHt der featen Kiirper, Leipxig, lAHfi, «i|il «f. Ihc memoir bj Maxwell cited \a Ankle 57 footnote. 
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J, Hopkiiison. Messenger of Math. vol. 8 (1S79); Lord Rayleigh, Phil. Mag. (Ser. 6) vol 1 {\mV)^Scientijic Papers, vol. 4, p. 502; E. AltQiLOBi, Torino Atti, t 32 (1897); P. Alibraiidi, Oiomals di uuttein. t. 38 (1900)l 
It must be observed that the c]a.stic " constants " themselvett arc functions of the teiuperature. In general, they are dimiQished by a rise of temperature; this result has been established by the experiments *)f Werlheim*, Kohlrauschf and Mafleod and ClarkeJ. 
75.    Initial stress. 
The initial state of a body may be too far removed from the unstressed ,to to permit of the stress and strain being calculated by the principle of perpositiou as explained in Article 6-1. 8iich initial states may be induced by processes of prcpamtiou, or of manufacture, or by the action of body forces. In cast iron the exterior parts cool more rapidly than the interior. and the unequal contractions that aticnuipany the uneijually rapid ruten of cooling give rise to considenible initial stress in the iron when ootd. If a sheet of metal ia rolled up into a cylinder and the edges welded U^gether the body 80 formed is in a state of initial stress, aud the unstressed state cannot be attained without cutting the cylinder open. A body in eiiuilibrinm under the mutual gravitation of its parts is in a state of stress, and when the body is large the stress may be enonnous. The B^rbh is an example of a body which must be regarded as being in a atate of initial stress, for the stress that must exist in the interior is much too great to permit of the calculation, by the ordinary methods, of strains reckoned from the unstressed state as unstrained st^^te. 
If a body is given in a state of initial stress, aud is subjected to forcejs, changes of volume and shape will be produced which con be specified by a displacement reckoiieii from the glveu initial state as uiistraini-d state. We may specify the initial stress at a pnint by the components 
^." 
and we may specify the stress at the point when the forces ai-c in action by Xg** + J.',.... In like manner we may specify the density in the initial state by p, and that in the strained state by p^ + p, and we may specify the body force in the initial atate by (X,, Ya, Z„) and that in the straiiied sUite by(jr,+ X', W+Y'. Z^-\- Z'). Then the conditions of equilibrium in the initial state are three equations of the type 
—5—I—t—•" -.   +P0A0 
dx dy ds      ^ 
.(35) 
Am. if Chimir. I. 12 HSU). t 4im. i>/.y.. Chtm. {Poyufrntorffi. Bd. 141 (1870). 
* A mtiill obtAinwl hy ttioxe wriUn Ik <4X[itnin<.il in th« mum nliLtfJ iti tliB text bjr Lord K«lviti in tbt Aitielt' Elfuticitj' la &iicy. Brit. q\iQ\t>i in ttw fMtnoti to Anids GS. 
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and three boundary conditions of the type 
X,"»cos(ic, v,) + X,"»cos(y, 0 + -^«"' coa(*, i'o)=0 (36) 
in which Vc denotes the direction of the normal to the initial boundary. 
The conditions of equilibrium in the strained state are three equations of the form 
+ ^(Z,'«+^;) + (/,, + />')(X« + X') = 0  (37) 
and three boundary conditions of the type 
(jr."" + X«') cos (w, v) + (Zj,™ + X^') cos (y, v) 
+ (Z,«'>+Z,')co8(^,i*) = X„  (38) 
in which (X^, Y,, Z,) is the surface traction at any point of the displaced boundary. These equations may be transformed, when the displacement is small, by using the results (35) and (36), so as to become three equations of the type 
'^'+l^+f+'"^'+^'^'=° <«") 
and three boundary conditions of the type 
Xj(' cos {x, v) + Xy cos (y, v) + Z^ cos {z, v) 
= X, — X.'°' (cos {x, v) — cos {x, v^)] 
- X,«' {cos (y, V) - cos (y, v^)] 
- .Z,""  {cos (S, v) - cos {Z, Vj)]. 
If the initial stress is not known the equations (35) and conditions (36) are not sufficient to determine it, and no progress can be made. If the initial stress is known the determination of the additional stress {XJ, ...) cannot be eflfected by means of equations (39) and conditions (40), without knowledge of the relations between these stress-components and the displacement. To obtain such knowledge recourse must be had either to experiment or to some more general theory. Experimental evidence appears to be entirely wanting*. 
Cauchyf worked out the consequences of applying that theory of material points to which reference has been made in Article 66. He found for X/,... expressions of the form 
.(40) 
* Befereooe ma; be made to a paper by F. H. Cillej, Amer. J. of Science iSilHman)^ (Ser. 4), vol. 11 (1901). 
t See Introdaetion aod of. Note B at the end of this book. 
\ 
I 
where (u, v, Uf) is the displftoement reckoned from the initial state, and {XJ% ...) is * 8tre38-a3'stem related to this displacement by the same equations as would hold if there were no initial stress. In the case of iftotropy these eqiiatiuus would be (18) uf Article till with \ put equal to fi. It may be observed that the terms of Xg,... that contain Xg'^,... arise fnmi the changes iu the diaUmcea between Cuuchy'a material points, and from changes in the directions of the lines joining them in pairs, and these chnoges are expi-essed by means of the di!;placement (u, v, w). 
Saint-Yenant* has obtained Cauchy'a result by adapting the method of Oreen, that is to say by the use of the energy-function. His deduction has be«n criticized by K. Pearson f, and it cannot be accepted as valid. Green's original discussiouj appearn to be restricted to the cose of uniform initial stress ID an unlimited elastic medium, and the same restriction characterizes Lord Kelvin's discussion of Gi-een's theory§. 
• J. dr Math, it.iovpinf], (Sir. 2), I. S (1883). i Todliuiitet and Pe&noa's Hittory, vol. 2, pp. ^, 85. t Bee the pAper quoted in the latrodoction, footnote SI. 
% Baltnuvre I.t<tuft4 on Uoleculnr Dgmtmut and ihe H'afc Tfuory of Light, Lotxlaii, 1904, pp. 328 fi teq. 
CHAPTER  TV. 
THE RELATION   BETWEEN  THE   MATHEMATICAL THEORV  OF ELASTICITY  AND TECHNICAL MECHANICS. 
76.   LlmltationB of the mathematical theory. 
The ubjfct of this Chapter is to present as clear im idea an possible of the KCiipti and limitations of the uathtituatical theory lit its application to practical qaestiotis. The- theory is worked out for bodies strained gmdually at a constant temperature, from au initial state of no stress to a final slate which ditfen* so little from the unstressed »ta1e that squares and products of the displacements can be neglected; and further It is worked out on the basis of Hcxike's Law, as generalized in the statements in Article 64. It ia known that many inaturials used in cngineeriug structures, e.g. cast iron, building aloiie, cx-rnent, do not obey Hooke's Law for any strains that are large enough to be observed. It is known also that those materials which do obey the law for small measurable strains do not obey it for larger ones. The stj»tenieiit of the law in Article 64 included the statement that the straiu disappears on removal of the load, and this part of it is absolutely necessary to the mathematical theory; but it is known that the limits of strain, or of lf>ad, in which this condition holds good are relatively narrow. Although there exists much experimental knowledge* in regard t^» the behaviour of bodies which are not in the conditions to which the mathematical theory is applicable, yet it appears that the ap* propriate extensions of the theory which would be needed in order to incorporate such knowledge within it cannot bo made until much Ailler experimental kuowleilge has been obtained. 
* ia(omu.U9D ill regard to experimenUI results will be found in IrefttiM* on AppUad McehuilflM. The followiog nmf ht mmtiooed :—W. J. M. R*nltin«. JpplUd Mfchanie*, lit cditiOD, IjODdoQ, IS&U, <tbcr« bftve benn nnmcroUB later ^diUiMUti W. C. Unwin, Thr tf^timg of maleriaU of Mtulnclioa, Londoo. 18BB: J. ^ Ewintt, The Slrfufitbuf Siatenetlt,CuiibziA^m.l*l99: Flimiuit, SUtliiliti Af» fotutruclitnu, HiMi*tante He* vMt^rxattz, P»ris, 1B96; C. Buti, KlaalinUft und Fftigkfit, Sod edilioti, Berlin, lS9i; A. FOppI, Vortnttnsctt Ub€T lechnttcke 3leehuHil^ ])d. 8, t'nU^keiUUku, L«ipxiK. 19<K). Vory rAltiivblc expenmeatal reMsnihH were m*Aa ia rwMjiit Itmei) bj J. BaoMtiiDgcr uid rvounltKl by hun in MilOteilungtn aua dcM mtcluiHuehUchnitthtn LahoraUtrivm, ..in ^Uneheu; tbeae reee*rcheft liAve bt*en continncd bj A. Ffippl. New bKl« iu roRud lo th« naimv of permiuiitat Ml in metals, which wc XiktAy to pmve to be vktx imporlkut. have bMO broQgbt to \\(^\i by J. \. Eiring and W. BoMohain, Phil. TVom. Jloy. .<ior. (Ser. A), vols. !»», 196, (IttOO. 1901). 
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The reetriction of the theory to conditions in which the strain disappeam on removal of the load is naiially expressed by saying that the body must he- strained within the limits of "perfect elasticity." The restriction to conditiona in which the measurable strain is proportional to the load is sometimes expressed by saying that the body must be stniiued within the limits of "linear elasticity." The expressirtD "limits of elasticity" is used sometimes in one of these senses and Hometimes in the other, and the limits are sometimes specified by meuus of n " stress " or a " traction," i,e. by a load per unit of area, and sometimes by the measurable stmin. 
When the »tmin dcKts xioi disappeai* aftiL-r removal of the load, the strain which remains when the load is removed is called "set," and the excess of the strain which occurs imder the load above the set is called "elastic strain." The strain is then compounded of set and ela^ttic strain. A body which tan be strained without taking any Kot in nornotimea said to be in a "state of ease" up to the strain at which set begins. 
77.    Stress-Btrain diagrams. 
One of the greatest aids to scientiHc investigation of the properties of matter subjected to strcM is the use of these diagrams. They are usually constructed by taking the strain developed as abscissa, and the stress producing it as the correspouding urdinatc. For most materials the case selected for this kind of treatment is the extension of bars, and, in the diagram, the ordinate represents the applied traction, and the abscissa the extension of a line traced on the bar pantUel to its length and rather near the middle. Th« extension is measured by some kind of extensonieber*. The load at any instant is known, and the traction is estimated by assuming this load to be distributed uniformly over the areti of the cross-section of the specimen in the initial state^ If any considerable contraction of the section were to occur the tniction would be underestimated. The testing machine, by means of which the experiments are motlc, is sometimes (iltfid with an antomatic recording apparatu^f by which the curve is drawn; but thitt cannot be done aatisfactorily with some types of machine^. 
Il is clear that, in general, tbe (piautities recorded by such aiTangementa are the traction, estimated as stated, and the extension which it produces immediately. Special methods of experimenting and observing are required if elastic strain is to be di.stinguished from set, and if the various effects that depend upon time are to be calculated. 
The general character of the curve for nuxlerately hard ntetals under extension, is now well known.    It ij* for a considerable range of sti-css very 
* Several kind* of extensoiiiet^re a.m described by Kwins and Unwin. 
t Unwiu, toe, eil. 
X B4aMhisger, ^ilthtilmstn, xk. (1801). 
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>,      ^M *■•■»-•'^■Its li tbe curve ia generally concave 
•*«» laniMt than it would do if it were 
.ic^o tbe vtrain w largely a perinanenL 
^»mm • regioQ uf well-marked dis
iBiuM} of Cmction produces a large iacrcase 
itiiug^uf this regiun is called the Yield-Point. 
'  vase of traction the bar begins to tbin down 
■ uunvd apfNuvntly by accidental eirctiinstances, and there 
Wbtitt this  local  thinning down begins the load is 
uiowhat befbre rupture occurs, and the bar breaks with 
luudwuiu traotioti.   The maximum traction bcforc rupture la 
,' stress" or the material, sometimes also the "ultimate 
-::..aiy." 
Pig. a. 
FiR. y. 
Figure 8 shows the chamctcr of the diagram for " weld iron." It is reduced from one of Baufit!hinger's curves. Similar diagrams for mild steel »ro drawn in many books. .4 is the limit of linear elasticity; between A and B the strain increases rather faster than between 0 and A and at a mrying rate, J3 is the yield-point and D refffesenta the maximum traction. Fig. 9 is rtnlnced from one of Baiischinger's cvirvcs for cast iron. There ia no sensible range, and so no limit, of linear elasticity, and no yield-point. 
Diiigmnt-s may be eoiiNtrucied in the same wny f<>r thrust and contraction, but the forms of them are in general difl'ereut from the above. In particular, there ia no yield-point under thrust. Ia tbe case of cast iron it has been ToriBed that the curve is contiuuouB through the origin, where there is an inflexiun*. 
* 8ee e.«. EviDg, toe. eit., p. 31. 
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7S.   Elastic Umits. 
The dtajrrunia do nob show the limits of perfect elasticity when these are difi'crcnt Irorn the limits of Itoear elasticity. These limits usually are difTt^n^nt. Bud l\w former iire lower tbau thy latter*. The numerical ruc4iaiircs of the limits for extension and ountractioa ore usually different for the same specimen. The limits are not v»ry well defined. The limit perfect elasticity for any tj-po of atrcsa would t»e determined by the Cgreatest tractiiin which prttdtices iiu set, but all that experiment can tell as is the smallest traction for which set can be measured by means of our inKtrunienlK. The limits of linear olaKticity are shown by the diagrams, but they arc liable to the same kind of uncertainty as the limits of perfect elasticity, inasmuch as the determination nf them <}epend8 upon the degree of accuracy mtb which the diagrams can be drawn. 
The limits of linear elasticity can be raised by overstrainf. If a bar of steel, not specially hard, is sjubjcctcd to a load above the elastic limit, and even above the yield-point, and this load is maiutained until a permanent state is I'eachcd. it is found afterwards to possess linear elasticity up to a higher limit than before. If the UhuI is removed, and the bar remains for some time unloaded, the litnit is found to be raised still further, and may be above tho load which produced the overstrain. 
On the other hood, the limits of elasticity can be lowered by overstrain*. If a bar of iron or mild steel is subjected to a load above the yield-poiut. And then unloaded and immediately reloaded, its eUsticity is found to be very imperfect, and the limit of linear elasticity very low; but if the bar remains unloaded for a few days it is found to have recovered partially from the effects of the previous overstraining, and the longer the period of rest the more complete is the recovery.    Wrought iron recovers much more rapidly thau steel. 
In the case of cast iron, not previously subjected to tests, any load that prothices a measurable strain produces some set, and there is no apprt»ci«ble range of linear r-lasticity. After several times loading and unloailing, the behaviour of the metal approaches more cloaely to that of other metula as czempHfied in Fig. 8, These results suggest that the vet produced in tbe first tests consists in the removal of a state of initial stress. 
The yield-point also is rused by ovorstraiD, if the original load is above the urigiual yield-point, and the amount by which it is raised is increased by allowing a period of rest; it is increased still more by maintaining eouxtaut tho load which produced the original overstrain. This etfect is described as " hardening by overstrain." 
' UsQMbbwvr. aiittheitungtn. lui. (ltW6). 
t nu. 
X Sm e.9. Eriug, toe. eit., pp. SS et itfq., imd the Utiles in BAOKliiago'i ititlh^Umai/fn, xn%. L.>. 8 
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The foUowing taible* gives some examples of the limit of linear elaBticity •Dti libtt yield-pomt for isome kinds of jrou. The results, given in atmosphereH, «n in each cam thow for a single specimen not previously tested. 
	Meua 
	ElMtio Hmil 
	Yidd-poiol 

	Wekl-iron 
	1410 
	I9S0 

	ti 
	1830 
	2180 

	Ingot iron 
	2380 
	8780 

	i> 
	StiOO 
	2960 

	Steel (BeBs^ner) 
	1780 
	aB60 


79.    Tlme-efieots.    Plasticity. 
The length of time that a body has been subjected to considerable load ginicrally affects the strain produced, and the length of time that a strained bw)y has been free from load generally affects tht: extent of the ehuitic nH'over}', The latter effect wa« discovered by W. Weberf in 1835 and has been called Ela^ische Hachwirhtng or elastic after-teorking \ the former tippeare tu have been first noted by Vicat* in 1834. When a body has been Kimtnof) by a load suq)assirig the limit of perfect elasticity, and ia sot free, the flet gradnally diminishes. The body never returns to its primitive cmdltion, and the ultimate diiformatiou is the "permanent set," the pan of the Btruin that graduHlly disjippears is called "elastic after-strain." To prcxluce the effect noted by Vicat very considerable stress is generally r(M)iiired. Ue found that wireR huld stretched, with » tension equal to one ijuarter of the breaking stress, retained the length to which this tension brought them throughout the whole time of his experiments (33 months), while similar wires stretched with a tension equal to half the breaking stress exhibited a notable gradual increase of extension. The gradual flow of •oUda under great stress, indicated by these experimenlii, has been made the subject of exhaustive investigation by H. Tre8ca§. He found, in his experiments on the punching and crushing of metals, results which point tu the conclusion that all solids when subjected to very great pressure ultimately flow, i.e. take a set which increases with the time.    This capacity 
* Extncled from reanlts given hy Baojurhineer, UittlniXunfffn, xid. We nuj taku 1000 iilm(Mph«r«>> s6-&6 tons per square iiioli = 1-OlSC x 10* c.a.B. uoiU of tinea. 
t Dt JUi Bon^eini vi KUutlea. ODItingen, IMl. An off-prii>t of • paper oonununiGatoil to tlir KJmiffUeht OtMU$ehe^ft dtr WinnvthafUn tu GUttiHstrn, 1U36, and pt&oliuUjr traD«liit«d in Am. Phjit. Chem. {Puffffiutarff'). Bde. A4 (183K) and M (1^1)
; .Vol* rnr iatlonfitm^Ml proffrf$\/<tu jii d«/er utumit a itivents (mukmu. dmwir* tU* foitU et ehttvuf^t, Irr aemettre, 1834. 
t Pirif. Mtmtiirtt...paT dirrr* mf<im, tl. 18 (1H6B], bdcI 20 (1S7S), Ao AOOOQOt o( MUM of Trewa'H experimenU la glvon bj CdwJd, loe. ei(. pp. 44> r( »eq. 
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of solids to flow under great stress is called pUistidtij. A sulid is said to be " hard " when the force required to produce considerable set is great, " soft " or " plastic " when it is small, A 8iibntance must be termed " fluid " if considerable set can bo prtKiuced b;.' any force, however small, provided it is applied for a sufficient time. 
In experiments on extension aomc plasticity of the material is shown aa soon as ibe limit of linear elasticity is exceeded*. If the load exceeding this limit is removed some set can be observed, but this set diminishes at a rate which itself diininisheH. [f the load is maintained the strain gnKiniilly increases and teaches a constant value after the lapse of .some time. If the load ifl removed and reapplied .several time«, both the set and the elastic strain increase. None of these effects are observed when the load is below the limit of linear elasticity. The possibility of these plaMic effects tends to complicate the results of testing, for if two like specimens are loaded at different rates, the one which is loaded more rapidly will show a greater breaking stress and a smaller ultimate extension than the other. Such differences have iu fact been observed^, but it has been shownj that under ordinary conditions of testing the variations in the rate of loading do not affect the results appreciably. 
80.    Viscosity of Scllda. 
" Vinci^isity " is a gt'iicral tynn for all thot*o properties of matter in virtue of which the resifltance, which a body offers to any change, depends upon the rate at whicli the change i» effected. The existence of viscous resistAnces involves a dissipation of the energy of the substance, the kinetic energy of molar motion bc-ing trantuformed, as is generally supposed, into kinetic energy of molecular agitation. The most marked effect of this property, if it exists in the case of elastic solids, would be the subsidence of vibrations set up in the solid. Suppose a solid of any form to bo struck, or otherwise suddenly disturbed. It will be thrown into more or less rapid vibration, and the stresses developed in it would, if there is genuine viscosity, depend partly on the displacements, and partly on the rates at which they are effected. The parts of the stresses depending on the rates of change would be viscous resistaiices, and they would ultimately destroy the vibratory motion. Now the vibratory motion of elastic solid bodies is actually destroyed, but the decay appears not to be the effect of viscous resistances of the ordinary type, that is to say such as arc pruportioDat to the rates of strain. It has been pointed out by Lord Kelvin§ that, if this type of resistance alone were involved, the proportionate diminution of the ainplitudu of the oscillations 
' BkQBchtDKBr, Uittkrilnngt't, uii. [1%^). + Cf. Unwiu, lor. cit., p. 89. X Uatuchiogtn. HittheHani/tn, xx. (1S9I]. 
{ Sir W.  TboniBoa, Ar(icl« 'ElMtlcily,' £iuy. Brit,  or SSatk, and Pkyt. Papen, vol. 8, CAubridge, ISfK), p. 37. 
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per unit of time would be invereely proportional to the square of the period; but a series of experim^otif on the torslotml oscillations of wires showed that 
this Ibw does not hnid good. 
Lord Kelvin pointed out that the decay of vibmtionit could be aca^nnted for by supposing that, even for the very small strains involved in vibratory motions, the effects of elastic after-working and plasticity are not wholly absent. Those effeetfl, as well as viscous resistances of the ordinary tj-pe, are included in the class of ht/8tere»is phenomena. All of them show that the state of the body concerned depends at any instant on ita previous states an well as on the external conditions (forces, temperature, &c.) which obtain at the instant. Hysteresis always implies irreversibility in the sequence of states through which a body passes, and is generally traced to the molecular atnicture of matter. Accordingly, theories of molecular action have been devised by various investigators* to account for viscosity and elastic afterworking. 
81. iBolotropy induced by permanent set. 
One of the changes produced in a solid, which has received a permanent set, may be that the material, previously isotropic, becomes aiolotropic. The best known example i:* that of a bar rendered leolotropic by permanent toraion. Warburgf found that, in a copper wire to which a permanent twist bad been given, the elastic phenomena observed cuuld all be explained on the supposition that the substance of the wire was rendered aiolotropic like a rhombic cry.ttal. When a weight was hung on the wire it produced, in addition Vo extension, a small shear, equivalent to a partial untwistiug* of the wire; thiN was an elastic stniiu, and disappeared on the removal of the load. This experiment is important as showing that proces-ses of uianu&cture may induce considerable teolotropy in materials which in the unworked stage are isotropic, ami consequently that estimates of strength, founded on the employment of the uqiiaLi<inH of isotropic elasticity, cannot be strictly interpreted §. 
82. Repeated loading. 
A body KiiaihH.1 witliiu its elastic limits may be strained again and again without receivitig any injury-, thus a watch-spring may be eoile«l and 
' Th« following m»7 be msDtioDMl:—J. C, Maxwell, Arliel« ' CouvliluUuu or Bodka.' Kneg, Bril. or Xrintijic Papen. voL % Vualmdge, 1890; 3. O. Bnicher, London iVath. Soc. Proe., roL 8 (18771; 0. E. M«jvr,./. /. Moth. {CrtUe), Bd. 7a (1B74): L. BdluuKUU, Jrn. PAy*. Cktm. iPopftniUrrJ), EtipEgBbd. 7 (1878), Par r kockI ftceoant of the theorios tbe naodei mn; be nferred to tb« Atti«le by F. Bnnn in Wlnkdnuiiut'a Han^bueh lirr Phyiik, Bd. 1 (BrMlau, IHVl), pp, SHI—S43, For b more recent dineuwloii of the Hmomi^ of meUl* Kod ciystala, see W. Voigt dtm. Phft. Chem. (»'ini«iHaii»). Bd. 17 (ISU2). 
t AitH. I'hj/i. Chem. (lf'i>dniuuiN), Bd. 10 (l«SO). 
; Cr. Lord KalTin, he. cit., Uath. aud Phpi. Pafert, toI. S, p. 83. 
I cr. Udwid, loo. cit., p. 3S. 
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uncoiled one hundred and twenty millions of times a year for several years without deterioration. But it is different when a body is Btrained repeatedly by rapidly varying loads which exceed the limits of eiai«ticity. Wohler's* expert moil tM on this point have been held to show that the resistance '->f a body to any kind of deformation can be seriously diminished, by rapidly repealed applications of a load. The result appears to point to a gradual deteriorationi" of the quality of the oiaterial subjected to repeated loading, which can be verified by the observation that after a targe number of applications and removals of the load, bars may be broken by a sti^ess much below the Rtatical breaking Ktretw. 
Bauschinger* made several independent series of experiments on the same subject. In these the load was reversed 100 times a miuute, and the specimenF which endured so long were submitted to some millions of repetitions of alternating stress. In some cases these severe tests revealed the existence of flaws in the material, but the general result obtained was that the strength of a piece is not diminished by repeated loading, provided that the load always lies within the limits of linear elasticity. 
An anal(^UH property of bodies is that to which Lord Kolvin§ has callci:! attention under the name " fatigue of elasticity." He observed that the torsional vibrations of wires subsided mtich more rapidly when the wires bad been kept vibrating for several hours or days, than when, after being at rest for some days, they were set in vibration and immediat«ly left to themselves. 
Experimental results of this kind point to the importance of taking into account the manner and frequency of the application of force to a structure in estimating its strength. 
83.    Hypotheses concerning the conditions of Rupture. 
Various hypotheses have been advanced as to the conditioos under which a body is ruptured, or a structure becomes unsafe. Thus Lam^|| supposed it to be necessary that the greatest tension should be less than a certain limit PonceletlT, followed by Saint-Venant**, assumed that the greatest exteusiun must be lera than a certain limit. These measures of tendenq/ to rupture agree fur a bar uuder extension, but in general they lead to difiercot limits 
' V^KT Frtli^h^itnertwiu vut F.itfii ttiiA Huthl, Berlin, 1S70. An acoaont of W6bI«rlB expvrinumiB i» jpira lij- Unirin, lor. eit., pp. S.*r4t et teq. 
t A diflertut«iyl»n*lion )m« been proposed by K. Peartoii, Mattngrr of Uaih. vol. 30 (18W))> 
I ititlheiltingm, xi. (It491) aiid xxr. (ISftT) edited h? F&ppl. ^ 
I Loe. rit.. Math, and /'J>yi. Pnpm, vii). 3, p. 22. '   ' 
I 8m «.g. tbe n«motr of IaiuI uid CUpeyron, quoted in tba lotiodoctioD (footnote 39). 
* See TodbatJt«r ftod I'ewsoo'B Wutory, toI. 1. ut. !l9o. 
** See eepfciull; tbe Historiqme Ahrigf in Sunl-Vonant's edition of Uu lA^avt A$ Savitr, pp, auut—oev. 
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of safe loading*. Again, Trosca folloned by G. H. Uarwin+ makes the Ddftxinuim cilffereacd of the greatest and least principal acredsc;^ the measure of tendency to rupture, and not a very different limit would be found by followiug Coulomb's^ suggestion, that the greatest shear produced in the material is a measure of this leudeiicy. Ad interesting modification of this view has been suggested and worked out geometrically by O. fliohr§. It would enable us to Cake account of the possible dependence of the con<lition of saJety upon the nature of the load, i.e. upon the kind of stress which is developed within the body. The manner and frequency of application of the load are matters which ought also to bo taken into account. The conditions of nipture are but vaguely understood, and mny depend largely on these and other accidental circumstauces. At the .same time the ijue-stiuu is very important, as a satisfactoiy answer to it might suggest in many cases causes of weakness previously uumispected, and, in others methods of economizing material that would be consistent with safety. 
Ill all these hyputho-Hes it is stip]>o8eil that the stress or strain actually produced in a body of given form, by a givea load, is somehow calculable. The only known method of calculating these effects is by the use of the mathematical theory of Elasticity, or by some more or less rough and ready rule obtained fnim some result of this theory. .Siippoae the body to be subject to a given system of load, and suppose that we know how t9 solve the equations of elastic equilibrium with the given boundary-conditions. Then the stress and strain at every jwjiut of the body can be determined, and the principal stresses and principal extensions can be found. Let T be the greatest principal tension, S the greatest difi'ei-ence of two piincipal tensions at the same point, e the greatest principal exteusion. Let T^ be the breaking stress as determined by tensile test^. On the greatest tensioD hypothesis T must not exceed a certain fraction of T^. On the 9tre«Hdifferencei hypothesis 8 must not exceed u certain fraction of 2\. On the greatest extension hypothesi-s e must not exceed a certain fraction of T,IE, where E is Young's modulus for the material. These conditions may be written 
TkTJ'P,  S<T,i'^,  e<TJ^E 
and the number <1> which occurs iu them is called the " factor of safety." 
* For oiAtnplM tM TodhuDtfr and Pcataoo's Uiftory, st>\. I, p, 550 fiM)lti<>t«. 
t ' Oa tliv HtresMHi |mxluc«d in the ioUnor ol tti« Earth bv tliv wugfat of Continenla and Monntainit,' I'hil. Traru. Roy. Soc., vol. 173(lB83). The mem nMwnr* is Mk>|)lcil id tbe Mooont or Pn>r. l>>rwin'a wotk in KcMd aad Tail's .Vut. Fhit. i'ort u. art. S«l'. 
t ' Kmi^ 9UI aoe apptication d« r^«s de llaniniiB Ab.,' U^m. ptr dlnn Satt^tu, 1779, iotroducUoti. 
fi Ztiuehrifl d*r DrnUekfH TngenUure, M. 44 (1900). A dJMtluion by Voigt of the views of Mobr sad otlwr writers will be fonod iu Ann. Pkpt. (Sar. 4). Bd. 1 (1901). 
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Most £iijflish and American engineers adopt the Hrat of th^R hypotheses, but takf 4> U> depend on the kind of strain to which the body ia likely to be subjected in use. A factor 6 is allowed for boilers, 10 for plllATS, G for axles, 6 to 10 for railway-bridges, and 12 for screw-propeller-shafls and parts of other macluDes subjected to sudden reversals of load. In France and QermaDy the greatest extension hypothesis is often adopted. 
Recently attempts have been made to determine which of these hypotheaes best represents the results of experiments. The fact that short pillars can be crushed by limgitudinal pressure excludes the greatest tensimi hypothesis. If it were proposed to replace this by a greatest stress hypothesis, according to which rupture would occur when any principal strt-sa (tension or pressure) exceeds a certain limit, then the experimeuts of A. FiJppI* on bodies subjected to very great prcsanres uniform over their surfaces would bo very important, as it appeared that nipture is not produced by such pressures as be could apply. These experiments would also forbid us to replace the greatest extension hypothesis by a greatest strain hypothesis. There remain for examination the greatest extension hypothesis and the stress-difference hypothesis. Wehage's experimentsi- on specimens of wrought iron subjected t^> eqnal tensions (or pressures) in two directions at rij,^dit angles to each other have thrown doubt on the greatest extension hypothesis. From experiments on metal tubes subjected to various systems of combined stress J. J. Guest* ha^ concluded that the stress-difference hypothesis is the one which accords best with observed results. The general tendency of modem technical writings seems to be to attach more imiwrtancy to the limits of linear elasticity and the yield-point than to the limits of perfect elasticity and the breaking stres.s, and to emphasize the importance of dynamical tests in addition to the usual statical tests of tensile and bending strength. 
84.   Scope of the mathematical theory of elasticity. 
Nunu'riciil viiliies of the quantities that can be involved in practical problems may serve to show the smailness of the stiuins that occur in structures which are Aiund to lie safe. Examples of such values have been iven in Articles 1, 48, 71, 78. A piece of iron nr steel with a limit of linear btafiticity equal to 10^ kms per square inch, a yield-point equal to 14 tons per square inch and a Young's lundulus equal to 130U0 Imis per square inch would take, under a load of (i tons per square inch, an exteiisioti 0'(KM)46. Even if loaiied ueorly up to the yinld-poiiit the extciiaion would be small enough to require very retined means of observation. The neglect of squares and products of the strains in iron and steel structures within safe limits of loading cannot be the cause of any serious error.   The fact that for loads much 
* ilitituitunfffn (VunehAn], sxnt. {IHm}. t MUtbfiltiii'jru d/-r nirchtnitah-tfchnitehfn I'mnchsanttutt tu Brrtin, 1S88. 
• ybil. Mag. (iter. 6), ia\. 43 (IWM).   Mohr {loe. eiU) hw oitidaed Ooert. 
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below the limit of linear elasticity the elasticity of metals is very imperfect may perhaps be a more serious cause of error, since set and elastic after-working are unrepresented in the mathematical theory; but the sets that occur within the limit of linear elasticity are always extremely small. The eflFecta produced by unequal heating, with which the theory cannot deal satisfactorily, are very important in practice. Some examples of the application of the theory to questions of strength may be cited here:—By Saint-Tenant's theory of the torsion of prisms, it can be predicted that a shaft transmitting a couple by torsion is seriously weakened by the existence of a dent having a curvature approaching to that in a reentrant angle, or by the existence of a flaw parallel to the axis of the shaft By the theory of equilibrium of a mass with a spherical boundary, it can be predicted that the shear in the neighbourhood of a flaw of spherical form may be as great as twice that at a distance. The result of such theories would be that the factor of safety should be doubled for shafts transmitting a couple when such flaws may occur. Again it can be shown that, in certain cases, a load suddenly applied may cause a strain twice* as great as that produced by a gradual application of the same load, and that a load suddenly reversed may cause a strain three times as great as that produced by the gradual application of the same load. These results lead us to expect that additional factors of safety will be required for sudden applications and sudden reversals, and they suggest that these extra factors may be 2 and 3. Again, a source of weakness in structures, some parts of which are very thin bars or plates subjected to thrust, is a possible buckling of the parts. The conditions of buckling can sometimes be determined from the theory of Elastic Stability, and this theory can then be made to suggest some method of supporting the parts by stays, and the best places for them, so as to secure the greatest strength with the least expenditure of materials; but the result, at any rate in structures that may receive small permanent sets, is only a suggestion and requires to be verified by experiment. Further, as has been pointed out before, all calculations of the strength of structures rest on some result or other deduced from the mathematical theory. 
More precise indications as to the behaviour of solid bodies can be deduced from the theory when applied to obtain corrections to very exact physical measurementsf. For example, it is customary to specify the temperature at which standards of length are correct; but it appears that the effects of such changes of atmospheric pressure as actually occur are not too small to have a practical significance. As more and more accurate instruments come to be devised for measuring lengths the time is probably not far 
* ThiB point appears to have been first expressly noted hy Ponoelet ia bis Introduction H la Miainique indutlriellf, phytique et ezpirimenUile of 1839, see Todhnnter and Pearson's HUtory, vol. 1, art. 988. 
t Cf. C. Chiee, PMl. Mag. (Ser. 6), vol. 2 (1901). 
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distant when the effects produced in the length of a standard by different modes of support, will have to be taken into account Another example is afforded by the result that the cubic capacity of a vessel intended to contain liquid is increased when the liquid is put into it in consequence uf the excess of pressure in the parts of the liquid near the bottom of the vessel. Again, the bending of the de6exion-bars of m^netometers affects the measurement of magnetic force. Many of the simpler results of the mathematical theory are likely to find important applications in connexion with the improvement of measuring apparatus. 
CHAPTER V. 
EQintlBRItm OF   ISOTROnc  ELASTIC SOLID  BODIES. 
85.    Recapitulation of the general theory. 
Aa ft [irelj miliary to the further stuily of the thoiirjr of elAHtkitj nome pArta of the geuerml theory will ben he recn]iitulntfd briefly. 
(a) Stnut. The state uratrusu nt a jMiiiit of a iNxly itt ilctemiiiied when the Imctiun ■UKWH every I'louo through the puint is known. The troutiou is eatiiuated as & {one per unit of arCA. If c denotes the direction o{ the imnu&l to a plane the tractioo acron the plane ill f>i>epified by nteAnn of reolaugul«r cnmiKiucnts ,\\, T,, Z. pnrvillol to the uce« of coordinateti. The tnu:ti»n iicr<>e» the plnno thAt in noritial tu p in expHsutod in temia of ihu tmctiuiw ovtuhh pUuoH tluit nm nonna) to Uiu oxen of cMrdiiiaten by tho equaltunB 
.\V= A",cos(x, u) + A\co!i(jf, i.) + X,ooa(t, w), 
r,» y,oofl (jp, »)+ K, COS(y. !•)+ r, cos (i,»-), 
Z,^Z,c(mix, p)+^ coe{.v, r) + Z,«»{$,w). 
The quautitioB J,\,... an» oouuected hy tlte equatioun 
If^^f        ^I'^-'n -»|I^^   'l ....1 
The aix quatitiUea .V,, }\, Z,, l',, Z,, .V, ana the "cuiupoiiouts of iitresa. At uiy imint depend In general uiufi tho position of the point. 
(h) Strtta-tquations. Tu a hody in equiltbnum under body forcea ond surfaoe tractioQs tlie compotkcntti of stress Mitiafy the following eqiiatJona at e%*ery [x>int in the lK>dy :— 
■(1) 
(2) 
Their \-alaeK 
3J',    5^    3^      r   A ' 
.(3) 
In those equations ft Itt the dcnrity and {X, V, Z) the hody force per itnit of mam. 
The components of tttrcm also twtiafy certain eqiutionn at the surface of the body. If ¥ dcDotea the dtroction of the noniinl drawn oiitwardH from the hotly at any point of its mufuie and (JV. )V. Z^} deuotea the miTfoM trocUuu at the puiut, Uio valuea of the oompononta of otram at the (loint muat antixfy Uie eqiiationa (1), in which X*. •■• are written fnr A', 
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(c) ih'q^a^tment. VtvivT tho action o( the fon'tis tbs body in diiiplac«d from the cootigmtion that it would bttve if the stn^MH-ruaiiiuiiciitH were »cro throughout. If (x, y, t) denotes the position uf tt point of Ibc body in thu unstre^saod stat*, and (t+k, y+v, t-|-ir} deQOtiH ihft puttiUou uf the e<aiuc poiiii of tbu Imdy wbun uiidur the action of the forcBB, (u, v, w) dunotw tb« diHiibu.-«uiuiit, and tbo coui|Ktri<>nljt of displocoiDeQt H, », IT are functiotw of x, y, z. 
(d) Strttia. The wtrain At a point ia determined when th« exteiiHion of every linear eleiu«Dt iMuing from the iioint ia knoim, If the relative displacement it» srosU, the cxtoneiuQ of a linear olcuieDt in direction (/, m, n) \s 
<"ja/'+^,»"i-+f^*+e„i>in4-e„fi/+«^ni, (4) 
where Cn,... denote the followii^ :— 
Tfae qnootities ff„.... c^djc the "oampoDctits of strain." The q\uuititie8 «,, ^r,, ur, detemiinod by the cquationx 
Sip    Sp 
.(6) 
_ ...»       1-. ^.       w. Sn       CM 
*"'=^"5i-  ^"'=3i'a;r-   ^'=a^-^ 
3k    3w 
.(«) 
are the componetit« of a vector quactity, the "rotAtioo."   The qiiMitity & determined by the oqtution 
8w . ?» . r« 
is tlWdiktatiou." 
^-ai"''^"''^ 
.(7) 
(*) iitrtM-Mrain nlaiiom. In an claetic j»olid alightly strained from tlie iuutr««sed Btat«. the cotniKmeotfl of stroaa are linear fanctiona of the componeiito of strain. AVhen the material in iMtropic we have 
Jr,-AA+V^.    r,=AA-t-2H«w.   -z.-xa+z^^, I 
f*.=;*«i«. ^jt™/i»«. Jr,=;*^; J 
and by twlving thews we ha%*e 
.(8) 
««-jij,-.r(>;+^;)), r„=^|}-,-<r(/.+jr,)}, *r„=^.)^,-*(.io+n):. 
3(l + ,r) 
^, 
^...(^) 
.(10) 
2CX+^) 
Th* quantity £ i« "Young's modulus," the number w ia " Poift90n'« ratio." the qu&ntii^ fiis the "rigidity," the quantity X + J(», =k, ie the ■"modulus of compircswon." 
86.    Uniformly varying stress. 
. We corwidered Home ei&mplea of uniform stress in connexion with the definlUonx of E, t, etc. (Article 60). The coses ■which Are nest in order of simplicity are those in which the «trtsEi-oiim]x)nents an- lin>ear functions of the rri>ordinataH. W'a .shall rf-ctml the rcaults in regard to some inrticukr diRtributiona of 8trrfbt. 
IS4 
OISn.ACUIENT AOCOMPANTINO 
[OH. V 
(11 ;< Let the axiM of s W directed TeriioKlly iipmLnlH, let all tbe strew-oomponeiita iMc«|» /, vAoish, uid let ^j=<i/fw, wbere p tBthedeiii^ity of theho;!; and jgristheaooeloratioa dvifl tu gtii\ity, 
TW Htrvtw-oqiuttions of r<i:|uih'briiim (3) »re tnktttSed if X=0, i'^O, Z= -y. Bcik« Uiifi ifUtv tif Htrew L-»it be uiatntoiued iii a body af any fonii l)y ttn uwti woigbt [iruvidL-d that Militable tntotiotu are applied at its surfftce. Tbe traction rip|ilicd at the 8urfiftc« uuM be of amount gptcc*{s, v\ and it mimt b« diroctcd verticalW itpwftr^ Tf tbe body is a cylinder or prism of any form of orow-Mction, aud the origin ix at the lowvr end, the cylinder tx suppfirtcd by teoHJoti uriifonnly dtstributod over its upper end. If ? is the length of the cyhnder Uiis t«tifiion iu ypl, anil tlic nviultant teuHiun is equal to the wei];ht of tbe cylinder. Tlic hiwer end nod tlic L-urved Hurface aro free from traction. 
T^te strain i.i giren by the equatjond 
'-=*f •   *-= 
=#„=<•„=0. 
To find the dieplacemeot* we take tir»t the equation wliieb givea 
where k>, is a fonction of x and y.   The equAtiotiR t„=«. 
'Ogive 
and tbercfurc we must have 
3wu. 
-^-. 
where «„ aod \% are functions of ^ and y.   The equatloiui 
giTe 
■0. 
3y 
-0, 
Tbe eqoatton <^bO gives 
&i(o , 3H) 
3Sf„ 
Ttiu cqiiatioiu! containing ti^ ooii bo satitdied only by an equation of Uie form 
where a, ff, y an* constants. Tlio oquatiuns ouutoiuing v^, Vg show that m^ is a function of n, aay F^ {j/\ ami i-, is a function uf a, suy Ff{x\ and that theae fimcttona aatiafy tbe eqUiitioD 
aod Ibis eqaation requizes that r/*, (y)/cy and ?/*,{x)i'hx ahould be ooofttaobi, y' and -y say. Hence we bare 
* The work ts given al l«ngtb a< an example of nielhocl. 
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when a and $ ure coostantB.   The cooiplete ffitpreBsiuos fgr tba displacements a,ro therefore 
The t«rmfl (.■oiitoining a, ^, y, a', ff, y reprraent & ^isplAoament which would be poa&ible irj a rigid body. If the cylinder in not dinpla^ed hy rntatinn wa tatty oioit a', jS*, y. If it is not displaced UtcraUy wo may nmit a, (i.    If tbe point (0, 0, 0 i» not displaced 
Tortivally, we miut bare y— - s ^ ■    Tho displacement i» then given by tb© ©quAtione 
S   E 
»=
'=1 f (**+»^+ay-P) (11) 
Any crusH-Hectiun of tho t-ylinder in dintorted into n y)an\.\>n\nid of rcvotutiim nboiit the vertical auit of the cylinder, and the »ectioiiH nhriiik liLtarally hy aninuntH pro[iorbionA.l to Uieir distaucee from tbu (roo (lownr) end. 
{h)    A more general cow* in ohtniiied by t^iJcing 
Thia etate af strew can \>e umintaiiied in a cylinder or prism of any form of lengtb 2l Miwpeiidod in flnid of densityp' wt an to have its axis vurtiiuil and the high^Mt iw>int (0, ft, () of its axiH fixed ; Uien p is the preHsiire of the Buid at the level of the centra af gravity of the cyliuder. 
The diaplacometit may l>e shown Ui l>e given by the equations w    t-        I 
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IS 
((I)    Lot all tlte straas-compoDents ezoe[>l T, and Zg vimiiih, nud let thew Iw given by tha equAtioDS 
where r is a coDBtmit and ft is the n'gidity. 
This ntato of stxves can be nuutitained id a bar of ciroulnr section with itsaxts noiiicidinx with the nxm of t bj irouliaiw Ui{)pliud ut ita vudt* only. Tf a in tlie mdiiiM of the circle the ttnntioiiH on the tfirmiiial aectioiis are fitatically equivaleitt to coupled uf moment (iruV^ about the axis of t, no that wo ha\'o tlio itrobl«m of a round Uu* held twisted by oiipuoiiig couplee. 
Ttie dixplavemeiit may be hUowij to be given by the equations 
«--■ryi,   ff»Tir,    w-0,    (U) 
so that any nectiun ia turned iu its uwu pta.ae through an angle rs, which is ]iropurttonal to the diHtance from a fixed section.    Tlie ooitntiitit. r luoosuroN the tn-iHt of the har. 
87.    Bar bent by couples*. 
Our next example of uniformly varying stress is of very great impi>rtaiicti. We take the stress-com(jouent Zg to be equal to — ER~^x. where ^ is a constant, nml we take the remaining streas-compiinents to vaniith. If this state of stress existed within a body, in the shape of a cylinder or prism haviug its generators in the direction of the axis of x, there would be iio body  force, and   there would  be no  tractions on the cylindrical boundary. 
The resultant traction over any cross-section is of amount i \Zttij:dy \ and thi 
vanishes if the ascis of e cuincidus with the line of oontroids of the nomiai sections in the unstressed state.    We take this la be the case.    Then the bar is held iu the Kpecified state of stress by tractions over its termiiial seetioiu> only, uud the traction acroax auy t^ectiori is statically equivalent to a couple. The component of the couple about the axis of  x  vanishes.     The 
component about the axis of y is nER~^x*da:d*f, or it is EIjR^ where I is the 
moment of inertia of the aectiou about an axis through its cetitroid parallel to the axia uf y.     The component of the couple about the axis of x is 
~ER~*sti/dj:dt/, and this vanishes if the axes of x and y arc parallel to 
principal axes of inertia of the cross-sectiofns.    We shall suppose that this is the case. 
The siraiu-component are given by the equations 
* Tho theory WW tli*«D by SainUVeiuuiliii himnMBO&onTonionot 1855.   Sm InlroduetioB, footnote £0 and p. 30. 
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and tho displacement may be shown to be given by the equations 
u= JR-'(«*+ffj:»-<r^),    v = erR-^a!i/,    wr^ — R-^xz, (15) 
This example corresponds with the bending of a bar by cmtplea. The line of centroids of the cross-Bections is displaced according to the law «« J R~*tfi, so that it becomes very approximately an arc of a circle of larjje ratlins R. in the plane {so, s), which is the plane of the bending couple EI/R; the centre of the curcle is at « = -fi, « = 0. 
88. Dlscusadon of the solution for the bending of a bar by terminal couple. 
The forces appliecl at either end of the bar are statically equivalent to a couple of momenl EI/R. This couple, culled the "bending moment," is proportioual to the curvature 1/^. When the bar is bent by a given couple M the line of contmids of its cross-sections, called the "central-line," takes a curvature MiEI in the plane of the couple. The formula for the components of strain show that the linear elements of the material which, in the unstressed slate, are in the plane ^ = 0 undei^o no extension or contraction. This plane is called the "neutral plane"; it is the plane drawn through the central-line at right angles to the plane of bending. The same furmulee show that linear elements of the material which, in the unstressed state, &ra parallel to the ceotral-line arc contracted or extended according as they lie on the same side of the neutral plane as the centre of curvjtture or on the opposite side. The amount of the extension or contraction of a longitudinal linear element at a distance x from the ueotral plane is the absolute value of MxjEI or t.jR, The utress cousista of tensions aud pressures across the elements of the normal sections. It is tension at a point where the longitudinal filament passing thniugh the point is extended, and pressure at a point where the longitudinal fllnnient passing through the point \» contracted. The amount of the tension or pressure ia the absolute value of Majl, or ExlR. 
Fi«. to. 
The formiilfli for the displacement show that the cross-sections remain ^plane, but that their planes are rotated so as to pass through the centre of curvature, as shown in Figure 10.    The formula; for the displacemeot 
ISS 
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also shuw that tho shapes of the sections are changed.    If, for example, thr section is originally a i^ecCangle with boundaries given by the et^uationa 
in a plane s = y, ihetw boundaries will beeonie the curves that are given respectively by the equations 
The latter are etraight lines slightly inclined to their original directions; the former are approximately arcH of circles of radii Rla; with their planes 
parallel to the plane of {x, y), and their curvatures turned in the opposite sense to that of the line of centroids. The change of shape of the crosssections is shown in Figure 11. Tlio neutral plane, and every parHllel plane, \» iiitniined into an anticlasttc siirfrice, with ]>rtitcipal cur\-atures uf magnitudes 
> 
Fig. 18. 
R~* in the plane of (a;, r) and <rR~^ in the plane of (x, y), so that the shaptj of the bent bar is of the kind iilustinited in Figure 12, in which the fi-out face is piuallel to the piano of bending {x, e). 
Tho dintortioii uf tbu liuuiidiiig Murfacos x=±a iiiU> aiiticliuitiu HUrftCM, Sidlllita <^ v«ry exact verilkatiou hy tuoous uf the tuLorfereuue fringes wUk-b an> produMd by Uglit transmitted through a [ilftte of glass held iwraUcl and very cluac to these siufeiew of the Jwnt hnr. l_'onni* ban iiaed thm iiiotliod for ftn ei|»criinfiitiil determinatiiMi of Pou»OD'a ratio for j^Iil-w hy iiiuatui uf tht- Itending ot glwts Inm. The vnhif* obtAined wu almoat ex«oU,v I. 
* Parit, V. R., 1. 69 (IW)). Vh^ otelho^ hfit bocn uwxl fur Mnorftl niKt^sU bjr Manock. Q%t iutidt 70 (r), lootuot«. 
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I 
It is worth while to calculate tlio jwleutial energy of strain. The vahie of the Btraiuener^gy-funirtiou at any ix>iiit i» easily fouatl to Ik ^ Ey'^ilP. The i^voteiitial eiwrgj- uf Mtrain iif the port of the Imr iH-tw-orn twc iiormnl *n;tioi»* dJatAiit I Apart is i (JSffJP) I, so that the iJoU'iitiftl cncryy jier unit rvr length is J AT/A*. 
89. Saint-Venant's principle*. 
In the problem of Article 87, the tractions, of which the bending moment ElfH is the statical equivalent, are dislributad over the terminal sections in the manner of tensions and pressures on the elements of area, these tensions and pressures being proportional to the distance from the neutral plane. But the practical utility of the siolution is not confined to the case where this distribution of terminal tmction is exactly realised. The extension to other '^Mes is made by means of a principle, first definitely enunciated l>y SaintYenant, and known as the "priuciple of the elastic equivalence of statically equipollent systems of load." According to this principle, the strains thai are produced in a body by the application, to a small part of its surface, of a system of forces statically equivalent to zero force and zero couple, are of negligible magnitude iit distances which are larpe compare*! with the linear dimensions of the part. In the problem in hand, we infer that, when the length of the bar is large compared with any diawneter of its cross-section, the state of stress and strain .^et up in its interior by the terminal couple is practically independent of the distiibution of the tractions, of which the couple Is the resullant, in al] the portions of the bar except comparatively small portions near its ends. 
90. Rectangular plate bent by couples f. 
The problem solved iu Article 87 admits of generalization in another direction. A bar of rectangulai- section is a parlieular case of a brdck-shaped body; and, when two parallel faces are near together, such a body is a rectangular plate. We have therefore proved that a plate can be held, so that its faces are anttclastic surfaces, by couples applied to one pair of opposite edges, and having their axes ptirallel to those edges. The ratio of the principal curvatures is the number <r. It is clear that, by means of suitable couplfcs simultaneously applied to the other pair uf opptisite edgew, the plate can be bent into a cyliudiical form, or the ratio of curvatm-es can b« altered in any desired way. 
It is most convenient to take the faces of the plate to be given by the equations 
t=±h, 
BO that the Uiickness is 2h. The coordinate z thus takes the place of the coordinati^ which we caUed x in the case of the bar. The re'pnsite etressCpniponents are Xx and Yy, and both are proportional to the coordinate t.   If 
* Stateil in the ntemoir on TorBion of 1855. t Kelvin «ucl T«it, .Vnf. Phil, Part II, pp. 2G&, 366. L. E. 9 
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we assume that all the stress-components except X^ and Fy vanish, and tint these are given by the equations 
X» = Eaz,    Yy = E^t,   (16) 
where a and ^ are constants, we tind that the displacement is given bj 
the equations 
u = (o - tr^) xz,    v = {0- (TO) yz, \ 
w. i(a-<r^)^-i(^-o-a)y"-io-(a + ^)«»J   ^*'' 
Hence any sur&ce which in the unstrained state was parallel to the boes becomes curved so that the curvatures in tlie planes of (jr, z) and (y, x) are respectively o-yS — a and era — /3. These are the principal curvatures of the surface. If these quantities are positive, the corresponding centres of curvature lie in the direction in which z is positive. Let Ri and i2, be the ladii of curvature so that 
then 
The state of curvature expressed by i2, and JJ, is maintained by couples 
applied to the edges.   The couple per unit of length, applied to that edge 
X = const, for which x has the greater value, has its axis parallel to the axis 
of y, and its amount is 
/•*   ^  ,       ....      2   Eh^  fl      <r\ j   zX.dz, y^hich ,s-3^_^-,(-^^ + -^). 
An equal and opposite couple must be applied to the opposite edge.    The coiTCsponding couple for the other pair of edges is given by 
J^^-r},rf.. which IS -^-^(.^- + -^-^ The value of the atraiii-eiiergj'-fuuctioo at any point can l»e shown without difficulty 
and the iwteiitial energj' of the licnt plate ix:r unit of are)v is 
It is noteworthy that this cxprewjion contains the sum and the product of the principal curvatures. 
91.    Equations of equilibrium in terms of displacements. 
In the equations of type 
90. 91] 
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we substitute for the normal stress-components Xx, ■■■ such expressions as \A + 2fj.du(dx, and for the tangential stress-components Yj,... such expressions as fi {dwjdy + dvjdz) ; and we thus obtain three equations of the type 
(\ + fi) ~ + /iV=u + pX = 0, 
(19) 
where 
. _ 9w    9«     9j«     ra _ ^ 4. ^* a. -?1 dx    dy    dz ' da?    9y^    dz*' 
.(20) 
These equations may be written in a compact form 
(\ + ^)(l,|.^)A+/.Vn«,!-,«;)4-/>(Z,r,Z) = 0. 
If we introduce the rotation 
(bt^, wy, w^) = i curl (u, V, w), 
_ 1 fdio    dv    9w    dw    dv    Zu\ " 2 V9j/ ~ 92'  92 ~ 9i '   9^ ~ ay/' and make use of the identity 
VH»,i;,i.) = (i.   1^,   ^)A-2curl(^.. t=r„«r,). 
the above equations (20) take the form 
(X + 2/.)(|^,  g^,  ^)A-2,.curl(i=r„i.r„«r,) + p(X,Z.Z) = 0....(21) 
We may note that the equations of small motion (Article 54) can be expressed in either of the forms 
(\ + M)(9^.|, 9^) A + ;.VH«.t;.«;)+p(X.7,Z) = p^,(u,«,«;). 
or 
(\ + 2/.) Q~^, g|, 1^) A - 2/x curl {^,, ^„ m,) + p (A', Y,Z) = p g- (i*. t), w). 
(22) 
The traction (X,, Y,, Zy) across a plane of which the normal is in the direction v, is given by formulae of the type 
A\ = cos(^..)(xA + 2;.|^) + cos(y..)^(| + ^)+cos(2,.)/.(^ + ^); 
anil this may be written in either of the forms 
A, = XAcos(x, v)-^ft j^- +cos(ic, J/) r-+ cos (y, i')^ + co8(2. w)^K...(23) 
or X, = \A cos {x, p) + 2/t 
where 
aw 
= ■oTy cos (z, v) + BT, cos {y, v) 
du .     ^du ,      - 9m ,     , 9m 
g- = cos (x, v)^ + COS (y, I') 9^ + cos {z, v) 
dz' 
,..-(24) 
9—2 
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If V is the normAl Co the bounding surface drawn outwards hrom tbebodv. and the values of A, du'dx,... are calculated at a point on the surface, thinght-hand members of (23) and the similar expressions reprej^ut th« cumpooent tractious per unit area exerted upon the body across the surface. 
92.    EquiUbrlmn onder surface tractlona only. 
We record here some results deducibtc from the displaccmcut-equatifjoa 
('^ + ''>(4'  !■ a7)A + MV-(«,r,..) = 0 (25) 
(i)   Bv diftereiitiatin)! the left-hand memben of these equatiotu with mi|iect b> ^, ^ *, and adding the reaults, we find 
(X + 2h)v»4-0, f»l 
WD thai ^ is au Uftnnonic (uDcUon, Le. a fuiictioa Mtufytug LapUce's equatttm, At kD points xirithiD the body. 
(U)   It Tullovra from this and (S&) that each of «, r, tr latUrieB the equation 
r'*=o   (47) 
At all pointa within the body.    AU oomponenta of strain and oT atre&a idso satisfy tbii equatioa. i 
(iii) Again, by differentintin^ the left-hand member of the third of eqiiatinns {2a> with resjiect to ^, and tliat of the Moond with respect to *, aud subtravtiiig the reeulte, we find 
V*w,-0.      <S8] 
Similai' equations arc satisfied by x, and v,, »o that each of the components oT tbs'] 
rotation ia an horoiomc function at all poibUs withiu the body. 
(iv) The strcss-compoacnts satisfy a system of partial diflerential equations. In order to obtain them it is convenient to introduce a quaolilr B, the sum of the principal stresses at any point; we have 
= (3X + 2m)A; (29) 
tfauft S is an harmonic function at all points within the body, Further we find* 
=.V.^ = -.(. + .)^. 
or 
V«X,+ 
2(X + /t)g^ 3\ + 2/i dx^' 
0. 
.(30) 
In like manner we find 
y     2(X + ^)^_ 
Similar formulae can  be  obtained   for V'F,, V%, V»2,, ^*X,.     The ooefflcient 2(\ + ^)/(3X + 2/i) is 1/(1 4 ff). 
* The equatloofl of tyyea (90) and (31) were giveu by Beltnmi, Itouu, Att. Lincri Stoi. (Ser.S). (.1(1892). 
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(t) As an exainple of Uic iipplication of tbeeo furmulffi, we may observe that HAxn^K'n BtraBB-Hyittcii], dascribod in (vi; of Artivla 63, cjuuiot occur in an tKotro]>ic mlid body froe from Iho action of body forces and slightly strained from a rfata of no ntr»a*. This appe&n at onco on obscniiig that J',+ ]',+2f,, ab given for tliat aysteiu, is not on barmonic fnnctton. 
93.   VariotiB methods and results. 
(i) The- uquatiuUKor typue (3i)) tiiid (31} iiiJi.yiiL'"i|iDdi'>i:[uecil| from tboxtross-vquntiona (3) and the equuUotui of cotuijatibility of the .-itrmn-uoinpowautii (Artick 17). 
Wo have, for example, Thus the equation 
bocuines 
Now luid so that 
We have theroforo 
"^ dx     rt ' 
Si ™      ?*■       cif ' 
ctfT,   gr,   ^^, 
ex*      cy*       rt' 
(i+.)[v'e-v.X.-g]-.(v.e-||).o, 
on adding the three equations of this type, we find that V'e mu»t ranisb, and the ktiori reduces to 
(l+o-)V»-T,+ V^==0.    {i9bi») 
We may m like wanner deduce equation (31) from the eqitatiuu 
cyp*     ex \     ex      ojf      c« / 
(ii)   It may bo ahowti^ tbut the BtresB-functions y,, xji Xs *^^ Artiulfi 66 satisiy three oqiiations of the t>i>e 
('+"^'C^'+'^)^g-«^ "«' 
and three etjuationA of the type 
^[(I+OV«;f,-e] = 0, 
where e ta written for 
^(x,+..+x.)-'a?-"y?-,|* 
fy» 
.(33) .(34) 
* Minehin, Static*, Srd edn. Oxford, 1886, vol. 2, Ch. 16. t Miclifill, iMulon Math. Sac. Ptw., vol. SI (1900), p. IIW. X Ihbttisoa, Malheiaaticaljrhtory of Elasticitjf, London, 16d7. 
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It ma/ be tibuwn also that the strcm fonctiom ^, ifr„ ^fjct the nine Article mtufy three eqaaUoDS uf the tvpe 
('*"')''|&+sl-»- "" 
and three e(|imtHitu nf the typo 
vhen e i« writtai for 
<-'-'l^-^-^)*»5l-'^— **« 
.(»') 
(ui)    It noAj' be shown * also that, when there ate bodj- foroes, the atroBaoomponenta < ntiafy oquatioQS of the t>'pe8 
V»J*,+ 
•nd 
m 
^'^'^ihw 
iz   dr 
-P^-'-c 
The eqttations of these two tjpes with the eqiutiona (3) ore a complete syatom oS 
equations Ftaciflfied l>y tbe stress-cotnpnnanta. 
94.    Plane strain and plane etress. 
States of plane stmiD and of plaac stress can be maintained id bodu of cylindrical form by suitable forces. We take the generators of the cylindrical bounding surtoce to be parallel to the axis of ;, and suppose that the terminal sections arc at right angles to this axis. The body forces, if any, must be at right augleii to this axi^i. When the lengths of the generators are small in comparison with the linear dimensions of the cross-section the body becomes a pl<iU and the lenniual sectioiuj are its/aces. 
In a state of plane strain, the displacements u, v are functions of x. y only and the diBplacemenl w vanishes (Article \5). Alt the components of strain and of stress are independent of z: the stress-components Zg. V, vanish, and the strain-coni[)onent« Cn, e^, tu vanish. The stress-component Zt docs not in general vanish. Thus the maintenance of a state of plane strain requires the application of tension or pressure, over-the terminal sections, adjusted so as to keep constant the lengths of all the longitudinal filaments. 
Without introducing any additional complication, wo may allow for an rmt/ornt extension or contraction of all longitudinal filaments, by taking w to be equal to ez, where e is constant. The stress-components are then expressed by the equations 
dv 
JC.-(X+2m)'^^X^+«).   F. 
0. 
bv, 
r..(x+2.)|i+x(^^,), z. 
^i/ 
ru . 5b ' 
2»"=(X + 2;*)e + X E + 
,e* ' dyj' 
MichtU, loe, eil. 
r9v    8u> 
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The fuDCtioas «, i' are to be dctennined by solving the equations of equilibrium. Wc shdl discuss the theory of plane strain more fully ia Chapter tx. 
In & state of planv stress parallel to the plane of (j;, y) the stiemcomponpnls Z,, Y., Z^ vanish, but the displawmenifl u, v, w are not in general independent of s. In particular the strain-component e^ does not vanish, and in general it is not constant, but we have 
.(40) 
I I 
The maintenance, in a plate, of a state of plane stress does not require the application of traction to the faces )if the plate, hut it requires the body forcfs and tractions at the edge to be distributed in certain special ways. Wo shall discuss the theory more fully in Chapter rx. 
An important generalization* can be made by fJiippoiAng that the normal tmctioii Zt vanishes throughout the plate, but that the tangential tractions Zx, Y, vanish at the faces s= ±h only. If the plate is thin the determination of the average values of the components of displacement, strain and stress taken over tht thickness of the plate may lead to knowledge nearly as useful as that of the actual values at each point. We denote these average values by n,... «», ... A%,... so that we have for example 
«^(2ft)-'f  udz (41) 
J -h 
We int-egrate both members of the equations of equilibrium over the thickness of the plate, and observe that Zg and 1'. vanish at the faces. We thus find that, if there are no body forces, the average stress-components Xx> Xp,  Ky satisfy the equations 
3^ + ^^y = 0 
9x.^an^^. 
(42) 
X,= 
Since Zt vanishes equations (40) hold, and it follows that the average diftnlacements S, if are cotniected with the average ntret^s-components A'^, X^, I'j, 
SKjuations I 
\ + tfl \cx 
-'-+ayJ + 2;.^' 
^-^4- \ 
.(43) 
X„ = fj. 
dv     9u 
Statesof stress such as Are here described will be termed states of "geucraliied plane atresa" 
* Ct L. M. G. Ftloa, PhiL Tram. Soj/. Soe. (Ser. A), toI. 301 (1909}. 
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95.   Bending of narrow rectangular beam by terminal load. 
A simple example of the generalized type of plane stress, descHbetl tu Article !)4. is afforded by a beam of rectangular section aud small breadtb(2A). beot by forces wbioti act in directions parallel to the plane cantaining cbe lenf^ih aud the depth. We shall take the plane of (t, y) to be the mid-pt«o« of the beam (parallel to length and depth >; aud. to fix ideas, we shalt regard the beam as horizontal iti the uustresse<l sUite. The top and bottom surfaoe* of the beam will be given by y^ + c, so that 2c is the depth of the beam, an) we shall denote the length of the beam by l. We bIuiU take the origin at one end, ainl consider that end to be fixed. 
From the investigation in Article 87, we know a state of stress in the beam, given by Xg'^ — EyjH', and we know that the beatn can bo belJ in this state by terminal couples of moment ^hc^EjR about axes parallel to the axis of s. The centraULine of the beam is bent into an arc of a circle of radius B. The traction across any section of the beam is then Rlattcftll)' equivalent to a couple, the Mime for all sections, and e^iual to the termiual couple, or bunding moment. 
w Let us now suppose that the beam 
is bent by a load \V applied at the end x = l as in Fig. 13. This force cannot be balanced by a couple at any section, but the traction across any section is equivalent to a force IF and a couple of moment W (I — x). The stress-system is therefore not ao simple as in the case of bending W by couples. The couple of moment W (t — x) could be balanced by tractions A%. given by the equation 
Fig. 13. 
a 
'^■' = -4^"^<'-->y> 
and the average traction X, across the breadth would be the same as A",. We seek to combine with this traction X, a taugential traction Xy, bo that the load W may be equilibrated. The conditions to be satisfied by a, are the following:— 
(i)   Xjf must satisfy the equations of etjuilibriuiu 
(ii)   Xg must vanish when y=±c, (iii)   2A I    Xfdy must be equal te W. 
dXx ^ »A, ^ Q 
15] BY TERMINAL LOAU ^^^^^H 137 
Phese are all satisfied by putting 
lit follows that the load W can be equilibrated by tractions Xg and Xg, without Fy, provided that the terminal tractions, of which ir is the resultant, are distributed over the end m as to be firuportioiial to c' — yK As in Article 80, the distribution of the load is important near the eitds only, it' the length of the beam is great iu comparison with its depth. 
We mav «how that a system of a^'erage ilupUcemeuto wliiub would correspond with »y«tem of average stresses is given by the oquations 
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        .(46) 
Sini'e these are deilticeU from kuown stresa-cumponeiits a displacemeDt possible In a rigid body might be added, ao oa to Miti«fy conditioiia i>f fixity At the origio. 
Tbeae c-oncliisiouH iiiiiy be tiuiJi]HknHl with Ukim) found iu the uutu uf bcndti^; by ouufiloK (Article 88).    We note the fc^owiug results :— 
(i)    Tlio ten-tioT) ]»er unit arna Jicrf».i« the unmial sections {A\) is ooiincoted with the bending luuiuont, H'(^ —r), by tUc uquittion 
I teiisii-'D = - (liiudiiig aioinent) {^//) 
where y is distance ^m the neutral plane, and / is the appro^inate moment of inertia. 
(ii)   The curvature {iPvJd.rr'jy^. is    '. , -,.^ -^rP I »" that we have the equation 
eun'sture=(bending momcnt)/(Jf/). 
■ (iii)   The surfiwie nf iwrticlea which, in the inwti-ossod stjite, is a normal section doea 
■ not continue to cut at right angles the line of piU'tiL-les wlucti, in the »ame state, i» the line of ocntrolds of norma) Meotions. The cosine of the angle at which they cut when the beam is bent is (Ppj'Sr+f^yf**;)^.^, and this is 3 ir/8^c. 
(iv)    The nnrnia] sections do nut reiiiJiiii plu.uo, but uru dlstorUul into ciu-vcd surfitccM. A line of particles which,, in the unstirs-'WHl rttatu, is vertical bvuumcs a curved line, of 
'normal of central lino 
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GKXCKAL  SQVAT10X3 
[ca.v 
witidi tl* cqatfion ■ dctenDined b/ tiie tttiwinn tar i aa * ftiactkn of $ wfasi x it rf^*r*    Tin tx^aiaim m of the Ibroi J 
and tbe i-unjuiunjiiig <liipfa<»iiimt cnci«rt» of b pvt «y wfaadi dow not altar tW |ilaa«M« of Skm meAm combuwd vtth * put wbkli da«*. U ve cM»truct th« eom v^aod (Jaeetl villi ita origin U=0,y=0) tn tfaaatniDed ceotzal-liDe, aad it« taoful at tlw cngia aloi^ tk* uagnk to Uie line of partklca which, in tbe omtiuuBtiJ staia, xt ttflkal, tlw cum winbethelocnaoftbeivpaTtklei tDtbenruoedstatc 
Tt%. \\ thomh the TortD into which an imttanj rertical fiUowot is heot and tb« rdatin ■II—Itim of tk)€ central tangent of thU line and tb« nonoa] of the straiDed central-line. 
96. Bqtuttloiu referred to orthogonal corviUnear coordinates. 
Tbf CfinuLlftii." -siicti an (21) espre^'^t^l in tcnns uf rlilatatiuii aurl rotation can be tmnsfonncd immerliat«l>' by Doucing the vectorial character of tht 
termn. In fact the tenua (^ , ^ • a ) ^ ^^^^ ^ '^^^ ^'^ " ^^^ groHietit of A." and then tbe etioation^ (22) may be read 
|\ -f 2/a) (gradient of A) — 2^ {curl of v) 
+ p (btKjy force) = p (acceleration) (47) 
where v stand-s temporarily for the rotation («,, w,, «r,>, and the factors such as X + 2/4. are scalar. I 
Now tbe gradient of A is the vector of which the cotupoaent, in any direction, m the rate of increase of A per unit of length in ihat direction ; and the components of this vector, in the directions of the nonuaU to three orthogonal surfaces a. /3, y (Article 19). are accordingly 
^ ?A     ^ SA     ^ 3A Ca'     'off'       dy' 
We have already transformed the upemtiou curl, and tbe components of rotation, as well aa the dilatation (Article 21); and we may therefore regaid A and v,, v^, o^ na known in tc-rniR of the diRplaccnient. The O()uation (47) IN thi.>n tHpiivHlont to three of the form 
(x+2M)Kf, - w.i^ f^')+w. I(^') +/.^.=. ^- m ^ 
when? Ft. Fg, Fy are, as in Article 58, the components of the body force in the directions of the normals to tbe three surfaoea 
97. Polar coordinates. 1 An an eiampte of tbe equation* (46) wo may Mbow that the eqaatinns of cquililtrtuta 
under no budy forces when referred to ]iolnr coordiuatoB take tlio tonoM 
(X+2,.)«ntf^-2Jfe 
-j^(rw4«ntf)J=0, {X+S^)r«in4^-iM|4(t„^«n<)-^}-0. 
.- (49) 
95-98] 
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I 
We loajr show ulw) ihiil the nulial <M)ni{>(>neLits of dutplaoomcut nnd rotntion and tho dilatation aatutTy the eriuatioitx 
but tlmt aninu m>IiLtiuiLS (if thcae ocjiintione cuircMpoiid n-ith stAt<!8 of stnMH tbat would require body force for tlifir ui.iiuteuanco*. 
96.    Radial displacementf. 
The simplest «i>ijlic»tions of poUr coordinates relate to problem* involviug purely ndlll Hisplacements. Wc supiwuse that the dhp]Acemcnt« v§, 1/4 vanish, iind we ■nrite U in place of Ur-   Then we find frDiii tho formultc at Articles 2S and 06 the following r&sttlts :— 
(i)   The ati-aiti-ooi»iKinci)t« arc given by 
r 
''«=*** " f '      'i*°* V'r*' 
•a 
(il)   Tho dilatutiou aud rotatiun are given by 
W_ = W.^IFj 
=0. 
(iii)   The cftECKu-couipoiieiits are given hy 
60 
*'* = >.^^+20+*') ^'. 
I = <^ = rtf = 0. 
(iv)   Tho general oqiiati<m of equilibrium, lujder radial bodj force Jt, ia 
(v)   U /t = Q, tho cotoiilotc priDittivo ofthi; cquntioti just writlaii is 
where i( and B am ftrbitrArj" constants. The first term corresponds with the problem of wmipreseioii by uniform normal pressure [Article 70 (ff)]. The complete priniitive cannot ropnatetit a dis]>lacoment in a solid body coataiiiing the origin of r. Tho origin must either Iw outside the Ujdy ur inside a canty within tho body. 
(ri)    The .solution iu (v) may bo adapteil to tlie cane of a. shell bounded by cuneentric aphcncal aurfiuiui, anil hold straiiieil hy internal and estenml preasiure.    Wo must havo 
(X + V)^^+2X^ - {'J' ''■*"'" '■^'^' 
•/)j when r=p,, 
where /^ in Uie presHure at the Kxteriui.! l»ovtndary (f=io), and p^ in tho pressure at the iiitcnitd boundary ('•-'•,}-    We aUuuld find 
t'=. 
1 
The radial praomre at any point is 
1 WCpi-;^) 1 
r*" 
^^^P Utohell, London ifath. Soc. Pnc. vol. 32 (lIKtL), p. ii. 
+ Most of the rasolta given iu this Article are due to lAxai, Lee<Hi$ mr U th4ori€...iU ritsMteiti, Parifl 185S. 
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RADIAL STRAIN  IN 
[CH. V 
and the teosioo in any direction at right angles to the radius is 
In case ^=0, the greatest tension is the superficial tension at the inner surface, of amount hPi (V+2ri')/(r(,'-ri'); and the greatest extension is the extension at right angles to the radius at the inner surface, of amount 
(vii)    If in the general equation of (iv)id= —gr/rQ, where gia constant, the surface r = ru is free from traction, and the sphere is complete up to the centre, we find 
t'=-A 
1   9P^o'' /5\ + Qfi 
-$)• 
This corresponds with the problem of a sphere held strained by the mutual gravitation of its parts. It ia noteworthy that the radial strain is contraction within the surface rtr{,V{(3-''')/(3 + 3ff)}, but it is extenMon outside this surface. 
The application of this result to the case of the Earth ia beset by the serious difficulty which has been pointed out in Article 75. 
99.    Displacement Bymmetrical about an axis. 
The conditions that the displacement may take place in planes through an axis, and be the same in all such planes, would be expressed, by reference to cylindrical coordinates r, 9, z, by the equations 
It will be convenient to write U for Ur, and w for u,. The strain-components are then expressed by the equations 
_dU ^' dr' 
r 
e„ = 
.(50) 
dU    dw . 
The cubical dilatation and the rotation are expressed by the equations 
It will be convenient to write « for Wj.   The equations of motion in terms of displacements take the forms 
(K+2^)f^~^^-^^(r^) + pF,= pf,; 
and the stress-equations of equilibrium take the forms 
drr    drz    rr — 66       „     » + — +—-—+ /3fr = 0, 
■(52) 
dr      dz 
drz    dzz     rz       rt     n dr      dz      r     ^ 
.(53) 
08-100] 
CIROULAH CYUNDEB 
141 
In case w = ez, where e is constant, and 3 Uldz = 0, we havo a state of plane [Strain, with aii uniform longitudinal  extansiuii superposed.    In this case 
)rt = 0.    In case re, rz. Ft vanish, we have a state of plane stress. 
100.    Tube under pressure. 
In the case of plane strain, under no body forces, the displacement  U satisfies the equation 
[ of which the complete primitive is of the form 
ff=.-tr + J?/r.    (.56) 
We may adapt this ablution to the problem of a cylindrical tube under lal and external pressure, and we may allow for an iinifonn longitudinal jnsion e.    With a notation Himilar to that in (vi) of Article 98, we should [find for the stres-s-components 
r/ - r, 
>. + /*  n'-n" x + fb    * ' 
.{56) 
and for the confitauts A and B in {h5) 
The constant e may be adjusted so that the length is maintained constant; then e = 0, and there is longitudinal tension zz of antount 
X + >*    n' - r,» It may also be adjusted so that there is no longitudinaE  ten.slon:  then xf ~0 and 
/*(3x"+2^)(r(,*-r,')' ^ When p^ vanishes, and s is not too great, the greatest tension is the circumferential tension, B9-, at the inner surface, r = r,, and its amount Ja 
^ P,(n« + n')/(r„«-r/). 
The greatest extension is the circumferential extenMon, Cg^, at the same surface. 
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ujkOUL vnujx n 
.^58) 
If a closed eyVtadiical Tend it under tuteraal fmiiwii f% sad pressure /*,, the re«lUflt triwinti r(r^-r^)ix mnrt babaoe the prciisuK uu the i^ndu, and ve must Uienfore have tbe etitsalioa 
»(r.> - r,«; « =* IT (r,-7»| - r*f^\ 
Thw «ijuattoii givM for « the iralue* 
3X + 2^   r/-r,» 
If we assamc that the ends of the rewel are plaue. and n^eci the alteratioe of their shape under pressure, the volonie of the vessel will be iDcreaaed hy TTT,!, («r, + 21',). where /, deootes the length of the inside of the CTlindcr. and Ui IB the value of t/" at r = r,.    With the above vahie of e thia is 
Tn like inminer. if we denote by /„ the lenj^th of the tnitKide of the cylinderJ and noglect the change of volume of the ends, the volume within the est boundary of the vessol will be increased by 
irro% 
.<60) 
TTie quantity /„ differs fmm /, by the sum of the thicknesses of the endi lu tho case of a long cyliudcr this difference is uul in portent. The const 3/(3\-)- 2/t) IB 1/^', the reciprocal of the modnlos of compression. When tl difference botwoen l„ and I, is neglected, tho result accords with a more general re&ultf, which can be proved for a closed vessel of any form under intemt and external presaure, viz. if V, nud V„ are the internal and external volumes il the unstrened state, then V„— T, is increased by the amount {piV, — PfT'^o)/' when internal and external pressures p,, /», are applied. In obtaining tl results (59) and (60) we have not (akt^n proper account of the action of thj enda of tho cylinder, for we have asi-umed that these enda are stretched in their own pluttcs so as to fit the distended cylinder, nnd wc have neglected the changi'8 of shape m»\ volume of the ttmls; further, we have supjwsed that tbo action of the ondtt upon the walls of the vessel is equivalent to a teosion uuiformly ilistrihuted nver the thickness of the wallf>. The results will provido II giioil tipproximtLtioii if the length of the cylinder i.s great in comparison with its radii and if the walls are very thin. 
' The pmblaiii liiui Iwo illaoiipaed hy num«rouB wrltert trclodfn^ IjATdA, Uk. elt, ante p. 12 ll li )m|iOTlAlit tn Itw U)vor> of tbo pinEOnicler. Ct. Poynting and TIioiukou. Properlia o/Uattt London 1003, p. IIA. Tlie Tiut tli*t c (t^pend« on llr(s\-f ]«<} %ni not on Miy otli«r elnat eoMUal bu boon uIiUmcI fur llie d«ttnnlnaUon of k by A. U&lJoefc, i*fne. Itoy. See. Imtda vol. T4 {Vmt). 
t Um Ubitjit*! vn, iufn. 
100-102J 
CIBfrULAn OYLlKDEll 
U3 
101.    Application to gun-construction. 
In equations (56), the htre«R-«iniiM>rientA rr «firl fffi ju-e expressed hy formulw of tUo type 
rr^A
i 
^^=-1+^, 
[ external jircsiurea. We have therefore a solution of tlie Ktre»H-cqiiation8 in ii tube under intfrtial nnci ext^nial prawure which Ls HpjtIicaUle in i>ther ca-nes liesido* the caae where the Diaterial woulU, in the abHence of the presfliiren, l»e iti the unatrenH«d iAn.UK The Miliitioii has boeti Ukkun to \>v a\>[AKUi\']o to atatcH of initial ntreas, an<) haa been »i>)t!i(^ to the theory i)f the conntructioti nf catuiuii'. At mm time t»iiiion were coiintriUitcU in thi3 form of ft aeridft of tubes, each tule being hejited no that it rauld nlip over tlie cioxl intcriiir tube ; tb« outor tub« contracted b^ cooling' and exerted pretmure ou tJie tuner. OnuQun no oonstruoted were found to be eti-ongcr than aiutjlc tiibc» of the wtuie tliickiieiv*. If, for ciAmple, we talcp the mfio of twn tu>>M between which there is a prwwure P, and aupp>Hie r* k) be the radius of the oomiiioti Murfaw, the initial stress may be tAkeu to be given by tl>e equations 
fT = 
-P'^^A:!^ 
and 
66=P 
86=-P 
S.     (f>r>n)L 
Tbe additional filroHi whtni the ouiupnuiid tube is Hiihjected to interna] pressxire p may bo taken to be given by tbe equutians 
^ r ' r,?~r* 
00
V V+tJi 
'Pi^il^ 
rft'-ri 
J' 
Tbe diminution of tbe hoop tension 90 at the inner aiirfaoe r=r| may be taken aa an index of tbe inurea^wd streuHth of the c-ouipuund tube. 
I       102.   Rotating cylinderf. 
An csiuiiplp (if cqiiatiuiiFt of tnotioii is atlbnled by a rotating cylinder.    li» DquatioQs (52) we liavo to put/r= -«>r, where at is the wigular velocity. 
The equatioDs for the diaplacetnent» are 
U     Tbcc^ 
<^-^)^(r 
pf 
1/      3U!\ ft   /(lU      &»\ , 
(*^ 
<^-v)^(^.^.|0-4(f-^^.(^-^)=.J 
■(61) 
witb the conditions 
I 
»«=0 when »■«-« or r=a', n=a=^0 when z^-hf. 
Tbu cylindrical buujiditig >>tirfaco in hera taken to be r=ii, and it iti anp^tiufcd that there IH ai) ailc-holo given by r^a'; the temiiiml Me<Jtion!i are taken to be given by (= +/, so 
rt the cyliiidor is a ahaft. of length il,, or a disk of tJiiuknetw 3t. • A. G. Greenhil], \iUHrf. vol. 42 (ISW).    Cf. Boltimntin. H'itu titnchtc, M. B9 (1870). + Hoe f^pvn by C. Chrou in Cambrid'ji: Phil. Soe. I'tkic, \oL 7 (1H91, 18W(), pp. 801. 28a. The problem hmH been discusiM'd previouily by ^eveial wrilorii fttuonm Ti'bom Uaxw«Il {he. cit. Article i7), ami HopkinEon, ilt*t. of Math. (Ser. 'i), vol. 'i (1871) may bo mentianed. 
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        14-4 BOTATING SHAFT ^^^V [OLT 
Com (a).   Rotathtg tk<i^ 
An appmsimate solufinii can Le olAaiiiwI in tho oaa- of » lunj; iha/l, bjr tralini| U» prublfuii OM Olio of jtlarse Htmiii, with an allawiuico fur iiuifiirm lun^itndinAl ettctMoa*. We regard the cylinder as complete, i.e. without an axle-bulo ; and then the ap[«<ai3)ii<* Koliition »atigti(u the eqiutluiui 
rjEiO throughaiit, 
rrs»0 when r='j, 
but it doos not satisfy .-r=n whoa r<»±/.    Tho untforni lotigitttdinsl oxtonaioii ' be ai^'nstod so that the tractions a on the cuds shall bavo no statical nwultaat, iM, 
j   «rrfr—0 ; 
^ud then the solution rcpresentB the HtAt« of the shaft with eiifficiont ezsctiM» over ils iter part of the length, but is directive near tb* etid^.    [<'f. Article 89.] 
We «!mll 8ta.te the rcsultH tii terms of E and *.    Wo should 6nd 
C^Jr^'^jf.(^±^^0^-l      «=« (U) 
HA 1 — ff 
where tho crnistiuita A and e are given by the equations 
^^T&'T^'    ' 2E   -W 
The BtnMK-otuiiponents are ^ivcn by tho o([uat.iaiia 
8           1-^'                 8   \l-<T           l-<r      ;•[ -   «,'p(a'-2i-')   g I  '^^ 
Tnsteatd of nmldtig the resultAnt longitudinal tension Ttinish, vm mixht suijpu^c timi the t«Q(uun is ndjunted so tlmt the length is tnaintained constant.   Then ve should hai 
■"°'   -•" -fCw   —y-^        •    <"*> 
ihv arsi two of equations (64) would &ti]l hold, and tbc longitudinal tenmon would given b^* tbo equation 
^■."Mi-.y"'-^-^ _^ ^^j 
(Sue (6).    Rotating dul: 
An aii|)r«)xim»te solution caji be obtained in the case of n thiu disk, bjr trMtinff' the problem tis one of [ilaiie stress. If the disk is Doai|)lele, lli« appivxiiuatc Bolution satistleB the eqiuttions tt^t), r:«0 througbont, so that the ^lanc faces of tho disk are fk'ee tmrn traction; but it does not (Mitisfy the condition n-==0 wh«n r=a.    Instead of this it 
makes |    rrds mni^h nt r=<t, eo that tbc resultant mdlol tension on any |)ortion nf 
tho rim between the two piano faces vanithcs*; and it reprcscnto the state of tho disk in tho puis that are noit too near the edge. H 
* A small anpplftini>ntAry di«plafi«iii«nt eoTTcspondiog with traction - rr at th« «Agt ■nrfoos and zero traotion ori>T thu iilaiic faces would Iw ruiuired (or the ooinjilete solution of tlio probloca. See K paper by F. Furfcr in DHbiin, Tram. R. Iri*h Acad,, vol. S3 (l{Ht2]. 
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III this case ^, as a function of r, satieiieB the equation 
^^^(^-?)=-~v (-) 
" " \+i,.\^ '^7;'   '^" " "&' ^^^' 
from which we may deduce the equation 
(69) 
and we also have 
These equations, with the condition that 
/     rrdz vani 
anishes when r=ay determine U 
and u), apart from a displacement which would be possible in a rigid body; and we may impose the conditions that U and w vanish at the origin (r = 0, <=0), and that 2w, which is equal to dUfbz -dir/dr, also vanishes there. We should then find that U, w are given by the equations 
8£ 
(70) 
from these equations we should deduce the following expressions for the stress-components :— 
.(71) 
/'
O O I — (T 
When there is a circular axle-hole of radius a' we have the additional condition that rTcU=0 when r=a', but now the displacement may involve terms which would be 
infinite at the axis.    We should obtain the complete solution by adding to the above expressions for U and w terms £" and w', given by the equations 
(72) 
6" = ^^'-(3+.)[a-.)a'« + (l+<r)">^.] 
w = -'^l^.{^ + <r)^, I 
and these displacements correspond with additional stresxes given by the equations 
;?.!!^(3+.)(a'»-"'«").      r0 = ^iS+<r)(a-+^y,   (73) 
these are to be added to the expressions given in (71) for rr and B6. 
L. B. 
10 
I 
CHArn-ER VI. 
TSQUIWBRIUM  OF ^OLOTROl'IO ELASTIC SOLID BODIES. 
103.   Symmetry of Btmctore. 
The depcDdciicc of the stress-straio relations (25) of Article 72 upon the direclions of the axes of reference haii been pointed out in Article 68.    The relations are simplitied when the material exhibits certain kinds of ftymmetr7, and the axes of refcrcucc- are suitably chosen.    It is necessary to explain the geometrical chamctei-s uf the kiud^ of symmetry that are observed il^| various   materials.     The nature  of  the  ceolotmpy of the  material   is   not completely determijied  by its ftostic behaviour aloue.    The  material may be teoloti-opic iu regard to other physical actions, e.g. the refraction of light If, iu an leolotropic body, two lines can be finiml, relatively to which all the physical chamcterH of the material are the same, such lines are said to be *'equivalent."    DitTerent materials may bo distinguished by the distributions in them of equivalent lines.    For the present, wc shall confine uur attcutiou to the case of honiogeneous raaterialB, for which pai-allol lines in like aensea^ arc ei]iiiva]ent; and we have then to consider the distribution of equivalenliV lines meeting in a point.    For some purposes it is important tu observe thai oppositely directed lines are not always equivalent.    When certain crystalti are undergoing changes of temperature, opposite  ends of particular axes become oppositely electrized;   this is the phenomenun of pi/ro-eiectricityj When certain crystals are compressed between  parallel planes, which are'l at  right angles to  particular axes, opposite ends of these axes become i oppositely electrified;  this is  the  phenomenon  o( pieeo-eUctricity*.    WeJ accordingly consider the properties of a material relative to rays or directiont of lines going out  from a point;  and we  determine  the  nature of the symrootr^' of a material by the distribution in it ot equivalent directiuns.H A Hgurc made up of a set of equivalent directions is a geometrical figure exhibiting aome kind of symmetry'. 
* For la MiUioe of tbo n&iti facts in rcgtid to pjro- and pMso^leotrtci^ the rcsdor luajrl ooiuuh UftHcut, I.^fAfit HIT niectricitt tt U ma]fHiti4ine, i. 1, Patia, 1S98, or Iji«biMbt' Pht/fikahiche Xryitatlofp-aphie. LeipUJt, 1691. 
103. 104] 
SVMMeXBV 
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I104. Oeometrical symmetry*. When a surface of revolution is turned through any angle about the aiis of revolution, the pasition of every point, which is on the surface but noC on the tkxis, is changed; but the position of the figure as a whole is unchanged. In other ivords, the iiurface can be made to coincide with itself, after an operation which chauges the positions of some of its points. Any geometrical ligure which can be brought to coincidence with itself, h\ an operation which chauges thu position of any of i\s points, is said tu possess "symmetry."   The operations in ijucstion are known as "covering operations"; 
■ and a figure, which is brought to coincidence with itself by any such operation, is said to "allow" the operation. The possibh- covering opcrotioua include (1) rotation, either through a tlefinite aiiglu or through any anglt; whatever, about an sjiis, (2) reflexion in a plane. A figure, which alhms a rotation about an axis, is said to possess an "axis of symmetry"; a figure, which 
» allows reflexiou iu a plane, is said to possess a "plane of symmetry." It can be shown that every covering operation, which is neither a rotation about an axis nor a reflexion in a plane, is equivalent to a combination of audi operations.    Of such combinations one is specially important.    It cousists of  a  rotation  about  an  axis combined with a reflexion in the 
■ perpendicular plane. As an example, consider an ellipsoid of semiaxes «, b. c; and suppose that it is cut in half along the plane (a, 6), and thereafter let one halt he rotated, relatively to the other, through ^ir about the axis (c). Tho ellipsoid allows a rotation of amount tr about each principal axis, and also allows a reflexion in each princijial plane ; the solid funned rn>m the ellipsoid in the manner explained allows a rotation of amount ^ about the c axis, combined with a reflexion in the perpendicular plane, but docs not allow cither tho rotation alone or the reHexion alone. A figure which allows tho operation of roUitiou about an axis eombiued with reflexion in a perpendicular plane is said to possess an "axis of alternating 
■ symmetry." 
A special case of the operation just described arises when the angle of rotation about the axis of alternating symmetry is tt. The effect of the operation, consisting of this rotation acid reflexion iti a ijerpendicular plane, is to replace every my going out from a point by the oppiwite ray. This operation is known as " central perversion," antl the direction of the corresponding axis of alternating s_vniiiii-try is arbitrary; a tigure which allows this operation is said to possess a " centre of symmetry." 
It cau be shown that tho effect of any tw«i. or uiore, covering operations, performed successively, in  any order, is either the eaine as the effect of 
* Tbe facta fti« xtaud In RT^&t^r detftil and the ii«ee«aary proafu are given by SehoAnflkii, Kry»talt*tpum£ and KryftnlttlTurtur, Leijixitc, l8yL KiTi-ri:iii.'u iii«> iiIkh bu mmle to H. Uiltou. MathttHfatical Cryttatloffrnphy and the Theory of Group* of Slactmfnf*, Oxford, 1903, 
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a single covering operation, or else the first and last positions of every point of the figure are identical. We include the latter case in the former by introducing the " identical operation" as a covering operation; it is the operation of not moving any point. With this convention the above statement may be expressed in the form :—the covering operations allowed by any symmetrical figure form a group. 
With every covering operation there correajwnds an orthogonal linear transformation of coordinates. When the operation is a rotation about an axii), the determinant of the transformation is +1 ; for any other covering operation, the determinant is — 1. All the transformations, that correspond with covering operations allowed by the same figure, form a group of linear substitutions. 
106.   Elastic symmetry. 
In an isotropic elastic solid all rays going out from a point are equivalent. If an feolotropic elastic solid shows any kind of symmetry, some equivalent directions can be found; and the figure formed with them is a symmetrical figure, which allows all the covering operations of a certain group. With this group of operations, there corresponds a group of orthogonal linear substitutions ; and the strain-energy-function is unaltered by all the substitutions of this group. The efiect of any such substitution is that the components of strain, referred to the new coordinates, ai'e linear functions of the components of strain, referred to the old coordinates. It will be convenient to determine the relations between elastic constants, which must be satisfied if the strain-energy-function is unaltered, when the strain-components are transformed according to such a substitution. 
Let the coordinates be transformed according to the orthogonal scheme 
	
	X 
	y 
	£ 

	X 
	h 
	m, 
	"l      i 

	y 
	u 
	"^ 
	«S 

	z' 
	I. 
	mj 
	«3 


We know from Article 12 that the components of strain are transformed according to formulae of the types 
e^j; == exxk^ + eyy'nh^ + enHi" -I- ey^mini + eaJitli + e^liViu 
If the material possesses, at each point, a centre of symmetry, a figure consisting of equivalent rays going out from the point allows the operation 
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of central perversion. The corresponding substitution is given hy the equations 
x' = -x,   y* = - y,    z'=-z. 
This substitution does not affect any component of strain, and we may conclude that the elastic behaviour of a material is in no way dependent upon the presence or absence of central symmetry. The absence of such symmetry in a material could not be detected by experiments on the relation between stress and strain. 
It remains to determine the conditions which must hold if the strainenergy-function is unaltered, when the strain-components are transformed by the substitutions that correspond with the following operations:— (1) reflexion in a plane, (2) rotation about an axis, (3) rotation about an axis combined with reflexion in the plane at right angles to the axis. We shall take the plane of symmetry to be the plane of x, y, and the axis of symmetry, or of alternating symmetry, to be the axis of z. The angle of rotation will be taken to be a given angle 6, which will not in the first instance be thought of as subject to any restrictions. 
The conditions that the strain-energy-function may be unaltered, by any of the substitutions to be considered, are obtained by substituting for e^^,..., in the form (hi^jigi -H .-., their values in terms of e^x, ■■-, and equating the coeflScients of the several terms to their coefficients in the form Cn^xx + ■■•• 
The substitution which corresponds with reflexion in the plane of {x, y) is given by the equations 
ar' = a:,    y' = y,   z =-z; and the formulae connecting the components of strain referred to the two systems of axes are 
The conditions that the strain-energy-function may be unaltered by this substitution are 
CM = C]B = CM = C|a = Cj, = C„ = C4,='C»9 = 0 (2) 
The substitution which corresponds with rotation through an angle 0 about the axis of z is given by the equations 
x' = X cos $ + yBia6,   y' = — XBind + y cos $,   / = z',    (3) 
and the formulje that connect the components of strain referred to the two systems of axes are 
c*-*- = Ckt cos' tf + egy sin" d + e^y ain 9 cos 0, 
etfy- = «M sin' ^ + e^ cos' d — e,^ sin 0 cos 6, 
«/«■==««. y ^4) 
e^t = ^yt cos 6 — ezx •''in 9, 
^i^ ~ eyt sin 0 + e„ cos 9, 
e^i< = — 2e„ sin ^ cos ^ -1- 2^ sin 9 cob 9+ 6^^ (cos' 9 - sin* 0\. 
titf 
EFFECT OP RTMKETST 
[CH. VI 
The ti^ttnie vtric mjaired to det«rmiiM tbe ooDditioos that tbestnin-tneiKy-fttnctiau m&j be uoaHered by tiiu mlwttttitiofi u more complicated than in the nacm of oeatnl prmniaa and reduion in a jiUne. The oqoatiooa fall tntn nets ooooectuig a ttoall naniber of ooefficienta, niul the relatidUH between the coefficienu tnrolved in a set of *taatiofai caa be obtained witboat much diffiooltj. We feoceed to iketch the [ovoml We hare the art of equatimu 
i^^etimi*0+^„mn'$cotf6+c^coi^S + 4cjtair^$ooat-^-4t^i)o^$taa0+4e^alOi^6c(x*$, 
Cu>CuBiii*^oo»i|7+eu(oQe'0+Bti*tf)+<^aiii*tfcos'tf+3Ce„-r,)Bto0iXB0(ooB>tf-aii^^ — 4e^ tin's ooiflS, 
c^ar,, no* 0 ooH> 0 - &„ Kin* tf ont* 0+cst flin> ^ oofl'0 + 2 («„ - <>^ em 4 c«H tf (cos^ tf - wi> ^ 
e^^c„mtt*Scxm6 + rj,ian$(xm6{coif0—tin*e)-c„ct)i^SMu$+e^^mtie'0{9oos''6—sin'f', + c^voi^S(<xm'0-3Bin*0)'i-ie^ma$oa»6{cQti*0-Mn*0). 
The equations in this set are not independent, as ia aesn by adding the tiivt (cnu.   Wt funn the following oombinjitioos:— 
'■M+'^M~(*Hi-«a)«'n*«»*+(«M+««)(»»^^-«»>*^ from which it folIuwH that, un1c«M sin d»0, we miut have 
When wo use tbe«c reeulto in any uf the fint tour oquaiions of the wt of six *rv find 
(e„-c,i-2r^)iiin'tfc<«i'fl + 2*-„!ii»flcoerf(ooa^tf-Mn*tf)=0, and when we use them in either of the laitt two cquatioiiH of the same net we find 
and it folluWM tluit, if neither ainB nor coetf vauinhen, we nuiKt li&ve 
Again wo have the ^et of cquatiooB 
^,,=Cis COM* d + Ca ffln* (J - 2cj, sin tf co«* tf, 
Cg^=Ca tin' ff-i-^tt '^'^^ ^ + ^m "'" ^ ^"^ ^> 
«„—(<„-c,,) ain fl co*K? + (^ (cob'tf — Mt»* tf); 
from which it follow^ that, m)1eeAa)u0=O, we n»ut hat-c 
In like nuiiHier n-e Have the net of equationa 
Cu'^f■4^cca^0^^'Cf^siti*6+2c^^s\n^col*0, Cjj ■ >'n »in' ^ + Oil *'*** ^ ~ ^*«"'" *' '^™' ^' f(i= - (f«-r„}"in 0<:<»0+<-tt(cos*tf-ain*tf); from whicb it follows that, vuileiw sin ^ = U, we miut have 
In like niatiner we have the net of eqtutioos 
Cm s Pji otui 6 + e^ ttin $, 
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from which it follows, since cos 6^1, that we must have 
Finally we have the set of equations 
Cn—c,4 cos^ 5 + c, j COB* d sin fl + C(j sin'fl COB tf 4-Cas sin'(9 - 2C4, COB* d sin 5 - 2cj( sin* |3 cos ^, 
«u-« - Ch cos'5 sin 5+Cis coe^ ^ - (^ sin'fi+(;„ sin'(J cos tf + 2c4, sin'(9 COB (9 - a;„ cos* d sin d, 
cii=Ci4 sin'5 cos fl+0,5 sin'i9 + (^4 cos'(9 + Cjs cos'(J sin (9 + Scjj cos* |9 sin (9 + acgj sin'(? cos (9, 
c,= -c,4sin'i9+<!ijBin'5coHfl-c„co8'dBin(J+C(gCOB'd-2c48 8in'5costf+2cjjCOfl»5Bin $, 
C|,=c,4C08'tfBind + c,jHin'dco8 5-Cj,co8'58infl-Cjj6in'(9co8d 4-(c„ cos 5 + Cj5 ain (9) (cob'(9 - sin^" fl), 
Cse = — c„ sin'tf cos 5+c, j cob'(9 sin ^+Cj4 sin'5 cos (9 - Cj5 COB* 5 sin 5 - ((14, sin (9 - Cja 008 (9) (cos' 6 - sin' 6). 
From these we form the combinations 
c„+tf„=(c„+c„)co8^+(Cis + Cj6)sintf, 
c,s + c„=-{c„+c„)Binfl + (Cu + Cjj)ooBd; and it follows, since cosd^l, that we must have 
' Assuming these results, we form the combinations 
(ci* - Cm) = (Cw - Cie) cos ^ ~ (c,i+Cj,) Bin d, Cci8 + c«) = (c„-Cse)Bind + (c,5+Cj,)cosd; from which it follows that 
Assuming these results, we express all the coefficients in the above set of equations in terms of c^f and c„, and the equations are equivalent to two:— 
c„ (1 - cos'd+3 sin'tf COS fl) - Cjg (3 cos'fl sin fl - sin'5)=0, 
C4j(3cos'd8ind-Bin'fl) + Cj,(l-cos3d+3flin»5co8 5)=0. 
The condition that these may be compatible is found to reduce to (1 -cosd)(l + 2cosd)'=:0; so that, unless co8d= —i, we must have 
We have thus found that, if the strain-energy-function is unaltered by a substitution which corresponds with rotation about the axis z, through any angle other than ir, Jtt, ^tt, the following coefficients must vanish:— 
Cjii    CjB,    Cj(,    Cut    Cm,    C43,    Cu.    Cm.    Cu,    C^,    Cj«,    Cm)    (•*) 
and the following equations must hold among the remaining coefficients;— 
Cii = Cat     Cij = Cjj,     C« = Cgji     Cjj = 5" (C|i — Cia) (o) 
When the angle of rotation is tr, the following coefficients vanish :— 
Ci4.    Cn,   CjB,   Cjj,   Cfg,   Cji,   Cji,   Cjj; \i) 
no relations between the remaining coefficients are involved.    When the angle of rotation is ^tt, the following coefficients vanish :— 
Cat J     C^j,     Cm,     C«,     C^,     C34,     Cu,     Cjg,     Ctt,     Cm',     (0) 
and the following equations connect the remaining coefficients :—■ 
Cn = Cjj,    Cjj~Cn,    Cti= Cjj,    Cs( = — Cjg (J) 
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Hikni tW BC^Ic of rotation is Jtt, the following cocilicieDls vanish :— 
c,a.    c^,   Ci«,   c«.   Cm,   c»;   (10) 
•arf iJbe following equations connect the remaining coefficients:— 
Cu = - <^ = Cn.     — P» ■= Ca, = C«' i 
Id like mauner, when the axis of « is an axis of alttrinating symmetry, WMI tfae BOgle of rotation is not one of the angles tr, \'ir, \ir, the same Wi>IBcMi)fc> vanish as in the general case of an axis of symtnetry. and the Hme relations connect the remiiiuing coefficients. When the angle is w, vre ■ have the caw of central perversion, which has been di-scussed ali'eaii}'. When the angle is ^tt, the results are the same as for direct symmetry. Wheo ihe angle is ^ir, the results are the same as for an axiH uf direct symmt with angle of rotation \v. 
106. Isotropic solid. 
In the case of an isotropic solid every plane is a plane of syrometry, evoiy axis is an axis uf syujuictry, and the corresponding rotation may be of any amount.   The following coefficients must vanish:— 
Ci4.     Cut,     C,«,      C^.      Cu,     Cv,      Cm.     Cu,     Cm,     Co,     Cm.      Cm   ..-(12} 
and the following relations must ho[d between the remaining coefficients:— 
0,1 =CM = Ca.      C„ = C„ = Cj,.     C„ = C„ = C«,= J (Cn — Ca). (13) 
Thus the stmin-enGrgy-fnnctiou is reduced ti> the form 
+ i(Cn-c,«)((rV+ «'» + «',,),   (14) 
which is the same as that assumed in Article GS. 
107. Symmetry of crystals. 
Among seolotropic materials, some of the most important are recognised as cryatalliuc. The structumi symmetries of crystalline materiaU have beeo studied chieBy by examiuing the shapes of the crystals. This examination has led to the construction, in each case, of a figure, bounded by planes, H mid having the same sytnmetry as is possessed in common by the figures of all crystals, formed naturally in the RrysttLllizatiuii of a niateriat. The figure in question is the "ciyHtnllogi-aphic funn" correspomHug with the] material. 
F.  Neumann*  propounded a fnndanienta!  principle In r^ard to thi physical behaviour of crystalline materials.    It may be stated M follows:—] Any kind of symmetry, which is powessed   by the crystallographio  fo of a material, is possessed by (he material  in  respect of every physical] 
' Sm bia VorUivi^ea ehtr iUt ThtoH* dtr EUutieHat. L«ipKU, 1SS6. 
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ijimtity. In titlier words we way say that a figure consisting of a system of rays, going out from n point, atit) having tht: .saiiu- Kyminelry an the er>-8tallugmphio fnrni, is a set of equivak-nt rays for the materiaL The law u ail indiiclioti fniin experience, aud the evideuce for it consists partly i» a pasterion  verificnlions. 
li u tu be noted that a crystal may, and ganerally do«a, poaaeaa, in respect of aome |)h;(iical qiuUittes, kinds of aymmetry which are not pouesaed hy tho cryntallographic form. Fur examjila, culitc cryatalii are optically iaotropic. Other esamptea are ndbrdod bj mtultfi ulilniiinl iu Article 10.1. 
7%^ faKM of tht ntfmmetry of ciyttalt are Iflwa which have been ohservwi to Iw obeyed by cryHiailtigraphic forniH. They may be ox|>rcss«i mnnt simply tn tenns of equi^-ifclent reya, aa riilhiw*: — 
(1)   The niunber of mys, eqtuvalcnt to a choisen ray, i^ fiuito. 
/2)   The nnmlicr of rays, «iiiivalent to a chuKu ray, ^A^ in genoral, the aame fur all IMBiliona of the chosen ray.    We take this oumbor to !» vV-1, »o that there in a aet of .V luivalu'iit Mva.    For B|K.'cittl positions, c.k. wh«n one of tha ray» in an axis of syiaujefry, uutnlier of myri iu a mit nf uquivnlont niyn am \x \vr» than If, 
(3) A fisiiro, formetl of A' ©quivalcnt pays, i« a «yinmatricail figiire, allowing all tlie covering oporaUuiui of a cartiiin grmii*. By thf<Rf> aiwnttionfi, the .V equiinleut reyA aro inlerohoogcd, »> that each rny comes at Icoat onco into the pcsition uf any equivalent ray. Any figure fonned of equivalent roya allom all the covering operatiomi of the same gTou|i. 
(4) When n tiguro, formed of .Vcqnivalent rays, possesses ad axid of symmetij, or an axis of alternating aymiaetry, the correopondiug augl« of rotation ia on« of the angles 
•■ !». I*. i«'
It can be showu that thei-e are 32 group!! of covering oj«ritions, and no more, which ubey tbo Inwa n{ ibc »j-mmctry of crystAls, With each of these groiiiii' there uorrcspond-t a dam of crjutals. The ulnitn-ciierKy-functiirti c<tmj»iH)nding with mob class nmy Iw ttrittoD down by nutkiiig uue uf the rtMulUt uf Article 105; but ouch of the forina which the faoctioQ can lako corT<wi>uiid» with inore than one claiui of cryKtala. It in neoemiary hdescribe brieRy the symmctrioB of tbe classes. For this ]iur|>oM) we shall now introduce ribw deflttitiuim uiid gvuiu«Lrioal tbooreiua rvUtiug to axes uf myiunjctry:— 
The angle of rotation about on axis of symiuetry, or of alternating symmetry, is Iwfu, where R ix one of the nuraberM: S, 3, 4, ft. The axiti i» iloscrilied aa " N-gnnal." Pnr ••■2, 3, 4, fl n-stjicctively, the axis is <io«Tiboil aa "digonal," "trigonal," "tctragoiuU," "hexagonal." Unlowi othcrwiHc statod it in to be understood Umt the u-goital oxia ia au axis of HyiuuKrtry, nut of ultertwiting «ymmetry. 
The existence of a digonal axis, at right anglea to an H-guoal axit, implies tlie axisteitoe of n Hudi itxcB; e.^ if the axifl r in tctrsgojiaL. and the axis -x dtgoiinl, then tbo alia y and the linea tliat bixect the auglea between the axm of ^ and jf alao are digonul jiXCx 
Tint axJateooe of a piano of symmetry, passing through an n-gonal aiia, implies the ri r f« Bucb pbncs; Kg. if the axin i is di^>[>nl, and the plaoc x<-0 i» a plane of 
ii;i    .1      ., then the phute jf = 0 also is a plane of syiumetry. 
If the n-gonal axift is on axia of alternating nymmctrii-, the two raiulta just stated still botd if N is onei'cn ; but, if n is eren, the number of axes or planes ini]>1ied is Jit. 
* Tb« rmtriotion to Ifaeae aoglas is Ihs expteauoo ef ibe " lew of mtwnal indices." 
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Classifioation of crystals. 
Tbe s^raetrtes of th« ilnntoii of cr^AUb maj dov bo dewribod by roforcncc to tbo 
Kr«u[» of covering operatiwii* which corro8|>ood with theni aevenUly:— 
One group consiBte of the identical operAtion alone; the oorrespondiog figure hne no Bymmolry; it will be dKtcribed fw "fisymnifltric." Thi; identical o]ierstion i» one of tbe u))orutiuii)t coritoiiiixl in all the (;r(vu|jM. A wt-'uiid Ktoup contaitiH, be«idw tho identii^ ojiormtiuii, the o|icratiun uf cetitnil (lorvGmou only; the syuimctr>' of the cori^eftpondiiig fi{;ure will be doecribcd ns "central." A tliirtl gruuf) coiitaiiiis be^iden the identical opemtiou, tho opemtaon of refloxion in a pkuo only; the syiaiuetry of the wrreapooding dgurc will be described aa **equatori&l." Besides these three groups, there ore 34 group* for which tI)o.re i» & "priucipa-I Axii»"; that i:* to >*y, every Aii-t of symmetry, other Uun the priucijuil axi.s, is at right angles to the pnncipiil axis] biuI every plnoe nf aymnietrT either poaROH through the pnneipAl axis or is at right ai^lee tn that sxia The fiva rcDuuDing groups ore chariLeterined by tho i>reReuce of futir axes of trigonal ayouiwi eqitally inclined to one another, like the diugonals of & cuIa. 
When thurr m an H-gonal priuiupal axin, and no plane of HymnMtiy through it, tiw syniuietry is dcHuribviJ tus "N-gonol"; in case there are digoQiU lues at r^ht angles to the priucJ{HL] n\\s, the »yiumutry in further dmcribed tm "holoaxiol"; in cam there is a plane of ityDimetry at right anglea to the principal axta, the symmetry ia ftu-thor described an "eqiiatorial"; when the symmetry is neither holoaxifll nor eq\iatnrial it U further dewribed as "polar." When there is a plnne of symmetry through the «-gotial principal luda, the s^'mntetry is dofi£ril>ed an "di-n-gmial''; it m further deHcribed as "eqiiatanal" ur "polar,'' according aa there is, or ia not, a plane of symmetry at right anglea to the printii]»] axis. 
AVhen the priuripal axift is an axix of altemattiig symmetry, the syDimetr7 in deocnbed MB "di-;4<gonal altomatiug,'' or '*n-gotial alternating." according as there is, or la cot, » plooe of synunetry through the principal asi>t. 
The npiwrtded table Rhows the names* of the classen of crystals «o for described, tho ii)7iiboL*«t of tho corres|>onding grou}« of cuvering nporations, and the numliers of the cIa!<>iteH wi given by Vnigt^. It r)iowh also the grottpiug '>f the claAaBS in syBtetns and the names of the claxHea an given by Lewisf. 
Tho reninining groiqiM, fur whiirh there is nut a prindixij axi*, may bo dawrili-d by reference to .-i cube; and tlie comwponfliiig crysttL" aiv frequently called "cubii-," or "tesseral,'' crytitaht. All nuch c^y»laJ^ [Kns.'teiss, «t »iiy |iiiiiil^ axes uf symmetry which are diatrihuled like the diagonals of a cuhi>, liaving its ocntro at the (Hiint, aud otJicrH, which are parnltel to tlie odgca of the cube. Thv latter may l>e called the "cubic axM." Tho symmetry about the diagonals is trigonal, so that the cubic axc» are equivalent. The symmetry with rMpect to the cubic axes is of one of tho typos previoujtiy named. Therw arc hvc uhLii!M.>M of cubic i^rysttals, which mny ho distingui**h<xl by tb*ir Avuinietriea with rt!H|wet to these axes. The table showt* the namcA of tbe classes (Miers, Lcwi»), tho symbolH of the onrrf»poikding groups (Kohoenflius), the numbers of the claatics (Voigt), and tbe character of tho symmetry wiUi respect t<j the cubic bxchl 
I 
* The Dames are thoM adopted by H. .\. Mior», iliMmtufty, OxtonI, 1D03. 
t Tbe qrmboiU are thote ni«d by Bcho^'nt^ieft in his book h'rt/tlalUytttme mnd Kry^talUtnutur. 
t RafforU prf*tntfe$ iiu Conyri* Irttrrnalintui! ilr Phyiii/Uf, I. I, pAris, liKW. 
g W. J. Lewis. Tftali$e on CryiUtUvgrayhj/, Caiubiidtie, LDO'.). Tbe older clasuficatioa tn lix (■oowtiaei MVeo) "lytUwus" as opposed to tin? H'i "elates" is supported by Mine aiodem anlhorhiia.    SmT. OoMeehmidt, JSeitttkr./. Kr,j,talhsr«pM<, JQde. 31 aud 32 (16W). 
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	C,' 
	22 
	Hoxagoiial III 
	1 

	
	
	DihexagoniJ altornating 
	V 
	» 
	Rhoinbobadral III 
	H 

	
	\ 
	Dihc>) Totra 
	jigonal etjuHtorial 
	/J** 
	SI 
	Haiagonal IV 
	1 

	
	^nal (lolar 
	04 
	18 
	Tetragonal III 

	
	
	Tetriigoua,] alt«rufttiug 
	■^4 
	20 
	Tetragoual VII 
	

	
	
	TcrtrAgi>iial holoaiial 
	A 
	15 
	Tetragonal V 
	

	I 
	TetngODkl   ' 
	Tetragonal equatoriiil 
	c/ 
	17 
	Tetragonfl.1 IV 
	

	1 
	
	Ditetra^onal polar 
	C,' 
	16 
	Tetragonal VI 
	

	lu 
	lJLt«tragi()tial altcmatiag 
	S," 
	19 
	Tetragonal 1 
	

	i 
	Ditetm^oiial fxiitatnrjal 
	D," 
	I'E 
	Tetragonal II 
	

	
	Name of okai 
	Symbol 
	at KKiup    Nnmber 
	Symmetry with respeet 
	

	
	[Uien]                 [LewU] 
	[Stihoi 
	?nflies]         {Voigt] 
	to the oabio »x»n 
	

	teBseml pnlar 
	Cubic III 
	
	T 
	35 
	digonnl 

	
	teBBsnU hiiliuisial 
	f.'iiViic I 
	
	0 
	39 
	teti'agf>nal 
	

	
	teaaeml ciaitrA] 
	Cubic IV 
	
	7*(»l                31 
	digoiuil Ltjuutorml 
	

	
	diieaaefal polar 
	Cubic V 
	
	T'W                30      ' tetragonal alternating 
	

	
	ditMseral ceutral 
	Cubic 11 
	
	Ot*)                28     1 tetragonal eqiiatorifll 
	

	^B 
	>            1 
	^ 
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EFFECT OF STlUltn'KV 
[CH. 
109.   Elasticity of crystals. 
We oaD now put down the forma of the straiQ-eaergy-function for the' diflfercnt classes of crystoU.    For (he classes which have a principat axia vie shall take this axis as axis of s; when there is a plane of symnictiy] through the principal axis wu shall tiikc this [tlaue as the plane {x, t}'A when there is no such plaue of symmetry but there is ii digonal axis at righti angles to the principal axis we shall take this axis as axis of y.    For the crystals of the cubic system wo shall take the ciihic axes as coordtuato axes. I 3'ho classes will  be described  by their group svuibols us in the table's of Article 108; we sliall first write down the symbol or KyinWIs, and tlieu tbe^ corr(wponding strain-energy-function; the omitted terms have zero cocfficienti. and the oitistants with dltTereiit suffixes art) independent.    The re-sults* are as follows:^
Groups C\, 5^—(21 constants) 
Jcii^M + c««jti«i« + Cue«r«a + Cttejseyi + c„«»e„ + Cwe«eatj, 
Groups 8, C„ C,*—(13) constants) 
+ ac**c VI + Cu€gte„ + k»*'« 
Groups V. C,", V*—(9 constants) ic„p'« + c„e„e„ + Cu€«e» 
+ 4<^«*« + ic^e*^ + 4c„(j'„ + ic^e"^. 
GroujM C„ iSi—(7 constants) 
icue'M + c,8«MtC„ + c„(t«,e„ + e„e„e,„ + o»«xr«w 
+ i<^«e*a   + CueaS/y + i(c„ — Cn) «"«>. ' The khdIU are doe to Voigt, 
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Groups A, C,', S,"—<6 constanta) 
+   jClie*!;,^     + Cjs^j^^ — CueyyGtx 
+ i(c„-Cs)«'«V 
Groups C,\ A*, Ct, A, 0,*, C,". A*—(5 constants) Groups C4, iSf^, Ci*—(7 constants) 
■jCiiC^aa + Ci2^xx6|,y + Cu6js6i2 + ^'le^zz^EV 
Groups A. C/, S,", A*—(6 constants) 
+ jc^e yj + ic^e^isB + jC«e^itiy> Groups T, 0, T\ T^, 0*—(3 constants) icu (e^aa + e'w + e"a) + c^ {eyyCa + e»eaa! + «««!») + ic« (eV + ^tx + ^»y)
110.    Various types of symmetry. 
Besides the kinds of symmetry shown by crystals there are others which merit special attention.    We note the following cases:— 
(1) The material may possess at each point three planes of symmetry at light angles to each other. Taking these to be the coordinate planes the formula for the strain-energy-function would be 
2 W= A^^ + 5c"^ + Ce»„ + 2J'eyye„ + 2Ge„e„ -t    ^'^e^ 
■\-Lt\t-\-U^^-vN^rv (15) 
This  formula contains a number of those which have been obtained for various classes of crystals. 
(2) The material may possess an axis of symmetry in the sense that all i-ays at right angles to this axis are equivalent. Taking the axis of symmetry to be the axis of z, the formula for the strain-energy-function would be 
2 TT = ^ (e»„ + e*^) + Ce»„ + 2J* (e„-I-e«) e„-I-2 (4 - 2iV) 6«e^ 
+ i(fl»^-l-e*„) + ife'.^ (16) 
Bodies which show this kind of symmetry may be described as "transversely 
<.«/„«^/,'      ^    ,/   vy../.     ^>.*-'    /l.^f     V!*       'r«    »V»*a     y   l*l-itm»«^t    IMOf   rf*  r<ir<*(4Ml 
<    -f*f'r     /    /«''"»'^,y-'y*   --.•■    1.•./•;««'   ^//^CoX**^*   <r.    'rtft*      «1<'    Utrrncclu   IVi fill* .■jH>///,/;-Hi     ":•'%/'-'    t*      *      >/,'fil       V'f/^un     ttt**»     • lit     -'.•lltl*!*!^*   '>*     VMlfth   rh* 
/«/ti.     /,-y^''.|,,/i.<^ „^^:i!,./i      j^'rf ^vtMHtjif   'itf-nnlit. ■ . t)  tiitptr KaW 
.'    ♦    y^-'*      >'    '•-•■     ;■«*/ J <♦!     ..■./!»'    V     c^rt«»-'-T'J/'ty    i*/,»/'.»fK^    » l.h   ;'iirft^.-nJ*A 
'  "      ' "       1 
	"V   ' 
	*»' V,    ' ^trr-^i -./t^.-'    /% 
	f 
	

	t 
	tU    /" 
	/, 
	x'Off   M' 

	/•-, 
	^    //   ^/ 
	K' 
	A    //   /> 

	
	//   //   A 
	
	// // z

	
	//    fr    1' 
	
	//   /''   r 


tin   • 11-I  >!•!    I-" II 'li-' ■t—f'\  \if >'«i*r*  V'-fiiy.' '       K'  -tr'/KiMl  fti.i* »r,^#/: ;ir*i ni ;;»(,*;f*) 
) ♦  Hllll*llHi-   t'lf    "tn'tl    /'■  *'"'Hh'"   •<   Uintilh-ith If   hfili'lli'ilh        'ft   *}i*-J^.   'A  *«H  f.tt*-.  rt/WU lit 
' I If. I ' lAUi t- in HI I'll' h ''t 'ill I hifft'ii'it'- i'lnti'-- »(*.»•».*(. Mr*.../»-!, •if>/l f.tjft rKi/i.ii(t)rii/ I ill 'ihi iliiii'h nt Hit- tiiiii'\tMi '•nifU-' tnnifi'l tl/ Itit- I'lHntUfiU. fAnui^ H>: itlf. tir\iliii ttiiii 'iM tti* ' itin ih'itii- >*ii iif ttii- ***«» M»*'». "(If til- iiiiitiunn I it A', Im* tulwij-u K,h.i,i\ /c',, 
/■ , (f»      iril III' II   /', Hf(/t   /",,  'Kl'l   /'', h'.rt  ("-t «"■'.(!   /{', Kiel  A'j, "<P'l  1^   '•'>'■   3 'Ji|'((.l.(l.l<:- nil' l(   >irt 
' /■'      !■' ' ^ /'■      I')  ^ ^ I''      f^' )^ /'' /'' ^ *'""■ ""* "" ""■ "'""" "''*" 
til   It'l   liniiilliiu  'il   fill-*   hlUiU.   Hil. Ill'lilll I' t>il   lll(»- M"(i« '/,, w*^, Hj; lUi'l If^, 111,^, /I,,  In Mil   M ' tfiliii "I "I Mr'' I *|(|<-""I"M 
,(///.'      (.. .^tii,'      (I,''I,'      /J        I   . , /  K         '   1           t I    ,  ( '*■        '    i(  (              I 
, "","., I '","<'*,'"/., I ",,/J'' , ''i'".' '.1"'i'' ,11,, 
' / '        1/       '        ,v  '   ' 
hilM blii't M»  li.liKi i<l"l lit MhMiI Vi'iiHit^ ■'  i''   MmiU. \\.\Miii-\\\f\, (Ni^r. U), \. It) 
||tll<ii|    "li"     iiM'mI I Hit  ID' I <iuii|i|i<i i<r  IIh ii|>|>lli'itMii|i      'I'liti MHaii iif u nyhiiililiiiil illallll)iit(ii|l 
liHii lii.i iiill'ii III! lilt ^>ilitl   i|iiM((ii/'II ViK'iMi-fili'K, trmi) 
I    Hill IIh<     AtMMtHlhll |i|t<l»>l-ll,    |it>   It't. •I>M| 
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p 
TIm HfMfliM for lb* fmn nt axM •( n|^ ao^H to Um pbim of tjnuaetrj an t., M. M. 
WiUi Ui*Mfo« Mitotinn WA oooLI »b"irt)ut tb* Poiiow'» i»tii« forcontfetkw pwafld l9tiN AMR'/fj^MMl(nvpBcsl)rdy,wliou the■(!«■■ M tendaa Bcran Uie jdMica xaooaat,«n 
(i»r^, /?,iI,2.V-I//*,), km! for I, /:,/l/aJT-1 >■,) (20) 
Tlw Vftliua Un tAimt \m.Xn nf litmcUniim can h- wntl«a (lnvn without difficulty (Artick 73). With lb* mum o'lUtion w« xoaj ituiw x\mt the modaliui ot oompntmon u the raciprocal of I   .   1.   1.  «  .  i 
«;**,*J?//*, + t\'^r~L jii'"3
2 _i_i_l. 
.(21) 
rlo tb* <NMe of cubic cryvUl* w« ni4y abow tb«t tbe ralu« of £, Young's tuodultn tsjt UimMmo la dlnwiluti (/, w, n), U flvMi by tb« eqiutloa* i ' 1, + (i '^^^i\-\ ("''*'+«*''+''"^ •(«> 
tVuviilofl Uuit tim ciMtfButout of ifao wKtiiiii tcrti) in jtomtivn, A* U a moximata in ttiu dlriMitiMiM 'ff ttiii (fririuipd um, mid a iiiiiiiniiitii in tlia dtrectiuus of liiioi equally iacliued to tlin llmt' |inn<'l|Mi] uw; furtltsr It in nUtiuruu^ wilbout lioiiig a masimiuu or u ntirilniiiiii in llm dintvtiotM of Iium biMecting the niiglva betwocn two i>ruicip«] axoi, and mnAiiM oiMwtaiit for all llnw glfw by f j;»i±nBO. 
112.    Sxlonilon and bonding of a bar. 
Aa u>iirii|>ltw of i[i>tri)iiiti<i))n nr Htri'iM in mi a-o](>tri>))ic solid iMxly, we may tAkc the |irubbitii* <>r uttmiHtitii of A l>ur luid iK-iiiHitg of a Itar by terminal couploH. We nhiill Mii|i|j(HMi that till! iiiulnriiit liju>, nt iKtuli |ioint,thrve |il(tiioM of ttyiiiiiiii^lry of Ntructii,r», au tbat lltH Minim tiiiiirxyfiiiii'lidii i« given tiy llio fonuula (I I}); wo nlinll mi|i)HM« dM> that the !>ar U of iiitirciriii wuliuii, llint dtn hxih kA t ia tiio liiit) i}f L-iuitri>i(l.s of Wis i]<*riiial KCutioiut, uiitl Ihat IbiD iu«i> of X and y an) [ini-ultul to {iriticijtal axcn of inurtia of its iiormni ttcctiona, so Itiat tbo Uu» of i«ntri»i<U and tbo anid |)riiioiiHLl axoM are at right auglM to planea of iiytniiiiitry. 
(<()    IS.vt»n»v>n. 
Wir aii|i]KNHi tliat all tfifl ttlMI niiiii| i iii iili oxc«i>t Z, vAntsii, aud take 2,= Et, where ( in (.'iiiiiitiiiil, and K m tliv VounK^ mmluluH i>f thu inaU-'niU correHiioDding with tension Z,. 
>V'v ItiiJ Ibu diHitUuiiiiioiil. ill tjm I'uriii 
■ •-4r,ix,   f-ir^ty,   tf-<i,  (S3) 
wfaffi r| ta t)tt< I'oiMiiiii'H mtiii for iNititmi-tiitii iiamllel to the aiis of x wheu tberu in ImmIou Jr., and «r, la thr L-nRvniHtiidiiij; naui fur coiitrRotioci panllol to tbe axis of y. 
(fr)    Bttuiing hjf couplm, 
W« aNMiiiiin that alt tlin atrvMi-ooniixmaiita MMifaih except Z„ and lake X,^ - BR'^s^ whrtr H la iioiiiitAiit. 
\Va Itiid Uiat tito di»)ttM-«tnoiit ia givoti by tba •quatiooft 
n-JA-Hii + ff,^-,^),    r-»,/C-i^,    w--«->ju,    (M) 
ftnd that tbo tnHTtliMi aoruas a uortua] Miction is statically equivalent to a couple about an atla |iara]b<l l<> the axia af ji, of moiuent A7;/f, where i'* i j .B*dxcfy> the intejjtuttoD b^iig t*kan ovw U>a unHw^aectaoo. 
1*ha iiitprfntaUoi) wf the NWilt ia similar to tbat in Article 8a. 
* A tUpit* •tinnlnc th« vaiiatioB of t/K with diraetioD ia draws by Licbiscb, Phfiikalueke 
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VOIOTS  RESULTS  FOB CBYSTALS 
[CH. VI 
113.    Blaetic constantB of cry stole.    BeatUts of experiments. 
Tim (^-liidtk' i:<>tiNtiiut^ nf ii uuinbtir uf miiicnils bavo been ilutprtiiiiicti hy \V'. Voigt* by expcrioioiiUi on the twinling and bending of rods. Same of liw iiri>K'i|MU rOKultfl are stated liere. The conttttujU an: ex[>tt>s>ied in t«nii8 of an unit xtress uf )(/ grnnuueb'weight per squArc centimetre
For PyritcB (cubic), the coustanta ara 
And we have 
Principal yoHog'B oiodulus, ^=3690, 
Principal Rigidity, f„ = tt = \0'6 : 
abui by cmJculfttion we find Priiici])al PoiBSon's ratio it— - i nearly. 
Tliese WMtdta are vcrj- rcinnrkable, since th^y show that ihitat inoduluses of pjTit«« are much greater than tho»o of ntee!+, and further that a har of the material cut in tho dirtictton nf a priiK^ijiiil nsiH wlipn oxtendwi turpaiiHa slightly in a laitrral direction^. The modiiliw of ironiprenHioii is nhoiit 107tlx lO* gramineM' weight per nqunre centimetre, which is coiutiderably Hmidler tluui tliat uf Htcol. 
The Uble shows the values of the constauta for three other minerJs for which the energy-function haa tlie Kauie funu (is for Pyriten. In thijt t«l>lc c^, la the tiriuctpal rigidity, and £ is the princiiwil Young's luudiilus. 
	Material 
	JK 
	<u 
	^»         'm 

	Fluor Spar Bouk-iiaU Potawiuni Ohluride 
	37a 
	16V0 
477 
375 
	457 138 
198 
	345 


Kscopt ill tho cm* of rook-aalt, Caucliy's oifndition (tT,j|=r„) ia not even apprtuiiimtely reriiiwl, luid tliv di^erences ore much greater thaii oould be A«c(iunteil for hy aiMMiiuinjf eiperiuieiitol vrrum. 
Beryl ia a hexiigonal crj-»tal of the i;\at» Hi>ecified by tbo ^roup XI,* for which tho ciinstjutta are 
c„ = 2740, Cs, = 2409, eij = &90, Cu=07J, v^^=em. 
For ft bar whone axii* ia in the direction of the principal axis of symmetry ^=2100. For A bur whoso axis is in the diroction of u secondary mis of symmetry £'=2300. The rtrst of lhe»« is aWut tha satue as that for atoel, and the second is rather greattT. Tho principal rigidititw aro COG and 1*80, of which tho flrat is Icks and tlio sooond coniiidorably ffxntcT than tho rigidity of Htcol.    Csuchy'a relatitins are approxiuiately vortliod
Quartz is a rhomboliedrmi crystal of ilic rhias »i)etifiod by the group /!,. The conHtaiittf are 
c^^^m», ^M="^"''' '•i3=l-'3. '■|»=70, c^^=aliS, c„=-171, 
Mid A'in the direction of the priQci|)aI axJM \a 1030. 
* For refuraoeeasMiRmMJurd'aN, footnote &$. f 8m Uble. ArUcle 71. 
■* It bat been snggccted that thew somewhat paradoxical r««tiU# may b« doe to '■ lwiciuii|{ " of the cryalaU. 
113. 114] LuaviuNKAK a:olotropv 181 
Topu i« fl rhombic crvstol (of the clasH Hpeciried hy the group I'*) whose princi|)al roUDg's nuxliiliiMM ftnd rigiditJK) iire grrat^^r than thoHO of iiixliiuiry !it(Kl.    The ctitistJitita ffenuula (Ifi) Arc for lhii« mineral 
^-2870,  ^-SSfiO, C=:iOOO, /"-OOO, W-WW,  W-rlSSO, 
/. = I100, J/'=I.1t>0, A'=1330. 
[The principal Young"* modiiUiww are 2300, 2890, 2660. 
Kftrytes ia a cr}'i<tiil nf the same doss, and its cuiistiuiUa are 
J-907, fi=800, C-1074, /"-STS, tf = 275, /f=4e9, 
Z=lft2, J^-=iffl3, .V-.283. 
These remilta ahow thftt for tbeae rmiterials Cftiichy'e reducUon is not valid. 
114.    Curvilinear solotropy. 
A* eiatut>l«8 of curvilinear .-eolotrinpy <Ai-ticle 110) we maj tain U» problems of »i tube (Article lOOi ami a rtjiheriral shell (Artiiille 08) under preaaors, when there in tranavemo iwirupy about the radius vector*. 
(a) In tlie ca«c of the fvle we should have 
M^A^+F^^^ffe,   [    (8fl) 
tt = Ac+F^ + H-,) 
where ff is written for A - 2A'.    The diaplaoenaent V is given by the equatioD 
Z'U    CSV    AU    (F-lTie f ^ + V 5^ - -^+ —7— =«. <88) 
of which the complete primitive is 
V^ar-+$r-*+ ^r?*^'    (^ 
n being written for ^{AJ(/], and a and j8 being arbitrnry coDstontH The constants can be otjjiisted «> that rr has the value ~pa at the rmter surraw) f—r^, and -/>, at the inner eurfftce r=r,.    The uouHtoiit e am  be adjimtad  my a& Ui make the reaultant  uf the 
longitudinal touioD ii over the anmihis r^>r>ri halanoe the pressure if iPi''i^ -Po^'t') <^ lui end of the cylinder. 
(b) In the ia»«i of the apAere we should (itit! in like nianner that the radial displacenient U satisSes the equation 
.'^.^--.(..^-^?.o.  ,», 
lao that i*5»or»-*+/9r-»-*, 
whe« „..i|, + 6<+_^_::_^, 
* Baint-Venaut, J. df Ualk. {LiouvilU], ^Ut. 2], t. 10 (1866). U  B. 11 

        
        [image: Picture #50]
        

        162 CURVILINEAR JBOLOTBOPT [CH. TI 
And we can find the formula 
which agrees with the result obtained in (vi) of Article 98 iu the caae of isotropj. 
The cubical dilatation of the spherical cavity is the value of ZCfr when r=r^^ and this is 
ro*'-r,»-\ (n-i)C+2/'   ^^o      (n + i)C-2^/ ^^^ 
This result has been applied by SaiDt-Vetiant to the theory of piezometer experiments, in which a discrepancy appears to have been observed between the results obtained and the dilatation that should theoretically be found to occur if the material were isotropic. The solution in (30) contains 3 independent constants and Saint-Yenant held that these could be adjusted so as to explain the experiments in question. 
CHAPTER VII. 
OENERAL THEORKMS. 
116.    The Tariational equation of motaon'*. 
Whenever n straio-energy-function, W, exists, we may deduce the equations of motion from the Hamiltotiiuii prinrfplt?. For the oxpresaion of this principle, wu take T to be the total kinetic energy of the body, and F to he the potential energy of deformation, so that V is the volumeintegral of W.    We form, by the rules of the Calculus of Variations, the 
variation of the integral j(T— V)dt, taken between fixed initial and final 
values (to and (,) for t In varying the inte^^l we assume that the diKplaci^ment alone is subject to variation, and that its values at the initial and final instants are given.    We denote the variation so fonued by 
5 [('/•- V)dt. 
We denote by SWi the work done by the external forces when the displacement is vaiied.    Then the principle is expressed by the equation 
sjiT- [')dt-i-JBW,dt = 0.    (1) 
We may carry out the variation of I Tdt    We have 
and therefore 
Cf. KirchhoS, I'orUmng^n ilba:..lHeehanik, Torteauug 11. 
U—2 
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T, EQUATIOI 
Here ^ and U are the initial and Haal values of t, and Su, ... vanitih for both these values. The tii-st term may therefore be omitted; and the e<iuation   (I)  is   then   traiinfunne*!  into  a  varitUivnat  eqttatimi of motion. 
Further, BV is \ilEWda:dydr, and STK, is given by the equation 
5TK,= lJ|/){XSu+ yhv + Z&w)da:d^dB + j({XM-^ T,hv +Z.Bw)dS. Hence the Tariatlonal Gqimtion of motiou ia uf the form 
- n jp (A'Su + YSv + Z^o) dxdydx - ([{XM + VM + ZM) dS = 0. . ..(3) 
Agaio. 
BW 
\H 
<^W 
Be~t + -i    Stf™ + ... + 
dW 
Se, 
ae«. ""^s^  **"■■■ "ae^"'**" 
wliere, for example. Be,^ is dBuj9x.   Hence f IJ S Wdxd^dx may be trausfumied, 
by integration by part8, into the aura of a surface integral and a volume integral.    We find 
Ijj BWdxdydx= \\   -^   cm(x,»") + ^I"*'*«'.y- *'^'*"3—coB(i, i>)j-Su 
+ ... + ...Ids 
dxdydz. ...(4) 
The coefficients of the variations 5u,... under the signs of volume integration and surface integmfcion in equation {%), when Lrausfonned by means of (4), must vanish separately, and we thus deiluce three ilifferunlial equations of motion which hold at all points uf the body, and three conditions which hold at the boundnrv.    The equations of motion are of the type 
dP 
(5) 
.(6) 
and the surface conditions are of the tj^ie 
^ cos (JT, »*) + gT" *^*** ^y- ***"*■ ae~ "* ^'' "* ^    •■■  "■ 116.   Applications of the vaj-lationaJ equation. 
(i)   Aa an oxmnpU)* of the applioatioii of this mutlioil we may obtAin the eqaatious (19) cf ArUde 98.    We have 
iW. 
an
i)W 
* Cf. J. Lumor. CambHdjfe Phil. Soe. Ttana.. vol. U {1688). 
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&nd, bgr the funnul» (36) of Article 20, we Imve alno 
Every term of I ( I J! H' , , , is nnw to be tranBrorme<l by the aid <»f the formuIfB of the typv 
(umI tfao intcgrwl will IIil-ii ho tnuisfuruiMl into the Etiitn of a surface intdgral R.n>(l a Ti^lam iiil<%nil, in »ucli ii wtiy that tin difici-oiLtial raielScietits of 8u^, jua, flu fxiciir. We vuj coUect, for ocaiupie, tbo tontiH containing du, in the volume inti^^I.    They ore 
Si \A,^,ae„^" a; So \Xj S^ " ^jt'a t^v w„ 
The eqiUitioiis in ((iicutiun utn be deduct?^ witboiit difficulty. 
(ii) As another example, wo may ohtAin etjuntioux (21) of Article Ul ani the M<-ond fbrmn of eqiiatJona (22) of the same Articla    For this jHirpose we olwor\'o that 
Hence the strain-energy-fiinetion in an isolrnpic body may be expresiied in tli« runii H'-i(^ + 2^)A''+2^(nr,< + i»,« + cr,>) + 2^r(~^-^^) + twoaimihirtennH~|. 
Now Jlj*« (I ^" - J^ ^) rf^rfjd. 
•e the terms of the tyjwt ^j* { jr- jr- — ^ — ) in W do not contribute anything to the volume integral in the tmnHfomiecl exprcfwiioti fnr if/ iW'drdytl:. Uenoo the oquatioiM of niotLua or r>f equilibrium can t« obtained by foruiiiig the variatiou of 
, of the rariation ^ \\ \ Wdxdydi.   The wniatioiiB (21) and the wcoori forms of 
equatiunn (2S) of Articlu 91 am the cqufiLiotu* that would lie obtained by thiH procena. 
The result hoTP. found is fhiit tho dtflt>n;htinl t'i|imtioiin r>f vibmtinn, or of <j(niilibrium, of an i(iiutm)ijc solid are the .Hnn:e im thtHc uf ii budy [MMHeHxiug |>otential energy of deftirmatioti {ler unit of rolunie expretued by the foruiiila 
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UifNKltAL THEOHV 
[CH.  VII 
The surface oonditionit arc diflercnt iu the two com*. In HAoOulUgfa's theory of optics* it WBS shown that, if tbo lutniuiferoiui orther is iaootu|>rc*w[blc oikI ^ssettiuBa [>otcnt4a] energy aooorditiR to the fonnula 2(i(nr,'+i»,*+w,*), the obiwrved fnot« about reflexion nnd re(mctiuii of li>;ht nj« accuutit«d fur; thu MurfuAMi conditions which ftra required to huld for the purjXNws of the oi)ti<iAl theory iirc prooisel^ ihoMC which arise from the vamtiou of th« voliime integral of this i;x[iri»Mion. LArmort has doscribod a medium;, which possesMt pot«utial energy iu the n.*(.|uiroJ tununcr, m "rutatioti/Jly eUttic." The equittiotu of motion of B. rotAtiooally cla.stic mediura Arc formally idoDtical with those whioh gorern tho propftgation of electric watm in free tether. 
117.   The general problem of equilibrium. 
We seek to deterraiue the state of stress, aud straiD, in a body of given shape which is held slraiucd by body forces and surface tractionti. For this purpose we have to express the equations of tlio type 
a^(£)n^(L>.^©^^— ■ <^) 
as a systfin of m^iiHtions t^j dflU^nnino the components of displacement, u, V, w; and the solutionH of them must be adapted to satisfy certain conditions at the surface 8 of the body. In general we shall take these conditions to be, either (a) that the displacement is given at Jill points of S, or (b) that the surface tractions are given at all points of S. In cam (a), the quantities u, v, w have given values at S; in case (b) the quantities of the type 
„    hw    ,   .   sw    ,   .Sir    ,   , 
A r, s ^7-cos (ar, k) + ^^-co« (y, w) + 5—C08 (», «•), 
Ze. 
3r 
*!/ 
Stf. 
have given values at S. It is clear that, if any displacement has been found, which satisfies the equations of type (7), and yields the prescribed values for the surface tractions, a sioall displacement which wuuld be [MSsiWe in a rigid body may be superposed and the equations will still be satisfior]; the strain and stres-ii are ni't altered by the superposition of this displacement. It follows that, in case {b), the solution of the equations is indeterminate, iu the sense that a sraall displacement which would be possible xo a rigid body may be superposeil upon any displacement that ^atisrie-s the equations. 
The question of the existence uf solutions of the equations of type (7) which also satisfy the given boundary couditiuiis will not be discussed here. It is of more importance to remark that, when the surface tiw;tions are given, the equations and conditions are incompatible unless these tractions, with the body forces, are a system of forces which would keep a rigid body in equilibrium. Suppose in fact that et, v, w are a systent of functions which satisfy the equatinns of type (7). If we integnitc the left-hand member of (7) tlmjugh the volunitt of the Imdy, and transfuriu the vohime-integTHls 
* Dublin. Trant. R. lri»h Aead.voV2\ (ISSD) = CoU(-c<«f ITorfao/JaMM JfocCuUdfA, DttbUn, 1880, p. I4«. 
t Phil. Tram. R09. Soc. (Ser. A), vol. 189 (1894). 
I 
116-118] 
or EQUILIBRIUM 
167 
of such terms as ^— [5—) by Green's transformation, we fiod the equation 
^^m jj X,dS+lJ( pXdxdydg=0 (8) 
If we multiply the equation of type (7) which contains Z by y, and that which contains V by s. aw! subtract, we obtain the eqnatinii 
JjJ L^laiWeJ    a^r \^;     9a\ae«./J     ' 19-: U<wJ "^^y [dej "^de \dey,)\ 
1+ p (ijZ-sY)\ dxdydt - 0 ; and, on ImnsfurtniDg this by Qreun's transfomiation, we find the equation jjiyZ,-iY,)dS+jjjpiyZ-zy)iLrdydz^i) (9) 
In this way all the conditions of statical equilibrium may be shown tu hold. 
116.   Uniqnenesa of eolation*. 
We shall prove the tbllowing theorem:—If either the surface displacemeote or the surface tractions are given the solution of the problem of equilibrium is unique, in the seiiBe that the »tate of titreB.H (and strain) is determinate without ambiguity. 
We observe in the first place that the function W, being a homogeneous quadratic function which is always positive for real valuc'3 of its argutneots, cannot vanish unless nil its arg'ttments vanish. The-se arguments are the six components of a train; and^ when thpy vanish, the displacement is one which would be pos-sible it) a rigid body.    Thus, if W vanishes, the body is 
I only moved as a whole. Now, if pos.sible, let u', v'. iv and u", v", w" be two systems of displacements which satisfy the equations of typo (7), and also satisfy the given conditions at the surface S of the body.    Then u ~u", v' — v'\ w' — w" is a system of displacements which satisSe.'^ the equations of tlie ty|>e 
LiZKiUHMh^ <-> 
throughout the body, and also satisfies conditions at the surface.    Denote this displHcennint by {ii, v, w),    Thi-n we can  write down the eijuabiou 
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and tbU is the same as 
OEKEIUL THCORT 
[CH. VU 
+ tvo similar expresaioDS  dS 
When the surfece coaditious are of displacemeut u, v, w vanish at all points of B; aad when they are of tniction the tnietioiui calcti]au.-(] fr<:>ii) u, v, w vaiiiijh at all  points of 5.    lu either case, the snrfuce integral in the above       i 
equation vaoishea.   The volatne iutegrut is \\\'lV(dxd^fdx; and ^ince TT is H 
oecesnarily pofiilive, thi^ cannot vanish unle^ Tf vanishes.    Henco (u, r, w)  V is a displacement possible in a rigid body.    When the surface oinditious are of displacement u, v, w must vanish, for they vaniah at all points of 8. 
110.   Theorem of Tninimnm enoi^. 
The  theorein of uniqueness uf solution is associated  with a theorem mioimum potential energy.    We cowiider the cace where there are no body forces, and  the surface displacements are given.    The potential energy of i deformation of the body is the volume integral of the stniin-encrg)--functioQ taken through the volume of the body.    We may »tat« the theorem in the form:— 
The displacement which satisfies the dilTerential ei)uatioiis of equilibrium, as well as the conditions at tlit; Ixftinding siirfnce, yields a smaller value for the i>otential energy' of deformation than any other displacement, which satisfies the wme conditions at the bounding surface. 
JLet (tt, v, it) be the displacement which satisfies the eqaations ofJ eqwilihriutn throughout the body and the conditions at the bounding surface, and let any other displacement whi(;h Katistles the conditions at the surface be denoted by (u +«', n + /, w + vf). The quantities «', v', to' vanish at the surface. We denote collectively by c the stniiu-oomponents calculated from u, r, TP, and by e' the strain-comiKmeiits calculated IVnui u', v, v:'; we denote by fit) the strain-energy-function calculateil from the displacemeuts u, », w, with fi similar notation for the strain-onergy-funntion calculated from the other displacement* We write V for the potential energy of deformation comsponding with the displacement (u. v, w), and K, for the potential energy of deformation correspunding with the di^placentent (u+u', p + c', tv + u^X Then we show that F, — K must be positive. 
We have 
K.- V = [\\ 1 /(« + «')-/{«)! dxrfyrf,, 
118, 119] 
aud this is the same as 
K.-F = 
or EQtrtLiimnTM 
169 
^B^^Kfie')^d^d:fd.. 
de 
because /(e) is a homogeneous quadratic fuDctioD of the arguments denoted collectively by e. Herein /(e') is uecessarily piwitivo, for it is the straincue rgy-function e:ilc-ij]ated from the displacement («', v, w'). AIho we have. in the ordinary notation, 
-.a/(«)^au air  dv'dw  du/dw 
dx Beta    ^,V ^vy 
\dy     OS J de^i     \dg     dx ' oe„    \dic     dy) 9c^' 
We trawsform the volume integraj of this expression into a surface integral Dud a volume integral, neither of which involves diff«-reatial coefficients of «', r', w. The surface integral vauishes because u, v', w' vanish at the surface.    The coctficieut of u' in the volume integral is 
3 /8F\     a /5^»F oy \de^ 
&F \de„/ 
+ 
and thi» vanishes in virtue of the equations of equilibrium.    In like mamier the coefficients of v' and w' vaui^jh.    It followin that 
V,-V = jjlfie)dudyd£. 
which is necessarily positive, and thei-efore V< V^. 
The oourono uf this theorem b^LJt boeri erajilnyetl bo jimve that there Bxi»L» a HoIutioD of the LHjlULtiuiiM iif oqiiililliriiiin which yieM.-* given vahieii for the dia|i]iK*'mciit* iit the boimtlfify*. If wc knew indeimmlRiitly tlin,t itnimiig nil th«! natu of futiutiuiiis w, c, v, vhich take the giren va]u«H on tbu boundary, there must I« one <n'bi(;h ^viw a smaller valuQ to 
Wdrdydt than aay other given, we could inrer th« truth of this oonTerae theorem. 
/// 
Tlw wune difficulty occurs in the proof of the esinwiice-thRorem in tho Theory uf Potentialt. In that theory it han been attempted to tuni the diflioulty hy dcvisitiy im explicit ]*rocctu for rotwtructiiiK the roquired function J,    In the cftse of two-diiiiEiiiniotiol 
Ipnteniial functionK tlie oxJJttonce of i\ tuiuiiiuiEn fur the integral cdiioernm) hnn been proved by Ililliertf • Lord Kalrin (Sir W, ThomwnJ, Phil. Trani. Roy. See. vol. 168 (iaB8]=Jtfa*h. a«d Pfcy*. Paper; vol. 3. jx 3ijl. t Xbc difflcuil.v appears \o bave been pi>inte<I out fir«l by WeJerslrasa in his lectunsH nn the Calculus of Viiri&tionfi.    Sl-p thu Artiolu ' Variuliun of an tnteeral* in Eucy. BrII. SuppUment, 
I[GNry. lirit.. lOtb ed.. vol. 33 (l^O'J)]. J See, t.K; C. Nofinmun, I'niertuchuHfffa ilber tin* !offarithmiictie- uwl Xfitfon'fcA* PoUntial, IMptig. 1877. I ' Ueber dM Diriahlet'sche Prinoip,' {PalKM/l tur Feier da IfMjahrigftt Utiteheru rf. Kbntgt. , Ga. d. FTwj. lu Omtinfi^n), Berlin, l&Ol. 
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BRTI'S THBOBEM 
[oh. Til 
120,    Tbaorem conoemlDg tlu potentiai eaargj of defonnation*. 
Tba pDteDtUl ffotrrgy 'jS defurmatioo of a boiljr, wfaicfa U in equilibrium iiBd«r giren load, ii equal to half the voric done by the external forces, tuAuig thfuigU Ui« diaplaceDieoU from the tmstressed state to the state of (^uilibnam. 
TIm work in question ja 
jjjp (ttX + cV + tDZ) dxdydi + jj (uX, + vY, + wZ,) dS. The surface integral ia the mm of three soeb terms as 
JMitSllA work in queution is therefore equal to 
hw      aif      a(F      ar 
^ae. 
a^a*ix  a^a*^   0rae»/    )     " 
a)K      air 
+ e„ — 
a«w»      ae„   ^a«^ 
+ e^ T.—) dxdtjAz, 
Tba  Ant line of this  expreaaion vanisliea  in virtue of the  etjuatious of «f]ui1ibrium, and the second line is equal lo ^\\\Wdxdydz.    Hence theorem followa at once. 
121.    The reciprocal theorem-f*. 
Lot tt, V, w be any fuiictious of x, y,£, i which are ODe-volued and free fn)m iliHcontiiiiiity throughout the space occupiefl by a \}ttf\y ; ami let ub Hiijip<Hii' thill u, V, w aro not too great at any point Uj aclinit. (»f thoir being tliaplm'i'incTitM within the range of "amall (lisplMcenients" couteiuptated tho tlifury of elasticity founded on Uooke's Law. Thyii siiitjible foi iMiiild iiiitLhtJun the l>ody in the state of displacement iletunnined by u, r. The body forces and surface tractions that would be rct]uired can be determinefl by cjilculating the strain-ci'mponents and strain-energy-funcliou fVom ihe dJHplacement {it, v, w) and substituting in the equations of the types 
«   a fdW\   a fdW\   a fdw\    a^ 
A*.» cos <x. V) ^) + coe (y. W (1^) + coa (,,.-) |£. 
* Is Mtnt booka llw potoattal wottgy ct d«foniiatioD u called the •■ rwilwne* " of lb* bojjr. 
t Tha Umtmn u da« to E. B«tti. It mmvo Cimnto (&«r. i), n. 7 ud 8 (187S)k It m a •faoUl MM at m moro guieiml Uieorua giTen b; Lord B*;leifb. Lamdtm Math. See, Pnc, vol. 4 (19781 ■i.*IW/ai(Ar I'aptn. to). I, p. 179. For ft gvocral dJiouMfaii of recap«Mftl thiiii—i Id Hj'nwnlM ivfMwoM muy b« nwdr lo • f>»p«f b^ H. Lamb. Zjoadon if«IA. Sm. Pnt^ f«L It UWO}. }>> lit. 
[20-122] 
OF  RECIPROCITY 
171 
ID displacement ri, v, w is one that cuuld be produced by these body forces id surface tractions. 
Now let (u, V, w), (u, r/, w') be two sets of dinplacements, (X, Y, Z) and [X\ 7\ Z') the corresponding body foicea, (Z,, F,, Z,) and (X\, Y\, Z\) the corresponding surface tractions.    The reciprocal theorem is as follows :— 
The whole work done hjf the /wees of the first set (inclnding kinetic tiong), acting over the displacements produced by Oie &ec(iml set, is equal U> the whole work' done by the forces of the second set, acting over the displacements pivditced by the Jirtd. 
The analytical statement of the theorem is expressed by the enjuatian 
a? 
+ jj (X,tt' + n» + ZM) dS 
+ IJ{X',%+r,v + z\w)ds.   (11) 
In virtue of the equutions of n^otion and the eqnations which connect [the sarfacc tractions with stress-components, we may express the left-hand [member of (11) in terms of stress-componentK in the form of a sum of terms [containing «', v*. w' explicitly.   The terms in ti are 
dx \fie. 
I 
It follows that the left-hand member of (11^ may be expressed as a volume integral; and ll takes the form 
=— +ew5— + «w5 ^^v*=. ^*" =— + *:>v5— xdxdtjdt. 
fieu ^eyy de„      ^ de^, iv„      ^ 9«^J 
By a general property of quadratic functions^ this expression ia symmetrical in the components of strain of the two .systems, fj*,... and e'j,  It is therefore the same as the result of transforming the right-hand member of (11). 
122.    Determination of average strains*, 
We  luay use the rectprocal theorem to find the average values of the 
[«train.s produced in a body bv any s_ystem of forces by which equilibrium 
can be maintained.    For this purpose we have only to suppose that «', v\ w' 
[are displacements corresponding with a  homogeneous strain.    The stress
• The method i» iw to Betti, for. rit. 
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AVERAGE   VAl.C'ES  OF  STRAIN-COMPONENTS 
[CH. VII 
components calculated from «', v', w are then constant throughout the body. Equation (11) can be expresserl in the fDnn 
\\\ («w^» + ^vv^\ + ««^'j + fir*I'/ + e»^'a + ^^'^dj-dydt 
It X'x ts the only streso-componeut of the uuirorm stress that is dificrent from aero the coirespondiag strain-components can be calculated from the atrecjs-straiu relatioiis, and the dispIacomcntB (u', r', w') can be found.    Thi 
the quantity  \\\ e^d:edydt cun l>e determined, and tbU quantity is tli< 
product of the volume of the body and the average value of the strain^ compoDcnt *„ taken through the body.    In the same way the average of any othtT strain cnu be determined.    To  firnl  the  avemge value of th< cubical dihitatiou we take the uniform stress-system to consist of unifori tension the same in all directions round a |>rtiiit. 
123.    Average strains in an isotropic aolid body. 
In the case of an isotropic solid of volume V the average value of Cm is 
•^y\^^p\Xx-cO'y + Zt)]d^dyd^+^^\{X^-<T{Y,i! + Z 
the average valup of e^ is 1 
2m r 
'ljpiYz-t-Zr/)dadydi + ^^y.flp{y,z-¥Z,y)d8; (14) 
the average value of A is 
^^jjjp(X:r. + Y^ + Zi)dTdi/dz+-^_^jj\x.x+)\y-i-Z,s)dS....i\5) 
TI»e following rBftuIt«* niaj l« obuincd i'H«il.v frum IUomb firniiuiae:— 
(i)   A solid cylinder of any form of section rcstiti"^ on ou« ouJ on a borixontttl plane is shorter than it would be in tlic un:<tn';««Ki stAte by a length   WHi/it, ■where W" i« its weight, / itft length, « the area of it« cross-wction.    The voLikhb of the cylinder ia leaa^ tluiii it would \ia in the unbtrDmed oUte by Wli&k. ^M 
(ii)    Wben the same cylinder liw on its side, it is longer than it would Iw iu th« unMtnsHed ataie by <r H'A/A'u, wlicre A in the height of the centre of gravity above tiie |ilane.   The Toluine of the cylitidcr n leaa than it would be in the unslrossod Btat« tqfl Wk/U. " 
(iii} A body of any form ooiu[ir(v«t«d Iwtwecii two jmratlol phuioH, at a diotanee c apart, will juve ito volume dimiiiishwl by j>c:3i; where p is tlw remiltanl premiue on either plane.    If the body ik a cylinder with plane ertdn nt right angles to it^ geiiemtoni, 
* NnmeroUB examples of the appUcalion of thosu (oniiii]a>, and the oorrnpondi&g faroiiil for au Kulotropio body, have  been  Kiveo by C. Ohree, Cantbridg* Phil. Soe.  Trmnt,, voL (101K>. p. 313. 
^22-12+] 
TUKUKV   OF   VIBRATIONS 
173 
aod UiMe oudx are iu cootACt with the uomprewting pUnes, ita length will be diminiHhed tib^ pejE^, where m bi the area of the crcifw-itactiDii. 
<iv) A vestrat of auy form, i>f internal volume T, and extenml volume !'„, whon [•ubjected Ui inttnift] preaeure />, and exterDol pressure p^, will be defonned fin that the ! yc4umA 1^— F, of the nitiicriat of the vessel \n dinainisbed b/ the amount (^ ^'o~;'i ''iV't
124.    The general problem of vibrations.    Uniquenees of solution. 
Wheu a solid body is held in a state of strain, and the forces tliat maintain the stmin cease ti) act. Internal reUtive motion is generally set up. Such luoiiuHB f»ii ulao be stet up by the actitin L»f forces which vary with the time. Id the latter case they may be described as "forced motions." In {jroblems of forred motionB the conditions at the surface may be Minditimis uf rii^placenient or coiiditiims of traction. When there are no furces, and the eitriace uf the budy is free from traction, the motions that can taktr [jlace are "&ee vibraiious." They are to be determined by solving the equations of the type 
in a form adapted to satisfy the conditions of the type 
,   ,dir       ,    ,dw      ,     '^w  „ 
Cos (x, v) i— + ciw {y, v) iT— + cos (t, V) ^— = 0 
06, 
5f. 
*y 
he. 
.(17) 
at the surfwce of the body. There is an infinite number of nnxiftfi of free vibration, and we can adapt the solution of the equations to satisfy given conditiontt of displacement and velocity in the initial state. 
When there are variable body forecs, and the .surface is free from traction, free vibrations can coexist with forced motions, and the like holds go<Kl for forced motions produced by variable surface tractions 
The methods of integration of the equations of free vibration will occupy us immediately. We shall prove here that a solution of the equations of free vibration which also satisfies given initial couditions of displacement and velocity is unique". 
If possible, let there be two setsof displacements (t/'.v'.w') and {u",v",w") which b<>th satisfy the equations of type (16) and the conditions of type <17). and, at a certain instant. ( = („, let («', «', «(') = («", v", «/') and 
aw'    Pw'\    ,9«"    d^    a«/'\ Zt'    dt)    \dt '    dt'    dt j
9«' 
dt' 
[dt 
The difference (■a'— m". (f' — t/",uj' —Mj''> would be a displacement which would also satisfy the equatidns of type (16) and the conditions of tyjie 1^17), and, at the instant t^t^, this displacement and the corresponding velocity would 
• Cf. F, Neumann, Vartttvnffen nber...Etiutieiiiit.-p. 125. 
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iL TBBOBT or 
[CH-TU 
vamsh-    Lei ifv, v, «) deooie this diapUeetpeot.    We fonn the eqvatioB 
£ 
A 
a /cW\   d (c^'v 
ftrj   ?r   _i/3'^Vi 
.ir^rU 
Sir ac "arU.J'SiVai^j  a«'A>.> 
d:r<^yd£==0,..(18) 
in which the cotDponeotA of strmin, ^^.... and the struD-eoergT^-faDCSioo, W, ■re to be cKleulaicd from the displaoeroeDt {■. r, tp). The terms eontuning p can be integrated with respect ta /. and the result is that these tertne sft^ equal to the kioetii^ euergy at time t calculated from buf^,.... (or the kinetie' «iiei;^at time t, vanishen. The terms containing IT can be tnuutfunned into a florfeoe integral and a volume integral. The sar&ce integral is the snm of three temw of the type 
-N<\ 
«»<*•'> I ftiT I+««(y-')(3=- )+«"*< '^') 
and thin vaniiihea because the siu&ce tiactions calcolated from (if, r, w) vaDi«h.    The rolame integral is ■ 
•od this is the value of 11 f Wdxdyds at time t, for W raniahes at the instant 
f w t), because the displacement vanishes throughout the body at that instant. Oor equation {18) iit therefore 
' m'W)nt)'*^:iV<^'^^-'> <«» 
and this equation cannot hold unless, at the time t, the velocity (au'St,...] and thtt stmin-energy-functiuD W vanish. There would then be no velocity and no strain, and any displac<^ment (u, v, w) that could exist would be poarible in a rigid body aud indepetideut of the lime. Since (u, v, w) vanishes throughout the body at the instant < = ^, it vanishes throughout the body at all subsequent iuwlanta. 
126.    Plox of energy in vibratory motion. 
The kinetic energy T arid iMitfititial raiei^ I' of tbc poriioD or the bmly wtthtn a closed mirfiws a are sspconaaJ by tbe fomiulaa 
124^126] 
FRKK  VIBHATIOK8 
17ft 
in which the dnt« denotie diflfereiitiation with reHjieot to f, and the iDtugratiuii oxteada through the voLucud within 'S.    We have at oDoe 
Wrhmt 
jz(T+ V)= \ I \ \ii (uu+i!6+tffic) + >.— =- +=——+-—.5
'' Tha right-baDd member may be transformed into a volume int^^^ and n surrnos iiitegml. The tMins of tbe roinnio integral whiub coiitaiu f! are 
ji/«('"-&^! 
3v?e™     ?i3i 
^)rfxdyd,: 
» 
I 
and tbe tenuH (»f the mirface integral which cuntaii] k are 
When there a« no body farces, we deduce the cquAtJon 
j^iT-¥ V)= { hu.\\^bi\-i-^X,)dS (SI) 
Thi« equation may l>e expi-cMand in words in the form :—The rate of increase of the energy within S va equal to i\\f, rate at which work i:^ done by the tractioox aorooa S. 
According to the theorem (vii) of Article &3 the uxprasyion -(u.^c-f i^JV-fi^^} ii Uie nonual component of a vector quantity, of whiuli ttie ooiiiponentn parailel to the axes are 
This vector therefore niaj be Ufw-d to cnli^iiUte the flux of energy. 
126.    Free vibrations of elastic solid bodies. 
In the theory of the small OBcillationa of dynamical systems with a finite number of degrees of freedom, it is shown that the most general small motion of a Hyatem, which is slightly diHtiirbu-d from a position of stable equilibrium, is capable of aualysia into a number of small periodic motinns, each of which could be executed iudepeudently of the others. The number of these special types of motion is equal to the number of degrees of freedom of the system. Each of them is characterized by the following properties:— 
(i)     The motion of every particle of the system is sample harmonic. 
(ii) The periiid and phase of the sunple harmoiiic motion are the same for all tbe particles. 
(iii) The displacement of any particle from its equilibrium position, estiuiuted in any direclion, bears a detinite ratio to the displacement of any chosen particle in any specifieil direction. 
When the system is moving in one of these special ways it is said to be allating in a " principal" (or " normal") mode.    The motion consequent in any small disturhanco can be represented as the result of superposed motions in the different nonnal modes. 
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UENRKAL THEORV  OF 
[CB. VII 
Wbcn we attempt to geneialize this theory, so as to apply it to systems with intiiiite freedom, we begiu by setkiujr for Lorinal modes ol" vibration* Takiug pi^TT for the frequency of such a mode of moticu, we assume for the displacement the fonnula; 
a = a'cosipt + f),    v= r'cos(jo( + e),   w = w'cos(p( + <), ...(22) 
in which u', v', w' are functions of x, y, z, but not of (, and p and € are! constants. Now let H" be what the strain-energy-function, W, would become' if M, v'.w'were the displacement, and let A"i....be what the stress-componeDts-J wouM bocoine in the same case. The equations of motion under no body] forcee tAke auch forms as 
'^'"■•f; + pp>«' = 0;     (23) 
and the bountiary conditions, when the siirfac* is free from traction, takej such foniis as 
coefx, vl A'', + cn8(y, v) A'V + cosC*. »')^',= 0 (24) 
These equation!^ and conditions suffice to determine u', r', w' as functions of JT, y, t with an arbitrary constant multiplier, and these ftmctions also involve p. The boundar)' conditions lead to an equation for p, in general transcendental] and having an intiuite number of roots.    This equation is known as thi '■ frequency-equation." 
It thus appuars that an elastic solid body possesses nii in^uiCc numberj of normal modes of vibration. 
Let jO,. /J,,... be the roots of the froquoncy-equation, and let the normi mode of vibration with period 1-rr\pr be expres-sed by the equations 
ii^ A fUr cos {p,t + fr).    0 = A ,fV *^OS {prt + *r)i    10 = A^ttVCOS {p^ + «rX ■ • •(^^5) 
in which .-1, is an arbitrary- constant multiplier j the functions Ur, v,, Wr called " normal functions." 
The result of superposing motions in the different normal modes would] be a motion expreasttd by ei^iiatioii:) uf the type 
U = Su^r.     W = -tV^r.      W = 'S.Wriftr (2©) 
in which ^r stands for the function ArCm(pft + €,■). The statement that: every small motion of the system can be represented as ihe result of superposed motions in normal mode^ is etpiivuleiit to a theorem, viz.: that any arbitrary displacement (or velocity) can be represented aa the sum of a finite or infinite series of normal functiuus. Such theorems concerning the expansions of functions are generalizations of Fourier't< iheorem. and. from the point of view of a rigorous analysis, they require independent proof. Every problem of free vibrations suggests such a theorem of expansion. 
' 8«r ClabscL, KLutieitSt. or Lord Bafleigb, Theary of Soutui, rol. 1. 
FREE  VIRRATtONS 
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126,   127] 
127.    General theorems relating to iVee vibrationB*. 
(i)    In tlie variational eijuation of motion 
let u, V, w have the forms it,^r> ^^V^r. Wr4>r, and let Su, &v, Bu; have the forms ««^i. v/fit,Wf<ft,, where <^^ and <^,.stand fur AfCt>H{p^ + e^) and jl,cos(p/ + f,), and the coDStanU Ar and A, may be as small as wc please. Let IK become I H'r when Ur, v^. ti'f are substituted for n, v, u\ and become W^, when u,, r,, w, are substituted for «, v, w. Let e denote any one of the six stnuu-componcnts, and let Pr and e, denote what e becomes when u^, v,., to, and w,, u,, Wj respectively are substituted for u, c, w. Then the variational equation takes the fonu 
]// " \b~ *') ^^^^^ ^ ''^^ J/J '' ^"'"' "*■ "'•*'' "*" '*''-*''''^ dsdydt. 
The left-hand member is iinalterfd when «r and e, are interchanged, i.e. when tt, p, ware taken to have the forms «,*,,... and Bu. Bv, Bw are taken to have the forms m,<^„... and then the right-hand member contains jp,'instead cf^r». I Since p^ and p, are unequal it foUuws that 
p {ttrU, -i- VrV, + tUrVJt) d-xdt/dx ^ 0 <28) 
This result 18 known as the " conjugate property " of the normal functiooB. 
(ii) We may write tj>, in the forms ArCmprt + Br9ia pX and theu the conjugate property of the nttrnial functions enables ub to determine the constants Ar, Bt in terms of the initial diBplaeoment and velocity. We assume that the displacement at any time can be represente<l in the form (2fi).    Then initially we have 
U^=1Arltr, Vf, = ^ArVr, Wc = 2v|,WV (29) 
ii« = 2^,;vv.   i)„=XBrp^r.    w^^lBrpAu, (30) 
» where (u,, iv. «•„) is the initial displacement and (u,„ ti„ «;„) is the initial velocity. On multiplying the three equations of (29) by pUt, pVr, pit'r respectively, and integrating through the volume of the body, we obtain the 
(equation Arj jj pOh* + IV' + Wf')dxdyjdz =\\lp ("a"r + t'oWr + WflWr) dxdydz. ...(31) The other coefficients are determined by a similar process. 
I(iii)   The conjugate property of the normal functions may be used * Th«M  tbeorem* were given b; Clebech an a generalization of Toiuon's tbeorj of tb« vibrations of aa elaalie spb^re.    See lHtroduetim\, 
L. B. IS 
178 EFFECT OF SUDDEN  APPLKATION [CB. Vn 
to ehow that the fretiuencj-equatJou cannot have imaginary n>ot& If there were a root pr' of the form a + tff, there would also be a root p,' of the form a — t^. With chese there would correspond two sets of Dormal fuDcttona Ur. Vf, vTr and u«, v,, w. which also would be conjugate imaginaries. The equation 
jj] P i«rW< + VrV, + WrWt) iUdydx = 0 
could not then be satisfied, fur the sul>ject of integration would be the product of the positive quantity p aod a sum of positive squares. 
It remains to show that p,^ cannot be negative. For this purpose we consider the integral 
fjfp (Mr' + Vr' + «v*) dxdydi, which is equal to 
where Z.'",... are what X^,... become when u,, iv, Wr Are substituted for u, V, w.    The expression last written can be transformed into 
-iV"* [J[Ur icon (x, v) A",'" +co«(y, v) A"/' +C08(i. v)Zr'"i + ...+...] dS 
in which the surface integral vanisbes and the volume integral is necessarily positive.    It follows that ;V is positive. 
128.   Load suddenly applied or suddenly reversed. 
The theory of the vibrations of solids may be used to prove two theorems of gixiat importance in regani to the strength of materials. The first of these is that the strain produced by a loatl suddenly applied may be twice as great as that produced by the gradual application of the same load; the second is that, if the load is suddenly reversed, the atrain may be trebled. 
To prove the first theorem, we oliecrve that, if a load is suddenly applied to an elastic system, the system will be thrown into a state of vibration about a certain equilibnuin configuration, viz. that whicli the system wmild take if the load were applied gradually. The initial state is one in which the enei^' is purely potential, and, as there is no elastic stress, this energy is due simply to the position of the elastic soHd in the Held of force constituting thu load. If the initial position is a possible position of instantaneous rest in a normal mode oC oscillation of the system, then the system will oscillate in that normal mode, and the conBgumtion at the end of a quarter of a period will  be  the equilibrium  configuration, Ic. the 
127. 128] 
OR   REVEIUSAL  OF   LOAD 
1Y9 
I 
displiicement from the rquililiriiim configuration will then be zero; at th« end of a half-period, it will be equal and opposite to that in the initial position. The maximum displacement from the initial configuration wilt i^lberefore be twice that in the equilibrium configuratiou. If the system, when left to itself under the suddenly apphed load, does not o»ciHate in a normal mode the strain will be leas than twice that in the equilibrium configuration, since the s}*stem never passes into a conSguration in which energy is purely potential. 
The proof of the seooud theorL^m is similar. The system being held ■ Vteained in a configuration of equilibrium, the load is suddenly revcrsod, and the new position of equilibrium is one in which all the displacements are revcraeti. This is the pisition about which the sjatoiu oscillates. If it oscillates in a normal mode the maximum displacement from the equilibrium configuration \ti double the initial displacement from the conligtirabion of no strain; and, at the instant when the displacement from the equilibrium configuration is a maximum, the displacement from the configuration of no strain is throe times that which would occur in the equilibrium configuration. 
A typical example of the first thcorcin ie the case of an elastic string, which a weight is suddenly attached.     The greatest extension of the ing is double that which it has, when statically supporting the weight. 
A typical example of the second theorem is the case of a cylindrical shaft. hp]d twisted. If the twisting couple is suddenly reversed the greatest shear can be three times that which originally accompanied the twist. 
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        CHAPTER VIII. 
THE TRANSMISSION  OF  FORCE. 
129. Is this Chapter wc propose lo investigate some special problems of the e<iuiHbriuiii of an isotropic solid body under no body forces. We shall take the equations of equilibrium in the forms 
And tthaJl consider certain paixicntar solutions which tend to become infinite in the neighbourhnod of chosen points. Theae pointa must be outside the body, or in cavities within the body. We have a theory of the aoltitiou of the equatiuuH, by a synthesis of solntions having certain points as singular points, analogous to the theory of harmonic functions regarded as the potentials due to point masses. From the physical point of view the simplest singular point is a point at which a force acts on the body. 
130. Force operative at a point*. 
When body forces (X, Y, Z) act on the body the equations of equilibrium are 
(x + m)(4. I,. ai)^ + '*^'*«' "• «')+p('S'. y, Z)=^Q. ...(2> 
and the most general solution of these etpiations will be obtained by adding to any particular solution of them the general solution of equations (1). The effects uf the l>ody furces are pepre«ented by the fiarlicular solution. We seek Huch a solution in the case whore {X, Y, Z) ore diflTerent from zero within a finite volume T and vaniKh outside T. The volume T may be that of the body or that of a part uf the body. For the purpose in hand we maj* think of the body as extended indotinitely in all directions and the volume T as » part of it.    We pass to a limit by diminishing T indefinitely. 
* Tb« rexalts obtained in tbia Article are due to Lord Kelvin.    Sec tMrodtuiion. footnote ft6. 
129. 130] 
FORCE  OPERATIVE AT A  POINT 
181 
Wo express  tho displacenieut by  moans of a scalar potential <^ and a vector potential (F, 0, H) (cf. Article 16) by means of formula^ of iht' type 
« = 5^ + 5 5-, 
OX     9y     03 
(3) 
and we express the btxly force  in like manner by means of formnlse of 
the tvpe 
„     ad>    SAT    3Af 
(4) 
"3*     3y     dt ' 
Since A = V*^ the ei^uations (2) can be written in such forms as 
(X..„iv.,..(^..^-^..«).,(|Mf-^) = 0,..,(5) 
and particular uulutiui^ can be obtaiued by wiiting down particular solutions uf the four equations 
liVG + pM = 0,   /iV»i/+^^"=0. i  ^^^ 
Now X, Y, Z can be expressed in forms of the typo (4) by putliug 
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        ^=  i. 
il = 
4Tr 
^=    ^f('"t'-^'|^)^^''/^
■(7> 
9y 
where A"'. V", 2' denote the values of A', T, Z at any point (j/, y', y) within 7*, r 18 the distance of thi!< point from jt, ^, z, and the integraticm extends through T. It is at once obvious that these forms yield the correct 'Vtluw for X, Y, Z at any point within T, and zero values at any point '^tafde T. 
We DOW pass to a limit by diminishing all the linear dimoDsions of T indefinitely,  but  supposing   tliat   |j X'tirV/y'c/z'  has  a finite  limit.     We 
pass in this way to the case of a force X^ acting at (if', y, z') in the direction of the axis of x.    Wc have to put 
pjjjX'd^'dy'dt'=X, (8) 
and then wo have 
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ErFEOT OF  FORCE 
[CH. VHI 
Now V» (9r/Sx) = 29r~V9*i an(l we may therefore put The corresponding fornts for m, v, w are 
+ 
X. 
Sir** (X + 2/*) ar»     +7r^r' ^_      (X + ^)X,    Ir^ 
,„=._ (^ + m)X.    9v 
.(11) 
More generally, the displacenionb due to force (X„ Fj, -Z^) acting at the point {«*, y', «'), is expressed by the equation , 
+      ^+M  _ /ar-ar'    y-y'    2-/'\ X,(x-x') + K,(y-.y') + Z>(g-/) 87r>i(X + 2>t)^   r    '      »•    *      r   y r" 
(12) 
When the forces X, I'. Z act through a volume 7'of finite size, particular integrals of the equalioiis (2) can be expressed iu such forms as 
_       ^ + /' 
fjji^^, ^ ^,(,_^)^vz?2±z:fc?:)±^:(i^)| ^■,,'^; ...(,3, 
where the integration extends through the volume T. 
It may be observed that the dilatation and rotation corresponding with the displacement (11) are given by the equations X„       ar-'    „        ^   „ X, dr-' 
4TriX + 2/i) dx 
■ 2-' = <''  ^-«=W 3' • 
^—^■■■^ 
131.   Firat type of simple Bolutiona*. 
When the force acta at the origin parallel to the axis uf c uro tuay nrito the eiprseBions for the diH|t1aoemQQt iti the fantm 
«=a^-,    ir=^g, 
"-^($^1 
.(la) 
It umy bo\-orified immutJiatfaly tliat tliww constitute a »o!utioii uf wjiwtimi* (1) id all space cxfcfrt ut thu wrigiii, Wc mtppose that the origin is in a, cavity witliiii a body, and calcuiat« tho trautiou acroiw the Hurfatx; of the cavity. Tha tmetiotia c.'umMipi>ndiug with (15) over aoy surfaoQS bomidiug a body are u ayitten) of forces in iitAtical equilibriatn when tbe origin 19 not a point of the hodj [cf. Article 117].    It follows that, in tbe oaoe of the body 
* Tb« (olatioD cspraiaed in aqoaUoas (15) has noetved Uub titts at the baodi of Botuaioeaq, AfpUcationt da PoUMieU.... 
130-132] 
OPERATIVE  AT  A  POINT 
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r 
with Ihe cavity, tho rcsultuut ;iuti n»ulUiit mum«tit uf tliu'su iractiuiut &t the uuter boundary uf the hodj am cqiiat and o])i>a8ittt to the reMulUut and remilhuit toomont or the tractions at the tmrface of the aivity, Tho values of tbeue traotioiia at the out«r bouiidsr}' do not deiioud uiwn th« ahajn; or siac of the cavity, and they may therefore bo calculated hy taking ttie onvity tn ho H]iherk-a] and pa8.ting tn n limit by dimiuiiihiii)^; the radiuH of the sphere indelinitt'ly. In tliis* way wc may verify that tho dispUiceiiiotit cxprsMied by (19) ia [midiicod by a aingle force of luagtiitudc 8ir/i.(\+2>i)(l/(X + ^) tippliod at the origin in the direcUon of the niin of t. 
We write eqiiatious (15) in the form 
'—©
^•^^-%v 
.(16) 
The cubical dilatatioD & cc>rreH{ionditig with the dioplaoeuieut (IS) in A r^- -r , aud the Btreaa-oomimtienta can be calnulated readily in the forme 
The trsotjona acroHs any plaue (of which the norma] is in directJOQ i>) are given by the equations 
')-^-coe(y..)^ 
}]• 
^=^'-^^{»^)^4;}' 
c* 
.(17) 
I 
and, when > ih the inwanlH drawn tiormul to a spherical aurfaco with its centre at the origin, thene are 
Whatever tho mdiiiB uf tho cavity may be, this sysleui of tractions ih utatiually equivalent to a single foroa, applied at the origin, directed along the asiii of s In the positive sense, and of tnagoitude SvfiA (X -I- £^)/(X+^). 
Some additional rptndta in regard to the Htate of stress set up in a body by the appHca> lion of force at a |K>int will be given in Article 140 infra, 
132.    Typical nuclei of strain. 
Varioua soiutiorui which posMMs Huigular points can ho derived from that diBOuasod in Article 131. in |>articiihu', wu niu)' HuppusL' two pointtt ut whic)i furL*(» a<,'t to ctmlesce, and obtain new sofutiuiin by a limiting pnii-v^. It is cuiivtiiiiuiit to doiiole the dtsplacenant due to force [J^, J'q, Z^^ ApjttitMj at tbu origin by 
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        IS* msnaccMKST dob to [ca. voi 
■0 tkM far «aaifl* («,. f^. vj ■ th* dhfiM«tM«t oNifaed I17 wpheiiig J^ 17 axatj is •9«Mio«»(11).   Wceonwler •oaieesftnfle«*of the ajntberia of ■ng«Uritia»:— 
'«> LflC a Ibffca A-*i^ be affiiBd •! tfae ori^ in tb* dirsetion of tfae ub qf x, nd let an ai)Ml mmI opptMJte A)i«t be apfGed « the point (&. C^ Oi, Ukd kl oi paae to a HmH I7 *HViH thrt* ii dhwmiiiieJ JaJefeuw^ whflef iiMeiiie oooateeL TV diMfdaoeaHat b 
We awj" dsoribe liw wupderitr m « **doabk force vitboot meaieaf It is lelewd to «o UM. B tbb CMC the axu of x, and  m i|iecifled w rt|pu(b in«ciutiid« bjr tfae 
[^ We aa; combine three doable foR«i witboctk mocneBt, banag their axe* paraUri to tfat am id eoofdmetei. aad ipecified bj the auna qoaati^ P.   Tbe muhing 
Kow tbe ranit (12) ehnm tbat w» have 
'i-i^n    «"!=%.    •S-'i.    (W) 
and UttBi(10)nuL| be wnttea P{^, ^. ^ where^ is the diUtatioo wbcn tbe displacefncul ta («,, *|, *,}, and m> 00.   H«Doe the dispboeateot (18) is 
P fir-'    ft^'     rt^l 
4»{4+a>.) \ft« ■   c»'   «/ ^^ 
We toajr deacribe tbe sin|{ularit^ as a "centre of conipreenon": when P is negative it Bia; be called a "centre uf dilatatiofL" The point miuit be in a caritr within the bodj; wbeo the cant; is spherical and baa its centre at the jwiot, it maj be vefificd that the timcUon acrwM the caTity is nomuU tennnn r^ amoant 
(fi) We ma; aiippoee a force A''/* to act at the origin in tbe poeitive direction of tfae asii) '>f X, sod an equal aod oppoanu force tn act at the point {0, A, 0), and we maj pass to a hmit as befbre.   The reealtitig dispUcemeiit is 
We mikj deechlie the Ningularitjr an a 'Stmible ft>t\» with nioutent" The fi>rce>i ajipliod Ui tbe biNljr in tfae nci}fhbtiitrfaood of this ixiint are etaticolly equiralcut tu a cuupls of monient P aNhiI the axis of :. Tfae Hingularity ia related tu this astK and also tu the direction of Uie fnrcua, in thJM cane the axis of x. 
(6') We may oombioe two double forces with uwruent, the uionients being about the aame axis and of the same sign, and tbe directions of tbe forces being at right angles to each otbsr. We take the force* to be h-^P and - A-V ijarsllol to the axes of x and jr at tbe urigiii, •'M''P psrallel to tbe ax)8 of r at the ]miut lO, A, 0), aod A''/* parallel to tbe axis of ^ at tbe |«iinl (A, 0, 0\ aod wo pAWi to a limit as before. Tbe remiltjiig displaca> ment is 
oritk 
^(^■- -^'.») <") 
* Ib noel of Uiaw the leading su>pB onl; of tbe anklyEift an Kiven. The reaolta (a') and {&') sre Aw to J. Dongatl, Kdinburyh M-tth. Sic. Pnc. vol. 16 UddS). 
132] 
TYPICAL NUCLEI OF STRAIN 
185 
We may deHcribe the MtDgulJU^ty as a "veutro of rotatiou about the nxiii of i."   The forccH La{>|)Hed U> tfao body in thu tieij^hbuurbood of tbiii point are Kt»t)CAlly eqiiiraleiit to a V    couple of moment iP abijut tlio axis v! t; the siiigulm-ity in nut rcL-it«d to the directiuiut of the faruefi.    In liku niaiumr we may have HiEiftiilarities wbich are centres of rotatiou 
tibouC tha axes of x and y^ for which the (lu>pli».'euieiiUs bavo the forms 
4(«¥--a » 
0, 
3r-i\ 
.(S3) 
(«}    We auppoM! tbat ceittreet of dilaCAtion are (JiKtribiitfid imifunnly along a aemi' infinite liuc.    Tbc tine uiay be taken t<> lie the (jortinn of the axis of i un whiofa t ia , QeB&tiva.   The dlsplacomftit is given by equatiuiis of the form 
'die' I vhere fl in a conntant^ and /f=j*+j'4-(« + :')'. 
>Bx 
Now 
•/:r-/:[-a=^ 
tlw dupkoetneot ia given by tbe e(|uatioD» 
«=fl 
-^.
B 
w-^ (S4) 
TheHC dufpliu3«iuoutH voiiatitute thv "idniple aolutions of the oeouiid by{>e*." Tbo result may be expressed iu ttie furm 
I ("•".•^i^'SGv   I-   ?,)''^8<'+'-)- <^^^ 
A Hiii^larity of tbo ty^w here deacriltod might be called a "line of dilatation,*' aod U might be called its "Btrength." If S in negative, the aingiiWity might ho called a "line of eompreaaiuu." 
(d) A line of dilntatioii may be termiaat«>d at both ends, and its ntrongtliu lUAV be TMiftbie. If its extremities are the origiu aud the point (0, 0, -t), and its ntrongth k proportional to the distance from the origin, wc have 
C a conataut.    Now we have 
whore i?,' = j*+y'+(i+'t)*.   The inlogral remaina finite when /■ is. increased indefinitely, and we have 
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        iu wo bave 
* BoDasiDeaqj, tor. cil. 
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        186 DISPLACEMKNT DUE TO [CH. VIH 
Thfa dooB not tend to ft limit when *■ in inci'waed indefinitely.    Let C" (f, I', W) denota' the iliHpIftnemeiit (36) ; and, in tLddition to the line of dilatation which givn rise to tbe di8pI(M3einenl(f/, V, W), let there be a line of corapresaion, with the sanie Uiw of strength, extending from the point (A, 0, 0) to tbe point (/*, 0; - k).    We [lawj to a Uruit hy taldui; A to diminish iiide&nitdy and C to IncreMe indofiiiitely, in ifuch a way that C'A baa a, finite limit, C 8*y.    The diBplftt^mcut in given by the equations 
„<iu       „cr       „dw u^C^.  p-c^,  «-c^-. 
Aiid thi« hoA H Suite limit when I in lucreaaed iudeBnitely. viz. —s/r{x+r). Tbe di»pl&ucijieiit due to such a nomi-iufiDite double lino of aingularitiea a» we have deacribed ben is expret^ by the cquationri 
or, am they may hn written, In like luuiiutu' wu uuiy have 
(«■ "> -•)--^(;4' I" ^O*'^'*^'-"'"*-'* ^'^> 
(«>)    lmt«Bd of A Unc-diatribtition of rentj-es of dilatation, vo may take a liao-diatribu-j tioD of centroti of rotstion.    From the retiult of example (b') wo ahonld find 
wbere /) is a ooniitant, and the axes of the ceutnut of rotation are parallel to the axis of x. This given 
H-0.   .= -^.    -/»,-(^j (30) 
In like manner we may have 
«-7'   -=*»'   •^=-^r7iT7)' ■<3»> 
or, aa tiioj may be written, 
(«. r, «•) = />(!., %  -.^)lIog(^^.^J) (38) 
Other formutjc of the Kame ttind niiglit bo ohtainod by taking the line of siugularitieti in directions other than the axis ul t. 
Tbe reader n-ilt observe ihiit, in nil the exanipleH of thi« Artiulc, exuopt (a) and (6), the oom]HHi«nts of displacement are harmonic fiuictiontt, and the cubical dilatation vaniahea. Tbe only tttrains inrolrcd are shearing strains, and the di«plac«meDts are independent of 
the ratio of elastic- constants X : /i. 
133.    Looal Perturbations. 
Examples (a) anJ («') of the la»t Article show in particular infitances hm the Hpftlicaticm of eqiiiliUmting forct!« to a small portico of a body sets up strains which arc iinimportaut at a distaoce from tbe porlioo.     Tha, displactTiieiit due to a distribution of force having a finite reHuItani for a small volume varies tnverwly as the distance; that due to forces having xero 
I 
resultant for the small volume varies inversely aa tbe square of the distance, and directly as tlu- lint-'ar diiueiisiuii of the small vulunie. We may Roncliido that the strain produced at a distance, by forces applied locally, depends upon the resultant of the force*, and is practically iudejiendent of the mi»de of distribution of the forces which are statically equivalent to this residtant. The effect of the mode of distribution of the forces is practically confined to a compan»tiveIy small portion of the Iwidy nr-ar to the p]ace of application of the foroes. Such \ikh\ effects are called by Boussiuest^ " perturbations locales"." 
The statement that the mode of distribntion of forces applied locally gives rise to local pert.urbations only, includes Saint-Venant's " Principle of the elastic equivalence i^J (statically equipollent a}'stera8 of load," which is used in problems relating^ to bars and plates. In these cases, the filing off of the local jjertur bat ions, as the distance from the place of application of the load increases, is much more rapid than in the case of a solid body of which all the dimensions are large compared with those of the part subjected to the direct action of the forces. We may cite the example of a very thin rectangular plate under umform torsional couple along it« edges. The local perturbations diminish accordliig to an exponential function of the distance from the edgef. 
I 
1134.   Second type of Bimple aolutionB, The displacement is expressed by the equations given in Article 132 (c), viz.:— 
r(s + ry 
.(24 bw) 
■^ 
or. as they may be written, 
r dz cy cs 
It may be verified immediately that these expressions are solutions of the nations (1) at all points except the origin and points on the azia of s at which I is negative.    There is no dilatation, and the stress-components Are given by the equations 
.Y,=     2^« 
},    n = -2^fi 
Z, = -tfiB 
7*' X 
Z, = -2/xfl^. 
* UouBiiaeaq, toe. eit. 
+ Kelvin Hiid TaiC, \*it. PhU., Pwt ii. pji. 267 et uq. 
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        At the surfiice of a hemisphere, for which  r is constAnt and z is {Kvsitive, these give riw to trnctaons 
X, = 2^B 
)\^2^B
the uormul (i^) being ilrawit towards the centre. 
135.    PreBBure at a point on a plane boundary. 
We consider an elastic solid bcxly ui wliich forces are applied In the neighbourhood of a single point on the surface. If all the linear dimenaioos of the body are large compared witii those of the area subjected to the load, we may regard the body as bounded by an infioice plane. 
Wc take the origin to be the point at which the load is applied, tho plane ^ = 0 to be the Iwuiiding snrfiice of the boily. auii the positive direction of the axis of i to be that which goes into the interior of the body. The local eftect of fome applied at the origin beii»s very great, we suppone tho origio to be excluded by a hemispherical surface. 
The displacement expressed by (15) could be maintained in the body by tractions over the plane boundary, which arc expressed by the equatioiut 
2ti* 
Jr«=
A 
V--   ^^'   At 
Z, = 0, 
X + /*     1" 
and by tractiouH over the hemispherical boundary, which are expressed by the equations (17). The resultant of the latter for the hemispherical surface is a force in the positive direction of the axis of z of Hmoutit 
+7r^(X + 2^)/(X + /*). 
The displacement expressed by (24) tinuUJ be maintained in the body by] tractions over the plane boundary, which are expressed by the eijuations 
A', = - un 
r'' 
r, = -2^/i^. 
z, = o. 
.(34> 
and  by tractions over the hemispherical bun ndnry, which are expressed by the e^uatious (33).    The resultant i>f the latter in a force in the posibivei direction of the axis of x of amount 47r/tB. 
If we put B = — Atii(\-i-fA), the state of displacement expressed by the Bum of the displacements (151 and (24) will be maintained by forces applied to the lie mi spherical surface only; and, if the resultant of these forces      " lucerne lit 
tfph 
given by 
^Lfuatii 
az 
P   yz P y 
w^ 
Wfi.7^    47r(X + /4)r(* + r)' 
P   »•     £(\ + 2m) I 4nrM r*     4irp. (X + m) r ' 
(33) 
134-136] 
TO PAttT or  A  BOUNDING  SURFACE 
1B» 
At all points not ton near to tht^ origin, thene ^qiiatiotm expretis the diHplace^ nient due to a pressure of magnitude i* applied at the origin. 
For the disciuniou of this solution, it is convenient to regard the plane Ixtiiudary aa horisontAl, ftnd the liody svt wip^iorting a weight P at tho origin. We oltservc that the tnictiotiK acrooii a hurlKunUil [tUae arc 
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        .V,- 
in  >' 
''"^ "2fr  r*' 
^,-
2k f^' 
I I 
the rcMultiuit ti'a«'tinii ^r unit area exerted from the ui>|ier aide across thr pUno at nny |>oint ia n furuv direct«d ulniig tlie rwliiM vtvtor ilmwii IW<m the origin mid uf tnagtiitiido ^ (/'/irr*)cii«'''l9, wheir fl is the ttiigle wliich the nutiuH v«wt«r drawn Troiu tlie origin makcn will] the vertiiatl drawci lil^wt!Wardn. The trfu-tinnt jutimh horizuiitjil pinnmi ara tlie souie at all pointu of itiiy nphore which touches the bouiidiii{; pla.tie at th« origLii, aiid their inagnilude is SPfnO^ where D i« the diameter of the sphere. These txpressiona for the tractions acrniM hori/ontal plantw nrv independent of the elastic conNtaiita. 
The diHphiuBiimnt uiay lie rtwolvod iiitft a horiM^iiUl c^mpunejit and a vertical oinnpoiieat.    I'hu former is 
cOdfl —, 
-LI. 
+ C08 4)J' 
it i» diiTH*t«d tuwards or nvray from the line uf iicti^ju uf the wuiglit aooording Bfl the roidiiui vector In witlmiit ur within the cone vrhicli is given b;^ the eqiUiUoja 
A\'hen Poituun's ratio for tho material is j the angle uf the u>ne is atxint 68° 33'. At any jHiint an the boituiiing plane the horiiioiit^iJ dieplcuHUuent ih Uiroctcd tuwarda the uxia and » of atnount ^/*'ir)'(X'f ^).   The vertical di8[>laceuiimt at nn^ point is 
it ia always directed downwards. Its magnitude at a point on the bounding plane is \P(X+3it)!irrfi.{\ + ft). The initially plane boundary is deforujed into a curved surface. The parts which nre not loo nuar the origin come to lie on the surface formed by the rordlution of the byi(erl>ola 
about tbfl axis of t. 
136.    Distribnted pressure. 
Instead of supposing the pressure to be applied at one point, wi; may suppose it to be distributed over au area on the bounding plane. Let {off y\ 0) be any point of this plany, F' the pressure per unit of area at this point, r the distance of a point {x, if, t) within ihe body frcim the point {af. y, 0). Let ^ denote the direct potential of a distribution F" over the area, % the logarithmic potential of the same distrilmtion, so that 
^^jjp-rd^'dy'.    X=JJ^Hi' + *-)dj:dy', (36) 
where the integrations are taken over the area subjected to pressure. observe that 
We 
V«x = 0,    V»>;r = ^^^=2J"|^</yrfy'=2^,say (37) 
190 
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where ^ is the ordiuary or inverve jxitsntial of the distributiou P".    We 
observe also that 
d^ _ 
dz 
= i« 
The displacemont at any point of the body produced by the distribated pressure P' is expressed by the equatious 
_    i ^.J^^ 
47r (X + ft) dJi     4fTrft daidt' 
1        dx       1    ^ 
4ir(X + >4)eij/     ^wfidydt' 
u = — 
v = — 
Uf i= — 
1    ^.j_yj:     x+2^ 
These expressions can he rtimpliHed by introducing a new function O determined by the equal ion 
a^-^i- ^ ; 
47rjtA     W (X + fi) 
and we have the ex|>reaMoriB* for the di.sptaoeaieut 
.(38) 
r = 
an 
^gn     x+2/* 
(3ft) 
We observe that these expressions are finite and determiuatc for all values of (x, y, «). pruvided z is piwitive; and that, as the point (x, y, j) approachea any point {x, 't/, 0), they tend to definite finite limits. They represent the dwplacenienl at all points of the bixJy, bounded by the infinite plane r = 0. to which pressure ia applied over any ai-eaf. The uormal component, w. of the displacement at any point on the sur&ce of the body is (X+2>*)<^/47rju(X + /A> 
137. Pressure between two bodies in contact.^Geometrical Preliminaries. 
Liet two bodies be pressed together so that the resultaut pressure between them is F. The parts of the bodies near the points of contact will be compreased, so that there i» contact over a small area of the surface of each. Tliis common area will be called the comprised area, and the cun-e that bounds it the ctirve vf comjjressinn. We propose to determine the curve of compression and the distribution of pressure over the compressed areaj. 
The shapes, in the unstressed state, of the two bodies rear the porta that come into contact can be determined, with sufticient approximatiim. by equations of the form 
* Those lotmulm an dut to Hcrto, J.f. Stath. {CrelU), Bd. Wl (1881). t A nambat or Bpedal a.w» are worked out bj Boiwirioesq, loe. ctt t Xba tbeoi7 is dnn to Uortx, toe. eit. 
(40) 
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the axes of r, and s-, being dirc^cted along the norraalft drawn fcowai-ds the interiors of the bodies respectively. In the uustressed state, the bodies are in contact at the origin of (x, y), they have a common tangent plane there, and the distance apart of two points of them, estimated along the eommoQ normal, is expresseti with sufficient approximation by the quadratic form (A, + A,) a? + (/i, + B^)\f + 2 (//, + H-i) xy. This expression must be positive in whatever way the axes of x and ^ are chosen, and we may choose tbcHe axes so that //, + i/, vanishes. Tlien Ai + A, and i^, + Bj must be positive. We may therefore write 
4, + i4.«=^,   Ii, + B, = B.   n, = -H, (4.1) 
A and li being positive. 
If Mt, JRi' are the principal radii of curvature at the point of contact for the body (1), and R^, R^' those for the body (2), and if these have positive signs when the corresponding centres of curvature are inside the bodies respectively, we have 
2(J + 5)=l/id.+ l/i2.'+l/^+l/i2,'. (42) 
The angle (<») between those normal sections of the two surfaces in which the radii of curvature are Ry, R, is given by the equation 
*<^ -«'■= (i - S.T+ ik - kh' ik - i^) ik - i) "^'-" ■••<«> 
The angle («') between the (x, z) plane, chosen so that -ff, = — Ift, and the Dorraal section in which the radius of curvature is R, Is given by the equation 
(^--^,)»m2(<.-»')=(A-_-i-,),iu2.'.  («) 
If we introduce an angle t by the equation 
''^^-^BTi' <**> 
so that       2A co8ec»iT = 2B scc^ir = l/R, + l/R,'+ 1/iJ, + l/R,', (46) 
the shape of the "relative iudicatrix," Jir'+5^^ const., depends on the angle t only. 
When the bodies are pressed together there will be displacement of both. We toke the displacement of the body (1) to be (u,, t\, uf,) relative to the axes of («, y, a,), and that of the body (2) to be (u,, «», w,) relative to the axes of (x, y, r,). Since the parts within the compressed area are in contact after the compression, tt-e must have, at all points of this area, 
«i + tt', = -(*a + W,) + B, 
[en. VIn 
where a is the value of u.', + w. at the ori^n*.    Honce within the compressed area we have 
Wy+Vf,»'a- Ax*- Bf (47) 
and outside the compressed area we niust have 
w, + w, > a - via:* - By',    (48) 
in Older that the surfaces may be separated fixtm each other. 
136. Solution of the problem of the pressure between two bodies in contact. 
We denote by X,, ^ the elastic constants of the body <1), and by X,> Mi those of the body (2). The pressure P between the bodies is the resultant of a distributed prepare {F' per unit of area) over the compressed area. We may form functioDs ^, Xk **i *''^'' ^^^ ^ooAy (U '" the same way as ^, )(, H were formed in Article 136, and we may form correspoiidioj^ functions for the body (2). The values of w, and w, at the commou suriiace can then be written, 
«'i=^i*,.    «i', = a,^ (+9) 
where   ft. = (X, + 2^)/47r/i,(X, + ^,).   a, = (X, + 2^)/4fl-^(X,+ ^), ..,(50) 
and ^0 is the value of ^, or ^ at the surface, i.e. the value of the eonvergent 
integral UFr-^da'dy' at a point on the surftice.    The value of ^ at any 
point within the compressed area is determined in terms of the quantity a and the cuordinates of the point by the equation 
^'^^.T^^"-^^'-^^*
.(51) 
This result suggests the next step in the solution of the problem. Tbe functions denoted by 4>t And ^ arc ihu jmtentials, on the two sides of the plane ^ = 0, of a MU])urficia! di.stribution of density P' within the compressed area, and the potential at a puint of this area is a quadratic function of the coordinates of the pfint. We rtrcall the result that the (wteutial of a homogeneous ellipsoid at an internal point is a quadratic fuuctiou of the coordinates 
• If the poinU («i. y,, i,) of th« body (1) and <x,, y„ i^ of the body (S)eonw> into ooDtael, we 
maRt have 
r,+ii,^j-,+ it,.    Jf, + r, = lf( + r,.    (,-<■■»,= -(j,t-tr,)t a; 
and in equalioQ (47) we ideolify (r,, y,) with (jt,, y,). Wc m%j «how that. wiUiout u«ldo| ihi* idenlikation, we Ahonld bave 
"'i^«'.=«-'«V-fitft'-*M3*i(«i-'St + B,y,(pj-t^+i/,{i,(i',-»J+i'i(»t,-s)ll
Id tb« rasult wo ehati find for », + », an *zpr«Mioa of tbe urdtr Aa'*, wliera a U the erMt«M diam*t«r of tlM cotDpreaaed an!a,and*4, h,.. will be of tbe umw order in a aa v,-f tr,; tbua the tantu DCgloctod are of a hiffhir arAtt of amall ijuanlitt«i (ban Iboio ri'laiued. If tbe bodie« at« of the MiUf material we bave u, - u, and r, = r, wbcn j, = *, and y, = y,. aud tfaas tb« ideotifiattlon o' (''i. Ifi) "i>b (',. y^ loads in thta <«se to an «XMt niaitll. 
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uf the point. We therefore seek to satisfy the conditions of the problem by osstinim^ that the comprtaseii urea is the area witliiu an ellipse. regai-iietJ aa An ellipsoid very imieh flatteneti, and that tho pressure P" raay be obtained by a limiting process, the whole mass of the ellipsoid reinaininy finite, and one of its principal axe's hciiij^ diminished indctinitcly. In the case i>f an ellipsoid of density p, of which the equation referred to its principal axes is 
.r-7«= + yV*'+ *'/<■" =1. the mass would be ^-Trpubc: the part of this mass that would be contained in a cylinder standing on the clement of area da'dy would be 
Zpdx'dy'c V(l - ;r'Va» - y'V^). 
and the potential ut any external point would be 
;   Cd '^ ^    -    ^'   \ ^"^ 
irpaocj^ \^i    ^,_^^    ^_^^    ^^^j i(a»+i;')(6* + ^)(C+^)l** 
where v is the po&itive root of the equation 
afljia* + i-) + y«/(6» +v) + £^/(c* + v) = \. 
At an internal point we &hould have the sanie form for the potential with 0 written for v. We hnve now to pass to a limit by taking- c to diminish inde5nitely, and p to increase indefinitely, while a and 6 retnain tinite, in such a way that 
(ii)  2(pc)v'(i-«>'-y''/fc') = -P'. 
df 
(iii) ^=.a6(pc)/;(i-^,:^^-^4'^),^— 
ihe third of these conditions being .satisfied at all points within the coraprc^cd area.    Hence wo have 
P'=^^. ./|l--.-^r.-l.  <52) 
and 
a.+a. 
2iitxh V (a-Aa?-Bf) 
^ 
(£-f 
.(53) 
The equation (52) determines the law of distribution of the prej^aure P'jover the compressed area, when the dimensions of this area are known. The equation (53) must hold fnr all values of x and y within this area, and it is therefore equivalent to three equatioiis, viz. 
/: 
a-tP{%-^^.)j^   H«' + ^)(i' + V-)tI*' 
B 
^Pi'^. + '\)f^ 
d^ 
(6» + ^)*[(a'+f)T^jl
.(54) 
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The soeuitd and third of these cquatious determine a and b, aod the first of them detcrmiDcs a when a and 6 are known. If wc express the results in terms of the eccentricity (e) of the elliptiie, e will be determined by the eqaation 
r)'it(i-«"+?:)i 
n will be given by the equation 
Aa' = ^P{% + %,)l^^^^ 
dt 
Bad a nill be given by the equation 3P 
r)»i!:a-«*+ni* 
dt 
=^ - ■;; i^.+^->/^ if(i+f)(,_^7iLf)]*■ 
. .." (56) 
.(-W) 
We observe that e depends on the ratio .4 : It only. Hertz has tabulated the values of bja, =(1—e>)l, jn terras of the angle t. of which the cosine is (B-A)t(Ji+A).    Ho fuuud the foUowiog results:— 
«/«< 
90* 
I 
80* 
70'       60' 
60
40" 
frTs I 0-es 
0-47 
0-36     tyiS 
30*     ao* 
0-lS I 0-10 
10* 
Oi» 
0* 
At points on the plaae 2=0 which arc outside the compressed area. ^ is the potential, at external jKiint.s in this plants, duo tn tht- distribution P' over the comprcssc*! area. It follows from (49) that at pf'inls (tn the surlace:; of the bodies, outside the cniiipress(?d area and not far from it, we may write, with sufficient approximation 
where v i» the positive root of the equation 
jr«/(a' + ».)+^/(6' + p)= 1 (58) 
Hence we havo 
iw, + itit)-(a-Ax'-By*) 
>/Ka' + ^)((^ + ^)^l»' 
dyfr 
,. ...(59) 
>    6' + ^/|(«i' + ifr)(6» + t)i^|* 
Now, when ^ lies between 0 and v, the point (ar, y), which is on the ellipse (.58). is ouuide the ellipse a:»/(rt' + ^)+y»/(6*+^)= 1, and therefore the expression <in the right-hand side of equation (59) is positive.   The condition 
*if inequality (48) is therefur** satinfiini. 
The assuroptioos that the compressed area is bounded by an ellipse «?/a' + ^/f = 1, where a and 6 are determined by the second and third of oquatiuns (34), and that the pretwure P" over this area is expressod by the 
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        fonnulu (53), satisfy (ill the cnnditiona of thp problem.    When P' is known the functions ^, y^, i\ tor each of the bodies can be calculated, and bcnce we  may determine  the  displacement   and   the  distribution of stress in ih body. 
Hcru* hait drawn the Unc^ of )jriucipal strc!>.s lu the (jc, s) plane for the cone in which \. = 2/» (I'oisRon's n»tin=ll). Xenr tho contpft of the CDmpresasd area tho princiiml planew of strertfl are n«irly pnmllpl tn thn .'nonliiiato jilnncs, wiU both .trucUoos am [>rc>Hiiiroa. As we igct from tlic L-^ntre of tha cunipre.'iHctl artui almi}; tlie axis of s\ Ibe cotn[wnetit trAotion lliat in nearly pimillel tn tho Hurface fallit to zaru, chiing<e» to tetuiiun und iocicuuHH tu n ninsinmm near the edge uf t1ii> (^-nni)Ji'ciMeil area; it then diminiHh&i nioro grtulua.lly without chaiigiug itigu aKitiu. The other coui^xiiieiit i» presaure, wtiich contiDUAll; dimiriiahea as ire go into tli6 int«Hor of the body along a liitc of strosa storting Dear the 
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        of the conipremed area. Tht< sUite of uircte ix illiistmted in Fig. 15, in which 0 is itro uf Uie c^imiirowied areu, A A' tho tr-ace of this area uci the plane of (.r, i); liuea those endiDv; nt P ivn Hiick »f pius^ure thmtighimt^ linos lika thuuc coding at Tfiro linM of tntsiou tliniugliont, the lines ending at 11 arc lines of xtroKti in which the traction in tho central (dotted) iKtrtion is i>re»Huni, and in the remiuniag jmrticina is tcjision. 
Hertz randc a serifw nf ex]ieriniontM with the v\evt of testing the thomry.   The riNstilt 
'•fltet the linear dimensions of T-hij comprosned iiroi ai-e pwportioiiul to tho cul>e root nf the 
pRHMirc between the hdriitrt wiix verihed very exactly; the dependeiiL^u uf tlie form nf the 
«>uipro!»cd area upon the form uf the relative iudicatrix was alxu vui-ilied iu cases Lii which 
the htttGi- could be deterDiinod with fair ttccuracy, 
139.    Hertz's theoi*y of impact. 
The results obtained in the last Article have been applied to the problem of the impact of two solid bodiesf. The ordinary theory of impact, founded by Newton, divides bodies ini4> two classes, "perfectly elastic" and "iniperfectLy elastic." la the case uf the former class there ia no loss of kinetic energy in impact. Iu the other case energy ia dissipated iu impact. Many actual budies are not very fiir frotn being" perfectly I'lastic in the Newtonian •tense. Hertz's theory of impact takes no account of the dissipation of energy; the compression at the place of contact is regarded as gradually produced and 
* VerhamUttKStn da Vereini t*ir Befardtriins rf« Qtwtrhtfieitttt, 1Ij82 = (Jm. Wtrke, Bd. 1, p. 171. 
t H«rti. J.f. Stath. iCrelli), M. 92 {1S81). 
13—a 
ISW "^^^^^r HKUTZ'S THEORY [CII.   VIII 
OS subsiding completely by reversal of the process by which it is produced. TKh local conipresfiian i^ thus regarded as a statical efiect. Id order that such a theory may hold it is neeessar}' that the duration of the impact should be a large multiple of the gravest period of free vibration of either body which involves compi-ession at the place in question. A formula for the duration of the impact, which satisfies this requireuient whea the bodies impinge on each other with moderate velocities, has been given by Hertz, and the result has been vLTified exj»erimentally*. 
At any instant during the impact, the (]uautity a is the relative displacement of the centres of mass of the two bodicii. estimated froui their relative positions at the instant when the impact cuinraeuces, and resolved in the direction of the common normal. The pressun^ P between the bodies is the rate of destruction of the momentum of either. We therefore have the equation 
i{-^U=-^ ^«»> 
where d stands for d<zjdt, and mj, vif are the masses of the bodies. Now P is a function of t, so that the principal semi-diameters a and h of the compressed area at any instant are also functions of (, determined in terms of P by the 6(K:mid ami thini of eqitalioiis (54-); in fact a and h are each nf them proportional to /**. Equation (37) showa that a is proportional to P*, or that P is propi>rtional to a*i we write 
i'=i.a» (CI) 
where 
(62) 
Ei|uation (60) may now be written 
a = -i-,/.-,a« (63) 
where A*, = («i,-|-nia)/m,nis.   This equation may be integrated in the form 
i(d'-i/'')^-j[fc,M.    (64) 
where v is the initial value of a, i.e. the velocity of appmach of the bodies before impact.    The value of a at the instant of greatest compression is 
(4)'©'^ <-> 
and, if this quantity is denoted by a,, the duration of the impact is 
*»-»^^ '^iWij^r ^'^'''^tl^y -^2^'^^->^ 
* Schneebeli, ^rch, tiM tci. phut.. Grnrta, t. 12 (ISS!!).    IuTestig»tioQii of the dantioa of Impset ID tbe CR8« of hit^ii vclocitiee were made by Toil, JCdinbur^fh Hoy. Soc. Truiu., vols. d6, 2? 
(1800. lena). 
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We may express a, io terms of the shapes aud masses of the bodies and the veloeidea of propiigatiun of waves of compression in them ; let V, and V, be these velocities*, p, and p, the densities of the bodies, o-, and o-, the values of Poisson's ratio for the two materials; then 
«o that 
'    L*(™. + m.)   4^   tK:V,0-2<r,)^n''p,(l-2<r,)t   J  '   '"^    ' where 
/'I (i+r)i{{:(i-e'+r)i*"li. iro+rxi-fl'+ON *^** 
It appears that the duration of the impact varies inversely as the fifth root of the relative velocity of approach before impact. The order of miLgnitiide of the gravest period of free vibration that would involve compression is l/A,Vf, and tlms the duration of impact bears to this period a ratio of which the order of magnitude is (F,/ti)*. 
140.    Impact of BphersG. WTieiJ the bodies an.' fl|>hcre(t of nidii r,, r,,, wo have 
J=i»=i(l/r(+l/r,),   ^ = 0,   a = h, 
4   i-j + rj 
«=^C5,+5,)/': 
from which wc bod 
4/1 
.(70) 
Hence the duration of thn impact lUid the mrtiiis of thn (cimd»r) conitire8.'«ed urea are detenninnl. 
In th« parttcuUr uue of equal nplieres of the iwmo luAtcrial the duration of the impact is 
<—)Fr^^'^ •'-) 
where r iu tlie radJiw of either sphere, o- in thu PuiHsun'^ mtiu ut tbo material, aud I' in the T«looitj of propagation i>f wavw of com[«««»:oij. Tho radii of the circular patches that come into contact ore each equal to 
"      i^'W ™ 
ThcM results have heen verified experimentAlIj't. 
• r,9i8 (X, + 2w,)/ft and y\' it (\^ 2«,l,'pj. 
+ Schneeholi,   Ilrp. rf. pUffM., Bd. 22 <lSSe), and Haiubiirger,  Tajfehtatl d. Sat.   Ven. in H'iabadrn. 18:37. 

        
        [image: Picture #73]
        

        198 
DISPLACEMENT DUE TO  NUCLEI  OF  STRAIN 
[CH. VIII 
141.   Effects of nuclei of strain referred to polar coordinates. 
We may seek solutioDs of the equations (I) id terms of polar coordinates, the displacement heing taken to he inversely proportional to the radius vector r. The displacement must satisfy equations (49) of Article 97. If we take u, and u^ to be proportional to cos n^, and «. to be proportional to sin n0, we may show that* 
A = 
2ar- = 
sinn^ 
\A (n+coa 6) tan" 5 +5 (n - cos 6) cot» gi 
{^ 
Q 
tan" 5-0 cot" 
2 
I 
*^'^- + (7tan-?+7>cot"0, 
_coa«0 J _ X+2^ ""        »•      \        ;*     cos M0 ' 2 
where A, B, C, D are arbitrary constants; and then we may show that 
«j=—^-^ \ „—^smflT^ (   -—-r ) + coad(<7tan"^ + i)cot"x) 
•    rsind  l       2^ rf^Vcosw^/ \ 2 2/ 
sin 710 rsin 6 
„^ j:^_co8dfctan«|-J5cot2/1    cosn^ \ 2 
+ G'tan"2+fl'cot"||, 
l^-fftan-l + fi-cot"^ 
where Q and 5" are arbitrary constants. In the particular cases where « = 0 or 1 some of the solutions require independent investigation. These cases include the first type of simple solutions for any direction of the applied force, the second type of simple solutions, and the solutions arrived at in Article 132, examples (rf), (e). We give the expressioii-s for the displacemeats and stress-components in a series of cases. 
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        ■^ Force Fig. 16. 
• J. H. Miohell, LanAon Math. Soe. Prec, Vol. 32 (1900), p. 23. 
Ul] 
EXPRESSED IN TERMS OF POLAR COOHDIX'ATES 
199 
(a)   The tinrt typo of siu3i»le solutions, (!()rrcKix>Dcling witb a forcu F iMU-allol to tbo axu of *, is cipnsjwcd by the equations 
_ F  &t* 6 _      X-fV      /'  nil) $ 
the ttroM-cutnjratienta are exprwMod by the equatioim 
TIic lucridian iilaiim (^ = cuiist.j ivk iiriiivi|>al plaues uf -stresH; and thn liiie^ of prJiiciihi,! ]»treHI^ wbiub ore in auy meriilian plaiiu, iimku with the railiiia vector at any |inint aiigtivi ^ deterniined by tbu eqiintion 
tau 1^=.- J2/t/C3X + &^)} tanfl. 
These linefl hnvo li«>n tmcfii] by Miiilifill, fnr the case wberc! \ = ^witli the i-Cf^iilt sfaovn m Fig. 16, In which the central {juint is tb« poiut uf ajiplication of the force. 
(S)   Whea the line of action uf the force /" i« jianiU^l to the axii> ixf r, the 'lupUce* ment in expreswd by the cqiiatioiut 
tbe straAB-conipnneiitH aro cxpi-o&aed by the cqiiatioos 
1^   r:,       I*    ^sintfooad 
X + 2>*  Jff r' 
fl        F' Hill ^ 
,0,    *r 
X + 2n4)r    rf    '    '^        X + 2^ 4ir 
(y)   ThB aecohd type of simple «oltition» i» Bjnireiswd by the equations 
B 
B   sill 4 r 1+ cos ^ 
,    ic.=0; 
the flinu»iHjuu|MJtieiit8 tire exprea^ed by the eqiiatioiiB 
-^        .   B     -Ti   ^  B   g<m6        t-.    ^   B       I 
-r-       - -; H     Mt\B 
(i)   The Mobition (3H) obtained in Artide 133 (</) is c-.i)jmMe>l  liy tbe ec|;iAtionH 
C   COM tf> 
C   Hin ^ 
the sti«w-cumiM«iei)t(i arc i!Ji]in-»MLii by Uip oqimti«iii.M 
rr=0,    fl5=-^^ = -2,i 
«^ (] +co(*)J)8in 5' 
2U0 
FORCE  APPLIED AT VERTEX OF CONE 
[CH. VIII 
(()   Tho aulucion (31) obtained ia Artiule 132 («) is expreswd by tbe equotJotu 
DianSctmA       .    I*       . ^  ■    . 
'    r   1+oostf '     •    c       f>     ^       ^      y 
tlto Dtrew-uoinpoueiiti! are cxinvtsed by tho «)iuitiim» r* T+ctme 
,= _^_ 
142.    Problems relating to the equilibrium of cones*. 
(i) We may combine the »o]miL>n« eiprwwiHl in i« i nnd fy) of tlie last Artide so m to obtain the di^tributiun of MtrciM in a c^ino, :4titij<K'tc'l U) a Torco at it« vertex directed nlong ita axtK, whpii tlic inurtu at a i^rent distance from tho rertax are held fixed. If 6=o irt tbe equ-ttioD of the aiirface uf the cone, the stre«4-cou)p»Dent(t $S, d^p, ''6 must vanUh wbea &~a, and we have therefore 
The reftitltant farce at tbe vortex of the cono may be Ftmiid by roiu^deritig tho tmctioii in the direction uf tho usiii uf thu cuno oc-rom n spherical surface with it« eontrti at Che vertex; it would be fouud that Ui« fui-eo in 
F 
and, when F in positive, it tu directed towards the interior of the couc. 
By ^mltiiig a*^fr wu ulttain the si>hitioii for a {tnint of jiresHure on a plane boundary 
(Artiulo laaj. 
(ii) We may cfJinbine the uolutious exiireased iu (f?), (ft), (*) of the Uat Article bo an to obtain the distribution of KtresM in n cone, subjected to a farce at ita vertex directed at right augles to its axis. The oonditJona th^t the surface of the cone may be Are ftvm tnotion are 
- „ 1 - cos B       n    ■ rt 
una 
{\{\ -oo»'a)+>*Cl-«»e)(l+«»'o)l. 
%€ 
-/)a + aoo««)-^^;^j^-p5j^j«».(l+««o)=0, 
noa 4ir(X + 3Efi) 
giving 
(7»
/*a+co«io)" 
^' .    D= 
/"(l+coao) 
8ir(X + 2M) '    " 4»p(\+V) 
The nmultaut force at the vertex is in tbe [xiHitive diroction of tbe axis of x, when F" is jMwitive;, and is of magnitude 
^^7X^''(.-«-»)■. 
By combining the rosulta of proUama (i) and (ti) we may obtain the solution for force acting in a given direction at the TSrtsicf A cone; aitd by pittttng dB^n- we may obta)u_ the RoUition for force actiug in a given direction at a point of a plane boundary. 
' HiobeU. for. cU. 
CHAPTER  TX. 
TWO-DIMENSIONAL  ELASTIC SYSTEMS. 
143. Methods nf tho kind considered in the last Chapter, depundiug upon siniple solutions which tend to become infinite at a jmint, may be employed also in the case of Iwo-dinit-nstoiKil elastic systems. We have alresuly had occaeiuu (Chapter V.) tu remark that there ura various ways iu which such systtttns present tlieinselves naturnlly for investigation, They ore further usetul for purposes of illustration. As in other dcparCuLCuts of inathonialicnl physics which have relations to the theory of potential, it frequently happens that the analogues, in two dimensions, of pruhlems which cannot bft solved in three dimensions are capable of exact solution ; so it will appear that in the theory of Elasticity a twn-diinensional solution can often be found which throws light upon sumo wider problem that cannot be solved completely. 
144. Displacement corresponding with plane strain. 
In a state of plane strain |)arallel to the plane (x, tf), the displacement w vanishes, and the displacements u, v ore t'uiictious of the coordiuutes x, y only. The components of rotation w^ and v^ vanish, and we shall write ■r for m^. When there are no body forces, the stress-equations of equilibrium show that the stres-s-coniponents A',, Y^. Xy can be expressed in tonns of a stress-function x^ which is a function of x and y, but not of r, by the fonnulie 
X =-^ 
(1) 
The identical relation between strain-coinponrnta (Article 17; 
^e„ 
o'e 
yv _ 
ir-e. 
(2) 
takes the form 
(3) 
dy*^''d^dy^~ 
We shall denote the operator Z^ldx^'^'r^jdy' by V,', and then this equation is V,*;^ = 0.    It shows that V/;^ is a plane harmonic function. 

        
        [image: Picture #75]
        

        202 DlSPLACEXCns COBKE^OXDING WITH [CB. IX 
The equations of eqailibriam in terms of dilatation and rotation are 
,X + i^)^^-i^| = 0,   (X + 2^)| + 2^| = 0 (4) 
From these we deduce that A and v are plane harmonic functions, and that (X+^>A+i^« is a function of the complex variable x+ty. The plane harmonic function V,^ is equal to 3 (X + m) A. We introduce a new function {+ ii; of x+ i^ by means of the equation 
f+.,= fllX + *M>-^^-*2/*-]''('+»y).    (5) 
so that 
-^=^^- ) 
Then we have 
Also we have 
*tt ^— ^--=>«- = -^ + ^f "'^ djf       dxdy      '^ dxdy    dy' 
dx       djrdy dxdy    ex 
2,i« = -^ + f    t^v ^+^ (7) 
These equations enable us to express the displacement when the stressfunction X '^ known. 
Again, when A and «r are known, we may find expressions for «, v.    We have the equations 
dx    dy        '    dx    dy  ^ ^ 
These, with (6), give 
"    dx\2i\ + 2^)J ^ dy [ifil ^ "* ■ 
a^ l,2(X + 2/i)/    Bx w      ■ in which [Article 14 (rf)] w'+ tu' is a function of x^-iy.    We may put 
It follows that 
We in»y show without difiicnilty that the corr<«jion(iing form of ;^ ia 
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        iind we mAy verify that Ihu fonuH (T) for n, v are identical with ths forms (0). 
146.    Displacement corresponding with plane stress. 
lu the Ceise of pJaae stress, when every plane parallel to the plane of X, y is free from imction, we have A'j = Y^ = Zi = ^. We wiwh to determine the most general forms for the ixniminiug stress-components, utid for the correapomliug disphicemeiit, when these conditions are satisfied and no body forces are in actiuii. We recall the results of Article 92 (iv). It was there shown that, if B = ^"1+1 v +'^'' ^^^ fnnctioii W is harmonic, and thnt, besides satisfying the three equations of the typo 
I I 
(IS) 
fix   '   dtf       dz the stress-components also satisfy six equations of the types 
1 + ff 3aH 1 + «r oyos 
Since X„ F,, Zz are zero, 30/f)i is a constant, ^ soy, and we have 
B = e,4-^r,  (13) 
where 0, is a function of x nnd >j. which must be a plane haiinonic function since 0 is harmonic, or we have 
V,-«, = 0 (14) 
The stress-components Xx. l^y. -^y are derived from a stress-function x* which is a function of x, y. s. in accordance wilh the formula; (I), and we have 
V,^X=**« + '3« (IS) 
ITiG first of equations (12) gives us 
1    c^« 
or, in virtue of (14) and (15), 
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        a«'*i 
+ ff da? 
= 0. 
.)^o. 
S04 DIRI'LACKMENTS CORRFJiPOKniNO  WITH [CH.  U 
lu like manuer the remainiug equations of (12) are 
It follows that r*+ i W, is a linear function of x and y, and this function 
Pi"      1 + <r 
may Imj taken tn be zero without, altering the \*alue8 of X^, Y^. Xg.    We 
therefore find tho following form for ;^;— 
X-X- + X.'-ii^®^.   (1«^ 
where ;^, and j^i are independent of 2 and satisfy tlie equations 
V.'x^-ft..   v.'x.-^ (17) 
We niaj' intnxiiice a pair of conjugate functions f and 1; of jp and y which are such that 
^"ay-**"'  &y-"a* ^'*'' 
and then the most general forms for x, nnd Xi can be written 
X" = ^^f+/ x»=i'3('^ + y')+^. <i») 
where /and f arc piano harmonic fuiirtions. Tlio general foi-m for ■}( heiug known, formula' for thu tstreHs can be found, and the displaceumnb can be deduced. 
The displacement (w, v, w) must satisfy the equations There is no difficulty in obtaining the formula* 
ai~~A'^^''^^»^' 
...(20) 
.(21) 
w 
= - ]; 14/3(.r"+y+«') + «e„l ^-^^'^ xa. 
Any small displacecntnt possible in .-v rigid bodj* may, of course, be superposed on this displacement. 
* E<{tilr*leDt formuli* w«t« obtained by GlcbMoh, ElattieitSt, % 8&. 
145-147] 
I'LANE  STRAIN   AND  PLANK  STItERS 
S05 
146.    Oeneralized plane stress. 
We have shown in Articlt 1)4 that, when the stress-compo-nent Zg vauifehcs everj-wbefe, and the stress-c^^tmponents Z^ and Y^ vanish at two plane boundaries z = ± h. the average valu&>* of the remaining' stresscomponents Jfj.  Fj,, X^ are determiued by the equations 
dx       Cif 
and that the average values of the disiilacementa u, v are connected with the average values of the atress-coDiponents by the ei^uaiiLins 
.(23) 
.(24) 
X'= 2>.^/(X + 2/i) 
It follows that ti, ij are determined by the same equations as if the pi-ublem wore one of jilane stmin. prnvidtd that X is replmied by X'. The quantities ^t, ^v ^v ^^ derived from a sti'oss-functitiii exactly in the same way as in problems of plane strain. 
The avei-age values of the disphicetiienls in any problem of plane stress independent of the quantities ^ and F of Article 145, and are the same if the problem were one of generHlJzfd plane stress. Tt appears from this Statement that the invL'stigatiun of states of plane strain may be applied to give an account of the i-ffects protluccd by some distributions of forces which do not produce states of plane strain. The problems to which this method is applicable are problenit: of the equilibrium of u thin plate which is brmed in its own plane by forces applied in the plane. The actual value* the stresses and displacements produced in the plate are not determined, nnlen the force» are so distributed that the state is one of plane stress, but the average values across the thickuess of the plate are determined. Any such problem can be solved by treating it as a problem of plane strain, and, in the results, substituting X' for X. 
147.    Introduction oC nuclei of strain. 
We may investigate solutions of the equations of plane strain which lend to become infinite at specified points. Such point.s must uot be in the substance of the body, but they may be in cavities within the body. When this is the case, it is necessary to attend to the conditions which ensure that the displacement, rotation nnd strain are one-valued. When the points are outside the body, or on its boundary, these conditions do not in general need 
do ■ is i 
KfTEcT OK  FORCE OPEKATIVE 
[CB. IX 
to be investigated. The displacement being deteriuined hy certain functioDs of xA-iy, the lingular poinU are atiigularitics of these functions. Without Diakiug an exhaustive investigation of the possible singular poinU and their bearing npon tin.* theory uf Khustlrit}', we shall consider the stjites of stress that cnrrosjwnd with certain sitnple types of singulur pointy. 
148.    Force operative at a point. 
Tht; simplest singularity is airived at by taking 
(X + 2m.) A + (2mw- a (ar + iy)-' (25) 
HO that the origin is a atnipit; pole.    £<)uation (5) becomes in this case 
f + (7) = A h>g U'-Vvj) = A (logr + 1$) (26) 
where r, 9 arc puhir coordinates in the piano of {m, if). The oorroKponding formuhe for «, « are 
I 
i£ =    ^    loyj*    4
\ + ^ 
2lL 
2j[*<\ + 2^) 
4^' + «. 
v~ 
2(X + 2^)^    2;»(X+2^)^;^^'^
•(27) 
To make v one-valued we mu&t put 
^=-2(X + 2m)''* The formula; for «, v then bccouio 
"-2,xt2^)'"«^
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        U=i 
-4 log r + 
X4-/1 
2/*(?r+2A»)'*H' 
X + fi 
ipTix + i/*)" H* 
The stress-cotnpoiients Xg, }',,, X^ are given liy the equations 
^^. 
.(2») 
y -A^{~     "      . 2(\ + ;*).v-\ 
^""^iH \+2^"^ x+2m ;^/* 
X ^A^(     *^      . 2(X+,.);(-" 
(29) 
The origin murt be in a cavity within the body; and the statical rcHulUnt «f the trapiions at the snrfai-c uf thi* ravjty is independent of the shape of the cavity. Tlie resultant may be found by tajiiag the cavity to be bounded <in the plane) by a circle with its centre at the origin. The component in the direction of the axis of j? is expressed by the integrnt 
xj+x. 
?)rrf^. 
147-149] 
AT A  POINT OF  A  PLATE 
207 
which is equal to —iA-jr. The component id the direction of the axis of ^ %'aiu8hes, aod the inometit of the tractioim about the ceotre of the cavitj' aUo vaoishes. It follows that the state of alress expretjsed by (29) is that produced by a single fort-e, of magnitude iwA, acting nt the origin in the positive .sense of the axis of t. 
The efl'ect of force at a point of a plale may be deduced by writing X' in place of X and replacing u, JC^, ... by u, X^ 
149.    Force operative at a point of a boundary. 
If the origin  is at a  pi.iitit on a bounciary, the tenu of (27) whicli contains  ff can  be one-valueJ  intlepcii- ^ 
deDtly of any adjustment of u', v'. It is merely nt-eessai'y to fix the meaning of 0. In Fig. 17, OX is the initial lini-, drawn into the plate, and the angle XOT=a. Then 8 may be taken to lie in the interval 
We may seek the stress-system that   -' would correspond  with (27)  if it' and v' were put equal to zero.    We should find 
Fig. 17. 
ir coordinatea the same atress-system is expressed by the equations - = ?^^^^^-^'.   ^^=0,   .1.0 (31) 
H   dist 
I  is w 
This distribution of stress is described by Mlchell* as a "simple i-adiol distribution." Such a distribution about a point cannot exi^t if the point is within the body. When the origin la a point on the boundary, the state of ss expresiied by <31) is that due to a single foree at the point. We calcniate the resultant traction across .a semicircle with its centre r\t the origin.    The j-compoueut of the resultant is 
-/ 
-•+* 
rr .COH0. rd0, 
,  >- + A» X-t-2^ 
The ^-component of the resnltant is rr. Bin 0.rd&. 
-/; 
* Loudon Math. Hoc. Proe., vol. 32 (1000), p. 3o. 
208 
FORCE AT  A  i>OINT OF  A  I-LATE 
[CH.  IX 
or it in zero. ThuB the resiiltent applied force acts aloug the initinl line and its amount is vAi\+^i,)l(\+2fi); the sense is that of the continuation of the initial line uutwardtt from the body when A is positive. 
This result gives us tht- solutiou of the pvulik-in of a plate with a straight boumiar)', bo which force is nppliefJ iit one point in a given direction. Taking that direction as initial line, and F as the amount of the force, the stresssystem is expressed by the eqiiations 
rr 
2pC08tf 
r0=Q,    &e=^0 (32) 
and these qtiantitie-H are of course averages toJceu through the thickpenj of the plata 
150.    Case of a straight boondary. 
In the unrticuliir <ajic wbcro the boiindnry i« the /wiit of .r, the axis of y [>cnetratiM iuto the plate, and tho fcirce ftt Uw origin i» jtreswiire /"directfld norinnlly iiiwards, the avenge strfHses ftiid din[tkcetucuts tire csiin^H^ed \ty the pqnatiuiiH 
-f-=-!^5. n
>?>   ^-^'■^.-: ('») 
and 
•—-ft 
2ir(V+|i) 
.{34) 
This solutina* is the  two-dimenBional  atia]ogiio of  tho solution of  tho   problom  of BouutntMq (Article 135).    Sin<.'o u, v do iir>t teud to zaro at iiiBiate diMtaaceg, there is some difficulty in the application of the reeiilt to an iiifiDite pkte; hut it ma; be n^ardod., Its giving correctly tho local cflTcct of force ftpiilied at n point of the boundary. 
161.   Additional reatiits. 
(i) The streaa-fiiucliou i-orn?»p(iiidins w'^h (32) of Article Ufl is - «■ - 'AV^sln A (ii) The effect of prc-isun; distrihutod uriifomily over ft finite length of a Mtroijjht buiuxlary can bo ubtaiuLi.i by iiitegrAtian. If p i» the i>rei««ui'e per unit of length, and tlie asi» of r is the Loiuiditry, tho uxis of t/ being drawn into the Intdy, the ptroics-functlnn 18 found to Iw iiT~^j>\(rf^B^~rj*6i)], vbero r,, 6, and r,, tf, ore poliu- ooonliikates with the luia uf X for initinl Hue and the extrcnntius of the juirt Hubjcct to pressure for origins. It iu»y be abown that the linea of stre<w aro coufouid couic«t huviug these points na focit^ 
(Hi)   Force at an angU. 
The nnnilts obliunc-l in Article 148 msy be gensrslizcd by Mip^Mining that the boundary 
18 made up of tiro stmiglit v^g'tn toasting at the orlgiu.   Workii% as Itefunt, with the esse 
of pUae strain, we have to repls^e the limit ->■ +o oT integration in tho calculatioa of 
■ Flamanl. Parit, C. R., t 114. 16^.   For tb« verification by mcsos of poUrined ligbl tM 
Uesna^er in RapporU prfsfnffM aii rongrhi iHtfrnatSonal de pkgMiriur. I. 1, Pari« lOOO, p. 348. a. CaiuA Wilaon, Phil. Mag. (8or. 5), vol. 33 (14<.>1). where an e^iuivaknt re«ult obtained hj BoUMinew] iB rworded. 
t Uiobell, Lowlon Malh. Sm. Pw., vol. U (Iftoa). p. 184. 
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        (The direction of maiitntim mdinl titnvts is not, in this case, that of the rosultont force.  The former of these is the initial Ititc, tuokiiig angles a and y- a with tbu edgoe ; tlie lutber makes with the same edge* augles 4p and ^.7-^ where 
^M ™    YCoea4-Klu7iXKi(a-y)' 
lit Nl 
^LequAti 
Vtrhm 
It fjllows that the angle a is given by tho •quatioD 
yaiaiji-giaywiH (y—cfr) y 008 ^ - sin y cos (y - e^)' 
A given force /* is applied in a Kiveu direction, 4^ will be known, and a uaii bo found from this eqimtiou : luid iLo couHtaut 
A   can  be detorininod In terms of the re- ^' 
snltont force K   Thu txttiditiuan that tho nidial dtroHs ma; be presKiirc everywhera are 
a<J, y-a<^ ; and, in tho oxtremo cose a=^, we should have 
,     .    V — rin V cos V 
tan4 = i ^ £. 
■^ siu* y 
.The solution is due to Michell*', who remarkB that for valufls of y notoxcoodiug =, the last 
[tesiilt is trnarXy equivoJent to a "rule of tho middle third," that is to say, the extremo of (^ ia tif-arly equal to \y.    If thti ]in« of Action of t&e applied force lies within the le third of the «»glo, the radial atretw is one-sign«l. 
The Btnns \a given by (32) so that the Iawh of traiit^miewiou of strettH front an angle are that tho stroiss is purely riulial, (ii) that it is iDvcntely proportional to the dintance the angle, (iii) that it is proportional to the cosine of the angle made by the radiiia it with a certain Hne in the pl&no of the angle. 
152.   Typical nuolel of etrain in two dimensions. 
(a) The forinuliif (28) exproNfl thts disiilacementa in plane strain, corresponding with s single force of lua^uitudu ^An acting at the origin in the negative direction of the anis of X. We may obtain a new typo of singular point by supposing that the following forces are apphed near the origin :— 
parallel to the axis of x, -HAw at the origin and 2Jirat(A, 0); 
parallel to the &xta of y, - S^ir at tho origin and iAir at (0, h); 
• he. elt. p. 207. 
X. K. 
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«Dd we may pam to a limit by 8up]Kutng that Ai reoiains conatontlj equal to B white A U dtnuDubed without limit.    Tho resulting diHpUccmnnt ix given >>y tho equiktioos 
<"'''j=x-^(^- !)'*«'■■ (' 
This diaplooeiueDt is exi^rcaHiblo iti polar coordiiiAtm by the formulse 
'"xhl- "-"= <"' 
it involven no dilatation or rotation.    Tho ittnua is expreiwed by the formulio 
-;?=a-JiL- ^.   3-0. (»7) 
ao Uial the nrigiii is a point of preesure.    If the origin is iu a circular caritj then a i uniform iiroHMiro uf amount 2^Zfr~'/(\ + 2>i) over the cavity. 
{b)   Again we may obtain a different type of lingular jwint by aup^ioaiog that thftj following forces are applied near the origin :— 
parallel to tho axis of t,     2J w at tho origin, -ZAn &t the point (0, K), parallel to the nxia of y, —ZAti tit the origin,     SAir nt the point (A, 0); 
and wo may pass to a liiuit as io case (a).   We thua obtain the following diaplacement:^^ 
ts •"-^(-l- ^)'°«'- (»i 
This diaplooement is expreouble in |>olar coordinates by the fonuulA 
«,-0.    «*=B//^;  (88) 
It hivolvea no dilatatinn or mtJitioti.    The atretw in expreKsed by the ftinnuliB 
^=tfj=0i    rtf- -25r-* (40) 
BO that tho state of Htnws is that produced by a coaple of magnitude 4irfi a{ii)Iied at the '■ origin. 
(e) We may take (A + Srt)A + t2fiaF = Clog(.r+iy]. Sinoo s m not one-valued in a ngion containing the origin, wa iihall suppose the origin to be on the bouud&ry. Eqtiation (fi) hec<imC8 
and the diaplocemeut may be taken to be given by the formula? 
U2. loS] 
TBANSrOBMATIOK Of I'LAWE STRAIN 
211 
I 
The atreu is tben given by the fonuulw 
jr.
,^^(.10..+-^.  n=,i^c^\ .r.= -^^., 
-?)• 
We may take it ^tf ^0, the sxis of r to Ih? the Iraundnry, and thi* ub of y lo be drawn into the Hody, Thfiii thr traction on the Ixiundnry is trttigontial traction on the pnrtof the boundary for which x is negative; and the traction in of amount Cw (\ + fi)/(X + 2^), and it acta towardH the origiD if C ie poeitive, and away from the origin if C is nogativa. The moat importnot parts of v, near tho origin, ara the torai uootnining logr aod 6, and if x is Degativo both Ihceti Iiavo tbu upiKmite sigii t« C, bo that tbey are positive when C is negative. We Iconi from this eiample that tangential traction over a portion of a aurfaee tends to depress the material on the side towards which it acta*. 
153.    Transformation of plane strain. 
We have seen that states of plane stniin are determined id terms of functious of a complex variable x + iy. and that the poles and logarithmic infinities of these fnnctioBfi correapond with points of application of force to the body which undergoes the plane strain. If the two-dimensional region occupied by the body ia conformally represented upon a different twodimensional region by means of a functional relation between complex variables x'+t^ and x + ty, a new state of plane strain, in a body of a different shape from that originally treated, will be found by transforming the function {\ + 2fi) A +1 2fivT into a function of x'+tjr' by means of the same functional relation. Since poles and logiirithmicinfLDities are conserved in such conformal transformations, the points of application of isolated forces in the two states will be corresponding points. We have found in Article 149 the stAte of plane strain, in a body bounded by a straight edge and otherwise unlimited, which would be produced by isolated forces acting in given directions at given points of the edge. We may therefore determine a state of plane strain in a cylindrical body of any form of section, subjected to isolated 
I forces at given points of its boundary, whenever we cau effect a conformal representation of the cross-section of the body upon a half-plane. It will in general be found, however, that the isolated forces are not the only forces acting on the body; in fact, a boundary free from traction is not in general transformed into a boundary free from tnvction. This defect of correspondence is the umiu diiCculty iu the way of advance in the theory of two-dimensional elastic systems. W^e may approach the matter from a different point of view, by con. ndering the stress-function as a solution of V,*p^ = 0. If we change the independent variablew from x, y to of, y', where x' and y' are conjugate functions of x and y, the form of the equation is not conserved, and thus the form of the stress-function in the {a/, if') region cannot be inferred from form in the (ar, y) region. 
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And, wkiB t^ afamni Id becoofl 
KA    lb «9i W nan floaveaieot ■dl to 4^*P ^^ indeiieDdeDt 
I r'rtMiii fii i" [ j'    We write ft paiv OHidEMtet cbe eqtution 
r,0to r\ 0. Ibis «qaatioa ma./ be 
■ taoH of ^, y, f^ ttbafies the 
(^-A-
i)('^= 
0; 
(43) 
■•"- (*4) 
and theraibra r^ is a muM fwuniiia m ike plane of («', />. 
The stnaB-eompoQvDts ifannd from r^ an giveo by the eqaations f 
vhere ^ is the same as $; and we find 
.(♦5>, 
where rr, tftf, r^ are the etrcw-compooents deriveii from x- expressed in terooB of r, A Thua the stress in the (r', $') system di^rs iVotn that in the (r, 0} ayetetn by the &otor H, by the reversal of the shearing stress r6, and by the superposition of a aormal traction 2 (x'r(d;^dr)}, the same  in all directions round a point.    It follows that lines of stress are 
* Uiolwtl. loe, eit^ p. SOe. 
t Sm dw Itwonni (ii) of Article «. 
154, 155] 
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transformed into lines of stress, and a boiindari.- free from stress is transformed into a boundary under normal traction mily. Furlljer this normal traction is constant. To prove this, we observe that the conditions of zero traction acitxa a boundary are 
««(*.^)^-ccs(y,.)^ = 0. 
-*^'^<^'''>^+*=^<y'''>0=**' 
and these are the same as 
9e V9y/ da \dx 
0. 
icr© ds denotes an element of the bnundary.    Hence 3^/^ *™^ ^/^ ^^ constant along the boundar)', and wo have 
^ (v-r^-2C\^ I (y_ Jx_ '^) ^ixy_^Jx^^y^^Q 
ds \ or)    ds\^      dx       oyj     ds     ds dx    ds cy 
It follows that a boundary free from traction in the (r, 6) system is transformed into a boundary stibject to normal tension in the (r*, &) system. This tension has the same value at all jwiiiita of the traufformed boundary, and its effect is known and can be allowed for. 
156.   Equilibrium of a circolar disk under forces in its plane*. 
(i)    We may now apply tbe traii«foriuHt]>>u of iiiversiou to ib« problem of Articled 140, l&O. 
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Let 0' be a point of a fixed Btraight line QfA (Fig. 19). If OA were the boundary (tf the section of a bodjr in which there was plane strain produced by a force /'directed along OOXy the stress-function at P would be - »■"' Fr6 sin 5, where r stands for QP; and thia may be written -ir"'/T9y, where y is the ordinate of P referred to GfX. When we invert the system with respect to 0, taldng h^ OCf^ P is transformed to P', and the now BtresBfunction is - w'r,>J^{fl,+fl|))fey/'"i*, where fl, and *r -fl, are the ai^lea XOP\ XaP\ and we have written r^ for 0P\ and y* for the ordinate of P' referred to OX. Further the line OA is transformed into a circle through 0, t?, and the angle 2a which OOf subtends at the centre is equal to twice the angle AO'X. Hence the function - ir'^F"^ (^i+^t) •* **w stress-function corresponding with equal and opposite isolated forces, each of magnitude F", acting as thrust in the line Off, together with a certain constant normal tension round the bounding circle. 
To find the magnitude of this tension, we observe that, when P' is on the circle, r^ cosecf?,=rJ oosec ^i ~ i coeec (0 J-I-4^=S A, where R is the radius of the circle.   Further, the formuhe (1) of Article 144 give for the stress-components 
_^_2^' /coa^^i    cos'^A      y ^    ^F" /cob g, sin'^^    cosggSin'flA '"      ^   \   r^ r,   )'      '"    'ir   \   '   ri ''i        /' 
X ^-^1 /"»'^i^^i _ cob'$tsin^A 
Also the angle (0 in the figure) which the central radius vector {R) to P' makes with the axis of x, when P' is on the circle, is Jw —o+2tf,, or -J*r-Hfl,-tf,. Hence the normal tension across the circle is 
X,6in»(5,-fli)+^»co6'(^i-^i)+2-r»"°(^i-^i)«»(^j-^i). and this is - (F* sin a)jnR. 
If the circle is subjected to the two forces F* only there is stress compounded of mean tenedon, equal at all points to (/"sin a)/rrR, and the simple radial distributions about the points 0 and (/ in which the radial components are 
-(2/"cos5,)/irr, and -(2/"co8^,)/frr,. (ii)   Circular plate subjected to forces acting on its rim. 
If the force F' is applied at 0 in the direction 00" (see Fig. 19) and suitable tractions are applied over the rest of the rim the stress-function may consist of the single term — v'^Ftf'Si. Let r and 6 be polar coordinates with origin at the centre of the circle and initial line parallel to 0(y. The angle (r, r^) between the radii vectores drawn &om the centre and from 0 to any point on the circumference is J »r-5j. The Btress-system referred to (r,, $i) is given by the equations 
V^i=-(2>"co8^,)/(«-r,),   575,=0,   r^,=0; and therefore, when referred to (r, 0), it is given, at any point of the boundary, by the equations 
■^       2F cos e, sin* 0,     Xa       2/" cos 6, cos* (9,    —.   2F cos tf, cos (?, sin tf, fr r, IT r, ' w r, 
or we have at the boundary 
'^       f cos A sin 5, "5   /" cos 5, cos d. 
""^-V R ' ''^=V R-^' 
and this is the same as 
-^        FBiua      -f"    - ,-     -.     r^   F'oosa ,    F ,.      .. 
155] 
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where a, =Sj+Sf,ia the acute angle sabtmidwi at a ]>oint on ilie oiroumferenoe "by the chard Oi/.    Henoe the traction tu:if)U8 the boundary can he regarded ns coitijKimiiled of 
(i)    luiirorm tuiisiou —^{F'niu a)lirR iu tte liirocliou of the nurtnal, 
(ii)    uniform tAngcntin] traction \(l^caaa)!itli^ 
(iii)   uiiifurm tnirctiun — ^ F'/irR in the dlnjctiou 0(/. 
Let any number of forces be applied to various points o( the boundary. If they would keepa rigid body iu ef4uiUbrium they SAtirfy th« cooditton S^'cosa^O, for s/*"/! ooso is the mim of their mouicnt^ about the centre Also the uniform tractions cotTCApoDding with (iii) in the »l>ovo mjlution would have a wiro resitltatit at every {Hiint of thu rim. Ueocethfl rexult of su|M3rj>o8ing tbu strotvt-syHtuins of type (32) belonging to uaoh of the foroM would be k> ^ivc us tUu utjitu of HtrcsH in tim pUte under the actttnl furutis and a norccuil tension uf aiuount -3 (F'sina)/2trA at all points of the riw. The tonus F'nin a of this HUimnatiou are equal to the normal (inward) comix)nenta of the applied forces. Moan tension, equjvl at .ill pointti to I {F'sin a)l'2nR, could be Huperx)09ed «pon this distribution of stroas, and then the plate would t:e Hubject to the action of the forces F' only. 
Fig. ao. (iii)   Heavy di«k«. 
The 8tet« of sbroHtt in a heavy disk renting on a horizontal plan« can also be found. L«t w be the weight i>er unit of area, and lot r, 5 be [wlar coordinates with origin At the pMQt of contact A and initial lino drawn vertically upwards, as in Fig. 20. 
The stress can be shown to be oom{H)unded of the systems 
(ii)   'ir=-2r^r-icosfl,    ^=0,    r?=0. 
The tnwtion across any horizontal section is ppeaaure directed radially fW>m A, and is of amount ^*w~' (4/Pc(>!4*fl —r*); the trjiction across any section drawn thrutigh A is horizontal tension of amount 
iw(2/icoaifl-r). 
* The Bolotiou i8 due to MidieU, loc. cit. p. 207. Fibres ehDwin^ the diatributioo of Bben io tliifl CAM and in aereral other casos, »Dine of whioli have bven ditousaed in this Chapter, are drawn by Uiobell. 
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156.   Exunplas of tnnafbnnaticnL. 
(i)   The auwt BM«bod of Artid* 153 will iMd, by tb« AuUtitutioQ x+tyifl/ijf-i-^ 
in th» ftinituk 
(X+^A-4-^i»-J{*+ijr-*)-*,    (46) 
ko « MtPpM ■yulaia tn iUt pkiM or(y, jO» i& which simple ndiAl (ttreos at the point (i, 0) in itii)wri<i<MPd uixKt « coiMiADt aimpte tcnsiaD {X^ in the direction of th« hxa y. ir the tktiiiuliir^ iti the (j-, y) pUue i« |pT«o by the eqoAtioo y = (r-i) tan a, th« bouudaty in the (j<, y) )iUne will to • circle, and the results giren in (i) and (ii) of Article 1&& can be dodiuwd. 
(ii) By the tnnalbnMUau jT'fy-ljr'+^rT tii»«edg»«haped ngion betwees y—0 Mill yV'*"***' ■'" ^ ooulbnuaUy refmNectad on the half plane jf>Q. If we mbetltale fur J' + iy in (411) we Hhall ubtatn a state of stnas iu the vedge-shaped regjoo botinded by Ut(i al'o^'u two hum iu tbv jiUae ut (x*, jr*), which would be due to a stuglo force applied at (i^ V\ aiHl certaui tnwtktua distributed over the bouudariea. When n-i the tnKtion 01W y^O vaiilslim aiK) that on y*0 beooeaae teonoa of amount proporiiinial to 
flii) Ry U*e lnu»R>ruuaiou i-{*'- IV(«' + »X *b«» «—J+tjr and j'=«'+q^, the ■trip between y^O aitil y ^w m c\mtv-naaiiy rapreeeoted upon the half platw y>0, so tlMt tlMonicina In tho twi> ^lUiMe an* corrHqxxidiog poiata, and the pDint»(t.l, 0) in the piano >4 (jv,y) wrraHptwl with the inftnitoly distant poinu uf the strip. Let a single tent F M-t Mt Uie (iri{nu i» tlte (jt, y) plane in the paaitiro direction of the axis of jr. Thnn tho solutioa is givMi by tho equation 
Tmiinfomiiiitc to (^, y*) we dnd 
««i     f+^'-'l^ |^8uu-»-j^^j-y)-,log(oortir'-oosy)}+ooift,t. 
TIiIh Mtliition rspreseou the o9bot of a aUijjk tone if^ aotteg at the origin in the dinwlion of tbc alia of y, and jwrnfly ttonnal preesure of amount F/iX-i-onebj/') per unit] of l(in){th, noting on the edge y»« of the «tri|i, tugpther with certain taneential tractionaj on tlw edges of the strip. The Utter oau bo aiuiullml by au^nrpneing a di (u\ O upon the ili)t|>UoimMtit 
provldod that 
nnd this adJitional disi^Uceinent doee not adect the normal tractioos on the boundary. 
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        CHAPTER X. 
THEORY OF THE INTECIBATION OP THE EQUATtONS OF EQUILIBRIUM OF AN ISOTROPIC ELASTIC SOLID  BODY. 
167.    Nature of the problem. 
The chief analytical problem of the theory of Elasticity is that of the BolutioD of the eq^uations of eqtiitibnum of an isotropic body with a given bniiiidary when thn surface displacements or the surface tractions are given. The case in which body forGos act upon the body may be reduced, by means of the particular integral obtained in Article 130, to that in which the body is held strained by surface tractions only. Accordingly our probEera is t-o determine functions u, v, vj which within a given boundary are continuous and have continuous differential coefficients, which satisfy the system of partial ditferential equations 
whew 
J,     du    dv     duf 
(\+/t)|^ + ^V*u;=0, ...(1) 
dg 
.(2) 
and which also satisfy certain conditions at the boundary. When the surface displacements are given, the values of u, v, w at the boundary are prescribed. We know that the aoiutioii of the problem is unique if /*. and 3\ + 2^ are positive. When the surface tractions are given the values taken at the surface by the three expresaions of the type 
\Acos(«. v) + ft\^+y cos(ir. v>+r-co8<y, i') + ?-coa{j, 1-)^ ...(3) 
are prescribed, dv denoting an element of the normal to the boundarj-. We know that the prublem has no solution unless the prescribed surface tractions satisfy the conditions '>f rig id-body-equilibrium (Article 117). We know also that, if the»e condition^) are sati-sfied, and if fi and 3\4-2/i are positive, the solution of the problem is effectively unique, in the sense that the strain and streRs are uniquely detei-minate, but the displacement may have superposed upon it an arbitrary small displacement which would be possible in a rigid hotly. 
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168.    ReBtmi6 of the theory of Potential. 
The methods which have been devised for solviog these problems have a close analogy to the methods which have been devised for solving corresponding problems in the theory of Potential. In that theory we have the problem of determining a function U which, besides satisfying the usual conditions of continuity, shall satisfy the equation 
v'(r=o  (4) 
at all points within a given boundary*, and either (a) shall take an assigned value at every point of this boundary, or (6) shall be such that dUjdv takes an assigned value at every point of this boundary.    In case (b) the sur&ce
JDtegrul jj -^dS taken over the boundary must vanish, and in this case the 
function U is determinate to an arbitrary constant pris. 
There are two main lines of attack upon these problems, which may be described respectively as the method of series and the method of singularities. To illustrate the method of series we consider the case of a spherical boundary. There exists an infinite series of functions, each of them rational and integral and homogeneous in x, y, z and satisfying equation (4). Let the origin be the centre of the sphere, let a be the radius of the sphere, and let r denote the distance of any point from the origin. Any one of these functions can be expressed in the form r"£n> where n is an integer,.and B^, which is independent of r, is a function of position on the sphere. Then the functions 5„ have the property that an arbitrary function of position on the sphere can be expressed by an infinite series 
00 
of the form   S A^^^.    The possibility of the expansion is bound up with 
the possession by the functions <5i„ of the conjugate property expiessed by the equation 
V«'Sf».rfS = 0 (5) 
//^ 
The function F which satisfies equation (4) within a sphere r = a, and takes on the sphere the values of an arbitrary function, is expressible in the form 
If the surface integral of the arbitrary function over the sphere vanishes there is no term of degree zero (constant term) in the expansion. The function JJ which satisfies equation (4) when r <a, and is such that 3 JJl'hv has assigned values on the sphere r = a, is expressed by an equation of the form 
* A fanotioD which has thece properties is said to be " humonio " in the region within the given boundary. 
L5S] 
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The applicatiou of the method of series to the theory of Elasticity will be 
[considered in the next Chapter. 
The method of singularities depends theorem, known as Green's equation,  viz.: 
esKi^ntially  upon  the reciprocal 
^ jjjiUV^V-W^U)d:cd!fdx = [|((;|?_F^)rfS.    (6) 
iu which U and V are any two functions which Batisfy the usual conditions f of ctJDtinuity in a regioD of space; the volume-integration is taken through 
this region  (tir jmrt of it), and  the surfiice-intpgratimi  w takun  ov«r the 
!boundary uf the region tor the part). The normal v \e drawn away from the region (or the part). The mtthod depends also on the existence of a solution of (4) having a simpli^ infinity (pole) at an a-s^ignod ju^int; innch a solution ia l/r, where r denqtes distance from the point. By taking for V the function 1/r, and. for the region of space, that bounded externally by a given anrface 5 and internally hy a sphere 2 with its centre at the origin of r, and by passing to a limit when the radius of S is indefinitely diminished, we obtain from (6) the equation 
I ^HW^-'^V)^- <^> 
^uo that U is expressed explicitly in temts of the surface values of U and 
^bZr/Sf.    The term that contain.'* dUidv explicitly is the potential of a "simple 
Bfeheet," and that which contains U explicitly is the potential of a "double 
iheet."    In general the surface values of U and dll/dv cannot both be pre
Bcribed, and the next step is to eliminate either U or dU/Bv—the one that is 
■ cot given. This is effected by the introduction of certain functions known as "Green's ftinctiona." Let a function G be defined by the following conditions:—(1) the condition of being harmonic at all points within ^' except 
■ the origin of r, (2) the possession of a simple pole at this point with residue unity. (3) the condition of vanishing at all points of S.    The function 0 may be 
1 called "Green's function for the surface and the point." The function ff—l/r is harmonic wichin <S> and equal to — Ifr at ail points on S, and we have the eqiiattou 
//[ 
U 
G-ll
0
i\dir\ 
dS = 0. 
Since O vanishes at all points on S we find that (7) may be written 
U^^dS. 
.(8) 
Hence  IT can  be expressed ia terms of its surface values if G can be found. 
B     When the values of dUJdv are given at the boundary we introduce a function r defined by the following conditions:—(1) the condition of being 
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harmnnic at all pnint» within S except the origin of r and a chaacn point ^J 
(2) the posseasiou of simple poles at tliese points with residueH 4-1 and — 1, 
(3) the coudilioD that dVfdv vanishes at all points of 8. We Bod for U the] equation 
47r(a-tr^)=j*fr|?d5.   (9) 
Hence V can be expressed effectively in tcrma i>f the surface values of dUjdv when I' is known. The function T is sometimes called the "second. Green's function." 
Green's fiiiictiuLi O for a 8urfuuo tuttl n point uia; bo interpreted lui the dectric potent due to a i>oiut change in prweiice of ati uniimiilatod oonduoting «urf(VDe. The itecocid Oreen'A funotion r for the anrfacs, a poiitt P aiid a clioaen point A m&j be interpreted as the x-elocitj potentiAl of incompreeaible fluid due to a ncurce and Hink at /*and A within a rigid boundary. The functlona O and r iire known for a few surfaccH of wliioh the plane and the sphere* are the most important. j 
The existence of Qmen'a fitnutionK for any Hurfacc, and the existence nf functions which' are hanuDniu within a aurfa^e and t&ke jireschbed valueti, ur have prescribed normal rates of variation, at all poiutn oa thv sur&ce are not ohviuua without proof. The efforts tbat have been made to prove these exiatence-tbeoreDui have given riaa to a mathetuatioU thcorj- of KTcat intenwt, Methods have been devised for constnicting the hincttorui by oonvergfint (iroceaaoat; aud these methods, although very compUcabod, have boon suocemftd for oertaiD olasHM of aurftces (e.g. such aa aru cvetywheon convex) wbon some roHtrictions ore iiupo«ed upon the degree of arltttrariuoBS of the preaurihed Hurftu^i values. 
Simikr existeiioe-theoreau ore involvtid in the theory of Elasticity, but ooolparatively ^ little progress baa as yet been made with the proof of theiu. 
159.   Be&crlption of Betti's method of integration. 
The adaptation of the method of singulaiities to the theory of Elasticity was made by Betti^, who showed how to express the diliitatton A and the rotation (tir^, «»„,*»,) by means of formula; analogous to (7) and coot-aining' explicitly the surface tractions and surface displacements. These formuljB involve special systems of displacements which have been given in Chapter vui. Since A is harntuuic the etjuatiims (1) ean be written in such forms as j 
'p. [„ +4 (l+X/^) <.:<!] = 0.     (10)     1 
and thuB the deterraination of u, v, w when A is known and the surface Tallies of u, V, ur are prescribed is reduced to a problem in the theory of Potential. If the surface tractions (A\, )'„ Z^) are prescribed, we obeerre tbat the boundary conditions can be written iu such forms as 
...(11) 
* Bee e.(i. Maxwell, Klrclridijf md itafnetitm. 3od edition, Oxford 1881, and W. U. UioU, PMt. Tn«4. Hay. Roc., vol. 171 (ISSO). 
t Bm em. Poinoar^. TMorie du potmtitl ttevtcnitn^ Paris 1899. X Be* TnlrodticiUm, fooloolo 0$. 
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SO that, when A and w„ w^. w.. are found, the surface values of dft/Bv, dv/Bv, dto{dv are known, and tlie problem is again reduced to a problem in the theory of Potential. Accordingly Betti'a method of lutegratioa involves the determination of A. and of w^, vt^, w^, in terms of the prescribed surface displacements or surface tractions, by the aid of subsidiary special solulioiia which are analogous to Green's functioas. 
160.    Formula for the dilatation. 
The formula analogous to (7) is to be obtained by means of the reciprocal theorem proved in Article 121. When no body forces tire in action the theorem takes the form 
jhx,u'+Y,ti'+z,w)ds=IJ(X,'u+r:v + z;w)ds, (12) 
in which (u, v, w) ia a displacement satisfying equations (1) and X„, T^, Z, are the corresponding surface tractions, and also {v.', v, ui') is a second displacement and XJ, F/. Z,' are the corresponding surface tractions. Further, the integi-ation is taken over the boundary of any region within which u, V, w and u', v', to' satisfy the usual conditions of continuity and the equations (1). We take for u', if, w' the expressions given in (20) of Article 132. It will be convenient to denote these, omitting a factor, by Uv- t'o, u%, and the corresponding surface tractions by X„'", F,'"', 2,'*'. We write 
(ttp, t?„ Vi\ 
■)=(^.^'.^) <-) m 
and then the region in question must be bounded internally by a closed surface surrounding the origin of r.    This surliace will be taken to be a 
sphere S, and we shall pass to a limit by diraiuishing the ratlius of this sphere indefinitely. The external boundary of the region will be taken to be the surface »S of the body. 
Since the values of coa(*, v\ ... at S are — «/r, -t/Jr, ~ xjr, the contribution of X to the luft-hand member of (12) is 
//{-["(' 
(hv 
fdu    9tu\ 
-rMM)-f(--^4:) 
which is 
- \~t^ 
(^-I)n^ 
nl^-^^s 
)] 
>2 
d^. 
4-^'^(s^-$%-m\'^ 
■/^[■?(|-r:)-?(l>s)-^?(l+|)]^^
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All the integraU of typo 1 UsdS, vaoish, and each of thotte of type ija^dZ is 
equal to I irrr*. and therefore the limit of the above expression when the radius of ^ id diiniDi.shed iudetinitely iii 4ir(X + |m)(A)«, where (d)^ denotes the value of A at the origin of r. 
Again, since the values of X^'*, K,**, Z^"* are expresaed by formulje of 
the type 
r s & i^~\ Tit—' 
Jf.'« = 2(. ^cm(x. i')9^ + co3(y. .) -+cosU, v)g^J g^. 
the contribution of S to the right-hand side of (12) is 
Now such integrals as I f.rrf2 vimish, and we therefore expand the functiona i u, V, w in the neighbourhood of the orij^in of r in such forms as 
and retain first powers of x, tf. z.   Then in the limit, when the radius of S wl diminished indefinitely, the above contribution becomes 
or ~i^rrfi{^)o-    Equation (12) therefore yields tlio result 
*ir(X + 2/i)iA)^^jh{X/''U'i'Y^'^vi- Z^^'w)- (JT.u, + Y,v, + ^^w^)]dS. 
(U) 
The formula (14) is the analogue of (7) in regard to the dilatation. 
This formula lioa been obtained here by a strictly analytical process, but it may also be arrived at synthetically* by an intcM-preLation of tho displacement (k,, r,, to,). This displacement could be produced in a body (held by suitable forces at the boundary) by certain forces applied near the origin of r. lx!t forces, each of magnitude P, be applied at the origin in the positive directions of the axes of coordinates, and let ecjual and oppoi*ite forces be applied in the negative directions of the axes of x, y, z respectively at the points (A, 0, 0), (0, k, 0), (0, 0, A). Let us pass to a limit by increasing P indefinitely and diminishing A indefinitely in such a way that iiraPA =4Tr (\ + 2^>. We know from Article 132 that the displacement (u,, 0,, i£v) will be produced, and it ii* clear that the work done by 
' J. Doui^all, Kdir^iir'jh Math. UtK, Prat., vol. IC [ltf98].    Betti'a reciprocal tbtforem sliowi thftt the work done by th« tractions Xr,... od the torfM* S, kctine through tht dliipUeem«ot j |u«, Tg, Aei^, i» eijual to tho work donn hjr oennln forcv» npi>tio>d &l, Kml near to, the origiQ, Hting throngh th« dispUocment ti<. r, w), tuij«th«r wliti the work done by tlie uwtioni JC**"', ..., on Um mrfiM 5. uting tbrougb the titrnt dupittesoMot. 
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t 
the above system of forces, appliec] at, and near to, the origiii, acting through the displacement (u., v, w) is — 4ir(\ + 2^)(ii)(,. 
161.    CaJouIation of the dilatation ft-om surface data. 
(a) Wheo the sur^e displacements are given u, v, ur are given at all points of a but Xy, F», Z, are not giveu. In thia case we seek a displacement which shall i^aiisfy the usual conditions of continuity and the equations (1) at all points within -S. and shall become equal to (Ua, v^. «'(.) at all points on S. Let this displacement be denoted by (h/, v,', w/), and let the corresponding surface tractions be denoted by X,'"", F/"", Z^'"". Then wc may apply the reciprocal theorem to the displacements (u, v, w) and (u,', %', Wt) which have no suagularitics within 8, and obtain the roeult 
k 
= jnX.u, + 7,v^ + Z,to^) dS. We may therefore write etjimtion (14) in the form 
.(15) 
The quantities X»'°' —X/'"', ... are the surface tractions calculated fnjm diBplacemeula Ug —tin', •■• aud they are therefore the tractions recjuired to bold the surface fixed when there is a " centre of compression " al the origin of r. To find tlie dilatation at any point we must therefore calculate the surface tractions required to hold the surface fixed when there is a centre of compression at iho pciiit; and for this we must find a displacement which (1) satisfies the usual conditions of continuity and the equations of equilibrium everywhyre except at the point, (2) in the neighbourhood of the point tends to bccotnie infinite, as if there were a centre of compression at the point, l(3) vanishes at the siirfatra The latter displacement is analc^oua to Green's ■function, 
(6) When the surface tractions are given, we begin by observing that X,"^, F„*", Z,"> are a sj'stem of surface tractions which sati-sfy the conditions of rigid-body-equilibrium. Let (h^", i'„", tVa") be the displacement produced in the body by the application of these surface tractions. We may apply the reciprocal theorem to the displacements («, v, w) and (u,", p,", Wo"), which  have no stngulHrities within S, and obtain the result 
J|( J/' w + F,'«'« + Z,«" uf) dS = jj(X^ iC+ TX'+ Z.w:')dS; then we may write equation (14) in the form 
X,{u,"-,^) + Y,{v:'-v,) + Z,(w:'-w,)]d3....{lQ) 
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To 6n<I the dilatation at any point we must therefore find the displacemeDt produced in the body when the surface in free from traction and there is a centre of dilatation at the point. This displaccraent is (u«"—u», *o''—t,. It'/'—li'o);   it is an analogue of Green's function. 
The dilatation can be decermiued if the displacement (u,", v^", w^') can be found. The corresponding surface tractions being given, this displacement is indeberoiinate ill the sonne that aay small displaceuieut possible iu a rigid body may be superposed upon it. It is easily seen from equation (16) that this indetertninateness dues not affect the value of the dilatation. 
162.   FormtilSB for the componentB of rotation. 
lu ajipljing the fonniiU (12) to a region bounded e!tl<>ru(illy by tho surface i5 of tl bod.v, luitl iuteruall; bj the surfiwe 2 of a Binall apliere surromiclitig the origin of r, we take for (a', v', v.') the dUpIactrmcnt givvn in (22) of Article 132. It wil] be convenient to donoto this diaplacetucsnt. omitting a fac'tor, by (u„ i>4 ir«),* and the corresponding surface tractions by X^\ >V*1, ^."1.    We write 
(«,..„ .,)=(o. ^:^, -^') (17) 
The contributiona of S to the left-bajid and right-h&ad inembeni nf (IS) may be calculated by the analytical prcK%8H of Article 100. We xhould find tba.t the ouutribution to the lefthand meoibor vaniaheit, and that tbo contribution to the right-hand member in eirfi(a'«X, where (t,)^ denotes the value of v. at the origin of r. We should therefore hare Um {brmuU 
air^(tr,)o= [ A(X»«4+ Y*l\■^■Z^V!^)-{X^''^u■\■ Y,Vnv-^Z^*hc)\ dS,    (18) 
which IB onalogoLw to (7). The nutie result nuiy be arrlred at Ly ubsBrviag thnt (v^, v,, vj is tho di»platif tiiont due to forcea Anftfli applied at the origin in thv. positive aiid nc^tive directions of the axes of y aud z re»|>ectively, and to equaj and uppusito foroue applied rc8pecti\-ely at tho points (0, 0, h) and (0, h, 0), in the limiting condition when A la diminished indefinitely.    It is clear ttrnt the work done by these forces acting over the 
displacement (u, r, w) is in the limit e(.|ua,l to djr^ ( ~ ' S ) ' ^o'^'*'"' *^f ^-h** sanis tyjw as (18) fur «, and v, can be written down.   ' 
163.    Calculation of the rotation fVom surface data. 
(a) When the suri'mw diBiJlaccmonte arc given, wu introduce a displaceowDt (**«'■ '('< "^4) w'^<^'> aatishcH tlie iiHual coiiditinuft of continuity and tbo oquatiuaa of equilibrium (1), and takeH at the eurfavo tbo value (w^, v^, Wj); and we dcnutQ by A',"**', K^W, £,V) the corree^xinding surface tractiouv.    Then fiquation (18) can be written 
8«-;*("«)o=/|K-V/i'>--\V*'}»+C>'r't*>->VW)t+(^;i»i-^;w)«}d^,    (19) 
in which the (|UHutiti«« .IV'*'- .V,'*>, ... are the surface tractiuoa retjuiroii to hold the surfoco fixed when a couple of mumcut Hn/i about the axis of x is appbed at the origin in Huch a way that this point becomoe "a centre of rotation" about the axia of x. The oorrespouding diBplaoemetit (u,' - u^, v^' - v^, «^ - w^ ia an analogue of Green's fiincUon. 
* Thia notation ia adapted in aoocrdanoe with the notatton {u,, o,, le,^ the dieplaeemcDt duo to unit foreea. 
of Artiele 1S3 fer 
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(A) When the mirfaco tractions are girau we ohaorve that the tractioiia Ji\<*\ IV, ZyW, [txting Btuti4:ally cqutvalent U> a cuuplo, du uob satjufy tlio conditiuiu uf rigid-budy-equilibriuni, atid that, therefore, no di^pliu^oiiicttt uxistH which, besides aatisryitig the uhuaI cunditionit uf uoiitinuity and tha oqiuitiuiiH of equilibrium, gives rise to HtirfAco tractionfi equal to „W*l, ...*. "Wo munt inti-oduco a second centre of rotation at a choBen [>nint A, 8o that the cuii|)]e at .4 is equal and oiipoMite to that at the origin of r. Let u^^^*\ i','-*', utj-*^ he tho displao«iuout due to a centre of rotation about ao axis at A lurallfll to the oxiii of a; ' ao that 
«»M), „,<^1, „.(Jl)-(0.   ^^-,   --^')* 
.(20) 
where r^ denotet distaiicu rmin A. Let AV"'*', Vr"^\ ^.."l*' douote the surfiujo tractioue calculated from the displacemcut fB^-u.C'*', r^-r/-^!, a-i-w,!-*)), Tho couditioiia of rigid body equilibrium are satisfift.1 by theiie tractionH. Let (w/', j'/'' «'i") ^* *^* diapUicement which, Ix'^iiiort aatibfyiog tho us\ial cunditione of continuity and the equations of equilibrium, given rise t*> tho surface tractions AV'<'>,.... Then, denoting by {w,),^ the valae of V, at die iMiiiit A, we tiud by the procesis aheiidy used to obtain (18} the eqtiatioti 
wd ttom this again we obtain the equation 
+Z,{^r^~■w^i■*)~1e^")}dS.    (21) 
The quuiUties u^'■ti^*'*)-u,", ... are the compouoata of diitplaccmout produced in the body by equal and opposite ceatr** of rotatiou about tho axis of x at tho oi-igio of r and ft I>arallel axis at the point A when the Hurfave ia free ttoxa tnurtion.   This displacement 
^ft is an anulogtio of the second Orcen'a function. 
™ The rotation can bo determined if such a diapUicemcnt as (a^", v^', ip,") can bo found. The indetcrminatcucua of this displacement, which is to be found from aurfiwra conditions of traction, does not affect the robition, but the indctcrtninatcocss of ar^ which aiiaes Trova the additive oonstant (or,)^ ia of tho kind Rh^jidy m>t«<i in Art«il3 I.'»7. 
I 
I 
164.    Body bounded by plane—Formulae for the dilatation. 
Tho difSculty of procecdiug with the integration of the equations in any particular case is the diflBciiUy of discovering tho fimetioiis which have betm denoted abovo by 'C "»". «♦". ■-■■ These fuuctious can be obtained when the boundary of the body is a plane-f. As already remarked (Article 135) the local effects of forces applied to a sriiall part of the surface of a body are deducibic from the solution of the problem of the plane boundary. 
Let the bounding plane be * = 0, and let the body be an that side of it OD which * >0. Let (x', y', «') be any point of the body. (:r', y', -/) the optical image of this point in the plane r = 0, and Wt r, R denote the distancea of any point (x, y, x) from thesL* two points respectively. For the determination of the dilatation when the surface displacements are given fre require a displacement {\t^\ v^', w^) which, besides satisfying the usual 
* J. DongaU, toe. eil. jr, 1223. 
+ The application of Bettt'a method to the problem of the plaue was made by Cerroli.   (See Itandtutiou, footaoU! tjK) 
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conditions of coutiuuity and tho etjuationa of cqailibrium (1) in the region « > 0, shall at the plane r = 0 have the value (uo. v„, w,), i.e. (dr-^fSx, ^r-'Jdjf, dr-*fdt). or, what is the same thing, (dR-ydjf. dR-^/dt/, -dBr^jdz). It can be shown without difficulty* that the functions u,', w/, w^ are given by the equations 
Wo - — ■ 
.(22) 
dz   ' "X + S/i     32'   ■ 
The surface tractions X,""', r,'", 2^** on the plaoe * = 0 calculated from the displacement (»o, Vo. ^o) are, since cos(*, y)«— 1, given by the equations 
^'—"Si^ ^"^^'^ 
(23) 
and tho surface ti-actions Xy'^\ ... on the plane £s=0 calculated from the displacement (»«', Vo', Wo') ai^ given by the equations 
•^ \. 0 w       5e / X + 
3;* 5y3i ' 
^•'™=-^f^'-^'#'*^>*''^]=^'' 
x+M y.R~' 
X+3/t  9i' 
...(24) 
* If io bfit n« Hsumo for u/, v^', »,' toob rornu u tlie followios i— v« find for it', v', u' the «quitioai 
9 /9m'^v'dm'\ 
* •|(X+»»)^.lVr + i^ + \T 
SSVJS-^J^-^-S7J + ''^H''*^""'* 
h'^li^ 
vliieli u« All utisQed by 
Cm 
Stf-  ^ Si.'  ..^    .c*i^' 
dp'    .rtc-X   ^   &ID*   -,.      .S»if-» 
•-ST. 
for Umm foaotioBi on tuumoaio 4ud ue BOoh that ^ + ^ +^ =0, 
<fX        Off 01 
164, 165] PROBLEM  OF THE  PLANE 
We observe that A'/'"', Y^'*"'', Zy'"" are equal respectively to the products of JCr"". y,"'\ ZJ'< and the TiiiraericaJ factor -(X + ^)/(\+ 3^), and hbuce that 
«, C <') {(X+ S^)/(\ + ;i)} K, <. izp^O. 
It follows that, when the surface displaccmcDta are given, the value of A at the point {x\ ^, t') is given by the equation 
the integration extending over the plane oi{x,y). When the surface tractions are given the value of A at the point (a;', y', r*) is 
LiM'-'S^'-'S^'-V)''"- « 
^ 
27r(X + ^). 
165.    Body bounded by plane—Given surface displacements. The formula (25) for the dilatation at {x\y',^) can be written 
u     a 
A = 
?{^iJ"'^*4i]^'^^*4f'^4-<^'> 
If we introduce four functions L, M. N, ^ by the definitions L-^^^ldxthj,   M=jjldsdy.   N^jj^^Lrdif,' 
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        .(28) 
these functions of t^, ■/, tf ore harmonic on either side of the plane ^=0, and at this plane the values of u, v, w are lim/,^^ ~ 2~ fl~" ^^' "**■ ~ 9~ »~^ ■ 
—rr-^q-, a^, and the 
IT (X + Sfi) vz 
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-^-'(9i/9£') which are themselves harmonic in the same region.   It 
follows that the values of u. v, w at {a/, i/, s') arc given by the equations* 
1 
1 BM . 
2^\ + 'Sft    dy'* 
Sir oz 
2Tr X + 3;*     »«' ■ 
(30) 
The simptaBt eumpla of tbcao funuiUw \» Afforded bj tlie caw) in which u aiid r vanuh at all points of the stirfaco, luiil n vimislies at all [loiiita oxccpt thosu iu a vory smtaD aioa near tho orjgiu. tii tliiH case tha uuly iroinbi (x, jy, f) tlmt nru inuliiilcd in the integration Arcs cltwD to tho urigiii, and ^ ia the potentinl of a maaa at tli« origin. We la&y aujiiima the aooenta on 3^, y, t' and obtain tbe solution 
which vraH eontiidcred in Article 131. In the [iroUeni of the pUnc thia sulutiou ^ves the disiilacoinBiit duu Ui [>meun! of au]ouut-4ir/i •. ~r~ ^ exerted at tbe origin when the placo f bO la held fixed at all puint« that are not quite cIo<i» to the origin. 
166.    Body bounded by plane—Given surface tractions-f". It is iinuL'f'f ^siiry to gD through the work of calculating the rotations the general method. 
The formula (26) for A can be expreaaed io the fomi 
A = \ ^ 
To effect this we introduce a function ^ ^"^^* ^^"^ 
dx/Bs' =- l/r at « = 0. Tho required function is expressed by the formula 
X-log(i+r'+ie);  (31) 
it is harmonic in the space considered and has tho property expressed by the uqiiations 
dt~Sx'~Ji 
Now At the sur&ce i^O we have 
dm    ac "" ai:'     aa'd^*   ^     di^'   a*     dz"' 
If tlierefore we write 
.(32) 
* TIm rwulu aro due to BoossitMiq.   Sm IntreJuction, footnote 67. f Tl» rMutts are dai lo Cerroti.   8«« IntrviiKtion^ footaote 88. 
...(33) 
165, 166] PROBLEM OF THE ?LAKE 
the value of A at («', j/', s') is given by the equation 
1 ^^p■ 
A = 
.(34) 
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        27r(X+/A)a/ 
We observe alao that the functions F, G, H, -^ are harmonic and that the 
values of X, T„ Z, at z' = 0, are equal to 
1  ^^ 1 ^Q 
Now the third of the equations of equilibrium is 
Uin^_^-„'_^,, Hra^_+,-„^^. lim^^^^ ^^. 
md ihe third of the boundary conditions is 
= 0. 
Pi 
A^jLt    dz'j     d^ (iTTju. dz'     4ir(X +/*) It follows that w is given by the equation 
	or 
	5iv 

	Hence at 3' = 0 
	


w 
1   BE 
^
1     .d^ 
un the first of the equations of equilibrium is 
.(35) 
'■'h-^-.'W"' 
and ibe first of the boundary conditions is 
fdu . dur\ 
Hence at *' = 0 
/C)U dW\ -or 
V 9/ L" "^ 47r^ ^ ao:'J     27r^ Si'-"     47r^ Sjj'gr' 
+ 
X        8i^ 
k 
and it follows that u is given by the equation I    dF       1    Sff X d^r. 
1    ^,df 
(30) 
27r/t dz      'iwfjk dx'     ^TTfi. (X + fi) dx      4^fl     Zx'' 
where >^i is an harraoiiic function which haa the property d^Jd/^ ^.   Sncl» a function can be obtained by inCroduciog a function 11 by the equation 
n = {£+z') \og{s + s'+R)'-R.   (87) 
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Then H is harmonic in the space considered and has the property 
.(38) 
K we write 
f,=jjXM^dy.   G.^^^Witdxdy.   H,=jjz^nd^dt/,' 
L ...(39) 
than all the fiinclions J*,, 0„ £f„ ^, are harmonic in the space considered and 
W ' a?    •  a*-~  '  a»'"^— 
Li the same way as we found u we may find v in the form 
v = 
1   3(5      1   dff 
a^i    1   ,&^ 
(+0) 
.(«) 
In the special cue of a preaaure P applied at the ori^n, the tractiims X^, T, Tsoiih everywhere, and ^vTAnLnhes except in a small area coutainiug the origin, but I jZ^dndy^P. In this oaao Fand O Tanish, and 
whore r denoted the diatanoe of (y, y, z*) from the origin.   Alao F^ and (7, raniah and •^, = ^'=-i*log(2'4-r-]L   Suppressing the acceota we obtain the ftmnub; (35) of Article 13& 
167.   Historical Note. 
The problem of the plane—eometimes al»o edited the ** problem of Bomsioceq and Cemiti"—has been the object of numerous researcbe^ In addition to those mentioned in the Introduction pp. 15,16 we may cite the following:—J. Botwdnesq, ParuC.lL,t^l06 (laSS), gave the aolutions for a more general ^pe of boundary conditions, vis.: the nonnal traoUon and tangential displacementa or nonnal displacement and tangential traetiooB an given. These solutions were obtained b; other methods bj V. Cerruti Aonw Aec Litud JtmtL (Ser. 4), t. 4 (1888} and by J. U. Michell. Lotuion Math. Soe. Pne^ voL 31 (1900), y. 183. The theoiy was extended by J. H. Michell, London Jfatk. Soc Proc^ vol 32 (1901), p. 247, to »dotropic solid bodies which arc Uanavenscly istitropic in [ilanea parallel to the boundary. The eolations given in Articles ]6& and 166 were obtained by a new method by C. Somigliana id // Auoto Ct'mmto {Her. 3), tt. 17—20 (188&—1886X And this was followed 1^) t>y G. lAuricella in U yuoro CVmnOo {Ser. 3), L 38 (18M). Other methods of arriving at these aolatioos have been given by H. Weber, Part. Dif.-Otmekmngm d. wuttA. PAyiii, Bd. 2, Brunswick 1901. by H. Lamb, Ltmion Math. Soc, Ave., roL U (190S), by O. TcdoiK, Am. di mat, (Ser. 3), t. 8 (1903), and by R Maroolot^o^ Ttoria mattmatica ddlo ^fvHibrio M mrpi tiattid, Uilaa 1904. The tttcosiou of tbe theory to tb« case of a body bounded by two parallel planes has Uicn disnusod briedy by H. I^jnb^ l<fC cit., and moK ftilly by J. Dougall, EdUlyargk Hoy. Soc. Trant., roL 41 (1901), and alao by O. Todoue, SMnd. d. Cinolo mat. di PaUrmo, U 18 (1904). 
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166.   Body bounded by plane—^Additional resnlta. 
(a) In the cAlculation of the rotations whcu thu jmrfuto tractiona are given we may take the point .'I of Article 163 (6) to boat an inflmtc distance, and omit w^-^t, ...altogether. We Blioald find for »/', v^'\ ^r^" the fornm 
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9», 
!k ?M_ iijt 
and WQ may deduce the formula. 
la like uuiiiner >vo may prove that 
For the calciilatiou of ar. wq nhoulil reiiuirfi a subsidiary disi>laccment whteh would give rise to the same surface tractioM a« the displacement (?)'~';?y, -?r-*Jcx, 0), jmd this I      displacement is clearly {—^Jt"^'^, cR'^f^, 0) and we can deduce the formula 
kl    9 (6)   Ah an example of mixed boundary conditions we may take the cose where V, Zr are given at i^O.   To calculate a wo rcqutTQ a dispUcament (u', r*, t/) which ^t :=0 shall satisfy the oonditionH 
where {X,\ )V, Z^') '* the smface traction calculated from {k*, if, «').   Then we ttaj show that tha raluo of Jk at the ori^iu of r is given by the equation 
Wo may Mhow further that 
jt'=-„—. 
and then that 
•nd m tDfty deduce the value of (», v, w] at (y, y, i*) in the foi-tn 
iirfyf     4ir^(X + 2^)'' Hj^ 
{^-^4 
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        232 MODIFICATION OF BETTl's [CH. X 
(c) As a second exAiuple we maj UUce tli« case whero Xr, iVi te are given at s=0. To calculfflt« A we nKiuirc ii Jiaplaceinent («", »'', V^ which at i = 0 shall aattsfy the oonditious 
where X^", }\",2," denote the surface tjTictions calculated (Vom<it",i/', le'").   Wecan prove that the value of A «t the origin of r is given by tbc equation 
and that 
and then we can find for A th« formula 
1 3 /^^j.??_o ?^\ 
and for (u, f, v) tho fonaultt 
*'"2jr/i eV "^ Sir &/ ''" 4ir^(\-l-2,i) J^' 
4ir>i(X + 2;i)     Jy W"*"^     ^5?;* 
169.    Formnlee for the displacement and strain. 
Bjr meftna of tho special soUitionn* whicli roj'ri-(>iit the effect <>f f':'rco at a point may obtain fonaulie analogouJi to (7) for tbo i;ym]ioneut»! of displacoiiieitU Thu-s let («i, I'l. Wi) represent tho displacement due to unit force acting at (jf', y", if) in the direction of the axis of x, no that 
And lot -V,i'l, JV>, ^■^(il be tho surface tractions calculated from («i, Fp »^i). Wo apply tho reciprocal theorem to the difa'pluociuents («, «, w) and (U|, w,, ic,), with a twundary oooststiag of the Hurfttco ^ of the b<xly and of tho Hurfftco I of a sum}] sphere surrounding (x', y, V), and we proceed to a liuiit o^ befuro. Tho L^titributiun of Z can bo evaluated as before by Ending the work don« by the unit force, acting over the displacemeDt (t*» v, it\ and the »ame result would be arrived at analytically. If the body is subjected to body forocfl (X, J', S!) as well as surface tmcliou!* X„ }\, Z,, wo fiud the formiU«* 
+|J[(x^,+r^j+^,wO-(X.<'>«+ ni')p+^.w«)]*£s,  (48) 
* The furmuliB of Uiia type ars due to C. SomiKliana, U yuova CimenUt (Sor. S), tt. 17—30 (1885, 18146} and Aun. di mat. (Ser. 3), t. 17 (1B89). 
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        ivh«re the volume integration  itt tr> iic taken (in the scrute of n convergent integral) tfarou^out tbo volume withiu S.   Wo ahould find in the samo way 
and  {tt)i,= jj jft{Xu2+ }\-¥Zw3)dx(Iifdi 
A method of intogration similar to that of Betti hAn beon fo\uidcd upon these fonniilK*. It ttUoidd be noted tlmt uo clispkcemcnt exists which, beside aatisfjing the iwuftl conditjutis of <x>ntiuuity aud the oq^uivtious of cquiUbriuTii (1), pvos rise to mirfaL'o tnuitionK equal to -V,i'', iV'\ Z,^'\ or to the Mimilflr nystomf* of trnctioiis -IV^', ... nnri .4V(*i, ..., for nouo of thcac ttatiMlies the conditioud of (■igid-lxidy-oqmUbriimi+. Wlieu the siirfftce tractiotis oro given we muet introduce, iu addition to the unit foroes at (V, y',«'), et\oai and upjKisite unit forooa at a ubo«<en puiiit A, together with Kiich oou]ilc» nt ^ a« nilt, with tbs unit forces, yield a eystCR) in cqiiilibriuiu. Lot («,', v,', ir,') bo the displaoemctit due to unit force pai-ollel t<> x at (x', y', r') and the bftUticing syoteai of force and couple at A, and let .lV*''i ^V', ^»'''' be the surface trftctions calculated from («i', »,', Wj'). AUo lut («,". r,", Wj") bo the displacement which, besides satisfjing the usual conditions of continuity and the eqiiationn nf cquiUbriun) (I), give.<« ri»o ta surface tractions equal to J,t'l, yu'l'l, 2^'('). We mako tho diapIacomBnt preciHC by HupjioHing that it and the uorre• qxmding rotation vanish at A.   Then wo have 
The proWeni of determining m i« reductid to that of detonuining (k,", Uj", 1P^").   Tha diaplAceraent (tii' —«i", Ot'—Vi'^ v'','-"!") is an analogue uf thu second tinJcu's fmietiuu. 
IT, Jnstead of taking the dixpUc^meot and rotatioti to vanish ftt A, we a»aign to ^ a aeries of positiona very near to (.r', y', •). and proceed to a limit by moving A ny to ooinodence with thia ^>nint, wf> can nbtjun expre^ioris fur the cximponentA of strain in torau of the given stirfacc tnu-tinns^ In tho firot place \&t tut apply two fcrceH, ejtch of magnitude A~* at the jKiiut (y, y*, t') and at the ].>oint (j-'+A, y*, j*), in the jioaitire and negative directioiin rcnpectively of tbo axis of x. In the Uiuit when k ib diminiithed indefinitely the displacement due to these forces ia f=^, ^^, ^J ■ Let (u^,, p„, w„) be the displacement produced iu the body by Hurface tractions equal to tho^ calculated from the displacement f ^J, ^, -^j. Thea tho value of (?w;ar) at the point (j:', y*, z"} ta given by the formtila 
In like uumner formiilie may he obtniiicd for ?f/?y and cte/dt. 
• G. LaorioiUa. Pita Ann., t. 7 (18B5), aUribulpit the method to VoKerra.   It wat applied by C. Bomigliana to the problem o( the plane in II Nhovo Cimtnto 418d5, 1886), t J. Dongall, /oc. cit. p. 5W2. J G. Laoricella, lac dt. 
234, 
VARrOUH  METHOtO 
[CH. 
Again, let us appl; foroRs nf nrngmtiide A -• in tbe positive diroctionn of the axes of y and i at the origin of r, and eqiuil forces in the nogntivo directions of these aiea at the points (y, y, i' + A)and (jf*,y* + A, r") rRsjiectively, and pmwwi to a limit na before.   This. Gfystem of forocs snti^fies the conditionn of rigid-body-oqiiilibrium, and the diaploceraentj due to it is 
Let (it}3, rtj, u'lj) be the dispUcement produced in the body by auT£w% tmcttoiui equal to^ 
those calculated from the displacement l^+^i  )■    Proceodiug a« befurp waj 
obtain tha equation 
In like manner rormula? may be obtained for ?«/?;+&ic/9j: and dvf&e+du}^. 170.   OatUnea of varlons methods of integnttlon. 
One method wUicb haa Ihwii adnpt^ ^cts out from tlie <:ibsorvation that, when tbera' are do body forces, w., w^, v,, a.s well as A, are hannonic fuucttons within the surface ot the body, and that the vectnr (ar,, Wj, w,) satisfies the circuital condition 
or 
&y      3« 
Kroo) this condition it appesn that sr,, tr,, w, .should lie expressible in terms of two in*' dependent harmtmic funoUoiu^ and we tnay in W't writs'* 
where ^ and ;^ are harmonic Functions. 
The eqnaiions of equilibrium, when there ara no body forces, can be written In miebl formti OS 
* Cf. Lamb, Bj/drodynttmict (Csmbridfce, I6d5), pp. 536—JS38. 
Now 
and it follows that 
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        Tbia expreanion repreaenta, m it sliould, An harmonic functiou; and the quAiiUties A, 0,, STy, m, ore thua exprensible in tenan of two arbitrary harmonic functiotiB ^ uud xIf now theoe fuuctione oin ha Adjusted mi tliAt the boundary condttiona oro satutiod A And (q7z, EETy, Q7,) will be determined. Tbia method hatt been appHvd aucceMfuUy to the problem of the sphere by C. Borchardt* and V. Cerrutit. 
Aauther method ^ de^ienrlH npnn the nhHerratLnii thjit, in the notation of Article 133, *t"'''it "3=^\t "'a=*'3t •■^'(1 thcpofore the Mirfdce traction AV' <^^" te expreiu«cd in tb« form 
where i, m, n are written for coaC<r, y], ooa(y, v), coa(t, i»]. The surfiicc tmctiocB A',", .IV'i can l)c written down by putting v and w respectively everywhere instiMwI of u iu tho exprawon for A','''. It folloivs that (.V»l'l, X^^i, .\V'') i« the ditplacemejtt pruducod by ocrtain donblo forora. In like manner (r^O, )'»(«>, 1V^>) and (^^<'l, ;?,<=>, ^,(^'] urc eytttemjt dI' di«i>ln<;emnnt« which satisfy the uquatiiina [!) everywliere except at the origin of r§. Oti thiH result bus lieen funndcd a method (analngoiiH to that of C. Noiuiiaan|| in the tbeor)* of Potttntiai) far liolviug the prc»UIciu of given nvataxx dixpUcemenU by nutftos of series. 
• Berlin Monatiber., X87S. 
t Comptti renduM df VAnociatian Fran^Ut ptntr VavaneenufU de Scienef, IBSfi, and Itont Aee, Lmcti Rend. (Set. 4),, t. 2 (lij8G). 
*; G. Lauricella, PUa Ann. t. 7 {160&I. and Ann. di mat. (Ser. 2), t. £3 (1$95), and II Nuovo Cimento (Ser. 4). tt. V. 10 (IHSU). 
I The result I» doo to C. Somi^Hnna, Aan. di mat. [Ser. 3], t. IT (l^f»), 
(I Unlertuchitngen fiber diu Iffffaritfimiscke uud Neicton'tche Potential, Leipzig, 1877. Of. Poincwi, loc. fit. p. 220. 
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        CHAPTER  XI. 
TUE EQCILIBBIUM OF AN ELASTIC SPHERE AND RELATED PROBLEMS. 
17X. Is thin Chapter will be given examples of the application of the method of series (Article 158) to the problem of the integratiou of the ec|uatioDi> of equilibrium of aa isotropic elastic solid body. Of all the problems which have been solved by tliis method the one that has attracted the most attention has been the problem of the sphere. In our treatment of this problem we shall follow the procedure of Lord Kelvin*, retaining the equations referred to Carfcesian coordinates instead of tranaforming to polar coordinates, and we Khali give his ftotution of the problem. The solution is expressed by means of infinite series, the terms of which involve spherical harmonics. We shall begin with a general form of solution involving such functions. 
172.    Solution in spherical harmonics of positive degrees. 
W6 propose to solve the equations 
8A    dA    aA> 3y'    ?z 
.ar' 
)+/tV»(u.v,tt) = 0.    (ij 
where 
9«    5_y    ds* 
.(2) 
subject to the conditions that u, v, w have no singularities in the neighbour-' hood of the origin. 
Since A is an harmonic junction, wc may express it as a sum of spherical solid harmonics of positive degrees, which may be infinite in number. Let An be a spherical solid harmonic of degree n, that is to say a rational integral homogeneous function of x, y, x of degree n which satisfies Laplace's equation; then A is of the form 
* Sm ifltnxtwetioii, footooU 61. B*{er«iic«f will be giwn ia the coonc of the Chapter lo other tolutiona of the prohlrai of the splienr, ADdftddiliunaln^rerenMsaniglvcD bjU. Mkrcolon^ 2'foria matrtMalica tUllo t^iultbrio dn turpi tlatlici (Uilui, 1904). pp. 380. 281. 
171, 172] SOLUTION'   IN  SERIES UF SHH£IUCAL  UAKMONICS 
S87 
the summation referring to different values of n. Take one term ^n of the series, and observe that dA^jdjv is a splierical solid hanuomc of degree n — 1, and that, if r denotes the distance of the point (ar, y, z) from the origin. 
V'(,-^g^^) = 2(2« + l)^^" 
Wc see that particular integrals of eqaations (1) oould be written in such forms na 
11 = — 
X + /i 
aA, 
IJL    2(2r+1) dx ' 
and more general integrals cau be obtained hy adding to these expressions font,... any functions which satisfy Laplace's equation in the UL-ighbourhuod of the origin, provided that the complete expressions for «, ... ^ield the right value for A. The equations (1) and (2) are accordingly integrated in the forms 
(--)=-^:-^^2i2^(^'^^'^)-^<^'"'^«'^ 
...(3) 
in which Un, Vn> W^ are spherical solid harmonics of degree n, provided that these harmonica satisfy the equation 
Introduce the notation 
2m +1 V &E 
9 J        de J 
■(*) 
^   _ 9^11+1   I   5Fh+i       3ff'«+; 
.(5) 
dx dy dx 
then yJTn 18 a spherical solid hannoaic of degree n, and equation (4) requires that A„ and y^n should be connected by the equation 
.(6) 
The harmonic function A„ is thua expressed iu terms of the complementary fuTicliuau t/"n+i,-..; and the integrals(3) may be expressed as sums of homogeneous functions of degree n in the forms 
where  ?/„, Ti,, Wn are spherical solid hai-inouica of degree n, M,, is the constant expressed by the equation 
1 \ + ^ 
M.. 
.(8) 
2Cn-l)X + (3ft-2)/i 
and ^»_i is a spherical solid harmonic of degree n — 1 expressed by the equation 
.     _dU    dK   dW^ 
Y'i-i- ;w ^^ 3., +  a,  \^f 
288 SOLUTION OF THE [CH. XI 
It maj be obeerred that equations (7) also give us a solution of the equati(»is of equilibrium when n is negative, but such a solution is, of course, valid only in regions of space which exclude the origin.   As an example, we may put n^ -1, and take 
We should thus obtain the solution which was discussed in Article 131. 
173.   The Bi^re with given surface displacements. 
In any region of space containing the origin of coordinates, equations (7) constitute a system of integrals of the equations of equilibrium of an isotropic solid body which is free from the action of body forces. We may adapt these integrals to satisfy given conditions at the surface of a sphere of radius a. When the surface displacements are prescribed, we may suppose that the given values of u, v, w at r = a are expressed as sums of sur&ce harmonics of degree n in the forms 
(«.v,wV-. = 2(^„,B„,(7n). (10) 
Then r^An, r"B„, r^Cn are given spherical solid harmonics of degree n. 
Now select from (7) the terms that contain spherical surface harmonics of degree n.    We see that when r = a the following equations hold:— 
.(U) 
The right-hand and left-hand members of these equations are expressed as spherical solid harmonics of degree n, which are equal respectively at the surface r = a. It follows that they are equal for all values of ic, y, z. We may accordingly use equations (11) to determine t7„, V^, Wn in terms of ■An, Bn, C7„. 
For this purpose we differentiate the left-hand and right-hand members of equations (11) with respect to x, y, z respectively and add the results. Utilizing equation (9) we find the equation 
^^.=£(^-")-ie^")4e^») <-) 
Thus all the functions y^n ^^ determined in terms of the corresponding An, Bn, On, and then Un,... are given by such equations as 
Un-^An + Mn^,a      ^^    . 
The integrals (7) may now be written in the forms (u,»,„) = 2r^(4„,i?.,C,)+2Jf„«(.'-^)(?^. ?^. ^^)....(13) 
172-174] 
PROBLEM OF TU£ SPHERE 
in which 
and 
Juu 
X + /4 
"*■    2(n+l)X + (3rt + 4)^' 
»+i 
By equations (13) the displacement at any point is expressed in terms of the prescribed displacement* at the surface of the sphere. ^'■' 
174.    Generalization of the foregoing solution. 
(i) The Mprcs«ion» (7) are general intogmls of the equations of equUitmum arranged iw 8iin:» (tf horuQgeiMJous fiimrtifins of ^, y, s of varioim integral degrees. By seleutiiig a fuw of the tenua of lowest tipder* »ud [iroviding them witK undoteraitiied coeAiuieuU wi) uiJiy ubtftiu HolutioiiH of a ininiber nf B|»wiiiJ {imhlemH. The displacement in kn ellipsoid duo to rotation about an axiM bus bctni fuuiid by this method*. 
(ii) If wo omit the tencut tucli u A^ (r/a)" from the right-h&ad membcra of equations (13) we arrire at a di^locomcnt expressed by the equAtioiL 
I I 
<«■ -^ ")-(«'-'^)(s' I,- e) +•♦. (») 
Tliis displacement wmild rerjuire body force for iU laaintetiance, and we miiy show easily tliat the requisite body force i3 deri\-able from a i^tontijiJ eqiuU to 
■[{»+1)X + (3« + 4)m]i^„ 
We observe that, if \ and n 
I 
and thiit the correspoiiJiog dilatation is -2(n-rl)^K*icould be connected by an equation of the form 
(n+l)X + (3n+4);i=0,  (W) 
ti» Bpben could l>e held in the dJHpIaccd oonfiguratiDn indicated by equation (14) without any body forces, and there would be nu displacemeDt of the surface. Tbia result i-i in apparent contradiction with the theorem of .^Vrticte IIH ; but it is imjx^MibEe for X aud it. to be connected by such an equation as [la) ftir any j«»attive integral value of «, since the ■traJa-eccrgy-fuiLction woiUd not then bo punitive for all valuen of the strains. 
(iii)   The results just obt&iucd have iiuggc.'ited the following generAliisatiout:—Denote {\+lt)jfi. by r.    Then the equations of oquilibrium are of the fonn 
r^^ + X-K^O. tx 
We may Hiippoae that, answering to any ^ven bounding BurfocL', thuro oilnta a sequence of numbers, say r,, r^, ..., wbteh ore sudi that the system of equatiuus uf the ty^JO 
+ VU'. = 0,        («-l,2,...) 
* C. Chraa, QiurC. J. of Math. tdI. 23 (19B8}. A number of other appiioations of the method were made by Obrw iti thin paper and in an earlier paper in tho name Journal, vol. 22 (18^>). 
t E. wjd F. Co»*8c*t, S'arU C. R., tl. I2fl (189«}, 133 {I'JOl). The geQcrnliEation here indicftted is cormectMl with rcMearuhen on the problem »f the epheiQ by £. Almanu, Rome Ace. Linc<i Jiend. {Ser. 5], t. 6 (l^(t<)i and on the general eqaatiocs by ti. Laurioella, Ann, di mat, (Ser. 3), t. S3 (l»9fi}, and Zi Xuoi'a Ctmeutti [Set, i), tt. 'J. It) {ISW). 
240 THE PROBLEM OF THE  SPHERE [CH. ZI 
possess solutions which vanish at the surface.   Denote dU^/Sx+dVgjdj/+dWg{dz by A«. Then A. is an harmonic function, and we may prove that, if k' ia different irom k, 
/// 
A,A,. dxdydz = 0,  (16) 
when the integration is extended throt^h iha volume within the bounding surface. We may suppose accordingly that the harmonic functions A^ are such that an arbitrary harmonic function may be expressed, within the given surface, in the form of a aeries of the functions A, with constant coefEicients, as is the case with the functions ^,+ 1 when the surface is a sphere. 
Assuming the existence of the functions U^t ••• ^^d the corresponding numbers t«, we should have the following method of solving the equations of equilibrium with prescribed displacements at the stufsce of the body :—Let functions Ug, v^, Wq be determined so as to be harmonic within the given surface and to take, at that surface, the vtilues of the given components of displacement.   The function Ug, for example, would be the analogue of 
S ~ ^, in the case of a sphere.   Calculate from Uq, v,,, Wf, the harmonic function ^ deter* 
mined by the equation 
du^    dv„    dwo ^   a^"'"^"^'e7• As8ume for u, V, w within the body the expressions 
iu,v,w)~{ua,Vo,v^-T^^^iU„ r,. IF,),      (17) 
T — Tt 
where the ^'s are constants. It may be shown easily that these expressions satisfy the equations of equilibrium provided that 
The conjugate property (16) of the functions ^^ enables us to express the constants A by the formula 
A»\\\{:^YdxdycU= \ \ \ H^^dxdydz (18) 
the integrations being extended through the volume of the body. The problem is therefore solved when the functions Vk, ... having the assumed properties are found*. 
175.    The sphere with given surface tractions. 
When the surface tractions are prescribed, we may suppose that the tractions Xf, Yr, Zr&tr=a are expressed as sums of surface harmonics of various degrees in the forms 
(X,, r„z.v_„ = 2(z„, y„,z„). (i9) 
so that r'^Xn, T^Ym f^^n are given spherical solid harmonics of degree n. Now Xt, ... are expressed in terms of strain-components by formulse of the type 
* E. and F. Cosserat, Pari$ C. li., t. X28 (1898), have shown how to determine the functions in question when the suiface ia an ellipsoid. Some solutions of problems relating to ellipaoidal boundaries have been fonnd by 0. Chree, loc. cit. p. 239, and by D. Edwardes, Quart. J. of Math. vols. 26 and 27 (1893, 1891). 
174, 175] WITH  GIVEN  SUKPACB TRACTIONS 
Bud these are equivnleol to forniulsa of the type 
S41 
I 
iu which 
—^ = - ar A +-^ + r ^ - u. /I      /& ex      or 
^= MJr + jiy + WA    (^0 
SO that {f/r is the radtAl component of the displacement. 
We have now to calculate Xr, ••■ by means of the furmultts of type (20) from the displacement expreaaed by the equations (7). We know already chat this displacement can be expressed by such formulse as 
u = x[Aj^^^M.^a^^-.^Mj-^
.(22) 
We proceed to caiculnte Xr, Yr, Zf from theae formultf. In the result we shall tind that A^t B^, On cau be expressed in tenns of Jf^, Y^t ZnWhen theae expreestons are obtained the problem is solved. 
We have at once 
The terms such as xA^r^la*^ are products of soliJ harmonics, and we trautiform llieiu into suinii uf terms each cuutaiuing a single surlkce harmonic by means of such idcnbitiee as 
-/(-.y.')=2^, [^f^;4("^/)] (23) 
We obtain in this way the equation 
M„+ji*„4..G'.)5;=^j (^.-. - ^; *-.-.) (^) 
lere i^„_i is given by eriuation (12), ant! <h^n~t'» »■ spherical solid harmonic of negative decree — (n + 2) which is given by the equation 
Hence we have 
+ Jf„+, a' (re +1) i^n+. - J/« ^ (n - 1) t«-, 
.(25) 
L. B. 
...(26) 16 
242 
THE PKOUL£M OF TDK SrUI^RE 
[CH.XI 
in which the expresaian under the sign of summation is homogeneous of degree a +1 ia z. y, t, and we find 
where we have used an identity aimiUr to (S3) to transform x^^_,. AgHin we have , 
9../9» _ I I 
(28) 
and therefore 
X+^ 
.(29) 
AIbo we have 
[(«-l)|.„J..i.,.%3-.^„^-j].... 
(30) 
We may now select the terms of degree n in the expression on the righthnniJ side uf equation (20); they are 
+ 1    (2n-l)(2n + l)+  2» -1   ""    \ + /i    'I ftcl^r-^^
The coefficient of j^5^«_]/9* in this expre^ioo ia -2(n-2)Jf», and 
that of r*+' 5-   5^118 - .^   , ,;,. , r^^T—T. T-7.    Hence, denoting 
this cnefficieut by —E,, we have the expreeaion tor the terms of degree n in rXrIfi to the form 
(«-l)J.^ + 2naf,„o'^-2(B-2)Jf,.-^ 
1      X(« + 2)-m("-3) 
where 
JF.= 
2„ + lX(„-l) + ^(3„_2) 
■(32) 
175, I7(i] 
WITH  GIVEN SURFACE TRACTIONS 
243 
From the sum of all tho terms in the expreasion for rXJ^ we select those which contain spherical surface harmoaics of degree n. The value of the sum of these termi* at the aurfaci^ r = a must be the name as the value of t^Xfl/a""'^ at this surface.    We have therefore the equation 
vhich holds at the surface r =a. Since both members of tills equation are spherical solid harmouic^ of degree n, the equation holds at all points. There are two similar equations which arc derived from the above by replacing A„ successively by fin and Cn, JCa successively by Z„ and Z„, and d/cx successively by d/d^ and d/de. 
To obtain the expressions for A^, ... in terms of Xn.... we introtUice two spherical solid harmonics ■*!'»_, and ^-n-^ by the equations 
*. 
*-„ 
= 4 W- ^V "^ fif & ^V "^ fs (^- ^"J ■ 
,K-fl 
_ a /a" 
9r V 
l^+i '^» I ■ 
.(34) 
Then we differentiate the t^ht-haud and left-hand membei-s of the equations (if type (33) with respect to x^ y, z respectively, and add the results. We obtain the equation 
[(n-l) + n(2n+l)-S„}t^,= ?^^, (35) 
Again we multiply the right-hand and left-hand members of the equations (33) by X, y, £ respectively and add the results. We obtain the equation 
.(SC) 
By e<^uation8 (35) and (3(5) ^„_t and ip-'n-^ ^^"^ expressed as the products of ^„_i and *t_,i-< and constant factors. On substituting in the eqiiatiunu of type (33) we have A,,, B„, C„ expressed in terms of Xn. F„, Z^. The problem is then solved. 
176.    Conditions restricting the prescribed surface tractions. 
The prescribed «iiifAr<? trActions imwt, of coiirw;, be ntibjcet to the coiiditiuus that are DcciaKary in »ccuro ibis inniiliViriuai nf a rigid bridj. Thtwi' cunditioim show immediately tljot then uui bo nu cuikslriiit terms in the eipansioDft sucli as tJ(„. Tfaey show alf^ thftt the tcniiB Bucli us .V|, J',, Z^ caiinnt be taken to b« arbitrary nurfucp haminnics of the first degree.    We must bavu, in faut, tkrvu suah L-quiitiuttH an 
II 
isiZn-ai\)ds=o, 
le—2 
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irtiere Uu tnkignUioa ii oxteuded over tlie siufaoe of tfae i«|>hcre. Writing Uiis equation in thaform 
ami tratuformiog it by moaDH of icieutittea of tbo iypc (23), wo 6ud tbo equation 
Fnr auy pn«itJ\-o inUgTHl valao of », the mibject of intc^ratioD in tho second of eh«w iDt«gTala is the [jroduct of a power of r (which is equal to a) and a sphericAl surface harmonic, and tho integral tberefora vatttsbea, arid the like statement holds coticeming the fitvt integrul except in the oaae ii=l. In thin cue we must liave three such equ^ tioae as 
and theae oqiiatioDB ahow that rX|, rf,, rZ^ are tho partial differential coefficients with respect to x, y, x of a homogeneoiui quadratic fuactioa of thew i-ariabloa. Let XJ't, ... be the stretB-comiwnents thai corrcaitorid with the aurfiwe tractions X,, .... Then we have BUcb oqaattons as 
It thus appeont that X^^^l,... are constants, and the corresponding solution of the equations of equitibrium repretteots the displacement in the sphere wheu tho mateiuLis in a state of uni/crm ttnu. 
177.    Surface tractions directed normally to the boundary. 
When the surfacu traction consists of tension or pressure at every point of the surface we inay take the nnmiAl tnu^^tton u> be expressed as a Hiini nf surfaoe hanuonics iu tho furm ZA^.    Tlieu we have at the Hurface 
Now the first nf thpso equations gives far rX, at r=a the formula 
The right-hand member of tliia equation muat therefore be the same as the lef^-haud member of equation (33), or it must be the same oa 
By the prooosscs alrondy employed wo doduco tho two equations and Uwn we can oaaiJy find the A% ffs and Cs.    In the case where SA, redncea to a 
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(unglc term /i^tj, tlio auly A'»,... whk-h ouvtir have sufiixe^ n und vt + S, niid wo ma; nbnw that 
J-=, 
2« + 3jLssC7^''**V_L-' 
2n«(2i 
with like ex[)pe»9ion« for tli« ZCs &nd C'n. 
178.    Solution in spherical harmonics of negative degrees. 
When the sfjuco wcupieJ hy the hvdy in liounded by two coiicL'titric BpheraB* aolutiuiw 
Chii iilitaiiiud In the winic way lu in Article Hi Ihv the introduction uf Hptitiriu&l iiiiMiiaiuf Illative dfif;re«H in additiuo tu thi)!K of })««itive d«gr»fiH. Tu illupttmto the use of harujuuicH «jf negativo (iegrefs wu take tho cas» when? Iberc ia a sjihuricul cavity in an indefinitely extended niasB. Uoing, oa before^ 6*., r^, ir„ to denote spherical solid ■harmonics i'f positive intcgrnj degree », we can write down a Bolntion of the nquAtionii of equilihrium in the fnriD 
where 
and 
*—'[1(^.)-4(A)-^IC^^)]' 
I 
The ftiQctioo '4'*. I  >e a ttpherical solid harmonic of degree n + 1, and the dilatation cnlcnlated from the above cxpreK«ion fur the di»|ilacemeiit is given by tlio furuiubi, 
Tie tolotion exprea»wKi by a nam  of jiarticular solutionis of tho airovo *ype can bo adapted to iMtisfy condition!) ufdi)iplju;enient or troctioti ut tho nmfauti of a cavity fa. 
Ad esnniplo of »oine interest in aA'orded by a body in which there is a diatrihution of akeaxiog strainf. At a gn-at diHtanoe from the cavity we may take the displacetnont to be given by the eiiuatioii 
where » is conRtant.   In this csample we may sbnw tliat, if the cavity is free- from traction, the disptftcenient at any point is espressed by eqiiJitinjus of tbe fnmi 
W        • Loi 
wbcre A, B, C are cuu^tonta, and we may find the foUowtog viUuea for A, B, C :— 
Lord Kelvin's lolution t* woiked out Tor the casu at a ihelL bounded t>y conomtric sphena, aud JDolud^fl the solution of thi« ArtLde an wtill as th&t of ArttoEen 173, 173, 175. t Sm i'hil. M<i;i. (Ser. 5), voJ. 33 (1892), y. 77. 
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The value of the shearing Btrain ^ + 5- c&n l>e calculated    It will be found that, at 
ISX4-30u the point ar=0, y=0, r=a, it is equal to ^g.    The result shows that the shear in 
the neighbourhood of the cavity can be nearly equal to twice the shear at a distance &om the cavity. The existence of a flaw in the form of a spherical cavity may cause a serious diminution of streiigth in a body subjected to shearing forces*. 
179. Sphere subjected to forces acting through its volome. Particular aolution. 
When the sphere is subjected to body forces we seek in the first place a particular solution of the equations of equilibrium of the type 
and then, on combining this solution with that given in (13), we obtain expressions for the displacement which are sufficiently general to enable us to satisfy conditions of displacement or traction at the surface of the sphere. If the body force (X, Y, Z) is the gradient of a potential V which satisfies Laplace's equation, the particular integral can be obtained in a simple form; for, within the sphere, V can be expressed as a sum of spherical solid harmonics of positive degrees- Let V = 2F„, where F„ is such an harmonic function, and consider the equations of the type 
(X + ^)^+^V^ + /,^" = 0 (37) 
Particular integrals of these equations can be obtained by putting 
Bd> od> dd> 
dx dy dz 
if (X+2/i*)V^0+p7-„ = O; 
and we may therefore take for the particular integrals of the equations of type (37) the following:— 
.(38) 
(w, V, «')-(g^, 3^. 9j[    2(2n + 3)X + 2^'*'^" 
With a view to satisfying special conditions at the surface of the sphere we calculate the corresponding traction {Xf, Yr, Zr) by means of the formuiBB of type (20).    We find for the radial displacement ^jr the formula 
y "_+2 P     ^.y 
^ 2(2n+3) X + tfL       "' 
and for the dilatation A the formula 
* Cf. Article 84, tupra. 
I 
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Hence we fiud for X, the foriautn 
V " ' ^"-Ts/i [u ''■*^" "^ 12(211+3) "^ 2(2n + 3)| ai ^"^^"^J ' and thid can be reduced by means of the identity (2B) to the form 
rXr p_   \\ + in^\)^    dV„    \(2n + 3)+2^{rt-H) 9 f y^\\ 
M   "    X + 2^L  (2n+l)/*        Sj: (2h+ 1)(2»+3)^ SajW^J* 
(39) 
The formulie for Y^ aud iT, can be written down by substituting 3/&y and dfde successively for S/cb in the right-hand member of (39). 
160.   Sphare deformed by body force only. 
When the snr&ce is free from traction the displacement is obtained by adding the right-hand inenibere of equations (13) and (3S), in the former of which the functions An, ... are to be determined in terms of V^, ... by the conditions that the snm of the expressions for rX^lfi- in the left-hand member of (33) and the right-hand member of (SH) must vanish. We take the potential Sr„ to consist of a single term V^^^, in which n>l, and then we have three equations of the type 
X+2>*L  (2n + 3)/* 3* (in + 3)(2h+ 5) ^ da\i^'^Jj' 
(40) 
which hold at the surface of the sphere, and therefore, in accowlance with an argumeut already employed, hold everywhere. 
Wo notioo tbdt, if tlio mtttorial ia incompresHible ao that the ratio itj\, voiiiiihus, the particular iutt'gPulH I'lfjniMiwd by (3«) VHiiiith, but the surfuce traL-tioniKleiiBHiiiiig upon the particular tutegruls dy tii>t vanish.    The pight-haiid moinber of (3t>) Ihjuuium, in fat't, 
I"'-*'? 
fii;,,    r^*^9 F,,,-] 
2n+3 \_^     (W 
In thiiCMetht> oqiifttir>n» hy which A„, ... are to l>e Jctenuined xr« the SAmewttMMe which were twed in Article 177, prorided that, in the latter, {W«)"*' /^n.i is pspUoad by P^m*f It follows that tho displaceu)«iit produced iu an iiicomprwwiblc sphepe by body fwt* derived from a ^wtctitiul t*,., is the wimc tut that pruduc«3d Viy purely mirmal surface traction of uniMUtit p l^i,,,a"*',>"*'•, 
Returning to the general case, we find, &a in Article 177, that ^».fi and ^_„_a are the only y{r tind 4> functions that occur, and that the only A's, ... 
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which occur have ftuflixee n and n + 2.    By the procesaes already employed we obtain tho equations 
1 \a) 
"^-^-'-xfr^ 
{2n + 3)ti \ + (n + 2)fi 
(n+2)F,+„ 
(" + 1)V. 
M-l* 
(2fl+3)/i The value of f at r =« is 
H + 3 p 
and, since ^„+, and 4>^„^) are multiples of Tn+i, the radial displacement at the surface of the sphere is a multiple of K„^]/r"*', and it is found, after a little reduction, to be equal to 
fi     \rj       2n    (27i' + 8n + 9)X + (2n«+(Jn+6)/4 ^ ^ 
In like maimer wc may show that the radial displacement at a distance r from the centre ia 
rgVV|., «+2 r (2»i-|-3)X+t2n+2)/* 
fi       2n   |_(2n» + 8n+9)X + C2n' + 6n + 6)/i 
l*^-^fnin (" + 3)X-^(« + 2);. -I 
Since the radial disptaeemeut ia always pi'op()rtional to F„+i, all the spherical surfocea concentric with the boundary are strained into harmonic apheroida of the same type, but these spheroids are not similar to each other. In the case where »= 1 the elliptit;!ties* of ilU the principal sections increai^e from the outermost to the centre, tho ratio of the extreme values being 
nX-l-4/i : S\ + (>^t
181.    OraTitating Incompressible sphere. 
The chief interest of problems of the kiud considered in Article 179 arises from the possibility of app!)-ing the solutions to the discussion of problems relating to the Earth, Among such problems are the question of the dependence of the ellipticity 6f the iigure of the Earth upon the diurnal rotation, and the question of the effecta produced by the disturbing altractious of the Sun and Moon. All such uppHcationa ore beset by the difficulty which has been noted in Article 7fi, viz.: that, even when the efiects of rotation and disturbing forces are left out of account, the Earth is ill a ctindittuii of stre.s.s, and the internal stress is much too great to permit of the direct application of the mathematical theory of supcrpostiblc small 
* Thd olUptioil/ of to ellipse u the m\o of Uis exeou of the *xix mijor Alwve tlw axis miuor to tbcaUB itiujur. 
t KeJvin ud Tait, Nat, PtdL, Part u. p. 433. 
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fr 
I 
strains*.     One way of evndtDg this difficulty is to treat the material of which the Earth is composed oe hoiiiogoncous aud incompressible. 
H      Wheu   the  liomogeiieous incompreHsible sphere  is at rest tinder the 
"^mutual gravitatiim i>f iu part-s the state of stretw existing in it may be 
taktn   to  bo  of (Jio   nutiire   nf hyihofitatic  pressiii-o*!";   and,   if p^ is  the 
ninount of this pressure at a distance r from the centre, the oondition of 
equilibrium is 
^hl^=-'9pria,     <4.1) 
here g is the acceleration due to gravity at the bnundiug surface r= a. Since jSg vanishes at this surface, we have 
p.= ^pCa'-j'>)/a. (44) 
When the sphere is stmint-d by the action of external forces we may easure the strain fruin th)* initial state as "uastmined" state, aud we may suppose that the strain at any point is accompanied by additional sti-ess superposed upon the initial stress p^. We may assume further that the components of the additional stress are connected ■vvith the strain by equations of the ordinary form 
A'^sXA + a^^j,,, ....    Yt»(ie^t,  ■-, in which we pass to a limit by taking A. tn be veiy great compared with 11, and  A to be verj- small  compared  with  the greatest  linear extt-nsion, in  such  a way that XA is of the same order of magnitude as ^is^, .... Wb may put 
Urn. XJ^= — p, 
d  then pa+p is  the  mean pressure at any jtoint  of the body iu the 
ined state. 
Let   V be the potential of the  disturbing forces.    The equations of luilibrium are of the fr)rm 
3^ (- P„ + Xg) + -^ + -~ - ffj> - + p -- = 0. 
Bic 
^lie terms containing ces the form 
■Pu and — gp cancel each other, and this equation 
-^P + ^V^ + Z/^o. 
da:     "^ "^ ox 
The equations of equilibrium of the homogeneous incompressible sphere, deformed from the state of initial stress expressed by (44) by the action of external forces, are of the -same form as the ordinary ei|uationM of equilibrium of a sphere subjected to disturbing forces, provided that, in the latter equations, XA is replaced by — p and /t^ is neglected.    The existence of the 
P    * Tb« difilealtr bu baen ein|ihafltz«d b; Chrm, Phi!, ifag. (8er. 8), voL 82 [1891). 
t Cf. J. Lanaor ' Ou tUe peiiud of Ihv G&rlliV frde £uli;riau precessioD,* C*wibridge Phil. Soe. Proc.. Tol. 0 (1898), MpeoiBll.v 113. 
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iaitiftl uuim p^ hu do ioflacikoe ao these eqnariniM, but it hm tn infioeooe oo the qwcUl cociditioctf which hold M the for&ce Tb«se coodicioos are tint th« defunned sor&oe is free hota tz>ctioiL I«t the equation of the defcnned nirface b« T = a-¥tS. where c ii a email coofltaoi uid 5 is aome ftiactioa of poBtum \m the sphere r = a. The " uieqnalitjr ~ tS must be nich that the Tohme ia unaltered We majr calculate the traction {X,, Y,, Z,) vanm the mir&ce r = a + eS. Let /', m, n be the directioo coaiDea of the oatvard drawn DomuU p to thU surfwe.    Then 
J, = r(Jr.-;!,) + «• J,+ a'X.. 
In the tenu X^, X^. Xt, which are linear in the strain-compcments, we may repkce f, m'. a' hy xja, t/ja, xjOy for the true valaes differ frona these values bf quantitiea of the order <; bat we must calculate the ralne of the term — Cpt at the surface r= a-^ tS correctly to the order c This is eainir done because p, vuitsbeit at r —a^ and therefore at r = a + eS it may be taken 
, or ~gpeS.    Neglecting <■, we may write 
-^^^)^. 
-fp. 
IffpeS. 
Hence the condition  that  X, vanishes at the sor&ce r = a + tS can be written 
{Xr),^+~ QP€S = 0. 
IffpeS^ 
.(45) 
The oonditiona that V,, Z, vanish at this surface can be expressed in similar form* and the resultti niay be interpreted in the statement: Account can be taken of the initial stress by assuming that the mean sphere, instead of being free from traction, is milijected to pretsure which is equal to the weight per unit of area of the material heaped up ia form the tne(|iiality*. 
182. Deformation of gravitating Incompressible sphere by ex* temal forces. 
Lut thu extenial disturbing forces be derived from a potential satisfying Laplace's equation; and, within the sphere, let this potential be exprt^ssed as a Slim of Fpherical solid harmonics of positive degrees in the form SIT,. Let the surface uf the sphere be deformed, and let the height of the inequality be expressed as a sum of spherical surface harmonics in the form £c,*^„. tn being a small quantity which is at most of the order of magnitude of the inet^uality. The attraction of the inequality is a body force acting on the matter within the sphere, and at points within the sphere this force is derived from a potential of amount 
4Tr7paS (2n + 1)-' t^irjaY S„, 
* Tliii renalt » often ftMnroed witboiit proof.   It appc*n to inrolTe Unplioillj tame snob srganMiil u ttui Kivett in the teit. 
181, 182] 
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where 7 is t}ie constant uf graviuition.     When the poteutial of all the E^tstiirbing   forces  is  expressed,  as   in Article  179, in the form  XVn, we 
■have 
n='[^'.- + 
•V 
r" 
8.. 
■(*6) 
2n +1'" a" 
Fin which 47rypa has been replaced by the equivalent oxpressioD Sg. The displacement within the sphere is expressed by formnlw of the type 
P 
« = — 
+ 
2{2ft+3) \+2;*"a/      "' 
+ Jf„(«'-r') 
da; 
.(47) 
lO) 
where An. ■■■ are unknown surface harmonics, ami Af„ and -^n-, are expressed by means of equations (9) aiirl (12).     To complete the  solution  wo must 
etermine the hannotiics An, fi«, 0^, Sf^ in terms of the known harmonica B'„  In the process we make snrh stinplifications as arise from the assumption that the material is incomprcrisibte.    The boundary conditions which 
old at the surface r= a are of two kiuds. We have, in the first place, the ktnematical condition that the radial dlspbcement at ihis surface is that which has been denoted by 2f„^'„, and, in the second place, the cuuditiou that the surface traction, calculated from the displacttncnts of type (*7), is equivalent to a pressure equal to the weight of the inequality. 
The kiiitiinatical condition is expressed by the equation 
2 p        „ r .„ %        r"     " 
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+ 
Sn 
2(2h+3)X+2>a       \_" "■ ' 27i+l 
1      / r'""*'' > r" 
+-2,r^ i"^-^--a^'^-^j =-*"*'-o^' 
When we select from this equation the terras that contain surface harmonics of order n + 1, and simplify the result by means of the condition of jncomubility, wc find the equation 
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        Oni, ---.
Sn+i"»+i 
f»+l 
■T^„M-, 
, ^-H-». 
2n+5 '""•'    (2« + l)a»'''^ The traction at the surface is expressed by equations of the type 
2» + 1] dx dx r""*^' 
■(48J 
"tt"    (»-lX2ft+l) 
(«) 
which Hre obtained by simplifying the expressions in (33) and f39) in accnrdance with the condition of incompreBsibility.    The conditions in addition to 
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^4^> which hold at tbe suriace are obtained byeqimttiig the expresttiou mi the rigbi-baudiiideof (49) to — ft'^ffpx %e„8n.    We thus find the equation 
n^ r ("-2)     ,^.. af^.>-.\ 
* 
0. 
.(50) 
whirh holds at tho surface r=a.    When we select frciin this equation the Ifruia timt rontain sur&u» bartnonica of order ii we tiud the equation 
(«« 
pt^ 
dr    '*"u2n-iaa:V***~V 
+ („_i,,4.. ________ 
1 /»*"** 
*-. 
0. 
.(51) 
2n + 1 aj V«"*** 
in which the left-hand mctuber in a solid haruianic of order n. Since this bamionio fimctlou vanishes nt the surface rcsa, it vanishes for all values of », jf, f. There are two similar equations, which are obtained by considering tho Irnotioiitt in the directions of y and *. 
Wo ilifTorentiatc the left-Land members of the three equations of type (o1) with ri'»*|)«ct to *, y, g respectively and add the result*    We thus obtain tbc 
0(|UAtioD 
i/p S(n-2)n<2n + l)        r«-' ofi(2ri-H) 
fi    ~ "{in- if      ' *"-' ir^ ^"- " ^   2h - 1 " " — 
Thli equation holds f'>r all valuea of n. VThoa we replace n by n 4- 2 it buooiuM 
ffflgn(n-h2)lSn + 5] ^ (2n+3)* 
„i»+i 
(^ p(H4-2)(2M + 5)-p. 
.n+i "•+> 
fl 2fl + S 
2(n + 2)»+l n+1 
■I-4-I 
"^■+1 
(►. 
.(52) 
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*-„-, = 0. 
Again we multiply the lefl-haml m»niber8 of the three etinationti uf type (61) by x, }f, s respectively and add the results. We thus obtain the equation 
.7p«*2ft(n + l)        T*+'«        fM^ n + 'i  jp.     _    2m     r»*" ' A*     {2u+^y ^"*' a-^   "*' ~ ^ 2n +3    ***'    2^TT a^' 
(53) 
The ecjuatione (48), (52), (53) deteniiine -^«+,. 1^,^.1. <^-n-, in terms of W^^,. Heoec ftll the functions denoted by S, ifr, (ft with varioue suffixes are di;tennined. and the   eqimtiuntj  of type (51) determine the functions 
An     When the potenlifti of the external forces reduces to the t^ingle 
term 1K,+], ^^4, and cft-n-'i ^^<^ the only functions of the types 1^ and tp that oociir, and Sn+i is the only function of the type S. The equations of type (51) show that, of the functions A„, ..., those which occur have suffixes either n or n + 2. The result that S^^, is a multiple of W^^^ may be interpreted in the same way as the corresponding result noted in Article 180. 
183.    Gravitating body of nearly epherical form. 
The caao of a iimi-ly .tL>lji.Tic.'iI body of grariuting iiicoiuprOBMble materiftl cad be included in the foregoing anulysis. The Burface coaditiona as rof^&nlii traction arc utill ex^^rvssed by such txnistious «s (iWj, but we have not now tlie kinomatical coudtUon expressed by (48). If the equalioa of the nurfftce is of tho fonu i'=sa+-(,,,i?,^, the tkIuw of +,,, nnd <f).n-i »r6 given by putting goro for W,,, in «niatiouH (52) and (fi3}, and tbc barmniiic functions autih &s A^ and ^n + t are determined by etiuations of thu t/pe of (51) from wKicb the H''n an* omitted. 
0. H- Pftrwin has ii{)|ilied anatyoiH tjf this kind, without, however, reatrictilig it t« tfae tnae nf incoinprewiihle matorial, to Iho ]m>bLerii of determining the str««icH iodticed iu the interior nf the Earth by the wcij^lit of iuiitin«iit«*. Apart from the difBi;ulty coocemiog the initial stresH in a gravitatiuL; l^jdy uf thr size of the Earth—a diftirulty which we Heem niialdn to avoid without treatiD>{ tho material h» iiicoRiiire-wibio—there Li another difficulty it) the ajtplicatiou of such an aijalyeiH t*) j>niblein.t ctjiiiicminy comprenaiblo graritattng bodies. In the itnalysiK wo take account of the attraction of tlia inetiiiality at the surface, but we ncgloi-t the inef^unliticM of tho internal attraction vbicb arixe fn>m the changes of density in the interior; yet these inequalitiea of attraction aw af tho same order of magnitude lui the iittraction of the surface iiioquality. To illuHtrate thi« matter it will br Hufltcieiit tu couKider tbo cju*e where tbu density pj, in the initial Htiite in uniform. In the (itraincd .ttato the density i» e^ixxswed by /)o(l-A) comsctly to the tintt order in the Btraiiii*. The l>ody force, a|Htrt from the attraction of the surface ineriualjtica and olber diatutbinij fortes, has oompoiient« per unit of uiuhs oqual to yj/o, ffy/a, ytja. Hence tll« exprewioos for p.V, ... in tbt- equations of eqiulibrium ought to contain aiich tenus as jrpaca''(l -A), »ud the temii! of type-^jj^A/a are of the Hame order as the attnwtions of the surface ino>)U'Llitiu}l. 
184.    Rotating sphere. 
In ihe case of the Earth the most interesting problems are those of the ellipticity of figure due to the diurnal rotation and of the tidal deformation 
■ Phil. Tram. Roy.  Soc,. voJ,  173 (1883).   ilatwiu'a resultn have tcon diecusaed critically [by Chrec. Cambrtdirr Phil. i"w:. 7Vwm,. rol. H (1889), and Phil. Mag. (Ser. 5). toI. 32 (1891). f S«« a pap«i by J. H. Jwtu, Phil Trans. Hoy. Soc. (Set. A), vol. 201 (1908). 
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SPHEROIDAL  FIGURX OF 
[CH. XI 
produced by the attractions of the Sun and Mooa. The effect of the roiatk oan bo represented as due to body force of magnitude ul*(x, y. 0), where w ia the angttlar velocity, and the force at any point may be derived from a pobontial of inagnitiidu io»*(ar* + y')- ThiB potenfcia! may be arranged aa tl ■um of iwii t-emis 
of which the former, equal to JwV, gives rise to a mdta) force 5(ftA-. ThU h-nu can bo included iu the   term  —gprja of equation  (43) by wriliog 
(0 a)K(]\ 1 — "     - J instead of <;.   Since, in the case of the Earth ta^txjg is a small 
Ihiotion, tHiual to about 5^, we may, for the present purpose, disregard iliin altumtion of jr. The term — iM«(2£« —a? —y') when expressed in polar oo«rdinato« is — JwV(Jco8'tf — J), so that it contains aa factors r* and a HiihiTioal uurfacu harmonic of degree 2. Wfi may detyrmine the e£Fect of the rotiLlion fnim the results of Article 182 by putting n = l and using this i-xpri'iwiou -|wV(5co8'fi-i> for W,. 
When N o 1 equations (52) and (53) become 
Kud ot|natiiui (+8) becomes 
HentH) wo find the height of th*^ harmonic inequality in the form 
ll fdlliiWM that the inequality is less for a solid incompressible sphere of litfldliy It thnn it would be for a sphere of incompressible fluid iu the ratiC 
I    I t   .    '* .    If the sphere has the same size and mass as the Earth this 
ffvilii U Hppniximutely equal to ^ when the rigidity is the same as that of steel Hiid uppHiiiiuutoly equal to J when the rigidity is the same as that of glass. 
Tlu* i»lllplieity of the figure of the Earth is about j^. The ellipticity*' ,i| H Mt'nrly wjiln'rical spheroid of the same .size and mass as the Earth, conllnblit^ iif houiPgoneous incompressible fluid, and rotating uniformly at the ml.tt III' nno n»vnlutii)ii in 24 hours, is about jJ^^. The oHipticity which woul |i(< iibtittnod liy n'plncing the homogeneous incompressible fluid by homogeneoui 
• An witwUoii nniw lorm ,,    , „      ,„    ,„ 
NDMMlNit *'**'* ■ '' f*""^^' '^ o«uily vpbericftl spheroid of elliptioiliy r. 
184. 1»5] 
ROTATING SOLID BODY 
255 

        
        [image: Picture #102]
        

        I incompressible solid material of ihe rigidity of glass, to say nothing of steel, ie too »mall; in the case of gla>ii< it would he ^-r^ nearly. The result that a Bolid of cuimderable rigidity takes, under the joint influence of rotation and its own gravitation, an oblate spheroidal tignro appropriate to the rate of rotation, and having an ellipticity not incomparably les^ii than if it were Huid, is importaot. It is difficult, however, to base an estimate of the rigidity of Uie h iipou the above numerical results becauae tiic deformation of a sphere rotation is very greatly ati'ected by heterogeneity of the material, lu •t'MBe of the Earth the average density of surface rock is about half the Earth's mean density. It is not difficult to see that, in the case of an incompressible solid stratified in nearly spherical layers of equal density, deficiency of density in the layers nearest the surface may tend to increase 
I the ellipticity of figure due to rotation". In our equations we have taken the density to be unifttnn. but we may take account of variations of density, in a roughly approximate fashion, by observing that the weight of the inequality, and the potential of it at internal puiuts, must be pniportiona! to the mean density of the surface layer. Let p' denote this density. The rough approximation referred to would be made by wnting p' for p in the fii-st two lines of equation (50). The result would be that, instead of the expression 2 ffpa 
have - + -i    - . p      2 gpa 
I for glass would become ^ for steel and ^ for glass, and the ellipticity of the figure would, if this rough approximation could ho trusted, be increased aooordingty. 
-   in the denominator of the right-hand member of (54) we should 
If p' were \p the numbers which were ^ for steel and 
I 
166.    Tidal deformation.    Tidal eCecUve rigidity of the Barth. 
The tidal disturbing forces also are derived from a potential which is a spherical solid harmonic of the second degree. The potential of the Moon at any point within the Earth can bo expanded in a series of spherical solid hannonics of positive degrees. With the terms of the first degree there correspond the forces by which the relative orbital motion of the two bodies is maintained, and with the terms of higher degrees there correspond forces which proiiuce relative displacements within the Earth. By analogy to the tidal motion of the Sea relative to the Land these displacements may be called "tides." The most important terra in the disturbing potential is the terra of the second degree, and it may be written (J/'yr'/i>')(-|cos^^ - ^), vhere M denotes the mass of the Moon, D the distance between the centres 
* Thu resall wts noud by Chrce, Phil. Uas- (S«r. 5). vol. S3 (1861), p. 349. In the case of ajluid, deScjency cf dunuty in Cliu ouUir lajr«n may tend to tlimtnith tbe lelliptioitj' of tlKQce due to thft rotfttion. In La^iliKw'H "Inw nt dcnsttjin tbe Interior of tbc Rarth" the preasnre and density aiv aasumvU to be cr^uuectud Vy a wrlain law, and the d^iieity of the heteroi;en«oufl fluid ia adjant^-d «o us to mAko tlic ellipticity tbc same tji that obaerred in the oase of the KafLh. 8e€ Kelvin and Tait, Hat. Fhil., Part a. p. «>3. 
25C 
TIDAL  EFFECTIVE   RIGIDITY 
[C.H. XI 
of the Earth and Moon. 7 the constant of gravitation, and the axis froBO which 0 is measured ia the Une of centres* This is the " tide-generating potential" referred to the line of centre* When it is referred to aies fixed iu the Earth, it becomes a sura of spherical hoitnonics of the aeuond degree, with coefficients whicli are periodic functions of the time. Like statements hold with reference to the attraction of the Sun. With each tenu iu the tide-geiieratiiig potential there corresponds a deformation of the mean surface of the Sea into an harmonic spheroid of the second order, and each uf tliesc deformations is called a "tida" There are diurnal and semi-diurnal tides depending on the rotation of the Earth, fortnightly and monthly tides depending on the motion of the Moon in her orbit, annual and semi-ainuial tidi^.s depending on the motion of tbe Earth in her orbit, and a nineteeii-yearly tide di'peiiding on periodic changes in the orbit of the Moon which are characterized by the revolution of the nodes in the Ecliptic. 
The inequality which would be produced at the surface of a homogeneous inoompreasible fluid sphere, of the same size and matis as the Earth, or of an ocean covering a perfectly rigid spherical nucleus, by the force that corresponds with any term of the tide-gen crating potential, ia called the "true e<inilibrium height" of the conesponding tide. From the results given in Article ]84 we leani that the inequalities of the surface of a homogeneous inoompreasible solid sphere, of the same sixe aiid mass as the Earth and as rigid as steel, that would be produced by the same forces, would be about I of the true equilibrium heights of the tides. They would be about ^ of these heights if the rigidity were the same as that of glass. It follows that the height of the ocean tides, as measured by the rise and fall of the Sea relative to the Laud, wuuld be jeduced iu consequence of the elastic jnelding of the solid nucluus to about | of the true equilibrium height, if the rigidJtv were the same as that tif steel, and to about § ui thi^ height if the rigidity were the same as that of glass. 
The name " tidal effective rigidity o( the Earth" has been given by Lord Kelvin + to the rigidity which muxt be attributed to a homogeneous incompressible solid sphere, of the same size and mass as the Earth, in orxler that tidet^ in a replica of the actual ocean resting upon it may bo of the same^M height as the observed oceanic tides. If the tides followed the equilibrium ^i law, the rigidity in question coultl be determined by observation of the actual tides and calculation of the true er^uilibnuni height. Kow the d}'namical theory of the oceanic tides on a rigid nucleus^ shows that, in the absence of friction, no tide would follow the equilibrium law ; even in the case of very 
' See O. U. Darwm'ii KrtuAe ' Ttdtw' in £ftcy. lirit.^ 9lli ciiltion, 
t Sir W. ThoBUon, Phil. Trmu.  Ttnif. Hoe., vo\. IS.H (1869), ftod MtitK and Phfa. Pofsn, 
vol. &. p. an. 
I a.   H. I>arvrii], Proc.  Roy.  Soe., vol.  41  41866),  p.  .<tS7.    Cf.   Lamb,   i/ydrad^namjcf. Chapter VIU. 
183, ISfi] 
OF THE EARTH 
long periods the heights of the tides on oceans of such depths na actually exist would be less than half of the equilibrium heif^bts. The frictiou uf the oceau bed would tend to miikc a tide follow the cjnilibriuni law more closely the longer the period. We must therefore confine' our sittentioti ti» tid»8 of loug period. Of these the aiiniiul and semi-aniuml tides are entirely masked by the fluctuations of ocean level that are due to the melting uf iee in the polar regions. The nine teen-yearly tide la too minute to be detected with certainty. From observations of the fortnightly tides which were carrii*d out in the Indian Ocean • it appeared that the heights of these tidp.'i are little, if anything, teas than two-thinls of the true oi^uilibrium heights. If the fortnightly tide followed the equilibrium law we cmdd infer that the tidal effective rigidity of the Earth is about eijual to the rigidity of steel. The friction of the ocvan beil is not liknly, however, to \h} grftJit enmigh to render valid the application of the equilibrium theory to the tortnightly tides. 
The fact that there are observable tides at all, and the above cited reaulla in regard to the fortnightly tides in the Indian ocean, have been held hy LonI Kelvin to illsprove the geological hypothesis that the Earth has a toolton interior upon which there rests a relatively thin solid crust; and, on this and other indcpeudent grounds, he has contended that the Earth is to bi- regiirded as consisting mainly of solid material of a high degree of rigidity. The evidence from tidal phenomena seems not to be absolutely conclusive in favour of this vtewf. 
186.    Plane strain in a circular cylinder^. 
Methods entirely similar to those of Articles 173 and 176 may be applied to problems of plane strain in a circular cylinder. Taking r and 0 to be polar coordinates in the plane (x, y) of the strain, we have, a.** plane harmonicB of integral degrees, expressions of the type r'*(a„co8 n^ + jffnSinn^), in which a« and j9„ are constants, and as analogues of surface harmonics we have the coefficients of r" ia such expressions. V^e may show that the analogue of the solution (13) !•{ Article 173 is 
(«,.)=£ (^„f„,fl.,r-;) + 
\ + H     „ o'- r«/5^,.+,   a^„+, 
). ...(65) 
2 (X + :J/i) " n + 1  W«   '    Sy 
in which A ^ and B^ are functions of the type a„ cos n& + ff„ sin n6, and the fuDctioDs ^ are plane harmonic fuuctlons expressed by eijuations of the form 
The equations (55) would give the displacement in a circular cyliuder 
* Edvin ftadTaj,!, iVaC. Phil., pHrt. u. pp. 442~1(S0 (coalributcd by O. H. Darwin), t T^ qaestiOQ lias been dUoustied bota k diSerciU utannliiuint by J. Lnnnor, toe. eil. p. 24^. : Cf. Kolvin JLDd T«il, Nat. riiH.. Part u. pp. 29S—300.    The problem of pl&oe atrm in a oirouUr cylinder wm tiolved by Clttbeult, Elatlieitat, | 42. 
IT 
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EXAMPLES OF SOLUTION 
[CH. II 
due to given displacemcnte at the curred sur&ce, when the tractious that maiiitaJD these displacements are adjusted so that there is so lougitudinal disptaciement. 
When the traclions appIieH t(i the Hurface arc given, we may take S^Yn, XFm to be the components, pamllel to the axes of x and y, of the tractions exerted aci-oss the surface r = a, the functions Jf„, Y^ being again of the form Oj, cos h6 +0n si" nO.    We write, by analogy to (So), 
^^-U^4)4A''%)- w 
and we introduce functions V^, and $_„_, by the equations 
---U'-%H{^-''^] 
.(58) 
All these functions are plane harmonics of the degrees indicated by the suffixes. The surface tractions can be calculated from equations (55). We find two equations of the type 
from which we get 
and thus A„, B^ can be expressed in terras of X,, F,,. 
Aa exampleti of this method we may take the foUowing* :— (i)   X.=oooa2d,    r«=0.    Ill this casu wa find 
(ij)    A\=acoaS^,    i\=aiAii2S.    tti thiit otiAe we HimI 
(iii)   J'a =a co« 4^,    y.sO.    In tbia oaaa wo find 
.(59) 
.(60) 
* Tb« tolntioat in tbe«« spvoiai cu«t wilJ be UBefiit in a anbwiiiisot inrMtigMlon (Chap. XVI). 
186. 187] 
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187.    Applications or ourvHinear coordinates. 
We give here SiJini! iiiJi(yi.tioiin conoeming various reseai-ches that have been ninde by starLitig from the equations nf equilibrium ex]>r»»e(I in terms of ciirvilinuor ct>> urdiiiatea. 
(a) Polar eooniinntfs. LnmiJ'is origitinl solution of tho problem of the si>bore and ■pbcricAl shell by tneaiiH nf aeriea wtis oMained l>y UMing the eqiiationH ox|vr«SAod in t*rmn iof |iol*rcoortiinBtcB*. The same cquutiutis wore ofturwards employed bjC W. Borohardtt, H^iObtuincd n. solution uf tho problem of thu sphere in tcrniM of di-fiiiit.0 iiitvgmla, aud hj C. Cliroo^ wbi) ihliio extended Uiu luctbtMl tu prohlbum re[utin>r to ft]>)jiijxiunLU3l> ii{ihcrica1 Ixiiindarice^, »l)ttkiiiii)|j eolutiouB in tlio furm uf H^iriwt. The KulultunH in Hurio can be buih i\\> by meHiis of s^^lid HpLericul hurmouics (1 „) expreased in term)^ of |M>Ur ooordiuAtcs, and reltited functions ((') which ^tisfy oquations of the form V^U— I'.. 
(£) CyliTtdrieat eoordinatat. Solutions in series have been obt&ined|| by obsemng IhAt. if J^ is the symbol of BeHSBl's function of order n, »**"*■"**»/., (lEr) is a Holution of Laplfuja'ft equation. U U ciot dilficiilt to deduce »uitu.ble forms for the disiihiCtiLjieutH Ur, Uf, V,. The dose in which u, VAninhes and v, and v, are independent of $ will occupy 01 presently (Article 18S).    In the caso of phinc strain, when u, vaninhos and u^ and u. 
tn independent of t, utte may b« maJe of the atrdiia-fuuctJOD (of. Articlo 144 wpru). The general form of this function exprewwd an a seriet^ proceeding by sines and cosines of multiple* of $ hftjt bocn given by J. H. MichcllH'. 
(e) Plane strain in iwn-cirvulur ciflindcr». W]ien the boiindariea are curves of the family a=coDBt.. wid a ia the rnal [Mirt of a function of the complex variiible x+i^, we know from Article 144 that thu dilatn.tiuii A h-ikI tha rotation m are auch funutiona of x and y that {\ + 2(j) i+i2jiw Is h. function of J' + »y, and therefore alsn of a + ift whore fl is the function mujugnf<e to n, For example, let the elaatic solid medium be bounded tDtemally by an elliptic cylinder.    Wo lake 
a:4.,y=«oc«h[o+ij9), 
M> thftt the ctuvea a^coust. are ooufocal ellipses, and Sc Is the dititaDce between the t<xL Then the appropriate forma of a and ur are given by tho equation 
(\+2>j)i+i2^aj = Is'**"(.-i,coaBS+J?,Binni3). 
If we denote by h the alMoluto value of the complex quuntity ci{a4-i0)/(/(jr+tji), then tlie displacements u^ and u. n.r& connected with A and a; by th« equations 
In the caao of elliptic cylinders ujh and uJkcan be expreaeed &» serisH in co»n3 and sinnjS without mucK difficulty, 
' /. dt Math. {LiouviUt), t. 19 (1854). See al«o Le^on* «ir Itt coordemnia curviliffnet, Paris. 1859. 
f Btrlin MonaUbtrithte, 1879. 
{ Camhridgt Phil. Soc. Tran<i., vol. H (lflS9J. 
i Amer. J. of Malb., vol. IG iLH\)i). 
I L. I'oehharamer, J./. MrUh~ {Cnlle), 13d. ,81 {IHTd), p. S3, and C. Ghree, Cnmhrittg* Phil. Sk. Tratu., *ol 14 (194U). 
1 /xmrfrtn Math. Hoc. frue.. vol. SI (IflflO), p. 100, 
17—3 
SrStSKTRICAL ffTRAIN 
[CH. If I 
A» «o tfftDple* «« may Uke tha cam where ao eUipttc cyliDdcr of aenn-ues a Mid b in Ivnmd About tbe biw of OMttrcs oT its dociiuU tectwo* thmn^ ■ sumU vx^ ^. In this OMe it on fan Aowb tfaat the di^ftoenwot {ndnoBd ovIflidA the ojUoden u expressed by thesqoifaoM 
ow 
«}• 
w 
lX+V»+& ' i + 3^ SUieU of rwtoimtkHt. U r, 0, t arc c^Undrioal Doordioates, aud «« can find » ■nd 0 Ml cDujagate fonctioau of t And r ia weh s way that an djoatiaa of the foruL ■-■MttiL rapnMDU the meridian curve of the aurftu» <^r a bodjr, we tnasform Lofij^atfa •qtMtioa V*r=0 to the Conn 
«faera«' denotw the absolute value of d{t+ir)/d{t + i$). If we can ftud auluUoiM of this cquatioo in the cmkh wlietti 1' i« iodepeodeut of 0, or u propoitjoiial to sio ntf or oos m^ we lan obtain ezpnaaious for tlie dilatatiou and the compoueuts uf rotation as aerias. WaogHint has abown bow from tbeae »oluiioa> »xpr«fiu<jua for the dlsplacam^ota can bi dKbMd. The ^ipiopriate solotioiu of the aboTo eqoatioa for V are known in the of • nuinber of solids of reToludoD, includiDg etlipsoidi, oowa and tona. 
188.    Synunetrical strain in a solid of revolution. 
WTieo a aoUd of revolution  is strained symmetrically, so that the placement is the same in all platKS ihnnigh the axis of revolution, urc express all the qnatitities that occur in terms of a single fuDcttoti, and reduce the equations of equilibrium of the body stmined by surface tractions only to a single partial differential equation.    Taking r, ^, s to be cylindrical coordinates, we have the stress-equations of equilibrium in the forms 
.(61) 
drr    drt 
dr      dz 
= 0, «^ + ^ + L' = o. dr       dz       r 
diB-l may I 
1 
Writing V, w for the displacement«> in the directions of r and z, and suppofting that there is do displacement at right angles to the axial plane, we have the expressions for the strain-components 
We htffiD by (mtting, by analogy with tbe corrmpuitdiug theory of pLaue strain. 
ra= -s 
Then lb* sooood of oqiutious (01) giree us 
orSt' 
-r 
* Hie prablesB was ]>ro|io»ed In R. R. Webb.    For ■ diOereat method of obtaining the mIqI Me T>. Edwardsi, Quart. J, o/3S.uh.. vol. 26 (1893). p. i70. 
+ Jnhiv /. itatk. iGrvHertf, vol. fid (1^73). The theory has been dereloped further by P. Jaeriiwb, J./. Math. (CniU), Bd. 104 (168<J). The eolutioD for an ellipsoid of levolatioa with giren rarface diapltMieiueaU baa bssn expfMsed in leimB of series of spheroidal harmonios by O. Tedone, Aonw Ace. Lineei Rend, (Ser. S), t. 14 (ISOa), 
>m|>oueats, rix.: 
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        We introduce a new ftiuctiuu R bj- the equation 
II -_^* 
|nd then the Brat of cqiintionii (01) can bo written (1 + b) ^ +1; CM - tr^ - ff«J=0, ind we may put where v' denotes 3','cy*+r"'3/?r+3''/?e^, the sulycctii or operation being indej^endcot of B. "^o arbitrary fimction of t uccd bu added bociiu^e any Mticli fVuiclimi ulii be  iiicludod in 0.   All tlie 8tre«t-cotupoiients iiHve uow tievii ei|ireHeed in terniH aX two ftini;ti(iriH if> anij B,   The »um 6 of the |jriiii;i|iAl tttretMeH is eipreased in ttiroiii of <p by tbe equation 
and, since 6 is an bonQonic fUoction, we muat bare v^^O, 
The functions 0 aind II are not inde]x!tident of oaoh other.    To obUuu tho relationa between them we luHy proceed aa foltoWD:—The equation UJT^e^ CBn Iw written 
■nd then the equation rz^fie„ can be written 
?«• 
2^ +^) i^i*   1+g a^ 
ttb*«q;Mti0D «j,—(£t-(rrr-crtfi9)/J?can bn written The eqnatiunit giving cwf^ aud cw/?x are comiMtible if 
(l-<r)|.v«*+^,, 
'.^       a^fl 
'dr 
'-• = ^5.^' 
and, if we introduce a new function a by loeftna of the equation 
^V ire have 
^ = (l-o-)V>. 
rherc, as beroro, no arbitrary ftinction of t need !« added. 
■ JiB ^^" srMjfETaicjx steadi 
TTwi WHM iiwifMiiti irii warn nqTMi in rmwi nf Ihi ftiTtinw ^ wiJ n -rfiirh air raarmriM fay tbe atuUkn kot wrktaL   The e^wtitn* gm^ c«ifr aad or «> beeoa^ 
dm    \+mi/da    a^\      dm    1+w € /CQ    af\ 
W* SMj ibaraAm aptaa U u>d ■ id tcnua tt Q and i^ bjr the fannida 
Fran thoM tbcsoulv we an iluMr tfast Q must be *ii tuLnoonic fanetiao, lor we Imtw ai 
■lid      i-L^e-i-^(i+ff)v^ 
It fnllowB that, tnatdes vtisfying the equaUoa 90^=(\~c)^^ llie teiotian O ako —liirikw the ojiution VfiaO. 
Itmtcad of usiiig the two functknn ^ and fi we may exiirtw the 8tnB»«rMnpoMiili m IcnDB td ■ angle fonctioo. To thu ODrl wo iatroduoe a otw functioa ^ bj the equatkn ifr-^-fCL   Than w« hare 
and we have alao 
The fint of cquatioDs {61) would eoaUe tu «t ooce to expr«» rr id temu of a ftinctioo' nich that ^»9;t;3i.   We theref^ire drop all the mibadiaiy fauctiooH aod roUiu x only. 
In accordance with the above detailed work we assume Then the first of equations (€1) pve? us 
,.;;._.4v.,..^.^-l| (6« 
and the second is eatisHed by this value of rz if 
^•X = « (6JS) 
The stress-cornponentK arc now expreKsed in terms of a single function ■}( vi\\\<Y\ witisfies equatiou (65)*. 
* A tnfllhod of exfmedng all tiw quftntilirs in wnns of « ajogte ftanctioo. whleb latiadM a partiiU ilitTcrvnlLal «quation of the fonrtli order different froni \fih\, baa been gitwa by J. H. Mlcbdl, Lourlm MatK Soe. Proe., toI. SJ |1900i, pp. 14'(—116. 
188,189] 
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The correspoodini^ displacements are easily found fmm the streas-atrain relations in the forms 
f7 = 
l+<r d'x 
w = 
E 
{a-2.)v.x + ^^? + l^A.,.(66) 
169.    Symmetrical strain in a cylinder. 
WLeii the body is a circular cyliuder with platie ends at right angles to its axis, the fuiiction x ^*'^ \\b.v^. to satisfy contlitiuns at a cylindrical surface r = «, and at two plane Hurfaces z = const. It must also satisfy equation (65). Solutions of this e(]nation in terms of r and s can be found by various methods. 
The equation is satisfied by any solid zonal harmonic, i.e. by any function 
of the form (r' + a')"'^* r—(r' + ^*)-*, and also by the product of such a 
function and (r' + r'). All these functions are rational integral functions of rand z, which cuntjiin evt-n powers of r only. Any sum of these functions each multiplied by a constant is a possible form for j(. 
The equation (65) is satisfied also by any harmonic function of the firm e'^ Jailer), where k is any constant, real or inifiginary, and J'„(x) stands for Bcssel's function of zero order.    It is also satisfied by any function of the 
form B**«r x-J'o(iT), fur we  have or 
.**«. 
dr 
J„(kr)\ = - 2lc'e*'^'J,{hr). 
When k is imaginary we may write these solutions in the form 
a 
JJiicr){A coaKi + Bsin Kz) + tr r- Jnittr)(Ccosxz + DBiuKg),...(Ql} 
pr 
in vhich k is real and A, B, C, D are real constants. Any sura of such expressions, with different values for k, and different constants A, B, G, D, is a possible form for x
The foriiiiilai for thi; diKpIaccment's C. w that would be fniiml by each of these methods have been obtained otherwise by ('. Chree*. They have been applied to the problem of a cylinder pressed between two planes, which are in contact with its plane ends, by L. N. G. Filonf. Of the solutions which are rational and integral in r and x, he keeps those which could be obtained by the above method by taking x t" contain no terms of degree higher than le seventh, and to contain uneven powerw of z only. Of the solutions that be obtained by taking jf to be a aeries of terms of type (67), he keeps 
" Cambridst Phil. Soc. TraTiii., vol. 14 (l^**"). P- 230
t Phil. Trans. Roy. Stir. (Ser. A), vol, 19» {iWi).    J-'ilon gives in the eame paper the Bolatiom o( other prob!eiua n)liiitu]([ to ■>'miQelrii»i eitaia in i o^Huder. 
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        264 CTLmDEB CNDEB TERMINAL PBBSSUBE [CH. XI 
those which result from putting k = mrjc, where n is an integer and 2c is the length of the cylinder, and omits the cosines. He finds that these solutions are sufficiently general to admit of the satisfaction of the following conditions: 
(i)   the cylindrical boundary r = a is free from traction; 
(ii) the ends remain plane, or w = const, when z=± c; 
(iii) the ends do not expand at the perimeter, or U~0 when r = a and z=±c; 
(iv) the ends are subjected to a given resultant pressure. 
He shows also how a correction may be made when, instead of condition (iii), it ia assumed that the ends expand by a given amount The results are applied to the explanation of certain discrepancies in estimates of the strength of short cylinders to resist crushing loads, the discrepancies arising &t>m the employment of different kinds of tests; and they are applied also to explain the observation that, when cylinders (or spheres) are compressed between parallel planes, pieces of an approximately conical shape are sometimes cut out at the parts subjected to pressure. 
CHAPTER XII. 
VIBRATIONS OF SPHERES AND CYLINDERS. 
190. In this Chapter we Bhall illustrate the method explained in Article 136 for the solution uf the problem of free vibralious of a solid body. The free vibrations of an isotropic elastic sphere have been worked out in detail by various writers*. In discussing this problem we shall use the method of Lamb and roeoi-d some of his results. 
When the motion of every particle of a body is simple hortuouic and of period 2fl'/j>, the displacement is expressed by fommlaj of the type 
u^bAu' cos (pt + e),    v = Av Q06{pt + e),    wr = Aw'cos (pt-i-e),  ...(I) 
In which u', v', w' are functions of x, y, z. and A is an arbitrary small constaot expressing the amplitude of the vibratory motion. When the body is vibrating freely, the equations of motion and boundary conditions can be satisfied only if j-j is one of the roots of the " frer^ueocy equation," and u', v', w' are "normal functions." In general we shall suppress tbe accents on u', v', w, and ti*eat these quantities w. components of displacement. At any stage wo may restore tbe amplitude-factor A aud the time-factor co8(j3(+e') so as to obtain completi' exprf^flsions for the displacements. 
The cquatiomi of RmaU motion uf the body are 
where A.|-%|-%^ (8) 
dx    dy    di ^ ' 
When UjV,w are proportional to cos (pt + e) we obtain the equations 
(X + ;*)(|^.   ?^,   |^)+;tV^(«, V, w) + pjy^{u,  V, «.) = 0 (4) 
' BofercncD mty b« mad* to P. Jfteriech, J.J.Maih. {Crfilr), Bd. R8 (1880); H. Lamb, Lrmdon 'irolA. 8oe. Proe.. vol. 18 [1B6S); C. Chne, Ctmbrldst Phil. Soe. Tran:. vol. 14 (IfleQ). 
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        266 SOLUTION  OF THE EQUATIONS  OF  VIBRATION [CH. XII 
DifiTerentiaiing the left-hand members of these equations with respect to *■, y, t respectively, and adding the results, we obtain an equation which may be written 
(V«+A=)A = 0,  (5) 
where 
/i' = pV/{'t + 2,u) (6) 
Again, if we write 
'^-i^V/M 0) 
equations (4) talse the form 
(v....).„.,,„)=(:-^5f^.=|.^^). 
Wc may suppose that A is determiDed so a& to satisfy equation (S), then one solution (u^, V), u>,) of the equations last written is 
I /BA    SA    aA\ 
and d more complote solution is obtained by adding to theeo values for >^> V,, w,, complementary solutions (u,, tr,, tf^) of the system of equations 
(V»+«>)u, = 0.   (V'+«')y,= 0.   (V' + «')itf,= 0, (8) 
^ fe^-|+'^'='' w 
When these functions are determined the displacemeut can be written iu the form 
(tt, p, to) = jl((i, + u,, »,+ «!, «;, + ttf,)cos{;rf+c) (10) 
191.    Solution by means of spherical harmonics. 
A Holiitiun of the pi{iiation (V + A') A = 0 can be obtained by BupjKwing that A is of the form f{r)Sn, where i* = a^ + y^ + ^, and 5„ is a spherical surface harmonic of degree n.    We write H^ instead of/(r).    Then rRn is 
a solution ul' Riccati's eqiiatimi 
of which the complete primitive is expressible in the form 
At, and Bn being arbitrary constauta. The function T*"£ln is a spherical solid hannonic of degree n. When the region of space within which A is to be determined contains the origin, so that the fiinctton A has no singularities in the neighboiiihoyd of the origin, we take for A the formula 
A = S«nVn(ArX    (11) 
190, 191] IN  TERUS  OF SPHERICAL HARMONICS 267 
where &)„ is a spherical solid harmonic of positive degree n, the summation refers to different values of n, and i^n(ic) is the function determined by the equation 
^»<^)=ei)"(^) (>^) 
The fuuction ^, (x) is expressible as a power series, viz.: 
{-)" f x* X* 1 
'''»^'^*"l,3.6...{2n+l) f ~2(2w+3)"^2.4.{2n + 3)(2n + 6)""'J'   ""^'^^ 
which is convergent for all finite values of x. It is an "integral function." It may be expressed in terms of a Bessel's function by the formula 
>/'-(*)-(-)" W(2»r)x-(''+«J„^j(x) (14) 
It satisfies the differential equation 
(S-^^r'i-)*.«=° <") 
The functions ^^ (x) for consecutive values of n are connected by the equations 
a:'^^f^^^^=x^,(x)=-^^.,{x)-(2n-l)>lr,.,{x) (16) 
The function *„ {x) determined by the equation 
^   , ,    /I dY/cosx\ 
*-<"'=b^J (^j
which haa a pole of order 2t(+1 at the origin, and is expressible by means of a Beasel's function of order - (n+i), satisfies equations (15) and (16). 
In like manner solutions of equations (8) and (9) which are free from singularities in the neighbourhood of the origin can be expressed in the forms 
«a = f^n-^n («r),     t)a=T^n^n(«r),     W, = lf„V^„(*er) (17) 
where f7„, F„, Wn are spherical solid harmonics of degree n, provided that these harmonics are so related that 
^^^-^-0 (9^.) 
One way of satisfying this equation is to take Un, Vn, ^n to have the forms 
^-^l"-!'. '^--If-I^'. ^'-^'f-y'S <i«) 
where %» is a spherical solid harmonic of degree n; for with these forms we have 
A second way of satisfying equation (9 bie) results from the observation that 
268 
IHSI'LACEMENT   IN   A 
[CH. XII 
curl (u,, r,, w,) satisfies the same system of equations (8) and (9)aa («,. c,, «v). If we take «,', w/, iw,' to be given by the equationa 
we find such formul* as 
where ^h'(«'") niean» rfi|r„(*fr)/fi(ifr).    By means of the identity 
|^-r»-*-'i/-X=L^ 
'^""iiin 1^' "****' ^ W',) 
.(19) 
and the relations between ^ functions with consecutive suffixes, the abov* formula is reduced to the following:— 
of which each term is of the form Uni^niier).    In like manner the othei components of curl («,', v,', w,') can be formed. 
Hencft, taking j(n and ^n*L to be any Lwo j^lid hannoiiics of degrees' indicated by their suftixes, we have solutions of the equations (8) and (9J in suoh forms as 
-;;^>^..,(..).v-«|(^;)] (20, 
The correRpnnding fonn» of t>v and w^ ore obtained  from  this by cyclic interchange of the letters sp. y, e. 
192.    Formation   of   ^e   boundary   conditions   for   a   vibratxaj sphere. 
Wo have now to apply this aualysis to the problem of the free vibratiot of a solid sphere.    For this purpose we must calculute the traction ucross] a spherical surface with  its  centre  at   the  origin.     The components A'„ F„ Zr of this   traction   are   expressed, as in  Article l7fi, by  formulae o\ the type 
—^»-TA + ^(iM:+vy + w«) + r^-« (21) 
fi      fi ox " or 
In this formula A has the form given in (U), viz.: S««>('»(Ar), and u, p, have 8ucb forms as 
A' dx 
[t.(-)(*1^-t 
ex ) 
^^ Jr„,, i^\ «r,*.-» 1 ('*1*Al 
122) 
191. 192] \Vq find 
TIBRATINQ SPHERE 
260 
r d^ 
or 
iLr + ry + w^ = S U ^y, {«^n(Ar)+Arf «'(Ar)]a>„-(«+l}(2n+3)^„^.(*r)^,+,l. 
(28) 
This formula gives us au expressioD for the radial displacemeut 
In forming the typical terms of ir^, ^ (uar + oy + wr), r^-—u we make 
continual use of identities of the type (19) ami of the equations satisfied by the -^ functions. We shall obtain in succession the contributions of the several harmonic functions tUn, ^n. x^ ^ ^^^ of the above ezpreesiona. 
The function ay^ contributes to xik the terms 
^t.(^0{.^"-r»«3i(,^)} (2.) 
and the functions <^„, ^„ contribnte nothiog to irA. 
The function »„ contributes to 3 (ua? + wi^ + wt)lda the terms 
- ^, I<n + 1) Arf „' (M + ;.».^„" lAr)J 2/-^ f^ - ^^. ^i (-^^)}, which reduce to 
The fiinctioii ^„ cuntribule^ to d (ux + vy + wg)ldis the terms 
-»[(2n + l).^.(«-)+*rrt„'(-^)]^+n>ctn'(^)^^'|;.(^:.). -.(26) 
The function x^ contributes nothing to this expression. The function w„ contributGw to u the term.^ 
- h [1^" <^^> -^ 2;^i ^-' <M '^ - (2;^ ^'^-'<H '-^' 3' (^y' 
(27) 
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Bu 
And it contributes to r^ - u the terms 
which reduce to 
-|^.,A.)*!--V.'('.r)}^|(^.) (2. 
The function ^ contriUutea to r^M^/^r — u the (erms l(n - 2) f^ (Mr) + *rf'^, («r)i ^ 
Th« function X" contributes to the same expression the terms 
l(n-l)V'B(*r) + «rf„'(xr)|(y^--*^) <30) 
Complete expressions for the tractions X,, Yr, Zr can now be written down in ncconlanc-e with (21), and we ina^- expresH the conditioDs that these tractiutui vanish at the surface of a sphere r = a in forms of which the type is 
=^[^(^^;-'i")-"^-'"--4(;^.) 
+^'^+'^'^al(^-.)]=«
(31) 
where Pa, <in, 6n> Cn, i^n <"% constants.   The values of these con»t»nts can baj found from thf above atialysis.   When we write k'/A'— 2 for \//i. aiu5 use the .equations Miiiitticd by the -^ functions, we find the following expressions for the coltstaiilfl 
p. - (n - 1) i^B (Aca) + KQ^^' (*ca). 
1 
2(h + 2) 
''- = ''iTTl {''''• **"*'^ 
jca 
■(32) 
192-19*] 
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There are two additional equations of the type (31) which are to be obtained from the one writtec down by cyclical interchange of the letters x^ y, t. These equations hold at the surface r = a. 
193.    Incompressible material. 
In tb<j uunv (j!ritK'0[ii[)reB8ib1e oiatt^rial we have to tako ^=Oand to replace XA by — n, wbeni U deuutes .i tinite pressure.   The eciuatioDs of motion beoomo thrao of tbe tji>Q 
in which hif^ + dti/^+dts/ds=G. We find at once that n imist be an hnnaonio fUDctioa, and wo may put 
n= -p2«„, 
iu which Wn is & spherical solid barmonic of degree n. When a, v, w are simple harmooic functions of t with iieriod Sir/p, the equatioai) of motioa bocoiae three equationa of the tvpe 
and the iotcgr&lH can be found in such forms a3 
where Mj is given by (20).   Tbe finrtiuU for r,Vr/;i now liecoiites 
rXr     j?n    a,    .     ,    . .  ?« 
IT = - 7-^ &<'^+^+'"'^+''g^-"^ 
and the temiH contrihiitpiil tn the right-hand member hy n^ are /   f^ 2(H-1A a«. _ r^'   3^ /  as> 
Va«+i 
J da     291+ 
while the t^^rras contrihuted bjr 0„ and x» *"* the same as before.   The raaiilt of assuming 
SCn-I) 
Sm + 1 
and b. 
incompreBtubilitf of the luatorial is therefore to change n, into 
Into — -      . , without alt«jing the remaining coefficteuta in the left-hand inouibor of (31). 
194.    Frequency equations for vibrating sphere. 
The left-hand inGuibera of the o(|iiationB of type (31) are sums of spherical solid harmonics of positive degrees, and thoy vanish at the surface r = a. It fallows that tbey v^uish everywhere. If we differentiate the left-hand inerabei-s of these ccjuations with respect to x, y, e respectively and add the results we obtain the equatiun 
ft»«'«+*'.^« = 0 (3a) 
If we multiply the left-hand members of the equationa of type (31) by X, y, z respectively and add the results^ we find, after Hiniplification by means of (33), the equation 
a„ai, + c„^, = 0 (34) 
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        S7S ^^^B        MOD£S OF  VIBRATION [CH. XH 
The equations uf type (SI) then shuw that we must have 
'-(^t-|=)=0' H't'-'^h"- H't-'^'^h"
It follows that the vibrations fall inlo two dasees.     In t}ie 6rst class' Qi„ and ^n vaiiifth and the fretiuoDcy is given by th(> e(]uatioQ 
Pn'^O (35) 
where p„ is given by the Hrst of {St). In the second class Xn vuushes and the frequency is given by the equation 
Ondn- 6nCn = 0,     (36) 
vhere a„, h^. Cn. d^ are ^ven by (32). In the nbrations of this class o>n and ^K are connected with each  other by the compatible equations (33) 
and (34). 
195.   Vibrations of the first clasB*. \S1iei] the vibration ia of the fi»t cIass the (lisplacomeDt U of the form 
where K*=ff^p}ii; Acd the poissible values of /> are detennmcd hy tba equatioti 
{n - \)ytrn{Ka)+KayffJ (Ka}=0 (3S) 
The dilotutiot) vftiiUheo. The radial diHplaceiu>eut alto vanishes, so that the displaoemeat at any point is diroctod at right angles to the radius drawn fnmi the centre of the sphere. It isjJso directed at right angles to the normal to that surface of the family ;fa«>cciiiit. which ^laftMs through the iwitit. The sphurical surfaces determined by the equation ^„{ci-;=!0 nre "notlal,''' that is to say the ditiploceinetit vanishes at tbeM aiufaoeo. The spherical nurfaces detftrmined \iy the equation 
in which k ia a root vf (38), arc "anti-nodal," that ta to nay there is no traction aoroaa these nirfaoos.    If «„ «„ ... arc the values of « iu aecondiiig order which satisfy (3)it), the anti-Dodal surfaces corresponding with the vibration of freque'ioy {iir)~^^>(jiip)u, havsj radii equal to Jtifl/it,, "(jO/k,, ... ii,_i<r/««. 
If n = I we have mtatory vihrationKi.   Taking the axis of < to be the aua of barmouio xn the dtHplaoemeot ia 
(«, I-, «)-vlcoB(;«+«)i^,(«r){y, -r, 0), 
so that every nphericftl surfaw concentric with the boundary tunu round the axia of a through a stoaU angle propoi-tional  to ^, (<»■), or to (k^j-'cos «r-(«r)-'sin Kr.    Tha; poflsible values of c ant thu roots of the equutiua if','(Ka) = 0, or 
Un «a=3Ka/(3-kVJ. 
* The reBOltH stated in this Artick' and Lbe following are due to H. Lamb, (or. eU. p. SCS. f Modes of TibralioD analogous to ibe rolalory vibrationB uf tbe Bpbcre )ibto been foiind fur any eoUd orreTolatioa bj I'. Jaerhcb, J,/. iUal/i. \CrtUf), Bd. 104 {1689). 
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The number iT/«a is the ratio of tha period of u«ci]Utit>a to the time tttkeo bjr a wave of distortiou* to travel over a dUtanue equal to tLe diatoetor of the si-hepc The nodal aurfftccd nro giveu by the equation laa icr = «r, of which the nM* are 
-=1-4303,  2-4ft90, 3-4709,  4-4774,  5-4818, 6-4844,.... 
IT 
196.   Vibrations of the second class. 
Wbtii tlio vibrution i» of ihv .si-euiMl class the com])onenta of riisiilftcrtiieiit are uspresrted bjp- equiitiuDH of tliu t_vi>0 
u=-4««0'(+«)[-^|^.(Ar)+^jK(Ar)}'^" + 
The frequt-ncy equation (Z6) cuiinut be »oIvc<l Dunit^rically until the mtio k/A i» kaowD. Wo Mliall coiitfidcr L-hiEi6y iucompnuitiiblu tuatcritU, fur which A/«i=0, and loateriat fulfilling Poitison'tt condition (X'/i), ^or which KJh^J3. 
Radial vibratitnu. 
When n™0 we have radial vihnitioim.    The nortnal fuuctious are of the form 
«=?V'n'(A'-),    ^=?^,'f/r),    ..=^^,'(Ar), 
and the frequeiicy ©quatiun i» io=0, or 
which is 
j4 
^o(A«) + .-^i**"^«(H = 0 (4n 
tAn ha 
\Vhen 
Thfro Jim?, of course, no rndiul vibrations when  the matcriAl i-i incompressible. b'/A'^.I, the ail Lowest mots of the ftviiiiency oquation are given hy 
hn 
— «-8180,  1-9285,  2-9358, 3-MM, 4-9728,  &-»774. 
IT 
The number njha is the ratio of the period of oncillatton to the time token by a wave of dilatation t to travel uver u dtiftanoe equal to tho diameter of the sphere, 
Sf/hervidal ribrati'oiu. 
When n = 2 and u, and *p^ are zuual harmuuicii we have wluit may he vailed tphfmidai ribratioiu, in which tlio sphere is distorted iuto &a ellipsoid of revolution bocoming alternately prolate and oblate /w-cording to thfi phase of thp mntion. Vibrations of thia type would te^id to be forced by forceps, of appropriato [leritxi lukd of the same tyjie a-s tidal diaturbing forcee. It is found that the hiwoit nmt (if the frequency oqiiiition fnr free vibrations nf thiu tyjie is given by Ku:yrr = '8-18 when tlie material in inoonipresaible, and by ■a/irs-840 when the mitterial fnltiln Foihikiii'h condition, Fnr n. sphere of the BJirae hibo and mauB as the Earth, supiioued to be i»tiemtirea!iib]e and oa rigid an steel, the period of the gravest free vibration of the type here described is about 86 lainutes. 
' The reiocity uf wkv«n of dii>t<:>rtiiici Ik (>i/p)\    3ee Chapter XIII, -t- Thevflooity of wavm ofdaatatioa is y/{{\-t2ft)lp\.   Urn Chapter XIII. U e. is 
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[cH. xn 
197. Further investigations on the vibrations of sphoros. 
The vibratiuus of a sphere that wt-uld be forced hy Burface tractions proi>ortioiiaI to aim[de harmonic functions of the time bavo l*«*n invcs^gatad hy Chree*. Free vibrations of a «beU botimiod hy <v)n<«ntric siihnricnl aiirraceo hare l)ecn disciisitorl by Laiubt, with apcclAl refeponcc to th« cftse iu which tho shell is thin. Tfie influoiiL-e of gmvity uu tho free vibrdtioHd of &I1 iiiyjiniinwuihlo sphore hiw boeu cousiiiercci h_v Bromwicbi. Ho found, in particular, that the [wtiud of tho "wphfrtiida]" vibratioim of a sjihoru of tby »atuo »ii» anJ iiiiUM liH tho Earth miil iia ri^id a» ntuL-l wuulJ hv diinlntshod from (J8 to 55 minuteii by the mutual ^ivitutiuti of tho [m-ia of tho H|ihorc. A luurv j^Biicral diifcuKsiou of the eflbcts of gravitation in a aphere of which tbe niaterial in not incompruuible baa been given by Jeanng. 
198. Radial vibrations of a hollow spherejl. 
The radiid vil'mtioiia of a ai>here L>r & a^hancaX ahell may be investigated rciy simply iu temiB O'f [lolar ooordiuatw. In the ootatioii of Anicio 96 w< should find that the nuiial diaplacccaont V latiaSca the equation 
or*     r cr     r' ' 
and that the radial traction rr acrtma a Hphere of radiux r is 
cV . „. f 
y-+2A- = a 
(A+ 2^3 
The priinitivuof the diflereutial equation for C may be writteu 
.._   J     /A Hiu lor+B(XBAr\ 
aud the c(,>udit)on that the traction rr vanishes at a spherical surface of radius r is 
[(X+B^)K3-AV»)8iuAf-2Aroo8Ai'l+2X(ArcoaAf-sin^»-)]-^ 
+ [tX+2ft){Ca-A»r>)co8Ar + 2AreinAr}-2A(Ar8iuAr+toHAr)]i5=0. 
Wlien thosphoi-o in oomploUi up to the oeutro wv must put fl"0, and the condition for the %-aniHh)iii> of th« tmctiun at r^n \s the fromiciiL-y oqtuitiou which wo foiuid befonj. Id the uuio of a Hphorical »hoU tiiu rruiiiLcncy oquation iu found liy elimimiting tho ratio A : B From the conditions which cjt[>n<» thi* vanishing of rr at r = a and at r^6. We write 
4A'M-F, 
ao that SX/(X + 3>i)s2-v, and then the oc|iu)Uon i» 
rAa+(AV-i-)tanA<>_rA6 + (A'ft''->)tfttiA5 {h*<fi-»)-vhiUu\ha " {A*f^ - v) - rkb ten fib' 
In the ^larticular case of a very thin spherical shell this equation may be replaced by 
f5 i'la+(fi^'—v)i*nAa 
which ix 
da (*'■'«' -u)- yiu tau ha      ' 
* Loe. nit. p. tSfi. t London Math. S(>c. tr«c., vol. 14 UWI|. 
X tonrfon Slaih. Sik. Proe., vol. 80 (I89a). i Phil, Tr,ini. Hoy. Soe. (Ser. A), vol. aOl (litOB). n The problam ot thp radial vfbraLionit ol a solid sphere was one of those fflirsmnil tij robwii in bis mamoir of 1681^.   8^ lotroductioD, footnote 86. 
197-199] VIBRATIONS oy a cnCTLAA cTtcnna 
and wo iiAvo tbcrefore 
hi tenuB of Pousoud's ratio r the period is 
275 
wa 
V t l+J" 
199.    Vibrations of a cirotilar cylinder. 
We shall iDvcstigatc c«rtain modes of vibntioD of an notroinc cmralar cylioder, the curved surface uf which is free from tiaetim, on the amunplion that, if the axis of z coiticidca with the axin oi tbe c^rHiMkr, the dinplaoeinent is a simple harmonic functiou of < as well mb of I*. Vibralioiw of these types would result, in an unlimited cylinder, fruca the ajpL'T^frntiaa of two trains of waves travelling along the cylinder in oppamle directiona, Wbeo the cylinder is of finite length the fre<iue&<^ of free vibntwo would be detemxincd by the conditions that the plane eiuk are free from traction. We shall tind that, in general, these cimditioiM are out aatufted exactly by modi's of vibration of the kind descnbed, but that, vheti tbe cadiuH of the cylinder is small compared with its length, they are trntrnJed apprvzioiately. 
We use the e'-juations of vibration referred to cyJiwd/ieal oo'^dinstei r, B, X.   The equations are 
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d^ 
ot 
r dr 
ij0 
ID which 
and 
1 acrwr) 
r    3r 
A = -    '„ -' + ^ ^" + 
1 a«, 
r d6 
ao that v,.' ^K- ■''t satisfy the identical relation 
'"•  *tn*itt*t»t*ttt»ttt*»tm^mj 
The strcsB-compoQonts rr, rS, rt vanish at th« ifftfW </ Cfc» «f|iud£r 7* a a.    These stress-components arc expressed by Uu l^jrjwMlil 
r     dr r  dif       vz 
r7* = XA+2>* 
dr 
re = fj. 
--..^f^)}. «.<.(H,^...,«, 
r 5/?^   ?)r\ 
* XIm Uieoi7 is eOectiTeLjr dae to !>. PoafaharaiD«r, J, /. M0th> i/fnli^l, Ut- M Wrt% f   "^ It bat bean dbeiii»ad kIbo d; C. Chreu, Im. cd. p. 96S. 
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TORSIONAL  AND  LONQITITDINAL 
[CU. XII 
In accordance with what has been said above we shall   take u,, Up, M/ to hti of the foniiB 
a,= ai!"i"-^'i.    u,= Ve"y*^.   u,= ffV"*'*'", (47) 
in which  CT,  V, W are functions of r, 0, 
200.    Torsional vibrations. 
We can ubtuiu a fiolutiou in which £7* and W ranish and V h independent of B. The timt and third of equations (42) are satisfied identically, and the second of these equations becomes 
^.\^-^r..v.. 
.<4S) 
•where K* = p'pl^ — 'f. Hence V is of the form i/J, («V), where B is a constant, and J, denotes BesHel's function of order unity. The conditions at the surface r = a are satisfied if k' is a root of the equation 
4 m-
da 
One solution of the equation is «'= 0, and the corresponding form of V given by eciuation (48) is V^Br, where J? is a constant. 
We have therefore found a simple harmonic wave-motion of the type 
,(^ = 0.    «e=B'^'»"'^'.    «(=0 (49) 
in which y'=pPpj'ft.    Such waves are waves of torsion, and they are propagated along the cylinder with velocity v'(/*,V)*. 
The traction across a normal section r = const, vanishes if 3u#/9a vanishes; and we can have, therefore, free torsional vibrations of a circular cylinder of length I, ia which the displacement is ex|in.'ssed by the formula 
Ug nirs 
— = cos - ,r I 
^"""^crVp"") ^'**^ 
n being any integer, and the origin being at one end. 
201.    Longitudinal vibrations. 
We can obtain a sohitioii in which V vanishes and IT and W are independent of $, The second of equations (42) ia then satisfied identically, and from the first two of these equations we find 
0, 
where 
• or. Locd Bajrieigh, Theory «/ Sottftd, Chapter VII. 
.(51) 
.(52) 
I 
1&9-2(>1] 
TIBRATIOSS or  A CIRCLLAR CYUXUER 
277 
I I 
W« nittt Uierelbff« take A and v«, &» functioiu of r, to be proportional to Jtih'r) and Jiixr).   Theu to satisfy the equations 
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        we hare lo lake T and If to be of the forms 
.(«») 
...(54) 
where J and C are coDStants. 
The traction acnies the cylindrical siir&oe r = a vanisb«s if A and C are coimected by the equations 
^^n elii B  frequei 
I 
da \. '      /k 
On eliminatiuj; the ratio ^ : C we obtain the frequency equation. 
When the radius of the cyHndt^i- is ttmall wg may approximate to the frequency by expanding tlie Bessel's functions in series.    Ou putting 
y. (A a) = 1 - J/iV + j", h'*a\   Jj (jc'a) =^ *'o - Jk'^o*, the frequency equation becomes 
8 
h'^(l~la'U-^)+
\   pv 
(l-jaV*"*) 
(^^)''«('-s;l- .V... 
+ V*' (I - |aV«)aA'«(l - ja'/i«) - 0. It is eai^ily seen that no wave-motion of the type in question cau be found by putting ie' = 0.    Omitting the factor «'a and the terms of oi^der a", we find a first approximation to the value of p in termn "f y in the form 
p = y^/(E!p^  .(65) 
where E. =^(3\ + 2/i)/(X-»-^), is Young's modulus. The waves thus found are " longitudinal" and the velocity with which they are propagaiefl alcuig the cylinder is -^{Elp) approximatoiy*. 
When we retain terms in a^ we find a second approximationi* to the velocity in the form 
p = y^{Elp){\-\a^n^) (56) 
where a, =|\/(\ + /t), is Poissou's ratio, 
• Ct Lord RayWifih. Thtoty o/Sound. Chapter VH. 
t The iceolt is due to L. P^MiIihknittiAi, Ji>c. ri:. p. 27o. It wsg found independeatl; hj C. ChrM, Quart. J. of Math., vol. 21 {IBBG), aod extended by him. Qimri. J. of Math., *o1. 34 (1990}, to caeea in which the iiornial fieotion of the cylinder ie not ciroular and tli« tnnt^rial is Di>t Uotrupic : in these ca»e« the term t^^* of the abore exprMoiun (5t)} i<i replaood by it't^K', wher« « ii the radiuii of {[ytation of the cylinder about the line of ceotiM of tha 
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        278 LONGITUDINAL AND   FLEXURAL [CH. Xtl 
When the cylinder is teniiicated by two plane soctiona * = 0 and s = i. and these sections are Iree from tmction, sz and er must vanish at 2= 0 and At t = L    We find for the values of tz and <r at any section the expressions 
Now we can have a solution of the form 
f .  dJt(h'r)    nir ^   . . .   ' 
sin -J-cm (p^t + e), 
,^=[7^„y.(Vr)+o.f-^.^^':^H
COS —i— C08(jJn' + e), 
...(57) 
in which the ratio A^ • C^ is knovn fn>in the conditions which hold at r = a, 7 has been replaced by 7iv/l, and pn is approximately equal to {nwjl) *J{Ejpi) when a  is small compared  with /.     Thiu fu>hitioii   HatisHes the condition 
2< = 0 at x = 0 andat«=^but it does not satisfy the condition tr = 0 at 
these Burfeces,     Since, however, rr = U at the surface r = o for all values 
of z, the traction zr is very small at all points on the terminal sections ff = 0 and z = I when u is ^maU rompareci   with /. 
If we take «* to contain cos(niri/0. wid tt, to contain — sin(nirr//), the other factors beinj» the same us before, we have a solution of the problem of longitudinal vibrations in a cylinder of which tbo centres of both ends are fixed. 
202.   Traasverse vibrations. 
Another interestinj; sohition of equations (42) can be obtained by taking «r and Ht to be pniportiniial to ci>s^, and Mj to be proportional to sin A Modifying the notation of (47) in Article 199, we may write 
«,= {7co8^e*='"^p".    ?i,= Tain 0&*y'*pf',    «,= H'co8^6*«"+-p*' (58) 
where £7, F, W are functions of r.   Then we have 
2w, = - sin tf *"r'+i=*> (}l^tyV\, 
2«,»    COB0If T'+»-i ^7U - ~\ , 
2w,^    sintf e"T'+p" f^+Y^+!/.]. \hr     r     r i 
.<59) 
201, 202] 
VIBRATIONS OF A  CIRCULAR  CYLIKDER 
279 
From equations (42) we may form the equation a'A    15A    A 
.(60) 
where h'* is givcu by the  first of equations (53);   and it follows that  A can be written in tlif- form 
A = -^|-   AMh'r)cos6t^^y^^ ((]1> 
where ^ is a constant. 
Again, we may form the eqnation 
^vbich, in virtue of (45), is the same as 
.(62} 
where «'* is given by the second of equations (52).   It follows that 2w, can be written in the form 
2«r, - k'^CJ, {ic'r) sin tf e"»'-^, 
where C is a contjtaiit. 
We may form also tht equation which, in virtue of (45), is the same as 
.(68) 
h 
.(64) 
In this equation 2vj has the value given in (63), and it follows that 2vrr can be written in the form 
2„, = |,,(??i^) + ,££i^(^'')|,i„9e..,.^^. (6J) 
where B is a constant.    The equations connecting the quantities U, V, W with A, Wr, w, can tlien be satisfied by putting 
i;=     A'^^^By'^^^'Uc'^^^l 
dr 
&r 
7     „ dr     ' 
(66) 
r r 
W- tAyJ,(AV)-iBk'J^(*V). 
T^ien these forms for U, V, irare snKstituted in (58) we have a solution of equations (42).   Since Upsin ^+u^costf vanishes when r = U, the motion 
sso 
Fl.RXrnAT, VIBUAnONS OF A  OrLINDER 
[or. xn 
if points on the axis of the cylinder takes place in the plane containing^ the IDstrained position of that axis and the line from which ff ia measured; and, since u, vanishes wheu r= 0. the motion of these points is at right angles to the axis of the cylinder. Hence the vibrations are of a " trunsveree " or "flexural" type. 
We could form the conditions that the cylindrical surface is free from traction. These couditiuns are very complicated, but it may be shown by expanding the Bessel'ci functions in series that, when the radius a of the cylinder is very small, the quantities p and 7 are connected by the approximate equalion* 
iJ»«iaY(^H     (67) 
where £ is Young's modulu.^. This is the well-known equation for the frequency pj2iT of fiexural wave.** of length ^-rrty travelling along a cylindrical bar. The ratios of the constants A, B,C which corroepuud with any value of 7 are determined by the conditions at the cylindrical fiurface. 
When the cylinder is terminated hy two normal sections z = 0 and « = /, we write mjl for the real positive fuurth root of Ap'f/ja^E. We can obtain four forms of solution by substituting for ly in (52). (58), (66) the four quantities ± mjl and ± tm/l succcysively. With the same value of p we should have four sets of constants A, H, C, but the mtios A : B : C in each 
set would be known. The couditious that the slress^componenls 2Z, z0 vanish at the ends of the cylinder would j'ield suflScient equations to enable us to eliminate the constants of the types ^4, B, C and obtain an 
equation for p. The condition that the stress-component zr vanishes at the ends cannot be satiafled exactly; bnt, as in the problem of longitudinal vibrations, it is satisfied approximately when the cylinder is thin. 
" Cf. Lord lUylcigh. Th^an/ 0/ Sound, Ohnpter VIII. 
CHAPTER Xlir. 
THE  PROPAGATION OF  WAVES  IX  ELASTIC SOLID  HEDIA. 
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        203. Thb solution of the equations of free vibration of a body of given form cou be adapted to .satt.'sfy any gjveti iuitial coiulitiotis, when the frequency etjuation has been solved and the normal functions determined; but the account that would in this way be given of the motiuii that ensues upon some local distiirbanco originated within a body, all points (or some points) of the boundary being at c(Mislilerable distances from the initially disturbed portion, would be difficult to interpret. In the beginning of the motioD the parts of the body that, are near to the boundary are not disturbed, 
the motion is the same as it would be if the body wyn- of urdiniited t. We accordingly consider such states of small motion in an elastic '•olid inedinra, extending iudefiiiitely in all (ar in some) directions, as are ab some time restricted to a limited portion of the medium, the remainder of the medinui being at rest in the unstressed state. M'e begin with the case of an isotropic medium. 
204. Waves of dilatation and waves of distortion. The equations of motion of the medium may be written 
If we difTerentiate the ]eft:-hand and right-haiid meuibera of these three 
»equations with respect to x, y, s respectively and add the resulta, we obtain the equation 
(X+2^)V»A-p|^. 
(2) 
If we eliminate A &om the equations (L) by performing the operation curl upon the left'haud and right-hand members we obtain the equations 
a* 
/iV' (ar,, v^, 9^) = pK^ (.«T,, Wy. w,). 

        
        [image: Picture #117]
        

        .(3) 
282 
PBOPAQATION  OP WAVES TRROUOH 
[CU. XIII' 
If A vaaishes the equations of motion become 
(5» 
mV»(«, V, w) = p^^{u,v,w). 
.(4) 
If Vg, w„, w, vanish, so that (u, v. w) is the gradiect of a potential ^, we may put V*^ for A, and then we have 
In cltis case the equations of motion become 
^1 
Equations (2), (3), (4), (5) are of tho form 
.(5) 
■(«) 
for A, f* has the value (\-\-2fi)!p;  for w»,...  it has the value /t/p.    Thft] equation (6) will be called tlii; "characteristic equation," 
If ^ is A fiinctiou of (and of one coordinate onlj, say of x, the equatioD (6) beoom« 
which Tuaj be integrated in the form 
/ and F donolUig arhitrory fuiictioos, and the sohittou reproiMiiitti piano wa\'c« prupngatcd'' with relocity c If 0 ia a function of t and r only, r denoting the nidiua vector from » Eiied point, the equAtJou tukai the forui 
whidi can 1ki integmted in the form 
■r J. J. t 
and again the solution repreaents waves propagated with votocitj c.   A fuootian of the form r"'/(r-c() repreaenta iqihericftl wavw diverging from s source at tho origio of r. 
Wc loam that waves of dilatation involving no rotation travel throup:h the medium with velocity [(X-t-2/i.)/p[*, iind that waves of distortion involving rotation without dilatation travel with velocity \plp]K    Waves of these two type8   are  sometimes,   described   as  " irrotational"   and   " equivolnrainal "j respectively*. 
■ l^td Kolrin, F'hit. Maff. (S«r. 5), rel. 17 (1H90».    The rrsuH that in an iaotropie solid are two lypet uf wawa prupa^t^-il wiUi different veloeitiftn is due to Foiifton.    The recognition tb« irroUtioual ncd equifoluminal clianMUra of the two Ijrpca of wav«« is doe to 8«okea.    Bee Introdnctitio. 
204, 205] 
AN  ISOTROPIC SOLID   UEDIVM 
S83 
If plane waves of any type are propagated through the medium with any nty c we may take u, v, to to be functions of 
in which I, m, n are the dtrectioD coaines of the normal to the plane of the waves. The equations of motion then give rise to three equations of the type 
where the accents denote diflfereutiatiou of the functions with respect to their argument.    On elimination of it*', «", w" wtj obtain an equation for c, viz.: 
CX + 2M-pc»){jtt-pc7 = 0 (7) 
showing that all plane waves travel with one or other of the velocities found above. 
205.    Motion of a surface of diBoontinuity.   Rinematioai oonditions. 
If an arbitrary sma!i disturbance i? originated within a restricted portion of an eliistic ^lid medium, neij,'hbouriu^' portions will soou be set in motion and thrown into state.'* nf strain. The portion of the medium which is disturbed at a Bubsequeiit tustant will not be the same as that which was disturbed initially. We may suppose that the di^^turbcd portion at any inataut is bounrlerl by a surface S. If the medium is isotropic, and the propagated disturbance involves dilatation without rotation, we may expect that the surface *S will iriovt; normally to itself with velocity [(\+ 2^)/p|*; if it involves rotation without dilatation, we may expect the velocity of the surfia-ce to be (WF)*- ^^ assfume that the surface moves normally to itself with velocity c, and seek the conditions that must be Mttstied at the moving suriace. 
On one side of the surface S at time ( the medium is disturbed so that thi-re is displacement (u, v, w); on the other side there is no displacemvtit. We take the velocity p to be directed friim the first side towards the second, so that the disturbance spreads into parts of the medium which previously were undisturbed. The di-splacement (u, v. w) is necessarily continuous in crossing S, ami it therefore vaaiishes at this moving surface. Let the normal t-) S in the direction in which o is estimated be denoted by v; and let s denote any direction in the tangent, plane at a pnint of S, so that s and v are at right angles to each other. Since u vanishes at every point of S, the equation 
i- cos (a;, *) + 5- cos (y, *) + 5- cos (*, 5) = 0 
holds for all directions e which satisty the equation 
cos (x, ff) cos (x, v) + cos (y, s) cob (y, v) + cos (i. s) cos {x, v) = 0. 
264 PROPAOATION  OF  WAVES  TUROUOU [CII. XHI 
It follows that, at all points of S, 
COB (x, v)    coB(y,»-)    cos(«,i')    Bv 
Again u = 0 is an equation which holds at the moving suHace S, and this i equation must be satiBfieil to the first ordtr iu  St when for a,i/,t,t we 
siiliStiiute 
«? + com(x,ir)Bt,   y + ccim(y,v)H,   s + coos{z,v)Bt,   t + St It follows that at every point ol .Sf we must have 
^+c|co«(«.i.)g^ + co«(y,i.)^'~ + cos(r.i')~|=0 (9) 
On combining the equatiaiiR (a) and (9) we find that the folloving^ equations most huld at all points of S:— 
du/dx          duidy          duj(i£        3u _ _ 13u co8{«, i')™coe(y,i')    co8(j,v)     dv~    cdt 
Exactly similar equations hold nith v and w in place of u. Id these equations the differential coefficientu of «.... are, of course, to be calculated from the expressions fur u,... on that side of .S ou which there is disturbance at time t 
206.   Motion of a surface of discontinuity.   Dynamical conditions. 
The dynamical conditions which bold at the surface S are found by cousideriug the changes uf niouieiitum of a thin slice of the medium m the immediate ncighboiirhooil of S.    We murk out a small area BS of S. and consider the prismatic element of the medium which is bounded by S, by the normals to iS at the edge of Ss and by a surface parallel to S at a distance cBt from it,   lu the shurt time ht, this element passes IVutn n state of rest without strain to a state of motion and strain corresponding with the displacement' (u, r, u<y     The  change   is  effected   by   the   resultant   traction   8cn««3   the boundaries of the element, that is by the troctioik across BS, and the change of momentum is equal to the time-integral of this traction.    The traction in question acts across the surfane unrmal to v upon the matter on that side of: the surface towards which v is drawn, so tlint its comp<tneuta per unit of area are —X,, — Y,, — Z,.    The resultants are <ibuiiued by multiplying these by &S, and their impulses by multiplying by S^    The equation of momenluin is' therefore 
from which we have the equations 
"'(l^'li'l)-'^-^.^* <») 
205-207] 
AN  ISOTROPIC SOUD  MEDIUM 
386 
In these equations dafht,... Ant\ Xy,.., are to he calculated from the Tftliiee (>f «,... on that side of 3 oa which there is disturbance; and the equations hold at all points uf iS. 
In the case wbere tbero h motion and strain on both sides of tb« sur&ce 5, bat the diaplAcemcnttt on the two sides of S arc «rprc8«ed by different formulse, we may denote 
tlieiu by (u^, »[, If,) and («j, r.j, ir.j].    At aU iwJiite of S the dispIaccmcDt niiist be the 
SAtoe whether it in cakiculatod from the expKwsiori* fur «,,... or from thooc for n^ 
We may prove tlmt the vuIuch itt S of tho ditforcntiat cooBicicDtM of »|,... aro connected by eqtt&tionH of tho tyiw 
?«,     hu    dv.    ?«j    ?U]     ?Mj 
cm\[s, v)    co«(ytk)    ooH(i, v)     cv      cv        c\«""3r/' 
with similar equations iu which u is re])laced by v or by w. If we denote the tractiorui oalculnted from («,, v^^, w,) by ,\V'', ... and those calrnlnteti from (k,, b,, u^) by ..V,''', ... we may show that tho values at S of thenfi qnantitien and of cujdt,... are connocted by the equatione 
207.   Velocity of waves in iaotropic medium. 
If we write l, m. n for the direction cosines of v, the equations (11) become three eijuations of the type 
"which the right-hand member may also be written in the form 
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        equations hold at the surface S, at which also we havo nine equations tile type 
diB~    G   dt' 
386 
PROPAOATION or WAVES THROUGH 
[CH. XUI 
and. OD oliminating dufdt. dvjdi, dwjdt irom tbis and the two similar eqaations. we obtain the equation (7) of Ai-ticle 201. The form (13) and the equations of type (14) show that equation (12) may also be written 
3"    /-k . o \j/^ . 5" . *^"'\ Z^"    ^"^ ■       f^    ^"'A    f,a\ 
Hence it follows that, when the rot&tioD vanishes, we have three equations of the type 
pc* 
dt 
(X+if.y^P^^+i.n^^^ln^j 
from which w« should  find  that /3C^=:X + 2/a;  and, when  tho cUlatation vanifihcB, we have three equations of the type 
pC^ = ^|(m'+n')^^-;m^^-i«-g^[, 
from which we should tind that p<f'=fA. 
These results show that the surface of discontinuity advances with a velocity which is either |(\+2/i)/p|* or {fifp)^, and that, if there is no rotation, the vulouity is necessarily ((\+ 2«)/p}*. aud. if there is no dilatatioa, the velocity is necessarily {ti-lp)^
208.    Velocity of waves in eeolotropic solid medium. Equations of the types (10) and (11) holJ whother the solid is isotropic or The former give the six eijuatimis 
not. 
eyy = — m 
(17) 
in which the dots denote differentiation with respect to e, and I, m, n are written for cos {x^ v)     The equations (II) can be written in such forms om 
— pcu = I ^^^- + m ^-    + n 
dta 
Be. 
xy 
de. 
.(IS) 
where   IF denotes the straiD-euergy-function  expressed   in  terms  of the components of strain. 
Now let f, f}, ^ stand for d/c, tf/c, ib/c. Equations (17) ai-e a linear substitution expressing e„,... in temm of f, ij. ^. When this subnititution is carried nut W becomes a homogeneous quadratic function of f, tj, f. Denote this function by 11. We observe that, since e^, e„, c,,, are independent of f, we have the e(|uatiun 
an       -ow     ar    dw 
H 
Be, 
'»» 
^. 
207-209] 
AN  JlOLUTROPIC SOLID   MEDIUM 
287 
.(19) 
= 0. 
•(21) 
I 
and we have similar equations libr dUjdv and dUld^.    Hence the equatione of type (18) can be written 
Now auppose that 11 is given by the equation 
n = H>^.?+^»'?' + >*£:'+2Xa.7r+2x„5:f + 2\.,f,,], (20) 
tben the equations (19) show that d* satisfies the equation 
X|i,      Xgg — p(r^       \„ 
Since f, ij, if are couoccted with e„,... by a real liucar substitution, the homogeneous qundratic function 11 is necessarily pjsitive, and therefore equation (21) yields three n-al pnsitive valuas for c'. The coeflScients of this equation depend upon the direction {I. m, w). There are accordingly three real wave-velocities answering to any diieetion of propagation of waves*. 
The abore investigation i» effectively du« to E. B. Chritttoffetf, who has givou th« foUowiDg method for the formation of the function n :—Let the nix c(>mi>onent8 of stnilu 'jBi *fwi •■• 'ju '* denoted by j;^, x^,... j-,,; and let o„ denote the form 
in wKicb C], s^,... have no c|uai]titativ« meaning, Init c,* i» to bo replac^Kl by Cj,, C|0], \>y c„ and BO on, c„, c,s,... being the coefficients in tbc Htrain-cncrgj'-function. Then we luay writ© 
Again, let X,, X,, Xj \tG downed by the symbolical ^nations 
then ve have -<«-X,{+Xjij+Xjf,    ir=(X,{ + Xj,f+XjO', 
and tliorefore the oooffioients X,p ... in the fimction n are to lie obtained by squaring the ibnn X|f+Xj^ + Xjf, or we Jmve 
209.   Wave- surface s. 
The envelope of the planu tr+niy-i-ju=<! (29) 
in whioh 0 is the veJncity of pr»|]agati()n of wares in tlio diniutioii (/, nt, n) ta the " wavesurihoe" belonging to tho mtidiiin). It w tho siirfiicc bounding tbe ilititurbed imrtinn of the medimu nflor the la]me of one unit of time, bo^'iunmg at an instant when the dii«tiu^anoe is confined to the immcdiato noighbourbood of the origin. In the cut^e of laotropy, tf is iude^eDdetit of I, »i, n, and t» givuu by the oqiution (7); in the caae of 
* For a ^neral Oisctusion of the tbi<.t> types of waves we may r«fer to Lord Selviu, Baltmore LeetuM, London 19(M. 
t Am. iii Ifaf. (8«r. 2). t. 8 (1877). 
£88 "^^^M        WAVK-SURFACKH [CU. XUl 
leolotropy o is a ftiuction of /, fa, n given by the eqimtioa (21).    In the general case the wave-tiurface in clearljr a tmrface of three slieetd, cotrespoDdlDg with the three raluee of c^ which are rouitt uf (SI).    Id the com of isotropj' two of the sheets are coincident^ and    . all the sheets are coDcentric apherea ^M 
Oreoa* observed that, in the general cane of vodloinupy, the three [lomible directional of dilfplacement, imswering to the three velocities of propagation of plane waves with i^| given wave-normal, are parallel to the priacipal axea of a certain ellipsoid, and are, therefore, at right anglet to each ocbcr.    The eUiiwoid would b« oxpre«ae(i in oiir notation hy the    ' eqiutioQ (Xi„ X^t ■• Xu) (x, y, E)'=coii9t.   He showed that, when If has the form aH 
iA («„+V+'»)'+4iC<,.'-'4«„0+iJ''('-^-4«.«„}+i^('-^«-4«„«„), (23) ^ 
the wavo-«ufiK)c i» made up of a sphere, oorreMpondiDg v/itli the i^iropagation of waves of irrotatiooAl dilatation, Aiid Freanel's wave-surface^ riz.: the envelope of the phmc (23) aubjeot to the condition ^H 
?^,+«.-1^>+?=V'- <"'■ 
The two sheets of this surface correspond with the propagation of waves of equiToluminfl^f distortion.    Qreen arrivod at the above expression for IK &» the most general whioh woul^f Allow of the- jm>iiftgAtioiL of purely transverse plane waves, i.e. of wavoi with dlsplacemeot pimilk'l to tlie wAve-fronhi. 
Green'H formula (2.1) for H' ia included in tha funuula (IC) of Article 110, viz.: i\r=(.A, B, C, F. y, i/}(r-„, r„, «„;^ + Xe„» + jf<.«* + .\V, which chamoterizeH elastic sohd  media hnviiig throe orthoguual  planes of »t, To ohtuin Green's formula we have to put 
A=B^C,   F=A-tL,   C-.4-2Jf,   ff~A~iN. 
It i» noteworthy tliat these relations are not satiafiod in cubic crysiaht 
Or«feii'H funuultt for the strain-energy-fuiictiori contains the slmJii-couiponeata onljfj the notion of a medium for which 
ir=2(ior,»+Jf;ff,''+J"!r,«)  (26) 
was introduced by MacCuUaght.   The wave-aurface is Fresnel's wave-surface. 
bord Rayleight, following out a suggestion of R^inkinc's, has diacussed the projxigatic of wavw in » medium in which the kinetic energy has the forroi 
///^[-(s)'--©'-"-©]-^^ «« 
white the strain-energy-function baa tiie form appropriate to an isotropic oUstic solid. Such a metlinm is said to exhibit "leolotropy of inertia." When the medium is inuotuprcssibte the wave-aurfikce is the cii\'«[opo of the plane (2S) aubjoct to the couditic 
s. - + 3 +T -==0;  (S 
e^Pi-**    «V|-M    o*ft-/» ^ 
it is the first negative pedal of FrMuel's wave-surface with respect to ita coutra. 
* 'On tbc propagAtiOD ot li^ht in cryniaLllzitil m(.'dia,' Carubridge Pkit. Soe. Trang., voL (1B89), or ilatlttmalicnl I'aptrt, Loodou 1871, p. 2<J3. 
f *An <5iwB7 tuwurdti a dyiiiuntoal theory uf ciysUdUne rcfiexion and refraeUoD,' 0*iblir Trwu. B. Irith Acad., vol 31 (ld39), or CotUcttd iVork* of Janus MacCuUagh, Dublin p.  146. 
t 'On Double lUfractioa/ Phil, a/rtjj. (S*r. 0. toI. -11 (1871), or Scie»Ui;I« Ftpfn, vol. 1,,J CaiDbnd«e 1899. 
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The ai»e whore the unorgy-ftinctinn tif the medium is a function of the comijonente of rotation 08 well an of the Btrain-crHiipoiionta, so that it is a honn>geiieoiw quadratic fimc
-v ** '^ 
tion of the nine qunntitiea .   ,   j-,   y, ■•■, ha* been discussed by H. M. Mftcdonald" 
The meat general form which is admisasblio if transvorac wiivca arc to bo iiropag&ted iadepeiideiitly of waves (^ (iilntation is nhown to laad to FreHnel's wave-surfFice for the transreise wavea 
Tho still more general case in which there ia fo^IotKipy of inertia a^ well as of clfmtic quality has lieen invpatigatpd by T. J. TA. Bnniiwicht- It appoarH that, in this ciwe, the requirement that two of tho waves shall be purely trsmsverse does not lead to the same reflillt an the ref|Uinfment that they Rhall hp purely rotational, although thp two reqiiirenient« do lead to the tuime renult %^'hen the ojolotrnpy drw^s not aJToot the inertia. The wave-fiurface for the rotational waves iti derived from Freanel'a ware-nurface by a bomogeueoufl strain. 
210.    Motion determined by the characteristic equation. 
It appears that, even in the cn-te of an isotropic solid, much complexity is introduced into the question of the propagation of disturbances through the flBplid by the possible co-existence of two types of waves propagated with aifferont velocities. It will be well in the first instance to confine our attention to waves of a single type—irrotational or ecjuivoluminal. The ntotion ia then determined by the characteristic equation (6) of Article 204, 
viz. a»^/a(»=c*v>. 
This equation was solved by Pois-son* in a form in which the value of ^ at any place and time is expressed in terras of the initial values of ift and dtfifdt. Foisson's result can be stated as follows: Let <Pa ^nd ^p denote che initial values of i^ and d(f>!dt. With any point {x, y, t) aa centre describe a sphere of radius c^ and let ^^ and ^^ denote the mean values of ^ and i^g on this sphere. Then the value of <^ at the point {x, y^z) at the instant t is expressed by the equation 
^ = |w + (?. 
di 
.(28) 
If the initial disturbance is confined to the region of spaco within a closed surface So, then ^^ and ^„ have valne-s dilTerent from zero at points within S,, and vanish outside i„. Taking any point within or on £, a& centre, we may describe a sphere of radius ct; then the disturbance at time t is confined to the aggregate of points which are on the surfaces of these spheres. This aggregate ie, in general, bounded by a surface of two sheets—an inner and an outer.   M'hew the outer sheet reaches any point, the portion of the medium 
* Lotxdon Math. Hoc. J>nK.. toI. 32 (11100), p. 311. 
t l.mdm Math. Soe. Proe., vol. 34 (1902), p, 307. 
Z Patit. Mtm. de i'ltuUtut. t. 3 (1820). A simple pmof was given by Liooville, .T. dr Math. ILUiuvittf), t. 1 (1856). A BymboUcal proof ia given by Lord Itayleigb, Theory of Sound, Chapter XIV. 
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which is close to the point takes suddenly the small strain and velocity implied by the values of 4> &nd dtftldt; aad after the inner sheet passes the point, the same portion of the medium returns to rest without strain*. 
The characteristic equation was solved in a more general manner by Kirchhofff. Instead of a sphere he took any surface S, and instead of the initial values of ^ and d<f>ldt on S he took the values of ^ and its first derivatives at points on S and at certain instants previous to the instant (. If Q is any point on S, and r is the distance of Q from the point (x, y, z), the values of <^ and ita first derivatives are estimated for the point Q at the instant t — rfc. Let [^]>--- denote the values of ^,... estimated as stated. Then the value of ^ at the point {x, y, «) at the instant i is expressed by the equation 
where v denotes the direction of the normal to iS drawn towards that side on which {x, y. s) is situated. 
Kircbhoff's fonnula (29) may bo obtained very simply t, by substituting t — rje for t io ^{x, y, (, t\ where r uow denotCM the diuUtiicc uf {x, y, i) Troiu the origiu. Denoting the funcLiuu ^{x, y, t, t-rjc) by ^ (jt, y, i, (). w niay tthow that when ^(r, y, ^ /) satisfitii tbacb&racteriatic equ»tioR (6), ^ Hutisljw the eqiuitiuu 
V*^ + 
-4{J^)4(i^)]
■00) 
If this equation holds thmu^linut the reginn within a. L-loiiecl tturfucc 8 which does not contain the ongiri, wu ititc!grato tlie left-hand mrmlx^r oF this equation through tbe volumo within S and tmuttfurm thu vohime lateral into n nurftoe integral, thus obtaining tba equation 
Tf now [(^],... denote tbe valuiw of <^... at the ioBtant t~rjc, thin equation is the Hamo M 
jji^^v-m-mm"''^' 
taaxxj 01 U easily proved. 
a;
Whfin the nrigin is within the surfaco >S^ we integrate the ]f>ft-bftrid member of (30) throi^b the volume contained bctwwii S iiiid a small sphere J with it« centre at tbe origin, and jnaa to a limit by cuutmcting the mdiiiR of £ indetlntuOy. Wo thna find for tbe >'a]ue nf if> at the nrigin thu fonntila {29), and tlie fMxue ftirmuln gives the ralne of <p st any point 
' Cr. Stokee, ' Dynamical theory of aiffniolioc,' Cambridge Ph{L See. Tram., »oI. It (IdiO). or ifalh. and Phyt. Pupfm, toI. 2, ji. 'J43. 
Y ^tiit. Phjfi. Chan. {H'ifdemann), Bd. 16 (1883).    See sIho KirehhoS, VorUtunfen fiiwr mUA Phjftik, Oplik, LeipziR, 1891. 
: cr. Deltrami, R>mt, Aee. Lineei SmuI. [Bet. S), i. i {IHW). 
ukd iuAtAot. The fonoiila holda for a region of sptice bouoded internally or extomally hy a. closod surface S, providod Ibat, at oU iiutAtits which come into conaiderBtioD, ^ atkL its firat ilerivatires are continuouB, and ite necoiid doriratireH are finite and are connected by ui)iutt.iuti (6X at all poiutM uf ttiv region*. In uuto tbo rvgiou in uutaide S, <ji uiuhI tund to zuro al iuttnitu distauccs lo the ordor r~^ at least. These uonditioiiH may Bo esiiroesed by saying tbut all tliu sourcea uf disturbance are on the aide of S remoto from {jc, y, z). 
KirchhoflTs fomiula (S9) can bo shown co jacludo PoUson'sf.   The formula may oisso be written in the form 
*=mm--m-^- <-' 
where r- ( - ) is to be formed by firet substituting t—r/c for tin (j> aiid tben diflbrontiat
ing aa if r wuro tliu only viiria.li<k> qiuuilLty i^i [<J>]/r. TItc forititila [31) in aii aimlo^ti of Green's funnula [7) of ArtiL-le 15B. It can bo intt-riireted in tlw statecuent that tb« value of ^ at any jiouit outside a closed surface (which encloees all the aourc-ea of dis* turbance} is the same as that duo to a cortain distribution of flotitious sources and double sources on the surface. It is easy to prove, in the luaimer of Article 124, that thi; tuotion taiide or outside S, that is due to given initial conditions, i» uniquely detennined by the values nf either (ft orc/pfdv at S. The the'>rcm cxpi^eascd by equation (31) can be deduced firom tbo properties of HU[ierfic-ial di»tributionH of Hourccn aiiJ dmiUo sources and the theorem of uniqueness of solution J. 
211.    Arbitrary initial conditions. 
Whftn the initial tronditioos are not 8uch thai the (iisturbanct! is entirely irrotntional or equivoluminal, the results are more eomplicatL-d. Expreasiona for the components of the displacement which arise», at any place and time, from a given initial distribution of displacement and velocity, have boon obtained§, and the result may be stated in the following form :— 
Let (tf,,r,, Wtt) be the initial displcicement, supposed to be given throughout a region of space T and to vanish on the boundary of T and outside T, and let (u„, Vo.iba) be the initial velocity supposed alao to be given throughout T and to vanish outside T. Let a and b denote the vehicitie.^ of irrotational and equivolutninal waves. Let 8, denote a sphere of i-adins at having its centre at the pi)int (x, y, z), and iS^ a sphere of radius bt having its centre at the same point. Let V denote that part of the volume contained between these spheres which is within T. Let r denote the distance of any point (y, y'.x') within r, t>r on the parts of *?, and S.^ that are within T, from the point (x. y, z), and let 9^ denote the initial displaceaient at (a/, y",«'), and q^ the initial velocity at the game point, each projected upon the radius vector 
* For thv cmBe where there is a moving aurfaoe of dijioontinoity ouUide S, me a paper by the Author, Loii'hm Math, Soc. Pntc. {Ser. 2), vol. 1 (iUOl), p. 37. 
■f- See my papor jnat cited. 
J Cf. J. Lannor, London Math. Soe. Proc. (fi«. 2}. vol, 1 (HUM). 
} For referenoea see Introiluction, ]>. 18.    Kcfuieiico maj bIeu be made to u ]>ni)er b>- Uie Atrthor in London Math. Soe. Proc. (Ser. 2), vol, 1 (1004), p. 291. 
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r, supposed drawu fiom (x, y, s).    Tbeu the displacement u at (x, y, i) at the instaut t can be writt«u 
dr 
'hxdy 
.+ r 
-^((i, + u,+ r^)jdS, (32) 
and siiuilar expressions for v and to can be writteu down.   The sur&ceintcgratioDS extend over Uie parts of $, and jS, that arc within T. 
The dilatation and the rotation can be calculated from these forraulse, and it can be sliowii that the ililatatioa in entirely conBned to » wave of dilatation propagated with velocity a, and the rotation to a wave of rotation propagated with velocity 6. If r, and r, are the greatest and Itjast distances of any point 0 of the medium from the boundary of T, the motion at O begins at the iastant t = r,ia, the wave of dilatation ends at the instant i = rija, the wave of rotation begius at the instant t = r.,lb. and the motion ceaaes at the instant i = r,/6. If the wave of dilatation ends before the wave of rotation begins, the motion between the two waves is of the character of irrotational motion in ao incompressible fluid*; at a distance from T which is great compared with any linear dimension of T this motion is relatively feeble. 
Tbc problom of the integration of the equations of small motion or an inotropic elastic ■olid has liCPD the tnibject of very tinmorous retHanrhea KefcrcuLn? iiiaj bo mode to the foliowiuff memuirs in wlditioii to those filn-ady dt<d:—V. Cerniti, 'Sulle vibniniiMii drf corjti elaKtici iaotroiii,' Rome, Ace. Lmcei, Mern. Ji-i. mat., 1880; V. Voltomi, 'Sur lea vibrations des corps e]a«tique» !»otroi>»,' Ada JUitlh., t. 18 (i8&4); O. Lauricella, *SuUe eqiuuioiii del luutu d«i cori>i oUHtid,' Torino Mtrn. (S«r. 2), t 45 (1895); 0. Teduuc, 'Sullo vibraxioni dci corpi MilicH oiitoj^^'nei ed i»otro[ii,' Torino Mem. (Ser. 2), t. 47 (1807); J. Coulon, '8iir llnt^gratioD de» ^q^uations aux di'iivvm i)articlle« du second ordra p«r k m^hode des canuA^ristiqiios,' I'«ris (TW**) 1002. Hadamard's treatise, Ltfoiu iur la propagaiioH <ic4 endeif Pom t^HK), alwj may bo coDWiltod. 
212.   Motion due to body forces. 
Exactly aa in Article 130 we expre^^ the boily forces in the form (A', ]', Z) = gradient of * + curl {L, M, N), and the displacement in the form 
(u, V, w) = gradient of ^ + curl {F, G, U). 
• Cf. Blokes, toe. eit. 
211, 212] 
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Then the equationa of raotion of the type 
can be satisfied if <f>, F, 0, S satisfy the equations 
aud particular soIutioQs can be expressed in the forms* 
293 
,(33) 
The values of <&, Z,... are given in terms of X, 7, Z by the equations (7) of Ai"ticle ISO, and the integrations expressed in (33) can be perfonncd. 
Taking the case of a single force of magnitude x (*). acting at the origin ia the direction of the axis of x, we have, as in Article 130, 
V      a) inp 
where R denotes the distance of (a/, t/', z) from the origin.   We may partition ,Bpftce around the point («, y,«) into thin sheets by means of spherical surfaces having that point as centre, and thus we may express the integrations in (33) in such fonoa na 
where dS denotes au element of surface of a sphere with centre at (.r, y. «) and radius equal to r. Now JJ{dR~\'?x') dS is equal lo zero when the origin is inside S, and to ^rvr^ (dro'^ldx) when the origin is outside 5, ro denoting the distance of (x, y, z) from the origin. In the former case r^ < r, and in the latter r, > r. We may therefore replace the upper limit of integration with respect to rhy r,, and find 
* 4ira'p   dx J^   ^\~a/ 
Having found if> we have no ftirlher use for the r that appears in the process, and we may write r instead of r^, so that r now denotes the distance oi(x, y,s) from the origin,    Then we have 
1   dr-^ 
4> — 
4nrp dx Jo 
'-["t'xit-ndtf (34) 
* <^ L. Lorens, J.f, Math. {CretU), Bd.Sfi (1881],or (Euvra ScientiJ^qua, i.2 (CopeoIugsD, 1899), p. 1.    S«e ftlso Lord Ra>-leigb, Thtw]t of Hound, vol. 2. % ^76. 
294 MOTJON  DUE TO VARIABLE  FORCES 
In like manner we should find 
[cu. xiu 
« = 
w 
The ditjplttcemenl dae to the force ;^(() is given by the equatioiui* 
1  9»r-' r'i\.   .^    ., .^ ,     \    drdr\\     /      r\     1     /     r\\ 
.(35) 
(36) 
^('-D}• 
.(37) 
ai3.   Additional results relating to motion due to body forces, (i)   The diUtotion ttrid rotation calctilateil fnini (36) are glvoti by the cquutioiis 
(ii) The expreKsions (36) reduce to (II) of Article 130 when j^(f} is repUced by a constaut. 
(iii) The tmciiona utut a spheriuHl cavity raqiiind to uiaiatain the diMpLoceineut expn-Bnn) by (3ft) are KtattaiUy ttjiiivflJeiit tt> a niiigli; fort-c i>arnllel to the axis of x, Whun the r^uliua of the cavity le (limiuixUvd iude&iutely, the iiiagnituilo uf tbo furee is X ('). 
(iv) As in Article 132, we niny find thu effbctM of various nucloi of straint. In the eaae of a "centre of comprcaaioi]" vre have, otnitting a conatant factor, 
<".-")-(£• 1.1) ^(-D) "»' 
rqireeonting irrotalional wavea of a well-known tyjie.    In the case of a "centre of rotation about the axis of t" we have, omitting a fiictor, 
<«.^-'=(4--s''')^('-0} <»' 
representing eqnivolumiiial waTca of a well-known type. 
(v) If we combine two centrcB of comppee»!on of oppoaile aigns in the bum way as two forces ari> coinbiniMl to make a "JcmbU forco without moment" we obtain irrotational waves of the tj'pe expressed by the eqimtinn 
(-.■^•)-(4'44".)i'^('-^)} (*» 
* Formula Aqtiivaleot to (36) were obtaiaod l>y Stokes, loc. tit. t For a more detailed diitouBKion, »v> my paper oiled on p. 391. 
212-214] 
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(«, V, w). 
.(«) 
If we combine two pairs of ceutrefi of rtitJitiuii about the ajccs of x and i/ and about ^imllel Axes, in the same wajr u two |iaini of foroen axe coiubiued to make a cttutre of rotatjoQ, we obtain eqmvoliitiiitial waves of tb« type 
in which tbo disphiccnipnt is cxpre^med by the wtme forruula) a» the electric force in the field amiind Hertxa fw,cilUt<nr*. LorJ Kelvin+ hns Bhowji thnt by uupcrpoaing solutions of the tyiMs (40) aocb (41) wo may obtain the effect of an oscillatiDg rigid sphere close to the origin, 
(vi)   Wbeo X CO >** ^ !uui|>le barmonio function of the time, say x (0=-'^ *^<^ P^> ^^ Bnd 
J m 
((-0*'=-s {««<;> I 
-coa^l 
^MUp 
('-0 
+ '^»lBp( 
And comiilete oxpresdioiiB for the oflucte of tho fon»« can be written down by (36}J. lo thiH ca»e we may re(;ani tLe wliule pbvuuiu^uuu tui cuuaiatiiii^ in thii propu^ati«>u of two ■traiiui of simple humonic waves with volociticis rcspoc-ti^'oly ixjiul tu a a»d f>; but tho fcruiulie (36) 8how that, in more general cjisew, the effi^ct produced at tho instant f at a poiut distant r from the t'^int r>f appliLmtion of the force doei< nnt de])end on the miuj;tiiUide of the force tit the two iiistniits t-r-n and t^rjh only, but alto on the uni^iiitiidc uf the force at intennetiiate inataTitA. It is. an if certain eft'ecifA wnro pmpagatcU with VBltK'itiett iiiterniediate between » and h, att wnll aa titc detinite effects (dilatation and rotation) that arc propagated with thote velocitiftsSi. 
(vii)   Piuticular int«gral8 of tho equations of motion under body forces which axa pni|N>rt ional to a simple harmonic ftinction of tlie time (wnttou e'''') can be exproHsed in 
tlio formn 
*' 
,-'prM 
:)//*■ 
^///--^T 
whcK! 
214. Waves propagated over the surface of an isotropic elastic solid body!;. 
AiiKMijj [jeriodic motions special importance attaches to those plane waves of simple harmonic type, propagated over the bounding surface of a solid 
* Flurts, Electric Wavu, Englieh ediLton, p. 137. For tba diflouision in rfgard lo the retolt •N W. K6nlg, Ann. Fkyt. Cfiem. {n'UdtHMnn), Bd. 87 (1689), and Lord lUjIeigh, Phil. JUaji. (aw. 8). Yol. 6 (Iflfta), p. -Af^^. 
t Phil, ilttff. (Ser. 5J, ToU. 17 and 48 ^18ll9^. 
X For the cSects of forces wbiah are simple barmotiio runctioiis ot the time, see Lord Bajleigh, kttTji of Sutittd, vol. "i, pp. 418 et »tq. 
S Cf. my paper nitoil on p. 291, anil Btokae's reeult recorded on p. S6S. 
II Cf. Lord Rajlei(jh, Lmdvn Math. Sue. Proc., roL 17 (1887), or Scienlijle Papert, vol. 2, p. 441. 
296 WAV£S   PROPAGATED OVER THK [CB. XIU 
body, which involve a disturbance that penetrates but a Uttle di:5lance into the interior of the body. We shall take the bcwly to be bounded by the pl&a« jbesO, and shall suppose that the positive sense of the axis of £ is directed towards the interior of the body. We shall suppose that the components of displacement, besides being proportional to a''*, are proportional to ^^*n\ so that 2t,V(/' + ^) is the wave-lojigth. As in Article 190, we denote p'/)/(\ + 2^) by /(* aud f)*/^//* by «'. The dilatation A satisfies the equation (V» + A*) A = 0, and since it ia proportional to g't/'+w' we must have 
A=P<-«*'0+«+'^, (42> 
where P \sf\. constant, and 
r*=/«+^-A'. (43) 
A particular integral (vi, V|, ifj) of the equations of motion  is  then expressed by the equatious 
(",> i\. w.) = (- if, - ig, r) h~<Pe-''*^ifiH"'*'^,  (*4> 
and a raoro general iiitegml will be found by taking (k, v, w) to be of the form (tti +11,, t'l + V,, w, + w,), where u,, v,, w, are given by the equations («,,»!. Wi) = (4.5. C)e-"+*lA+«+p*i,    (45) 
in which A. B,C are constants connected by the equation 
i/A+tjB-sC = 0.   (46) 
and 
^«/' + g»~K\      (47) 
The surface «^0 being free from traction, we must have the equations a A - t/^y + ^' P.    sB = iffC 4- ''f P, 
{(,-2)P-^4P-2eC=0, 
the third of which can be written 
[k- - 2 (/' + ^)] P - ^h'sG = 0. 
We may solve these equations so as to express A, B, C in terms of P. Writing 
«'»=^/(/»+^),  h''^f,y{p+ff^) (48) 
we flud 
^    «'»-2 A_B_    «''-2 + 4rs/(/'4-<?*> 
""" th"-s ^'    /- g     ' 'l}>'{l-K'np+^) ' 
aud, on substituting in (46), we obtain the equation 
(^'.-2y = 4»-s/(/'+flf') (49) 
which becomes, on elimiuation of r and s by means of (13) and (47). 
«'«_8k'«+24*'*-16<1+A'')«"'+16A''=0.  (50) 
When the material is incompressible, or A'V«''«0, the equation for k* becomes a cubic «'" — ii« * + 24«''— 16 = 0, which bos a real positive root 
214] 
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•91275... and two complex roots (3-5436...) ± i(2-2301...). Since k'/(/" + 5^ is fiuite and Ii^/k* = 0, equation (43) shows that r is real. Equation (49) shows that for tho complex values of k 
4r*/(/'+5r") = -(2-743I...) +t(6'8846...).  (51) 
Since the real part of s, as given by this equation, has the opposite sign to r, there are no motions of the type under discussion which correspond with the complex values of «'. But when we take the real root, viz. *c**="91275..., we find 
^=/'+^.   «« = (-08724...)(/' + 5''),  (52) 
and we have a wave-motion of the required t)*pe. The velocity of propagation of the waves is 
pM/' + !;')=(-9554...)vV,H     (53) 
which 13 a Httle less than the velocity of equivoluminal waves propagated through the solid. 
When the material satisfies PoiMon's conditiou (\ = ^), wo have «''/A'' = 3, and then there is a wave-motiuu of the reqiiinxl type, iu which 
«'* = '8453....    »-='-C7182...)(/> + (^).   *' = (1546...)(/*+n  (54) 
and the velocity of propagation is now 
(■9194...)V(/i/p) (55) 
Concerning the above type of waves Lord Rayleigh {he. cit.) remarked: "It is not improbable that the surface waves here investigated play an important part in earthquakes, and in the cfillision of elastic solids. Diver^ng in two dimensions only, they must acquire at a great distance from the source a continually increasing preponderance." The subject has been investigated further by T. J. I'A. Broniwich* and H. Lambf. The former showed that, when gravity is taken into account, the results obtained by Lord Rayleigh are not essentially altered. The latter has discussed the effect of a limited initial disturbance at or near the surface of a solid body. He showed that, at ii distance from the source, the disturbance begins after an interval answering to the propagation of a wave of irrctational dilatation ; a second stage of tlie motion begins after an interval answering to the prnpagation of a wave of equivoluminal distortion, and a disturbance of much greater amplitude begins to be received after an interval answering to the prop^aticin of waves of the type iuvestigatod by Lord Rayleigh. The importance of these waves in relation to the theory of earthquakes has ptM'haps not yet been fully appreciated. 
* London iVaih. Sae. Proe., vol. 20 (ISOS). 
t rhil. TraoM. Rcy. Sf,c. <9er. A), vol. 203 (ISOi). 
CHAPTER 5 
TORSION. 
215.    Stress and strain in a twisted prism. 
In Article S6((/) we fountl ti stress-s\st«iii which could be maintained a cylinder, of circulfu- i>ecLion, by terminal coupler about the axis of tl cylinder. The cylinder is twisted by the couples, so that any cross-aecti is turned, relatively to any other, through an angle proportional to distance between the planes of .section. The traction on any cross-secti at any point is tangential to the action, and is at right angles to the ptai containing the axis of the cylinder and the point; the magnitude of tl traction at any point is proportional to the distance of the point from t axis. 
When the section of the cylinder or prism is nob circular, the abo stress-system dnes not satisfy the condition that the cylindrical boundaryj free from traction. Wc seek to moiUfy it in such a way that all the conditio^ may be satisfied. Since the tractions applied at the ends of the prism aj statically equivalent to couples in the planes of the ends, and the portii of the prism contained between uny eri)s.s-*iectioii and an end is kept j equilibrium by the tractions across this section and the couple at the ei^ the tractions in question must be et^uivaleut to a couple in the plane of d cross-section, and the moment of this coujile must be the same for all crod sections. A suitable distribution of tangential traction on the cross-seotid must be the essential feature of the stress-system of which we are in sean Accordingly, we seek to satisfy all the conditions by means of a distributij of sheariiiff stress, uiaile up of suitably directed tangential tractions oit tl elements of the cross-sections, combined, as they must be, with eq^ tangential tractions on elements of properly chosen longitudinal sectiooi 
We shall find that a system of this kind is adequate; and wc can foresj to sottje extent, the character of the strain and displacement w-ithin % prism. For the strain corresponding with the shearing stress, which \ have described, is shearing strain which involves, in general, two sim| shears at each point.   One of these simple shears consisU of a relative sU 
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in a transverse rlirection of elements of ditiTerent cross-sections; this i» the type of strain which occurred in the circular cylinder. The other simple r-ftoneiats of a relative sliding, parallel to the length of the prism, of -<Hflferettt longitudinal lioear elements. By this shear the cross-sections become distorted into curved surfaces. The shape into which any crosssection is distorted is determined by the displacement in the direction of the length of the prism. 
216.    The torsion problem*. 
We shall take the geoeratui-s of the snrfiice of the prism to be parallel to I the axis of 2, and shall suppose that the material is isotropic. The discussion I in the lEist Article leads us to aissume for the dii^placement the formulie 
V = — T1/Z,    V = 7SiE,    W = T<f>,     (1) 
^where ^ is a function of jc and ^, and t is the twist.    We work out the squences of this assumption. 
The strain-components that do not vanish are e^x Etnd e^,, and these are given by the equations 
f'-=Ks=^)' ^»-=^(i-^) (^) The stress-components that do not vanish are JT, and Y,, and they are given by the e<)uation$ ,              ^-"Ks-^)' ^-=''^(1+') (»' Tlie equations of equilibrium, when there are no body forces, are satisfied if the equation ^                               a^+a7 = ^ f*> 
"holds at all points of any cross-section. The condition that the cylindrical bounding surface of the prism is free from traction is satisfted if Che equation 
B g^ = 3^co8(x, v)-xct}a(if, v)     (5) 
holds «t all points of the bounding curve of any cross-sectioa The compatibility of the boundary coiicJition (5) with the differential equation f4) is shown by integrating the left-hand and right-hand members of (5) round the boundary, and transforming the line-integrals into surface-integrals taken over the ai'oa of the cross-section. The integral of the left-haud member of (5) taken round the boundary is c(|i.iivalcnt to the integral of the left-hand member of (4) takeu over the area of the cross-section ; it therefore vanishes. The integral gf the right-hand member of (5) taken round the boundary also vanishes. 
* The theory ia due to SAiDt-Vcaani.    8ee Introduction, footnote 60 and p. 19, * 
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The tractions on any cross-section are, of course, statically equivalent a single force (which may be zero) at the origin of {x, 3/) and a couple.   Wt show that tliey are equivalent to a conpJc only.   The axis of the conple isclearly parallel to the generators of the surface of the prism.    We hare show that 
Now Ijx.dxdi/ ^ f^rjj(^£ - y) dirfy. 
and this may be replaced by 
/IT 
by the help of the differential equation (4).   The expression last written m&y be transformed into an integral taken round the bounding curve, riz. 
/*T jiT 1^ - y cos (it, 1;) 4-« cos (y. i/)j ds. 
4 
whoro da is the clement of arc of the bounding curve.   This integral vanishes in consequence of the boundary condition {5).    W© have thus proved thai 
llA'irfjFdy = 0, and in a similar way we may prove that l/}',rfjdy = 0.   It 
follows that the tractions on a cross-section are statically equivalent to a couple about the axis of z of moment 
MT//(x. + y. + .|-y|-^)i.rf3, (6) 
We have now pr^ived that the prism can be held in the displaced position ^vcn by equations (1) by means uf couples applied at its ends, the axes of the couples being parallel to the central-line of the prism. The moment of the couple when tho twist is t is a (quantity Ct, where 
C = ^//(^ + ,. + 4^-,V^^).ferf,. (7) 
The quantity C is the product of the rigidity of the material and a quantity of the fourth degree in the linear dimensions of the cross-aectiou. C is sometimes called the "torsional rigidity" of the prism. m 
The complete .solution of the problem of torsion, for a prism of any form of section, is effected when <l> is determined so as to satisfy the equation (4) and the boundary condition (5). The problem of determining ^ for a given boundary is sometimes called the '' torsion problem " for that boundary. The function <;^ is sometimes called the " torsion-function " for the boundary. 
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! In the above Doltitii>n the twisting couple in applied by moatuof traotiona JT^ F,, wbtcb are ei:pre«*ed bj (3). The i»iactical utility of the irtilutioii i» not confined to the caae where the couple is applied in this way. Wheu the length of the prisui is gi\*at compsred with the linear dimenHioDs of it« croM-B«ctioa, the solution will rt*|rmtent the stAte of the priAiD everywhere eioept in comjianitively umall jjftrtj* near the enda, whethflr the twisting couple in aiiplied in the Hpecified way or not.   [Cf. Article 89.] 
The potential energy per unit of length of the twitttcd priam is and this 19 equal to 
Now 
Hi' 
It follows that the potential energy per unit of length is JCr*. 
217.    Method of solution of the torsion problem. 
Siucc ^ is a plane hannouic tiinction, there exist* a cotijugate functioii ^ which is such that <i> + i^lr is u function i>f tliu witnplt'x variable j; + ty; and, if 1^ can be fouud, (^ can be written down by means of the equations 
^_?±   a^_   ^ 
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Fig. 21. 
^The function -f iwitififies ibe equatioa -^ + -^ = 0, at all points within the 
'bounding curve of the cro.ss-sectioii, anil a cortiiin coutiition at this boundary. We proceed to find the bouudary-conduioa for i^. 
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Taking ds for the clement of arc of the bounding curve, and absenr that, whoD the senses of 9 and v are those iudicated by arrows in Fig. cos (as, v) » dt/jds, cos (y, v) = ~ djrfds, the condition (5) may be written 
Hdy    ^dx ^   dy      dx dydsdxds    ^ds^   da' 
and it follows that at the boundary, 
V^-i(*' + y') = cwu3t (8 
The problem is thiifi reduced to that of finding a plane harmonic funct which satisfies this condition. Apart from additive constants the functioa and -yfr are uniquely determinate*. 
218.    Analogies with Hydrodynamics. 
(a)   The fnnctiona ^ and -^ are  mntheraatically identical   with 1 velocity-potential and stream-fijnction r>f a certain irrotational raotioaj incompressible frictionless ttuid, contained in a vessel of the same shape the prismt-   This motion is that which would be set up by rotating vesKel about hs axis with angular velocity equal to — 1. 
(ii)    The function >f^ — i (a^-f y') is tnathemntieally idontical   with Telocity in a certain laminar motion of viscous fluid.    The fluid flows u presHure through a pipe, and the section of the pipe is the same as of the priarnj. 
(c)    The function "^^ — ^i^ + y*) is also niathfmatically identical with streani'functioa of a motion of incompressible frictionless 6uid  circula nvith uniform spin, equal to unity, in a fixed cylindrical vessel of the shape a.*) thy prism§.    The niomimt of momentum of the liquid is equal] the quotient of the  torsional rigidity of the prism by the rigidity of material.    The veloeity of the fluid at auy ix)int is mathematically ideat with the shearing strain of the material of the prism at the point. 
In tho flualogj- (u) the vcsacl ntUitm a.s stAtod pelatively to Homc fnune rcigarda^ fiiod, and tlie asen of x anil >/ rutate with tho voa»cl. The velocity of a puticle of fluid relative to tho fixed frame in roHolveJ luto cuiuiwncnta parallel to the itiMtaatan* positions of the axes of x and y. These cotii|M>nonts wc cip/cx and i^/f*ff. Tho vclocifr the fluid rttUtivfl tn the v&iacl w utilizfid in the analogy (c). 
We may use the analog)' in the form '<i] to determine the effect of twiBting the about an aiijn when the cflect of twisting ubout any parallel Axis i^ kuowu.    Let A^ bo toraion-function when the axis meets a crosS'Section at tho origin of (.r, y); and let the torsion-funciiflu when tlie priam ia twiated alwut an axis inrallcl to the fimt, meeting the wction at a point (ar*, y).    Rotation of the* TCfocl aUiut the aeoond equivaJcntat any instant to rotation about the tirst axis combined with a certain motiod 
* The fanctiana are di>temiiaed for a nntnlMr of forms of bouiidai:y in Artielos 231, 9S3 im 
+ Kelriu aud Tail, ^at. PhiL Part ii., pp. 243 et uq. 
J J. llo[iRsfne«n, .1. <\f CTufA, {LionviXU). )S^r. 2), t. 16 )1S71J. 
I A. ti. Urae&hill, Article ' B^dromealiaaioa,' Khc^, Brit., 9th edition. 
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'tnuulatiDD. which in the aamo for at] points of the reasel. Tbi»i instantaneous motion of translation ih the motion of thu Unit axis iiridiicwi by rotation «liout the second ; nnd the (.■iini[M)ne]it velut^itieit in tbc dircctioiiH of t1iu Axes am — y und ;i/, aioce the angular 
[Telocity of Uie veesol ia -1. It follows that we niufit have r^'=i^„-jy'+ya'. The }iu|XiD«Dt disptacvinanttf &re thenrfure given hj tho equatioos 
ad tho HtrosB is tbo naniE) as in the coae where the axis of rotation piuees through la origin.     Tho turaion&l uoiiplo au<l tha potontiol eoergy alao am tho same in  tho Irtwo COMK. 
219.    Distribution of shearing stress. 
The stress at an^ poiut consists of two aiiperposecl stress-systems. In one Bystcm we have shearing stresses A% and K, of amoimtB ~ firy and fira} respectively. In this system the tangential traction per unit of area on the plane 2 = eoiist. is directed, at each point, along the tangent to a circle, having ita centre at the origin and passing through the point. There roust be eijiial taiigi'ntial traction prsr unit of area on a cylindrical surface standing on this circle, and this traction is directed parallel to the axis of z. In the second system we have shearing stresses A', and F, of amounts fizBifyidx and fird^jhy. The corresponding tangential traction per unit of area on the plane z = const, is directed at each point along the normal to that curve of the family ^ = const, which passes through the point, and its amount is proportional to the gradient of ^. There must be equal tangential traction per nnit of area on a cylindrical surface standing on that curve of the family -^ = const, which passes through the point, Jind the direction of this traction is that of the axis of z. These statements concerning the stress are independent of the choice of axes of x and >j in the plane of the cross-section, so long as the origin remains the game. 
IThe resultant of the two streas-systems consists of shearing stress with components X^ and Y,, which are given by the equations (3X If we put f-n^" + y') = ^.  (0) the direction of the tangential traction (A., 1^^) across the normal section at any point is tho tangent to that curve of the family "^ ^ const, which passes through the point, and the magnitude of this traction is jurS^/flv, where dv is the element of the normal to tho curve. The curves ^ = const, may be called "lines of shearing stress." 
I      The magnitude of the resultant tangential traction may also be expressed by the formula -{(i^-^^(i-)r <-> 
and this result is independent of the directions of the axes of x and y. If we choose for the axis of j a line parallel to the direction of the tangential traction at one point P, the shearing stress at P will be equal to the value 
I I 
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at P of the iunction /ir (d^/'clr — j/), and the x-component of the traction at any other point Q will be equal to the value of the same function at Q. Now this function, being hnrmonic, cannot have a maximum or a miniinura value at P; there is therefore some point, Q. in the neighbourhood of /*, at which it hat) a greater value than it has at P. Thus the jr-couiponent of the traction at some point Q near to P is greater than the traction at 7*; and the traction at Q, must therefore be greater than that at P. It follows that the shearing stress cannot be a maximum at any point within the prism; and therefore the greatest value of the shearing stress is found on the cylindrical boundary*. 
220.    Strength to reaist torsion. 
The resultant shearing strain is proportional to the resultant aheanng ■tnes, and the extension and contraction along the principal axes of the strain at any point are each equal to half the shearing strain at the point; and thus the strength of the prism to reaist torsion depends on the maximum shearing stress. Practical rules for the limit of safe loading must express the condition that this maximum is not to exceed a certain value. 
Some results of practical importance can be deduced from the form of hydrodyuamical analogy [Article 218(c)] in which use is made of a circulating motion with uniform spin. Suppose a shaft transmitting a couple to contain a cylindrical flaw of circular section with its axis parallel to that of the shaft. If the diameter of the cavity is «mall compared with that of the shaft, and the cavity is at a distance from the surface great compared with its diameter, the problem is very nearly the same as that of liquid streaming past a cylicider. Now we know that the velocity of Hqutd streamiug past a circular cylinder has a maximum value equal to twice the velocity of the stream, and we may infer that, in the case of the shaft, the shear near the cavity is twice ili great as that at a distance. If the cavity is a good deal nearer to the surface than to the axis, or if there is & semicircular groove on the surface, the shear in the iieighboiirhood nf the cavity (or the groove) may he nearly twice the maximum shear that would exist if there were no cavity (or gr(Kive)f. 
If the boundary has anywhere a sharp corner projecting outwards, the velocity of the fluid at the corner vanishes, and therefore the shear in the torsion-problem is zero at such r comer. If the boundary has a sharj) comer projecting inwards, the velocity is theoretically infinite, and the torsion of a prism with such a section will be accompanied by «^ in the neighbourhood of the comer. 
* Thi« tboorcni wu first sUted by J. Bouifsin«itt|, loc. rit. Thepixxif in tli« text will be fonnd in a ]«iper ly L, N. G. Filon, Vhi}. T^nt. Itny. Sec. (Scr. A>. Tol. 19S (IJMJO), Btnitii-icMMq hod RuppoHod that the points of aaximum bhouring vtresH niuct bo those pomta or the oonlotir wtiioh ftro nearent to the axis; hut Filon shoved that this is not neeesurilj' th« caw. 
t a. J. Lmtoot, Phil. Mag. {Ser. fij, vol. .43 (1802). 
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Saint-Venant in his memoir of 1855 called attention to the inefficiency of comers projecting outwards, aud gave several numerical illusLrationa of the diminution of torsional rigidity in prisms bjiving such corners as compared with t-ircular c;yliiidt?rs of the same sootional area. 
221.    Solution of the toralon problem for certain boundaries. 
We shall now show how to find the function ^ from the equation (4) and the condition (5) when the btmndary of the sectiou of thu prism has one or other of certain speciiil forms. The orbitrar}' constant which may be added to ^ will in general bo adjusted so that i^ ehaLl vanish at the origin. 
(a)    TJie circle. 
If the cylinder of circular section is twisted about its axis of figure, (^ vanishes, and we have the solution already given io Article 86 (rf). If it is twisted about auy parallel axis <f> dues not vanish, but can be determined by the method explained in Article £18. In the latter case the cross-sections are not distorted, but are displaced so as to make an angle differing shghtly fi\>m a right angEc with the axi». 
(6)    The ellipse. 
The function -^ is a plane harmonic function which satisfies the condition ^ — J (x" + y) = const, at the boundary ar*/a' + y/6' = 1. If we assume for -^ a form A{^ — y'>, we find the equation 
(i-^)a'«(i+^)fc'. 
It follows that we must have 
l^'-vU^-^'^
.(12) 
It ia clear that this solution is applicable to the case of a bounJary caoBiBting of two concentric similar and similarly situated ellipses. The prism is then a hollow elliptic tube. 
(c)    The rectangle*. 
The boTttidaries are given by the equations cc— ± a, ]/= ± ^'. The function ■^ differs by a constant from iCy' + a') when x=±a and h>y>~l; it difl'ers by the same constant from \{jr'-\- V*) when y = ± 6 and « > a; > — «. We introduce a new function ^fr' bj' means of the equation 
Then •<^' is a plane harmonic function within the rectangle; and we may take 1^' to vanish on the sides y = ±h, and to be equal to y" — J' on the sides x=±a. Since the boundary conditions are not altered when we change a: into —X or y into — y, we seek to satisfy all the conditions by assuming for ^' a formula of the type "S^Af^ cosh marcoe my.    The conditions which hold at 
* The correapooding li]-drod.Tnamicn.t problem w&9 solved by StokL'6, CoMbridgf Phil. Soc. Xmnt., Tol. 8 Il8i3) = 31ath. ami fhtft. Pa^tu, vol. 1, p. 10. 
L.S. 20 
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ibe boundaries y = ±li require that m should be ^ (2» + l)7r/i, where n is an integer. If we adsume that, when 6>y > —6, the function y* —6" can be expanded in a series aocurding^ lo the form 
^     i.,     V- ,(2»i + l)-7ra       (2ii + l)ir« 
IT 
^ 
we may determine tbe coefficients by multiplying both members of this 
equation by cos [(2n + l)7r^/261, and integrating both members with respect to y between the extreme values — 6 and b.    We should thus find 
^.« cosh (?''±i^ = (-)«-«. 
91 
26 ^    ' {tn-Hyii*' 
Thia process suggests that when b>y>~b the sum of the series 
«-o       W/ (2b+1/ 2/t 
is y* — ft*. We cannot at once conclude that this result is proved by Fourier's theorem*, because a Fourier's series of cosines of multiples of Ty/Si represents a function in an interval given by the inequalities 2b > t/ > ~ 2b, and the value y' — f of the function to be expanded is ^ven only in the interval b> i/> —b. If the Fourier's series of cosines coucaius uneven multiples of Trt/i'2h only, the sign of every term of it is changed when for y we put 2fc — y; it follows that, if the series (13) is a Founer's series of which the sum is y* — 6' when b> ij > 0, the sum of the series when 26 > y > & is fr* — (2b — y)*. Now we may ahow that Lhe Fourier's series for an even function of y, which has the value y — b^ when t>y>0, itnd the value 6^ —(26—y)' when 26>y>6, is iu fuct the series (13). We may conclude that the form of ^ is 
cos 
26 
and hence that 
26 
*=-^+«-(l)".l(^^y 
aiuh 
{2?H-1W« 26 
cosh 
(Sh+ Dva 26 
-'^"^^^....d*) 
222.    Additional results. The torsion problem Iuuh Ufu M>lvc<i Tor umiiy foriu« of boiindary.    One uetitod'iB6|~ aaBume a pUue hamuiulc fuui:Liuu an tbe fuuction ^, and dutuiuine potiaible boundlOMB 
* ObMrTe, for euunple, thmt tbe Fourivr't nmni ot CMines uf multiplM of rj/fib wbieb bu th» ium 'J*- li* throughont the inlerral 2ft>y>' -'Ibia 
t Tbe axprwion (or ^ nafit b« uitaltcred when ;c mid y, a uid ft, sre interelunjin]. For ut aoootuit or tbe id«otiti«e vrblch uise from tbts olM«ivatJOQ Ih* rMd«r u referred to a p^pvi bj F. Pnner, Mtiunaer of Math., reA. 11 (1883). 
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from tUo oquiitiun ■^- k (j-^+y")■• codsL Ah «n cxadijjIo of this raothcd we way take ^ to be A (r'-Sjy*); if we put J = - I'Ga, the boundary c&n Iw the equUatcral trinngle*, of altitude 3a, of which the sides arc given by the cquntion 
(*-a)(*-yv''3+2a)(.r+i^v'a+2a)=0. 
Other examples of thiH method bfive be<!n diM:us>*cd by Saint-Vennnt. 
Another method in tu use corijugi^to (VitictiuiiH f, j] such that £+uf is n f\iDctinn of x+ty. If those functions can !« chi^teii so thiit tlic Ixiumlary in ninde up flf curves nloiig whic^h cithur f or 7 hn« a coitHttuit viiliic, tbeu ^ is tbe real ^lavt of a fuuctiou uf ( + iij, which hA« .1 given vo^ue At the boundary; And the problem 'm of the same kind ad the tor»iou problem lor the rectangle.    We give some oiamplcs of thii* method:— 
(i)   A sector of a circlet, boiiudariea givou hy r=0, r'=a^ 6= ±fi.—We find 
\[MT'"H^^-'^m
,herc •<=...-(-)-[(i„lf,;V-iS
Jf WO write rt^=ax, then 
CS» + l)ir^(Sft+l)fr-l-43j' 
*-**-*«'^-s!-/:'^!'^--^--''^-^-i./, 
.^^' 
ir 
1 +x^ '    I H-j:^ 
whore liPl^lfandtan-'x'^^denotcrt that branch of the function whiuh vaujabes with x. 
In case ir/23 ia an iutegEr greater than 2 the integrations can bo pai-foriued, but whPD jr/Sfl = 2 the first twn teniis become intiaite, and their sum has a finite limit, and we fiud fur a quiu^rctuUil cylinder 
For a aemi-circular cylinder 
{ii} For a cun'ilinear rectangle bounded by two coiiceutric circalar arcs and two radii, we Ui>e conjugate functiona a and |3, which are given by the equation 
,- + ^. 
we lake the outer rudiun, u to Iw Cf"' anU the iijni;r, fj to bn oh""* (so that e i» the geonoft* tric&l moan of the radii), and we take the bounding radii to be given liy the equotkuu i9=±A>-    We find 
wbem 
♦
«inhf2'*l*^---« 
COtthSOg 
-f Biuh 2ao 
»inht^"t'>'°" 
2^0 
and 
^.■ 
( -)» sin 
2ft 
{(2n + l]ir--W„} f2H + l}Tr {C2« + ]).r+4fl^^' 
* Sw FiKU»< -'^ and 21 iu Artidv :J23. 
f See A. 0. Orecnhill. Jliwntl^r of Math., vol. 8 (1S77), p. &9. and vol. 10 (1880), p. 63. 
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(iii) Wben the twinted )>ritiin is a hollow sb&ft, the iimor aod outer bouiidArim being circles which are not conoeutric, we ma; use the ooujugale hinctiouH (, tf dolonniu«l h; the equation 
and, iri)>a represente the outer bounclaiy, and >r=d the ioner, we may prore* that . .jj J (   v*""^cPtl^^"Phw{i7-a)+e""cothaainh 11(^-7)     . 
(iv) When the bauiidariee are confocal elUpoea and h^ipertxilas we may use the ooi^ugate fuDctioiiH {, tj deteruiued hy the equation 
Id the caw of a hollow lube, of which the soctioa ta boiiuded by two confocal ellipsea f« aud (,, we may provet that 
«chS(^,-f)4-».J.a(f-ft) ^   ' einh2(f,-fi "^ 
223.    Qraphic expresaion of the resulte. 
(a)   DiMtortion of ihe erou-iectio lu. 
The curves ^i^cojuit are the contour Hues of the surface into which any cronesection of the prion ia diatorted. These curvos were traced by SuiDt-VeDant for a numbor of forms of the boundary.   Two of the results are shown in Fig. 22 and Ftg. ^3.    lu^both 
Fig. 32. 
'casoi the cross-section is divided into a imrnber of comjiftrtiiientfl, 4 in Fig. 3S, 6 in Fig. Sd, and ^ chnngcs nign oa we |uias from any corn part iiionl to aii ndjacont conipartoieut, but the forms of fbc curves i^eoonat. are uii/ilt*re(l. If wo think of the axis of th« prism an vprttcnl, then the curved aurfoce into whiL-h any crottR-nectton is strained lim abore its initial |)c«ilioD in one i-nnipiirtuient and below it in the*af^jacent (.-ompartmente. Satnt-Yeuaut nhowcd that the sections of a square prism are divided in this way into 8 compartneiita by the diagonalii and the lines drawn parallel to Uio sides tlu'ough the ccutroid. Wlien the prvrni is a rectangle, of which one pair of opposite sides is much longer than the other pair, there arc only 4 compartments scparatod by the lines drawn parallel to the nidcs ihrough the ccntrcwd. The limiting c«»e bctwopo reotanples which are divided into 4 compartments and others which are divided into B compAnmcat 
• n. M. M«!donald, Cambridge Phil. Soe. Proe., ToL 8 (1893). t Cf. A. G. Oreenhiil, Qwirt. J. of J/ot*., vol. 16 (lfl79).    Olh«r exsmplM of slliptio u)3 hyperbolic botiodaries ate worked oal by Filoo, Uk. cii. p. ^04. 
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        Pig. 28. (6)   XiM« ofthearing strut. 
Tbe drnthbiitiuci uf tiinguiitial traction ou tbo crosa-MotioDs of a twiaioJ prism cad be repnMDted graphicAtly b; moaua of tho Hdbs of abooring atrea«. Tboso liucs arc detarminod by tho equation 
They hnve the pro\teTiy that the tangential traction on the cro^is-section is directed at any point along the tangent to thnt curve of tho faniilj' which pant^aH tbi'otigh tbe |)oint.    If tho curvca are tmced for cquldiSurcut valiica uf e, tho tangential tnictioa at any point is meofiurcd hy the uloueiiesa uf coiiseuutivo tjiirven. In the cane of the primi r>f eUiptio section 
and the Ijdbr of atieariiig strvna arc therefore couceutric ajmilor and similarly situated elli]>seH.   Id the case of the equilateral triangle 
and the Hues of shearing streae are of the forma shown in Fig. S4. 
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CAT/TCLATTON OF THE TOBStOKAL 
[Cn. XIV 
224. Analogy to the form of a stretched membrane loaded uniformly •. 
Let a bomogOMOus uembraDo l>c naretcbcd with uoifurm teosi^m T and fixed tX ita edge. Let the «dge be a given curve in tho jilani! nf t, y. mien the inemfaaraDe is subjected to preasure, of amotint p per unit of arcA, it will undergo a small displacement t, and e is « function of s and y which vanisheB at the ed^ The equation of equilibrium of the toeinbrane is 
|+i>-0. 
The fimction STV/p \h determined by the aune conditions aa the functJiHi V of Article 319, provided tliat the edge of the membrane ts the name as the lx>unding curre of the croosMCtioo of the twisted pri^m. It foUowa that the contcnir lincK of the loaded membrane are identical with the lines of shearing Htress in the croes^wctjon of the prism. 
Further the torsional rigidity of the pristn con he repreaeatod by the rolume contained between the surface of the loaded membnuic and the plane of its edge. We have seen already in Article 216 that the torsional rigidity is given by the equation 
or, in terms of Y, we have 
-'•//{Ciy^(^)'}-' 
Since 9 VMUuics at the edge and >-3 + *^^+S=0. It follows that the Tolumein question is (p!4itT)C. 
226.   Twisting couple. 
The couple can be evaluated from (6) of Article 216 when the function is knowD.    We shall record the reisulta in certain cases. 
(o)   Tfte circlt. 
If a is the radius of the circle the twisting couple is 
i/4T7nt».    (16) 
(6)    The ellipse. 
From the value of ^ in Article 221 (6) we find that the twisting couple is 
pTwa*h'l{a?-i-b') (16) 
(c)    The rectangle. 
From the result of Article 221 (c) we find for the twisting couple the formula 
/iTia6(a' + 6')-MTj<ifc(a'-6«) + VT6'(?yjJ|x^-y^Jderfy. 
' The analogy here deseribed was pointed out bj U Praodtt. Phfi. ZHt$ekT.. Bd. 4 (1909), it aflorda a in«tiai i>f rxhibitiog to the 47* the dktributioD of Btrces io a twisled prum. 
vhere 4> stands for the series 
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        Taking one term of tho senes, we have a term of the integral, viz.: (-V IT  rff    . . (2n+l)7r.r       (2« + l)7ry 
(2n +1)" cosh |(2n +1) -ra 
(2n +1) wx 
^*={2;rTTK|.2aco«h^   26-
iisioh
(2n+l)-ir 
cosh ^- —^ dje= -—    -   2 sinh —   -. 
-o 26 (2n+1 TT 26 
f-r' 
(2n + l)-n-i/ , 
26 
26 
2(-ir. 
/: 
(2n+l)-»r 
"'      .   (2n + l)7r^, 86*       ,   ,. 
./""   --26-^^^=(2^+-l)^'f-l>'' 
Hence the twifiting couple is equal to 
Since S (2n.+ l)-* is 7r*/96, we may write down the value of the twisting 
0 = 0 
couple ia the form 
(2n +1) Tta 26 
V;.T«^-^r6.(*)4^-^tanh' 
.(17) 
The serioB in (IT) has be«D evaluated by Saiut-Venant for numerous values of the ratio a : b.    When a > 36 it is very nearly oonstant, and the value of the twisting couple 
in Daarly equal tn lura^   -^—(3'361)   .    For s sqimre the couple is (4■4&ftB) ^ro*. 
The twisting cou|>Ie wiui iUho caLculatod by Saint-VcuuiLt fur a uucub«r of other forms of SGCtioiL He foiuid Uuit tho rusistiuice of h, pmtn to torsion is often very well expressed by replacing the section uf tbv pmuL by an E3lh])i4e nf tho hauiu aitui and the same uiotueut of inertia*. The formula fur the twisting couple in the caw of au eliipM of area A and noomeot of inertia y ii) ^tJ*/*!"''/. 
■ Baiot-Venuil, Pari*. C. Ji., t. 88 [1879). 

        
        [image: Picture #130]
        

        
        
        [image: Picture #131]
        

        312 
T0E3I0N  OF A  PRISM OP ^OLOTROPIC MATERIAL [CH. XIT 
226.   Toraion of eeolotropic priam. 
The theoTy nbich haa been explained in Article S16 can be extotidcd Co a iHiam of leiilotropic niAtPriuI whon the n»mtul Election in a plane c£eym.metrj of stnictitre. Tnkiog Iho Axw of I to bo [((iraliol to the generators of tbe bounding aurfaoe, we have the Htraioeaer^-function exproKsiH] in tbo furoi bclongiuK to crystalline materials that correspnnd witb the gnmp C\ (Article lOU}. Tbv disptaiiKinenb lieing eipreaam] by the formulaa (11, the stTeiH-ci>m|)oncnta thnt do nctt vauUh are X, and }',, and these are given by the eqoatioriM 
Tbe equAtioDK of oqutlibrium are equivalent to tho equation 
"^ttS^+^i.; 
c*^ 
:*^»^cy
•0. 
which must hold over tbe area of the croaa-aection ; and the condition thai the bounding «urfAOC may be froe &om traction b satisfied if tbe equation 
"^tt^ «=*»(•«•. '')+<'M^(««yi ") +> {S «'»(*. '')+^ co*(y. ")} 
holds at all poiota of tho Ijounding curve. Kxoctly in the name way aa in tbe caae of isotropy, wo may prove that tbe diflferential equation and tho boundary condition an compatible, and that the tradJoos acrow a normal twction are equivalent to a couple of moment 
The analjBiA is simplEliud considerably in case e^x^Q.    If we put L for e^^ and M for e^, the diflferentiftl equation may be written 
and, if/(x, y)==0 is the oquatiao of the bouudiug curro, the boundary condition may b« written 
L + M 
iy/[LM)
ex Cx '    hyhy       ^ &x We change the variaLIea by putting 
Then th' naAis&an the equation 
The equation/tT,y)=0 bocomca F(x',tf')'^0, where 
9F   Sf     / Of        ?r    3/      / B/, 
226] AND  KECTANOULAR CROSS-SECTION 313 
and the boundary coDdition iu transformed into 
which is ^, —y' cos (**, v')-of cos (y", »■'), 
if dv' is tbo element of the normal to the transformed boundary. Thus </> can be found for any boundary if <f)' can be found for an orthographic projection of that boundary; and the problem of finding <p' is the simple torsion problem which we considered before. 
As an example we may take a rectangular prism with boundaries given by x=±a, tf= ±b.    We should find that the formula for <p is 
/MSfib^ -     (-)»   "°"       %b\jM        .   {2n + l)iry and that the twisting couple is expressed by the formula 
This formula has been used by W. Voigt in his researches on the elastic constants of crystals.    [See Article 113.] 
CHAPTER XV. 
THE BENDCsG OF A BEA5I BV TEBJUNAL TRAXSVEESE U)AD. 
227.   Stress in a bent beam. 
In Article 87 we descnbed the state of fttress in a cylinder or prism aay form of section held bent by terminal couples.   The stress at a consisted of longitudinal tension, or pressure, expressed by the formula 
tension = — Mxjl, 
where M is the bending moment, the plane of (y, z) contains the central-line, the axis of* is directed towanJs the centre of curvature, and / is the moment of inertia of the cnwis-section ubout an axis through its centroid at righfc, angles to the plane of bending.    In Article 95 we showed how an exteosic of this theory could be made to the problem of the bonding of a rectanguli beam, of small brendth, by terminal transverse load.    We found that tlMr^ reqiiisito stress-system involved tangential traction on the crnss-siictions as well as longitudinal tensions nnd pressure-s, but that the requisite tension, or pressure, was detennined in terms of the bending moment by the same_ formula as in the case of bending by terminal couples.    This theory will doi be generalized for a beam of any form of section*.    Tangential tractions the elements of the cross-sect ions imply equal tangential tractions, acting in' the direction of the central-line, ou elemexitii of properly chosen longitudinal Bectiona, the two tangential tractions at each point constituting a shearing ttrt$a.   It is natural to expect that the stress-system which we seek to deiermiDe consists of longitudinal tensions, and pressures, determined as above, together with sbeariDg stress, involving suitably directed tangential tmctions on the element* of the cross-sections.    We shall verify this anticipation, and  shall show that  there is one, and only one, distribution  of, shearing stress by means of which tho problem can be solved. 
* The tbeoi>- is dnc to HAJnt-V«aAnU   Sec Inlrodiution, (ootnuto 50, kud p. W. 
227, 228] 
SHEARING  STRESS  IN  A BENT  BEAM 
315 
338.    Statement of the problem. 
To 6x ideas wc take the central-line of the beam to be horizontal, and one end of it to be fixed, and we suppose that forces are applied to the crosssection throu;{h this end so as to keep the beam in a nearly horizontal position, and that forces are applied to the cross-section contaioiug the othercud in such a way as to be statically equlvaleut to a vertical load W acting in a line through the centroid of the aectioii. Wo take the origin at the fixed end, and the axis of s along the central-line, and wtJ draw thu axis of x vertically downward^ Further we suppose that the axes of x and y are parallel to the principal axes of inertia of the cross-sections at their centroids. We denote the length of the beam by /, and suppose the material to be isotropic. We consider the case in which there are no body forces and no tractions on the cylindrical bounding surface. 
->i 
Fi«. as. 
w 
The bending moment at the cross-section distant s from the fixed end is 
W(l — z).    We assume that the tension on any element of this section is 
given by the equation 
Z, — W(l-s)xll.    (1) 
where I stands for the integral jlx'djcdy taken over the area of the crosssection. We aasume that the stress consists of this tension Z^ and shearing stress having components A', and V,, so that the .stress-components -V^, Y„, Xy vanish; and we seek to determine the componenta of shearing stress X^ and r,. 
Two of the equations of equiUbrium become dX.jdz = 0, t)F,/3* = 0, and it follows that Xi and Yt must be independent of z. The third of the equations of equilibrium becomes 
t'#-f>?-. (., The condition that the cylindrical bounding surface is free from traction is X^cos(i'. i-)+F,cos(i/, c) = 0 (.3) The problem before us is to determine X, and Y^ as fuactioas of x and y ID accordance with the following conditions:— 
(i) The differential eq^uation (2) ia satisfied at all points of the croessection of the beam. 
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DETBBMINATION OF THE KHCARINO STRESS 
[CH. 
(u)   The condition (3) is satisfied at all points of the bounding curre ofj this section. 
(iii)  The tractions on the elements of area of the tenninaj cross-secttoi (;= /) are statically equivalent to a force W, directed parallel to the axis «, and acting at the ccntroid of the section. 
(iv) The stress-system in which Xg= y, = Xg = 0, Z, is given by (IX »ad Xj, Yj satisfy the conditions already stated, is such that the conditioos of compatibility of strain-components (Article 17) are satisfied. 
229.    Necesaary type of afaearing stresa. The a^umed stress-system saiistics the equations 
02 CS 
and consequently the strain-components satisfy the equations 
e„ = 
— ^i™ ^€r 
«« = o. 
0. 
EI      '   '"    ^"^        """'   "'»    "•     d£ ~ dz where E and a- denote Young's modulus and Poisson's ratio for the material. The equations of compatibility of the tj-pe 
arc saUsficd identically, as also is the equation 
&"«« 
(de„ . de. 
-^V 
The remaioiDg equations of compatibility of this type become 
dx\dx      dv J 
f^y J      '   ^!/\dx      dy J From these equations we deduce the equation 
El 
f-.^ = 2r
where 2t is a constAnt of integmtion; and from this equation it follows e^ and e^ can be expressed in the forms 
Kyt 
,dfL a*.    o-TF 
ay 
dx ' El 
y". 
(4) 
where ^ is a function of x and y. 
On substitutiug  from these equations in the  formulae X, = firf^ and " '      "   J the relation fx = ^E{1 + <r>, we see that equation ( 
takes the form 
2'*.j.^*»^2(l+<T)Tr 
Ba:*      5^ 
EI 
0. 
228, 229] IN  A  BEXT BEAM 817 
and condition (3) takes the form 
^ = r [ijCOS(x, i')~.xcos (tf, v}] -^ycoa(«, v). These relations are simpHBed by putting' 
^-T^-;^lX + *<^^+(i + i'')^l (5) 
Then <f> is the torsion function for the section (Article 216), and x ** * function which satisfies the equation 
da^^df         ^^' 
at all points of a cross-section, and the condition 
^ = -[lcrx' + (l-iff)y*]co8(^,i/)-(2+,r)^oos(y,i') (7) 
at all points of the bounding curve. The compatibility of the differential equation (6) and the boundary condition (7) is shown by observing that, since 
the integral I r xdxdy taken over the cross-section vanishes, the integral of the 
right-hand member of (7) taken round the boundary vanishes. The problem of determining the function ;^ from equation (6) and condition (7) may be called the "flexure prtibleni " for the section. 
When the functions ^ and ^ are known the shearing stresses Xj and F, are known in the forms 
The terms that contain t* express a system of tractions on the elements of area of the croes-section. Tvhich are statically equivalent to a couple about the axis z of moment 
/iTJj(^" + 7/» + x^-^ ^ ./ ^) dxdy; 
and the terms which contain W would give rise to a couple about the saraa axis of moment 
\W adjust T BO that the sum of these couples vanishes, 
The tractions on the elements of area of a cross-section are statically equivalent to a certain  force at the centroid of the section ami a certain 
* Thej are of the eame form bs lbs tnutioas io the torsioc problem. 
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STRESS AMD  DISPLACEMENT 
[CH. XV 
ciiuplv. We show that the force is of magniiude ir and is directed parallel to th« axtsuf J. Aud that the couple is of moment W{l — i)and has iL^ axis paraUi>l to the iud» uf y.   These statements are equivalent to the equations 
jf\\tI^dy = W,   JJr,d^rfy = 0,    (Jz,rf*dy = 0, 
.(9) 
jf>fZ,dx(iy»0, JI-xZ,(ixdif = Wil-s).  JI(xY,-yXr)dxdf/^Q. ...(10) Nmw bv (S) and (3) we may write down the equations 
=> F +j* {A%co8(x, !»)+ y,co9(y, v)]ds = W. In iiku manner, obsemng that f layrfxrfy vanishes, wo may prove the 
«M>ond of wjnations (0).   The third of these equations and the 6rst two of | «niatio«* (10) follow at once from the formula (1) for Z^, and the constant T' hrw nlrojMiy been  adjusted so that  the third of equations (10) shall be dtttistit-'ii. 
The functions <f> and j^ are each detonninate, except for an additive oqiiKtant which does not affect the ati-ess. We have therefore shown that the problem slated in Article 228 admits of one, and only one, solution. 
t230.    Formulee for the displacement. 
The displacemenb can be deduced from the strain without determining thi* rurms of <f> and x-    "^''^ details of the work are as follows:— 
Wfi irnvv tlif c<inati<tn 
fhiiii which we dodoce the equation 
•C") 
whurt) ^' U a fuuotian of x and ^.   Again, we have tbo cc]uationa 
m      w 
Wl     1 w 
ir 
£i'~l£] 
(iji,,    ttt>
^-^^2^*-+r-ij-j 
nf wlilHi lliu AOoond is oUaJued irom {IIj auci tho second of (4}.    TfacM two equatioHH ate 
^f* 
£/ 
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        229. 230] 
Agiutt, WD have tbe equatiooa 
and ttuM are cumiMtible if 
dv      Wt W 
cjf      tl El 
Ptt . Stt 
Further, by differcntiBting the left-baud member of tbo equation ^ + -- =0 with respect to >, we obtiun the equation 
The three equations for <^t,-4'' <^ov that we must have 
where a, /9, 7' arc coimtanta.    Whtiti wb Huhatitute fur ^g from (Jj) we fiud the foUowiug eipreRsinn for ^':— 
The displocemetit w is now determitied.    Wbeii we substitute for '^^ in tbo equaUona iur 
^;'?c and Ze(ht, we obtain tbo equations 
Fn)m the equatiuiia for oujhx and dujci we obtain the following form fnr u:— 
irtwra Fiisi) is on uiikiiowti fuuction of y.    In like mauDer wo tind the foUowic^ form 
to *:— 
If 
V=TiT+-gij <r (; - a) ry - o<+/*) (*)» 
where /*,(^) it lui UDkuown function of x.   Since ha/dif+dvf&x^O^ the fiinotioDB y**!, i*'. aatisfr the equation 
and we must have 
where a', fl*, y are cocstantJ* of integration. 
We have iinw found the displacement in the fonn 
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        W 
ii=.-Tf/2 + ^[i(!-2)o-(x^-y=) + ^?2«-ir-]-7y + y93 + a' 
V ^Tzx+ -p-To{l — z)xy-\-"fx~aZ'>t-^', 
w = T^-^[a:(fe-i2') + x + «'/]-^-E+ay + 7'
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SOLOTIOS OF THE pnOBLES OF FLKXUBE 
[CH,X1 
in which a, ff, y, a, jff. 7' are constants of integration. These equations gi?e the tiiost general possible fonn for the displacement (u, v, w) wheo the streaB is determined by the conditions stated in Article 228. 
The terms of (12) that contain a, /9, 7, a', ff, y represent n displacement which would be possible in a rigid bod/, and these constants are to be determined by imposing some conditions of fixity at the origin. (Cf. Article 18.) 
We have supposed that the origin is fixed, and we must therefore hav« a'asO, j9' = 0. We shall, in general, suppose that the addiUre constant* io the expressions for (f> anrl x ^^ determined so that these functions vanish at the origin.   Then we must also have y'^O. 
Besides fixing a point, we may fix a line through the point. We shall suppose that tlie linear element which, in the unstressed state, lies along the axis of 3/ retains its primitive direction.    Then we must have a = 0. 7 = 0. 
Besides Axing a point, and a linear element through the point, we may fix a surface element through the line. The value of the constant 0 depends upon the choice of this clement. If we choose the element of the crosssection, we must have hejdx = 0 at the origin. If wo choose tin? element of the neutral plane (i.c. the plane x wm 0). we must have du/be s= 0 nt the origin. In the former case the central element of the cross-section at the fixed end remains vertical; in the latter case the element of the central-line at the fixed end remains horizontal. There is no reason for assuming that in all practical cases either of these couditioQ.s holds; most probably dtfierent values of ff fit the circumstances of different particular cases. 
231.    Solation of the problem of flexure for certain botmdarin. 
We shall now show how to find the function ^ f""^'" the equation (G) ai the condition (7) when the boundary of the section i>f the beam has one or other of certain special forms. The constant which may be added to j^ will generally be chosen so that x vanishes at the origin. 
(a)    The circle. 
The equation of the bounding curve is ic* + y' = a'.   In terms of poUr, coordinates (r, 6) the boundary condition at the curve r = a is 
?x=_ 
ar 
a»co6^1Jo-co3'^ + (l-4o-)sin-^|-o*sin^{(2 + tr)sin^co8<)J, 
or 
^ = -(^ + ^c)a^co80 + ^a^cos^$. 
Since ^ is a plane harmonic function within the circle r = a, we must have 
X = - ( J + J 0-) «* r cos e + i rf cos 3 tf, 
« x'*-(2 + i<^)*'-^+l<-^-3^y') (13) 
230, 231] 
FOB CERTAIN   K0RM8 OF SECTION 
321 
(6)    Ctmoentric circles. 
The boain has the fnmi of a hollow tube.    If «ig in the radius of the outer oirole, and (■( that of tbo inner, we amy pmve that;( in of the font) 
X--(} + 4'r) |tV + a,')r+*^i^lco8tf+irJcos3tf+ootiKt (U) 
In this case we cannot adjust the additive coostacit oo as to make x VKaish at the origin, Vul Uio ongJD is in the cavity of the tube. 
(c)   The ellipse. 
The equation of the bounding curve is a?/a'+ y'/fe'= 1.    We introduce conjugate functions f, t; by means of the relation 
a: + ly = (a' - fe*)* cosh (f + t.7]), 
pfab, where p is the central peqiendicular ou the taugent at the point.    Tbe boundary condition may be written 
and denote 
by It.    The vahie of h at a point on the boundary is 
or 
— 6cost; (J<ra'cos-*j + (l — |ff)6'sin»i7} — asini7(2 + <r)aiain J7C0STii: 
and this in the same a:^ Hence we must have 
where fo denotes the value of f at the boundary, so that 
(a» - 6')» cosh f, = a,   (a' - 6")' ainh f = 6. Now we have 
(x + iyf = {a? - 6')l i Icosh 3 (f + »)?) + 3 cosh (^ + i»,)|, 
tso that 
sinh 3^0 = + sinh' fu + 3 sinh fo
Also we have Hence we tind 
X = -    ^  \a>^b' -^ + 3    3a^f6^ ^'(^-8^'). ...(15) 
31 
or 
L.  B. 
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SOLUTION OF THE   I'KOBLEM   OK   FLEXURE 
[CH. XV 
In the above aoalyttis we have proceeded as if a were greater than b, but it is easy tu verify that the 6nal result holds alsu when 6 > a. In case b = a it reduces to the result already found for the circle. 
(•f)    C'onfoeal ettt/mt. 
By an antJynB omilar to the Alx>r« the probloD) mif;ht be solved for a saction booixled by two ooofocnl dltpMfe. The result could not be expremed ntiooally id t«rtDa of x and jr. Taking (q and |, to be the values of ( which c-oirettpood with the outer and imier botmdamii, and writing <r for (n'-f)", we may show that 
X«»c* CO* i| [(i - Jff) cosh f - (J+itr) (cosh (.cosh f, coeh ($»+fi) cosh $ 
— ainb fpsinh (, sinb ((d-(~£|) ^»h 0] 
H.^«.»,[A««h3f-(AH.)^^'^'jf-f^'3"(r-''f!;°^'''^'"^']- "•> 
(«)    The rectangle. 
The equations of the boundaries are .i: = ± a. y=±b. The bouudai^condition at x = i« is 
g = _jUo' + (l-4ar)^},   (b>y>-b). 
The boundary condition at y a f 6 ia 
?^ = ? <2 + ff) &r,    (a > * > - a). 
We introduce a new function j^' by the et^uation 
x' = X-4(2 + <r)(r'-aFy') (17) 
Then x i^ ^ plane harmonic function within the rectangle, ^jdy ranisbes at y=tb, and the condition at jt = + a becomes 
U
dx 
= -{\-^c)a} + fff. 
Now when b>y> — b the function y* can be expanded in a Fourier's series as follows:— 
3  ■ ir" .-Zi   n' Hence jf' can be expressed in the form 
X' = {-(l + ff)a' + i.rf»»l« + o-^ I ^"^ 
Sinn ^— 
6 
if'.-i   "* 
cosh 
»7rtl 
COS Y^, ...(18> 
and, by means of this and (17), x caii ^^ written down, llie reaalts for the circle aud ellijMO are tucluded iu the fonoola 
231. 232} 
FOR CBRTAIK  FX>]UfS OF SECTJON 
823 
the aoluiion for the ellijiaa was fint found by «4justi[ig tbo conaUnbi A and B of this foimuls, and iievenU othpr exai)i]>li.')4 of the same method were diiicuaxed by Saint-VenanL Among ftectiona for which the ppoblum m ftnlved by this formula we may ooto the curve of which th* DrdiQHte is yiven by Ihe oc^uatiuu 
y=±b\{l'X'/a*f\,   ia>x>~a}. The eoirenponcling function ^^ is 
When <r = i the abovo equation becomes Jr*/«i*+y*/fr*=L The curve is shown in Fig. i$ for the ca»e where a«Sfr. 
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        Fig. 27. 
Aa UQoUutf exAmple vb may obaerve that the formula* 
X--a»*+i(2+ff)(r»-aiy) 
«olve» the pmbleiii fur a nixtion Ixiuiiiltwl by two area of the hyjwrbfila. t*(I +v)-^V = fl'' and two straight [Jiies y^ ±a.    Tbc Htt^tiuu is sbowu in Fig;. 27, a buiitg tiUcen to bp ^. 
232.   Analysia of the displacemeiit. 
(a)     Curvature of the strained central-line. 
The central-licic of the beam is bent into a ciurve of which the curvatoret iu the planes (t, z) and (y, r) are uxprt^sed with sufficipnt approximation by the values of S'u/^z' and S"vy9z* when j: and y vanish. These cjuantilics can be calculated Fmni the expre.t>siun» fur the ciitjijHuit-nts of strain by means of the fomiiilx 
d*u    de„    9«n     3'D_9^    dsa a V "^    3* ■   d?~ d£      dy' 
or they may be calculated from utpiatinng (12).    We find 
9u    W{i-z) 
SI 
0-
It follows that the plane of the curve into which the central-line is bent i» the plane of (*, z), and that its radius of curvature B, at any point is equal to EljWil — t).   The denominator of this expression ia the bending moment. 
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        * OnahoT, EUttieiUtt ttiid Fettiskeit, p. 946. 
21—2 
S24 
ANALYSIS OF XaE  DISPLACEMENT 
[CH. XV 
M say; and therefore the curvature XjR of the central-liae is coDueoted with 
the bending moment M hy the equation 
M = EIiR (19) 
mid the curvature at any point in the same as it would b*- if the beam were bent by terminal couples equal to the v»lue of M at the point. 
(6)   Neutral plane. 
The extension of any longitudinal filament is given by the equation 
e„ = ~tBlR (20^ 
It follows that filaments which lie in the plane x~Q euETer no extension or contraction ; in other words, this plane is a "neutral plane." The extension. or contraction, of any longitudinal linear element is determined by ite distance &om the neutral plane and the curvature of the central-line, by exactly the same rule as holds in the caae of bending by terminal couples. 
(c)    Obliqiiitif of the strained cross-sections. 
The slruitied ccatral-line is not at right angles to the Btrained croes* sections, but the cosine of the angle at which they cut is the value, at any point of the central-line, of the strain-component ;„. We shall denote it by «o.    Then we have 
^ shearing stress at centroid " rigidity of material      '    ' 
and we may calculate s^ by the fonniila 
s, = -(WIEI){dx{dx\ (22) 
where the suffix 0 indicates that zero is to be substituted for x and .y aft«r the differentiation has been performed. 
The quantity 9g is a small constant, so that all the strained cross-sections cut the strained central-line at the same angle ^tt—*c. The relative situation of the strained ceatral-Iine and an initially vertical filament is illustrated by Fig. 14 in Article 95. 
If the element of the strained cross-section at the centroid of the Hxed end is vertical, the constant ff in the displacement, as given by (12), is equal to »^*. 
Wliuii the bounding curve tii the etliiiso x*/a'-|-y'/i''" 1, wu ImU 
If in (SI) tlio ahoarinp; stresB at the ccntmid wcro replacfid hy the aven^ shearing atran ( W;irab), the (Mtiniat«j value uf <o woulii 1h> toci ttnuitl, in a ratio varying firom }, wheu a is liirg9 cum|iuru«i with &, tu g wbon b is Urge cooip&rud with at. 
' Id Suint-Vetiftat'a memoir^ in idvutified with t^, i In obtaining these DBtaben <r ia put iK)aaI to i. 
232] 
IN  A  BENT  BEAM 
329 
Wlien the bniiitdary ih a rectangle wb iind 
&* 
.Jl+isJ. 
(
\r__y 
JlfTtfl   > 
'-^^"M'     "'"='«» CO^h'^J 
(ffl) 
Tbe ex|)re88ion in aquare brack'ots was UbuUted by Saint-Veiumt, v bein^ tokeo to be ^, with the following results:— 
	ii/6 
	■5A 
	•6 
	■76 
	1 
	1-26 
	1-5 
	S 
	a-B 
	3 

	value of ezpmuon 
	■67S 
	■649 
	■007 
	-94 
	■862 
	•971 
	•983 
	•989 
	•B98 


(d)    Dejlexion. 
The deflexion of the beam is the displacement of a point on the centralline in the direction of the load; it is the value of « when z= i/ = 0.    If we 
denote it by P we have 
w 
(24) 
The equation 
f=;^a^^-i*') + /8r. 
EI^Jj=W(l-s), 
.(25) 
which espressea the proportionality of the bending moment to the curvature, would suffice to determine the deflexion if the direction of the strained centraJ-line at the origin were known. Equation (24) is the primitive of (25) when the condition that f vauishes with z ia imposed. The term ^z in (24) depends on the mode of fixing, as has been explained at the end of Article 230; the other term depends on the bending moment. 
(e)    Twist 
The terras of (11) which contain the constant t indicate that the beam twists under tbe load. The amount of the twist cannot be determined until the fiinctions <^ and x bave been found. In each of the particular cases that we have solved T vanishes. This is due to the symmetTy of the sections. An example of an unsynimetrical form of section for which the anafyt^iK could be worked out is shown in Fig. 28, which represents the cross-sectjion of a hollow tube with ^ cavity placed excentrically. {C(. Article 222, Result iii.) 
(/)   Anticta.stic ciii*oature. 
The terms of u, v, as giveu by (12), which depend on x, y, but not on t, represent    changes   of   eliape   of   the 
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        DtSFLACEMESr iSD  SHEABtNG  STBESS 
[CB.XV 
o«8B46ctioiu in their own plaoea. The«e cbanges are of tbe same kind aa tfaoie described in Article 88. It follows that the neutral plane is deformed into an anticlastic sor&ce. The strained centxal-line is one of the lines of corrature of this surface; the oorresponding centres of curvature are below the neutral plane, and the correspoDding radii of carratare are expressed by the formala £1/W(l—t}. The other Ctintre of carratare of the sorface. at any point of the central-line, is abore the neutral plane: and the corresponding radii of corrature are expressed by the formula EII<rW{i ~ z). 
(g)    Dittarticn of the crou-aedicns into curved surfaces. The expression for v> may be written 
The term t^ corresponds with the twisting of tbe beam by tbe load, and we know that it represents a distortion of the cross-sections into curved surfaces. The terms —x\W{it — ii^)lEI-^ff\ represent a displacement by which tbe croas-sections become at right angles to the strained central-line. The term s„x represents a displacement by which each cross-section is turned back, towards the central-line, through an angle s;, as explained in (c) above. The remaining terms in WiEl represent a diA'tortton of the cross-sections into curved surfaces, Indepeudeot of that which depends upon r^ If we construct the sor&ce which is given by the equation 
=-#/i^-KI).+^h^* •<«> 
and suppose it to be placed so that its tangent plauo at tlie origin coincides with the tangent plane of a strained cross-section at its centroid, the strained cross-section will coincide with this Rurfaoc. 
232. 233] 
m A  BENT BEAM 
327 
In the ca«o of a oiroular boundary the VAliie of the right-haod member of (27) ia 
and the contour Udbh of tbo strained cross-Hoction arc Toiind by equating this cxpr«mion to a ooostuiL   Some of these linen are traced in Fig. i9. 
233.    Distribution of shearing stress. 
The iinportaDce of tbo transverse couipoiient F, of tho tangential traction oil the croBs-sections may bo seen in the case of the elliptic boundary. When a is large cimiparefl with b, the inaxiinuni valuft of Y, is small compared with that of X,; as the ratio of & to a increases, the ratio of the maximum of Y, to that of X, iocreases; and, when b is large oonipured with a, the maximum of r, is large com|)ared with that of X,. Thus the importance of Y, increases as the shape of the beam appruachcs to that of a plank. 
We may illustrate gruphically the difitribtiiioii of tJingential IratjLion o» the cross-sections by tracing eurvea, which aro such that tho tangent to any one of them at any point is in the direction of the line of action of the tangential traction at the point A.8 in Article 219, these curves may be called " lines of shearing stress." The differential equation of the family of curves is 
djr/j:, = dy/F„ (28) 
or 
||+(2 + ,T)=.y}tir-||X + i,rx«+(l-i<r)yjdy = 0. 
Since dXjdx + dVf/d^ is not equal to zero, the magnitude of the shearing stress is not measured by the closeness of neigbbouriug curves of the family. 
As lui ujiaiupLc we tuay consiijur thti cane of the elliptic boundary.    The dtfferuntiiU equatiun Is 
and thin may bo exiiressed iti the fiimi 
ay y y 
TbiH equation limi au iciti^fkLiiig factor y (i+aia^+aii*^ and the fwmplete primitive may be teproased in the furui 
where C a an arbitrary conataJit.    Siooe ir<} atl the ciu-vcu of tlio family touch the elliptic  boundary at the highest and lowest points (±a, 0).    Tho cute of a circular 
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IN   A.  BENT AND  TWISTED BEAM 
3S9 
When the direction of the loud is not tliat of one of the priucipal axee of the croasHectioDR at th«ir ocintroirif*, we mnj rcwolve the load, P uto-y, into compoaents W and W parallel to the axBa af x and y. The sohition is to be obt&itied li_v combiuiiig the siolutions given in ArticlnH 228, 23n with that given here. Ouitttiiig diHpUiUL'meiit^ which would lie poMiible in a rigid body we deduce front the nuprOKaiuus (12) and (30) the equations of UiQ etraioed centriU-litje in the fomi 
aod thi!< Hoe is therefore a plane curve in the plane 
W'xir-m Wjfj/. 
The neutral plane is deteimined by the eqiuttluu t^=*0, and, nince 
W If" 
thin is the plane Ws/I+ W'yjr = Q. 
The neutral plane m therefore At right tuigliis to the piano of bending. The Iwd plane ia pven by the equation .v/*= ^'/ ^- Sinf* / imd /' aro rc«i>ecti7cly tliP raornentH of inertia of the CTOW-aectinii alioiit the axes of y Jiiid x, the rcHult may be expressed in the fomi:— Tlii.' tnu,-e8 of the load plni;e and the tieiitml pbmo on the iTostt-MOction are conjugate diametora of the eUipne of inertia of the cruKH-Hcutiun at itu ixtntroid*. 
(jb)   Combined ttrain. 
We may write down the «olution of the problem of a beam held bent by terminal couple about oiiy uxiti iu the pl^um cjf itH vrusH-sBCtiuu, by uifULDH uf thu ruHulttt given in Articlo 87; we liave merely to eanibinD thu rBsuIta fur two cumjMinent t!i>u|ile« about the priui:ipal axes of the cruBH-&ection at itii centrnid. by coiubiniug the mlutiuu uf the problcBia of uxtension by tenuinal trtictiva load [Articles «y and 70 {k)], of torsion (Cba[>ter xiv.), of bending by <xiuple«, and of bending hy terminal transveme load, we may obtain the state of stress or strain in a beam deformed by forces applied at itM ends alone in such n w;iy a«t to be statia^lly cquivftlent to any given renultant and ro-sviltant oiooient.    In all theec »o1utioti!i the Mtrc»w-(.'(iiii|KiiiL*nt*i deimted by A',, i',, -l\ vaiii'di, 
Aa rogiLKhi the strength of a beam to retunt U-ndiug wi? mu,v rciiuirk UljiI, whun the linear dimeiuiiuuB of the uruM-HevtioD ii.ru Mmati compared with tbo length, th« laoat import&nt of the streaa-oomponeutB i^ the longitndinul teu»toi), &nd the most important of the HtrAin-com]K)nentA in the longitudinal oxtcnHion, and the greatoM vatu(» are found in each cjise in the sections at which the bending moinent i» greatest, and at tho jMiintH of these aectioiLs which are fiirthe--*t from the neutral plane. The condition of Baf^ty for a bent Iteani can Iw expreaiMid in the form:—The maximum bending moment mutit not exoecd a L-ortuin limiting vatuLv 
The concUtiou of aafttty of a twiatcd priam wan cousiderod in Article £20. The quantity which must not, in thia ouie, exceed a. ceilaiu limiting \*aluc is ibe ^hcari itnd this is generally greateut at tboj»e point* of the boundarj- which aw noarest to the central-line. Wbta the beam ia at the same time bent and twisted, the oompononts of atresa whioh are different from zero arc the longitudinal tenuion ^, duo to bending and the shearing utreases Xt and }',. If the length of the lx«.m in great compared with tho linear dimeneioni^ of the crOMH Boction the va1u(3» of Z, near the se^-tian r = 0 and the tierma uf X, and }', that depend u|H)n twiHting can be comparable with each other, luid they are large compared 
' The reenlt wan given by Saint-V«nanl in th« memoit on torsion of 18So. 
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THEORY  OF COMBIKET) STRAIN 
[CH. XI 
with lbs temu of .r, and ]*, that nre due to bending. For the purpoM of aii entinuite of ■tnagth we might omit the tibeajiug str««fiea aud ahearing atnioti tbftt luvdiie to bending, mad take oooount of tho»6 oaXy whicU are due to twisting. 
Id tnj CAM ill wbiob the stresa-compoQentN .V,, T,, Z, ara difibreiit frum ixio mkI Xf, Tp, X, Tanisb, tbe principal streas-coniponentti cah be found by ot»K!n'iiig tb&t tbe ■tieea quadric if* of the form 
and therefore one princip«I plane of streaA at any jioiut is tbe yitnc drawn parallel to tbe central-line to ooiitain the direction of tbe re'«ultaut,al thti puiul, of tbe ULDg«i)ti.il tractiood on tbe crosH-tiectioD. The nonnal traction oo Ibis pUoe vaniabes, and tbe values of tbe two pmocipol BtressBB which do not vanish are 
u.±i[2'.'+4(-iv+ r^if .(31) 
In mj such oaae the ntrain-quadric 13 of the form aud tbv )irin<.-i|)jJ eitensioim are eqiuil to 
--J"* —,J-±'s^"[^.'+MJ','+)V)]*. m 
tito limt of chene being tbe extonaiun of a linu at right aiigleH to that princi|>al plane atrcMH oil which tbe nunnal ti-acbinn \-Hnifib«i& 
(tf)    jSSoltjtnypie inateriai. 
The complejiity of the probloui of Article US i» ciot eisaonttally iucroa^tcd if tbe material of thn l*eam i« taken to be awlotropic, provided that the planes through any point, wbtcb an- ixkMllcl to the principal plftuos, are planes of symmetry of stnictiirc. Wc suppoao tbe as«M of X. >/, I to be chosen in the ^nie way as in Article 22S, and aAauoie that the strainonoixy-^inctioii ban tbe form J 
^{A, n, i\ F. y. H){f^, «,„ 0' + i(^M'+-^04-^0- " 
Wo detiot« tjic Voung'8 modulus of the cnatcnal for tenaion in the direction of tbe axil of I b)' A', and wt- denote the Pnifwon's ratios which cnrresjHind respcctirely with codtnctjoni parallel to the asea »f s and t/ and tcnainn in tbe direction of tbe axis of s, by ff| ud Cf    Wq aaaitme a atrem-system restricted by tbe equations 
x.= );=AV=o,  if,= -l'(/-*}*. 
I'hen we uiay ahttW that X, ajtd r« neceflaarily bare tbe forms: 
wbero 0 and \ are aolutjuua of tbo wime [uirtial dilFcrontial equation 
wbiob mpectively eatiafy the following boundary coikditioDs:— 0M<«,»')jr^ + co8(y, v)Z^=    coa(jr, v)i(y-ooii(y, v)ir, 
001(JCO J^|t+C«(y. Oi^l = -C08U. >) J^ (ki-^+^'"''^3'jr^'^V) 
-ooa(y,i-}(£-Jfir,)jy. 
.(») 
.(M) 
234. 235] 
CRiTrcrsts of certain methods 
331 
Further wo may ahuw tlial tb« Jis^laoeraVnt oorrMponding with the Htrest-is^'Htwu cx^riMwd by (33) and (34) uoccwMarily lias the form: 
w 
v=    rtx+^{/-z)(T,xy + yJ-ni+i3', 
r* -|,[x<fe-i.^+;,+^--*^^-^'xy']-»r4-ay-^y. 
.(M) 
A«in Article 230, we maj take a'=0—y' = O aiid a—y^O. The constant of integration r can be ailjiiHted so that the trautioti at the loaded rhiI joaj be statically cqiiivalont to & aingte furce, IT, acting at tli^ ce;utroid of the turmiual sectiou in the dirootiou of tbe axis of X.    The re^ulU iitaj be JDt«r[]reted ia tbe same way a« in Article 23i. 
235.    Criticisms of certain methods. 
(») Iti maii; treiitJMm on Apitlied ^[eclutriici* tljo HLi>ariiig 8trm»a ir« calculated from the*8tress-equationH orequilibiiiim, without reforenw to the cunditioiia of cumiutibiUty of ■tnuD-uura^wnents. \>y the aid i>f certain antiuiiiplioittt n» to the diHtrtbutiou of trkii^iitiat tnction on the crosH-itection. In particulitr, when the section is a rectangle, and the load i» a force W ]>arftllcl to the axis of r. it id i&sumed (i) that f, is xero, [it) that X, ia independent ol'y. Conditiotis (1) and (iij of Article 228, comhiued with these aaaumptioia, lead to the fc^Uowing Mtrwa-Myatem:— 
jr,= r,=j:,-r,=o, x=2^(3^-^), z,= -^ii-»)x, (36) 
in which a is the area of the croHH-Hootion, n-iid / is tiie moment of inertia iirevimiBly ho denoted.   The resultant traction I J Xgdxdtf a equal to W. 
If thifl rtwMw-Hj-Kbcm could bo correct, there would exist functions w, v, w which wotdd be such that 
Now we have the ideutical equation 
SxSj/^    &r?y \n^     ?c}     ^ \ct     pxj     djfr^a yds     oyj ' 
but thin eciiiation ta not oonKi>«tent with tho above v&lueti for iv{by,...; for, when tbeee values are subatituted, the left-hand luomhcr is equal to —iaW/£I, and the right-hand member is equal to zero. It follows that the atress-system cx[iressed by (36) ir not im!»sible in an isotropic solid body. 
We know already from Article 96 that the stress-wyatem {36) gives correctly the average atrea acrow* the breadth uf the section, and tlierefore givt-'s a jiood a}>proxiiuatioiv to the BCttial stress whL-ti tbu breadth i» smaU L-omparod with the dojtth, The extent to which it IH inadeijuatc may bo estimated by inuins of tlii; table in Article 232 (c); for it would givo tar So the fac;tor out»idc the squjui; bnu-kut iu the ri^ht-huiiii meiiilicr of (23).    It failn also 
(to give correctly th* direction of tho taiij^TintiiLl tractiou on the cruiw-HrOCtioris, for it liiukiM thia tractiou everywltero vertical, whereas near tbe tojj and bottom boundiug Unea it is nearly horizontal. 
*  See for example the crQatieca of itacltine and Graahof iiiiotBJ in thv ItilnMiuctiati footnotes [94 and 99, aoil thoHe oE Ewiu|{, Bach and Foppl quoted in the footuottt on p. 110, 
.^(/-.)^, ^+^^. 
5H-)' 
2^/ 
9w    &»    dv    3m r^     ct     Ox    dj/"" 
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CRITICISMS OF CERTAIN  METHODS 
[CH. XT 
(6) In the exteDsion of thia method to sectiona which are not rectangnlar it is recc^nized* that the component Y, of ahearing etreee must exiat aa well as X,. The caae aelected for diacusaion is that in which the croas-section is symmetrical with reepect to a vertical axis.    The following aaaumptiona are made:— 
(i) X, is independent of y, (ii) the resultants of X, and Y, at aU points P' which have a given x meet in a point on the axia of x. To satisfy the boundary condition (3) thia point must be that marked T in Fig. 31, vie. the point where the tangent at i* to the bounding curve of the section meete this axis. 
To express the assumption (ii) analTticaUy, let 7 be the ordinate {NP) of P and y that of P', then 
.(37) 
Equation (2) then becomes 3X,    1 87 
= 0, 
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        and the solution which makes X, vanish at the highest point {z= —a) ia 
W f" f,X,= ~Y J     '^'^' 
and it is easy to aee that this solution also makes X, vanish at the lowest point. 
The stress-system obtained by these aasumptions is expressed by the equations 
(38) 
it satisfies the equations of equilibrium and the boundary condition, and it gives the right value W for the resultaut of the tangential tractions on the section. But, in general, it is not a possible streaH-ayatcm, for the same reaaon as in the case of the rectangle, viz. the conditions of compatibility of strain-components cannot be satisfied. 
(c)    These conditions may be shown easily to lead to the foUovring equation :— 
which determines 7 as a function of x, and therewith determines those forms of section far which the stress-system (38) is a possible one.    To integrate (39) we put 
/: 
Xr}dx = ^,, 
.(40) 
and then £ aatisfies the equation 
Y e-^      d~l+-' where f, f mean d^jdx, cP^jda^.   The complete primitive can be shown to be 
I ^ 
an   1 l+<r 
* See, in particalar, the treatise of Oraehof already cited. 
235] 
OP TREATING  THE   PROBI.KU  OF  FLBXURS 
S33 
where C, a uid a' are arbitnu-jr constHQtB.   On oUmiimting ( by moanB of the rdatioit (40] we see tbat tbe equatioa of tbe liounding curve raxut have the form 
.(41) 
The uunstauta a aud a' Qxpretui thu tieigbi of tbe higbcst {loiut of tbe curve, and tbe dexiUi of it» luwost point, measured fram tbe ct^ntroid. 
Uiileens the bouTiriing curve of the Hection \\sts one of tbe forms iucluded in eqiiutioa (41) tbe (ttresn ia not correctly given by (38). It may be observed that, if tbe i*»utioii in symmetrical with reajiect to the axis of tf, ta that a'=a, the equation (41) i» c»f the form ij)fbf''-\-:^ia*=\. We saw In Article 231 (/) that tbti ]>robIem of flexure could be solved for thi» section, and tbe curve w«« traced ii> Fig. 2C for the case where ir=^ and 
(rf) We may ohsorve that in the caae of the elliptic (or circular) boundary this method woul^i make the linea of ghcAring stretw elli)UHts, having their axoe in the sams fltrectinn mi tboae of the bounding rurve and touching tliiH curves at the highest and lowest pointa. Pig, 30 hHowh tbnt tbe correct oiirvna are flatter than thene ell>p»ea in the iieigbbourbood of tbene {ininta. In regard to the obliquity of the xtraiiied crosH-Hectionis tbe method would give for^ the value 9ir{l +tr)/.TA'iruA, which ia nearly correct when the breadth is Hiaall, or & ia amalt compared willi u, but ia too amall by about A ]»er ceut. in the caae of tbe circle, and by nearly 20 per cent, when A ia large compared with a. 
(e) The exifitouL-c of a term of tba form fiz in the oxprOKiion fur tbe <lcflexitm [Articlo 232 (rf)] Iuik lioeii rucognizud by writers of technical truati»tM. Tbe tonu waa named by Haukinu [loc. cil.) "the additional deflexion due to sbearicig," In view of tbe diacuwiun at tbu end of Article 230 concerning the meaning of tbe conat&ut j3, tbe name aums not to be a good one. 
{/> The theorem of Article 120 is HOiuctimoe unod to dotormino the additional deflexion*.   The theorem yields the equation 
=ifjj[W+r,'+2j~^{r,z,t...)){E-i-(,XMr*+x^*)McLcd!,d^ ...(42) 
When tbe tractionn over tlie euda are aasigned in a apeccal manner iu accordance with tbe (brmulie (I) and (8), bo that the di8]>laoement is given by (12), the fint term uf the left-hand member of [42) becomes ^ ^'^P;JSl+\ 'P|S/, and the second term beoomee 
nban the ez{)reeaion under tbe !«ign of integration Ia inde|)endent of 0.   The right-hand 
member of (42) becomm ^ W^PiSI+ i'fi"' f j (.X,-+ T,*) dxdy, which hJim* is independent 
of 3. Thus, in this ca»a, wniatioci (43) fails to detormitie the additional dofluxiun. When the tractionB over the ouds are tiut distributL-d exactly iu accordance with (1) and (8), the displacement is practically of tbe form ^iveu by (12> in tbe greater part i^f the beam, but must be subject to local irregnlarity uear the endti. The k-ft-b^ud uiembor of (4^) is approximately equal to \ Wi, where !f is the d«Scxion at the loaded end, and the righthand memlter is a|)proximabely equal to ^ilVVjEI - hut, for a cl'iser approximation we abould reiiuiro a knowledge not only of X, and K, in the greater part of the beam, bnt also of the terminal irregularity. 
* See (kg. W. J. M. Rankine, toe. cit., or J. Ferr;, Applifd M^chnniei [London, ISJftI), p, 4[rl. 
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        CHAPTER XVI. 
THE BENDING OP A BEAM  LOADED UNIFORMLY ALONG  ITS LEyOTH. 
236. Ik this Ctiapter wo sha.ll disrusA some problems of the ccjuilibrimn lifAn isotropic body of cyliDdrical form, by imposing purtictilar restrictioos on 
ibc characUT of the stress. Measuriog the coordioate s along the length of tbu cylinder, we shall in the tirst place suppose that the stress is indopcndent of «, then that it is expressed by linear fnnotions of x, and finally tbiit it is expressed by quadratic functions of z. We shall find that the flrfit kwo restrictions lead to solutions which have been obtained in previous Chapters*, but that the assumption of quadratic functions of z enables us to solve the problem of the bending of a beam by a load distributed uniformly along its length. 
237. Stress uniform along the beam. 
Wu lake the axis of z to be the central-line of the beam, and the axes of m Mid y to be parallel to tlie prinotpal axes of the cross-sections at their centroids. We suppose that there are no body forces, and that the cylindrical btiuiiding surface is ftx'e frtnri Iraction. We investigate those states of stras ill which the stress-components are independent of «. 
The equations of equilibrium take the form 
^Zf+^^v.o  ^^'+2)i^    ^A'+^JL'^o (11 
and the conditions which hold at the cylindrical boundary are 
COB («, v) JT* -f cos (y. v) Xj, = 0,     cos (x, v) JST^ + cos (y. v) Y^ = 0. 
cos (x. v) A', + cos (y, »-) T, = 0. .. .(2) 
Tho conditiooa of compatibility of strain-compoDents take the forms 
^"-o- ^' = »' ^-« W 
K^-'f)-". 4(t'-'t)=« <*) 
^^^-^=<^ <») 
* or. W. Toifft. Omtimgen AbhaHdUngtn, hi. 84 (1087). 
236,237] BEAM  UT»ES8KU  UNIFORMLY   ALONG  ITS  LENUTH SSS 
Thu equatiuna (3) show that Bb is a linear fuiictluu of a; and y, say 
ett = €~ Kx-K'y  (6) 
where e, k, k are constants. Whenever this is the case equations (1) and ccuditions (2) lead to the conclusion that Kg, Y^, Xy Tani^^h. To prove this we observe that, if u', r' are any functions of x and y, these equations and conditions require that 
the integration being tialteii over the cross-section; for the left-Iiaiid member is at unco titLnaformablo into 
1 [{X, COB {x, v) + J„ COS (y, v)\ u' + [Xy cos («, v) + Ky cos (y, v)} v'] da 
where (is i& an element of arc of the bounding curve of the cross-section. 
Now in equation (7) put 
(i)    u' = x, v' = 0, we find 11 X^d^dy = 0, (ii)    ti' = jr', v' ^ 0, we find I! xX^d^rdy = 0. 
(iii)   u = xy,. u' = — Ja^, we find f 1 yX^dscdy « 0; and in like manner we may prove that 
[[ Fvdardif = 0,   jjxyydxdy^O.    {{yY^dxdy = (). 
It follows froEii theue results and (6) that 
\\X;t€xtdxdy = 0,     (j Y^e^djrdy«0. 
Again, in ct|iiation (7) let u', v' be the components parallel to the axes of je and y of the displaiiemeot which corresponds with the stress X„ .... then this equation becomes 
jjiX,e:^+y,e^ + X,e^)<i^dy==0 (8) 
■   But wo have 
X,«„+F,«,,= -er(J,+ ry)e« + ^'(l + o-){(l-<f)(jr,'+IV)-2aX.r,]. 
The integral of the term —a(Xx+ y^)ea vanishes, and the quadratic form (1-aXJEj'-f Ky*)-2ff.Y,yy is definite and positive, since o-<4; also we have   Xytgy = fi.~'^Xy\     Hence   the   expression   X^«„ •*- Y^ty^ + X^e^   is 
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        BKAlt UNDER STRESS WHICH VARIES [CH. XTI 
necessarily positive, and equation (8) cannot be satisfied unless X^, Fy, Xy vanish identically. 
It follows that we must have 
exx = -<rea,   eyy = — o-e„,   e^ = 0 (9) 
where €„ is given by (6); and then equation (5) is satisHed identically. 
The remaining equations and conditions are the third of the equations (1), the third of the conditions (2), equations (4), and the relations Xt = iie„, Yz = H'^f From these we find, as in Article 229, that the most general forms for e„, ^ are 
'—^i-y)- ^—^ry*") (i«) 
where t is a constant of integration, and ^ is the torsion function for the cross-section (Article 216). 
The strain is expressed by equatious (6), (9), (10), and it follows that the most general state of strain which is consistent with the conditions (i) that the stress is uniform along the beam, (ii) that no forces are applied to the beam except at the ends, consists of the strain associated with simple longitudinal tension (cf. Article 69), two simple flexures involving curvatures K and k' in the planes of {x, z) and (y, z) [cf. Article 87], and torsion t as in Chapter XIV. 
The theorem proved in this Article for isotropic solids, viz., that, if «„ is linear in X and y, and if there are no body forces and no surface tractioiis on the cylindrical boundary, the stress-components X^, F,, A', must vanish, is true also for teolotropic materials, provided that the plane of {Xy y) is a plane of symmetry*. 
238.    Stress var3ring uniformly Eilong the beam. 
We take the axes of x, y, z in the same way as before, and retain the suppositions that there are no body forces and that the cylindrical bounding surface of the beam is free from traction; and we investigate those states of stress in which the stress-components, and strain-components, are linear functions of z. We write the stress-components and strain-components in such forms as 
X^ = X^<"r + X^w,   e«; = e«'»2-I-e^«» (11) 
The equations of equilibrium take such forms as 
iTiX '»     ax ">\     3X "»     SX "" 
K"I^-^^)+^^+^+^'"'=''- (1^' 
and the conditions at the cylindrical boundary take such forms as s (cos {x, v) X^'» -I- cos (y, v) Zy"'} -(- cos {x, v) X^i'' -I- cos (y, v) X^w = 0.. ..(13) 
• J. Boossinesq, J. de Math. (LiouvilU), (Sir. 2), t. 16 (1871). 
. 238] UKIFORMI.T   ALONG  ITS  LENGTH 
The conditions of compatibility of strain-components are 
S37 
daf 
dJ^ 
d.t 
S»ca'" , ^ 3»e„«" _ 9tf^f"    Stf^f" 
with 
dxdy     ' dxdj/ 
dx 
sy 
0. 
«ie\ 3a: 3y /    ox\ ex dy / 
^U 
3y        0* 
...(14) 
o.i 
...(U) 
*W«» "*■ ay*     ftr3yj"^"aa^ "*" ay'     a«ay~  ^   ' 
In all these equations the terms containing z and the terms independent of s must ^'anish sepiirately. The relations between components of stress and coinpoiieiitfi uf titrain take such furnis as 
E{e^^"z + ei,'"')=-^«"'^ + '^»'" -"■( V^ + Ky™ +^,«'« + Z/'). 
in which the terms that contain ?, and those which are independent of z. on the two sidc3 of the equations must be equated severally. 
Selecting first the terras in z, we observe that all the letters with index fl) satisfy the same eq^lation.^ a.s are sati.ified by the same letters in Article 2v}7, and it follows that we may put 
I 
£„•'* - «, - KiX - K, y. 
07) 
in which e,, «,. «,', ti are constants, and 4> i** the torsion fiinction for the crosd-section. 
Again, selecting the terms independent of *, wo find from the first two of equations (12) 
jj(«r,w -3,^,^^'] ^dj = |||y 
h< 
dx„^ . ar " 
+ 
■]\daidi/ 
dff   J       V  aa: dy J] 
= /y lcos(x. F)irs«»+cos(y, »/)Jf/') -ilco8(<r,i') Jr^"' + co8<y, v) K^-"'}.^, which vanishes by the fii-st two of equations (13).    Also we have by (17) 
L.  E. 
22 
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        BEAM UKDER STRESS WHICH  VARUS 
[CH. XVI 
where the integral od the right is the coe6Scieot of /i in the expression for the tondanal rigidity of the beam. It follows that r, must vaoUh*, and hence that JT," and F,'" vaniBh. 
By selecting the tenm; independent of t in the third of equations (IS) and oottditioDS (13) we find the dtflerential equation 
ftod the boundary condition 
X,« cos (*, v) +• F,^ COB (y. v) = 0. rhich are inconsistent unless 
Since Z,"' = £(e, — je,ai —jc,'y), this equation reqnires €, to vanish. We may now rewrite equations (17) in the form 
Since JT/' and Y,^' vanish, we find, bv selecting the terms independent of * in the first two of equations (12) and conditions (13), that X.'*', Y^'^^X^** vanish and that Ca*^ is a linear function of x and y.    We may therefore put 
(i„»-e.^<e,*-<r;y.    ff«« =«»•--«„•.    ^"'-O. (19) 
Vhere C), «o, Xg' are constants.    Equation (16) is satisfied identically. 
Further, by selecting the terms independent of < in the third of ei|uatioiW (12), and the third of conditions (13), and in equations (lii), we find, aa in Articles 22M and 234 (a), that ^'^ and e^*"^ must have the forms 
(20) 
*-* = -. (^-^)+«.{^ + W+(l-i-M + «.'f^' + (2 + .)*y}. 
where x ^^^ iC *^® ^^ flexure functions for the croes-soctioD. correspouding with lienHjiig in the planes of («, s) and (y, «), and r, is a constant 
We tuLv« ntiovni that, in the body with a cjrlitiilrical boundary, the most gvoerml state of RtresB coiui>tt«nt with thf> conditiona that no forxne are applied eioe|>t at the ends, and that tb« atreoi coiiiixmcnta are linear runotimui of 2, has tiie pro^iertirs (i) that .Vj and Y, are iudeiwndent of x, ^ii) that A',, K,, .V, vanish.   Thus the ocdy straas-compooeot that 
* This coD>olastoii ia otbentiuo eiideal; for if r, did noi ranljih wc should have iwi»t of rahabla amount r^i maintaitwd by tractloaa at tbe ends. Xht tuiuunal niDpIca at different Movtions euub) Dot then balance. 
238, 239] 
UNIFOKMLY  ALOXO  ITS  LENGTH 
asd 
depends upoo * is Z^ which ia a linear function of s.    Oanvereely, if there &rc »o bodjr forces and X,, F,,, X^ all VAninh, the eqiiatimiH nf equilihrinm become 
ait 
ar. 
.0, 
ard it follows from thene that X, anxj T, aru iudcpendetit of ; und that ^, in a linear funotiou of 2. ThLim the t^uditiou that the struM VAriee aniforialy along the tiaani in the aam« as the conditions that X„ Tg, X, vaniiih*. 
The most general state of strain which is conaistenK with the conditinnfl (i) that tho strass varies uniformly along the beam, (ii) that no forces are applied to the be-aiii except at the ends, consists of extension due to terminal tractive toad, bending by transverse forces, and by couples, applied at the terminal sections, and torsion produced by couples applied to the same sections about axes coinciding with the ceDtraJ-Uoe. The resultant force at any section has componenta parallel to the axes of x, y, e which are equal to 
-EIk,.    -EI'Mr',    Ef„ 
where I=ii^dxdy and /'=lly^3:rfy;  and the resultant couple at any 
section has components about axes parallel to the axes of x, y which are e<iual U) 
- EI' («,' + k'z),   BI («, + *,<K 
and a couiponont about the axis of z which is equal to 
The solutions of the problems thus presented have been discussed in previous Chapters. 
239. Uniformly loaded beam. Reduotion of the problem to one of plane Blrainf
Taking the axes in the same way as before, we ^hall now suppose that all the compoueuts of stress and strain are expressed by quadratic functions of z so that for example 
X.=J»''J^" + Jr,f"2 + A','«.      «««8«,«ii» + e„">r + i^„'" (21) 
* For tho imporlAUoe of these reouUii in eonoexton with ths historicsl developiaant of tlie tbmiiy, ■iwt /nfri>iitii:t(i]R, p. 21. 
t Tbc ihforj Is \\w Vo J. H. Micliell. Quart. J. c/ Muth., vol. 33 (1901). 
22—2 
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BEDUCTIOK OF THE PROBLKM   OF THE 
[CB. XVt 
(22)] 
We shall nuppose also that there is body Force, specified by components X. T parallel to Uie axes o(x, y, and surface traction on the cjliDdrical boundary. specified similarly by J,, Y,, these quantities being independent of :. Then in the equations of equilibrium, the boundur)' conditions, the e<|uations of compatibility of strain-components, and the stress-strain relations, the terroa of the Hccuod, first and xero degrees in z may be taken separately. 
SeltMiting first the terms that contain ^, we find, exactly at; in Article S38, that we uiuy put 
«-»-4*-*)'«-—.(^-)-1 
where f„ k^, ic,', t„ are constants, and <f> is the tortiion function for the aediaa. 
Again, selecting the terms that coaUuu ;. we may show that r, and «, must vanish, and that we may pat 
(23) 
where «,, jc,, «,', t, are constants, and x ^"^ x' ^^^ ^^^' ^"^^ flexure functions for the section. 
For the determination of Xx"", ... we have the equatioas of equilibrium da 9a! 5y 
+ '-—^+jr.'" + pX 1= 0. 
dx dy 
+ ^/' =0. 
.(24) 
and the boundary conditions 
jr,™ cos (jT, I.)+Xy"' COS (y.».) - jr, ^ 0, ■ 
jr^««co8(a:. i.)+r^«'cos(y, k)-)V = 0,      (25). 
J,"" cos {x, v) + F,<« cos (y, i^) = 0.. 
The third of equations (24) and of conditions (25) are incompatible unless the constant «, of (23) vanishes. 
239] 
UNIFOBMLY  LOADED  BBAM 
S41 
Further wo have e^*"', ... and .V,f°', ... connected by the orrlinary stresastrain relatioiia, and we have the equationa of compatibility of etraincompouents in the fonns 
with 
■(28) 
and 
dp 
(30) 
Equatious (26) give ub the funn of ««'", viz.: 
««'" = e<, - «^ - «o> + 2*. (x + iry') + 2«,' (x' + ar*y) + t,^ :    .. .(29) and, by a similar process to that in Article 238, we fiud 
'^-'^ ='^'(1! - S')"^*'{If ■'*'^ + ^^ - *^>4'^*''f^ "^^^'*"'^^'' 
wherein f„, <«, *■,', t^ are constants, and ^, ;^, 5^' are the functions previously named. 
It remains to deterniiue X^«", r^'", X,™ from the first two of (24). the first two of (25), th^ appropriate stre»s-straiu relations and the equation (28). Tht8 determination rcquircii in effect the solution of a problem of plane strain.    If we put 
x.«"=xe„«"+jr;,   r/'=x«„'"'+ IV (si) 
then the e4uations of the problem of plane strain are 
da dy 
dx 
.(32) 
together with equation (28), the equations 
(33) 
NATURE OF THB SOLUTION  OP THE PBOBLKW [OB. XTT 
and the boundary conditious 
^,' cos (x, P) + A-j,"* cos (ir, V) = [X, - Xe^" cos («. p)], | 
Xy*" co8(;r,,.)+ r;coB(j/. i.)=[r,- v^** fro8(.v. v)i I 
The expressions in square brackets in  (32) and (M) may be regarded a» known. 
The tlienry here esplained admits of extension tn any cjwe in which the (broea applied to tha beam along its length havn Inngitildinal compfiuentii ah well att trausvoree coniponentB, provided that all thaw cani|MinentH are indepfitident of t*. TUk reatrictioa may be remored, imd tlie lliwjry oxtciidcd further to any vuae in which all the forcee ap{^'«d to the beam along iln Idnjrth are reprenentei] by rational integntl functions of if. 
240.    The constants of the solution. 
Let W, W denote the componentH parallel to the axes of j: nud y of the uniform load, so that we have 
with a similar formula for W.    From equations (32) aud (34) we find 
W = ~\\x,'''dxdy,    W'=-{\y\^'^djcdy (35) 
Now we may write down the equations \\x,d.dy = l\[li.X;)
-'ja;[XtCOfi(x. v)+ F,cos(^. v)](i«+fj'^l^t" + 2*^«"}djcdy = ^i:/(*, + 2*^). with similar equations for 11 Ygdxdy.    Hence we find 
iElK.,= W,    2ErK.;= W (36) 
Thus the constants k^, k^ are dt;termined iu terms of the load per unit of length. 
If the body forces and the surface tractions on the cylindrical bounding surface give rise to a couple about the axis of s, the moment of this couple is 
jjp{j:Y-yX)d^dy\-\{,x7,~yX.)d«, and fruiri equations (32) and (34) we find that this expression is equal to 
'+4<-''-'-Kt-f)}'^''^ 
* 3. H. MicbeU, ioc. til. p. 389. 
t E. Almansi, Kome^ Jcc. Limeti Reni. (B«r. R). t. 10 (1901). 
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        fnr A',"' and fiSy,^* for y^*", and using the expressions given in (23) for e^"' and «,«"'. ^'•'^ have an equation to determine t,. When no twisting couple \» applied along the length of tlie beam, and the section is symmetrical with respect to the axes of ^ and ■>/, t, vauiKhes. 
The constants «,, *,', t, depend, therpfore, on the force- and coupleresultante of the load per unit of length. The tcniis of the solution which contain the remaining constants e^, k,, «,', ff,. *,', t« are the aame as the terms of the complete solution of the problem of Article 238. These constants depend therefore on tho force- and couple-resiiltantJK of the tractions applied to the terminal sections of the beam. Since the terms containing «,, re,', t, alone wuuld involve the existence of tractions on the xionnal secLiitn», the force- and couple-resttltants on a terminal section mnat be expressed by adding the contributions due to the terms in «„■ "V. t, to the oontributions evaluated at the end of Article 23H. The remaining constants e^,... are then expressed in terms of the load per unit of length and the terminal forces and couples. 
When the functions ^, j^, y^ are known and the problem of plane strain is solved, we know the state of stress and strain in the beam bent by uniform load, distributed in any assigned way, and by terminal foj-ces and couples. As in Chapters XIV. and xv., tho teniiiufil forties and couples may be of any assignod amounts, but the tractions of which they are the statical equivalents must be distributed in certain definite ways. 
241.   Strain and stress in the elements of the beam. 
Three of the components uf stmiri a,re detcrniini-d without solving the problem «>f plane strain.    These are eut e^r, ej«.    We have 
C^ = e„ - (k. + /c,3 + «,2») a: - « + «,'« + ir,V) y + 2*, (;f -t- x^*)        \ 
+ (*; + 2*,'*)|^'+(2 + <r)xy|. 
/d6 
x)+(«, + 2K,*)j^ + (2+ff)xy|, 
-)-(«,'+ 2*;s) 
-|-{l-iff)«' + i<ryt. 
...(;t7> 
The constant €b is the extension of the ceutral-line. We shall see presently that, in general, it is not prf>partiona.l to the resultant longitudinal tension. The constants T(, and t, are interpreted by the observation that Td + r^z is the twist of the beam. 
To  interpret the constants denoted by «„ .... we observe  that the 
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NATUBE  OF THE SOLUTION  OP THB  PItOBLEU 
[oh. XVI 
curvature of the central-line in the plaue of (x, 2) is the value of d^ufd^ when jc = y = 0.    Now wo have 
dx*      dz      dm 
= («.+ «,x+«,i')-T,y + f.<r(a:»-y-) + 2«,'ffjy (38) 
arni therefore the curvature in question is «o + «,« + *,i'. In like manner we should find that the curvature of the central-line in the plane of (y. x), estimated as the value of 3*tt/3** when jr = y = 0, is ^r, + K,'t + «,V. 
The presence of the terms 
in the expression for «„ shows that the «imple relation of the extension of the longitudinal filaments to tlio curvature of the central-line, which we noticed in the case of bending b^ terminal forces [Article 232 {&)], does not hold in the present problem. 
Of the stresa-components two only, X, and F,, are determined without solving the problem of plane strain. The reaulLantsof these for a cross-aection are respectively' — A'/(*,+ 2j<jZ) and — J?/'(«,'+ 2«,'£). The diHtributioa over the cross-section of the tangential tractions X, and Y, which are statically eijuivaleiit to thena resultaiiCti is the same as Jn Salnt-VeDont's solutions (Chapter xv.). When there is twist t^ + t,«, the tractions A', and F, which accompany the twist arc distributed over the cross-sec tiona in the same way as in the toreion problem (Chapter xrv.). 
The stress-component Z^ is not espial to K^a because the utresscomponents -Y,, Y^ are not zero, but the force- and couple-resultants of the tractions Z, on the elements of a cross-section can bo expressed in tenna of the constants of the solution without solving the problem of plane strain. The resultant of the tractions Z. is the resultant longitudinal tension. The moments of the tractions Zj about axes drawn through the centroid of a cross-section parallel Co the axes of y and x are the components about these axes of the bending nwnieTitu at the section. 
To express the resultant longitudinal tension we observe that Now we may write down the equations 
" jx [X^"- COS {x. •■) + 2r„* COS (y, 1^)] djt + jjw (X,*» + pX) dxd^. 
rf-rrfy 
*Al, 242] or THS  UNIPORHLT   LOADED  UEAM 34)5 
The integral ii Yy*'^ daidff may he transfomied in the sftine way, and hence f-we find the formula 
+ <T j (xX, + >fV^) ds (3fl) 
Since the rr-sultant lorigitudiiiHl tension is the »)ame at all seutions, and is equal to the prescribed teniunal tension, this equation determines the constant fo
^B      To express the bending muments, let M be the bending moment in the Hptane of (ic, s\    Then 
W M = ~ ljxZ,d:cdi/ (40) 
^nuid therefore we have 
= - jjxiZ/" + 2zZ/")dxdy =* EI(«, + 2*«,). 
This equation i^hcws that M is expreggiblo in the form 
PP i/ = -E/(«, + *,r + (fjr'') +coast (41) 
In like itmuner we may show that tbt^ btiudiug uiumeut iu the plane of (y, e) ^ expre^iblc in the form 
EI' (*; + K^z + «fg'«<) + const 
^e shall show immediately how the constants may be determined. 
242.    Relation between the curvature and thd bending moment. 
We shall consider the easy in which one end r = 0 is held tixed, the other 
id z=^t m free from tmction, and the load  is statically equivalent to a 
)rce W per unit of length acting at the centroid of the croas-section in the 
^direction of the axis of x*.     The  bending moment M is given  by the 
)uatii>n 
M^}iW{J.-sf (42) 
id the comparison of this equation with (41; gives the equations 
K, = -Wi!BI,   K,^iiW!EI.    (43) 
We observe that, if the constant added to the right-hand member of (41) 
zero,  the lelation  between  the  bending  nmiDent  »tid  tlic  curvature 
Id be the same as in uniform bending by termiual couples and in bending 
* The icnportuit ignite of \ bnuii supyurle*] ut tb« miilii, hhiI carrj-infi n loiul W |wr unit o\ Icnritli, can b« treattMl by comimnnding thi; Hohitioti W h bpam with oim i-nd fnw^ b*nt tjr the oaifoim loatl, with tbut tur u beam bent \>y a, toriuiunl tmuavvnu loud w\}i»i U> - ^ Wl. 
1 
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we find for A',', ... a set of values involving aurf^ioe trautioii, aud an additional ttrM*aystem iniint be Hui>orposed im aa to »nuul this Burfiuw trAvtioii without involving any bodj force ; In other words a ooia[]l(9iii«iitar; Nolutiun uf 7,*a^0 imixt lie added to tbft v»ine of Q given in (4tt;, and Hub nulutiun mual bu o^juittod ho that tim iMundarjr cooditiotis «n «ati«ficd. 
(fc) Svlution vf the probtam of ptatu strain for a haam of drcular tMtton bent by ift own wigAt.    When tho Iwundiiry is a aiKle x'+y' = a*, we have 
X=-(f + i«')<i':r-i-i(J»-3jy>);  ;(4») 
and the surface values of tlie atrKw-cnniponentH given by (4fi), when O Is givao hy {4S), can bonimplitied byoUerving that, in accordtuice with (30), yp = /iK,o*(!+»). It mil be found that these values an gi7eD hy the equationa 
The Mirfac-e tractions aruing from the tonus in fix, -=^ can be annullwi by HuperptMing the titniHB-iiyBtem* 
The MurfacD tractions ariiting from the tOTm in hk^c^x uan be ojmulled by auporposiDg the strata-system 
-r;-o,   r;--^«t(i+iff)"''-   ^J'=^ f**> 
The aurface Irocttona ariaing from the terms ic ^(r«,(«*-ary«) can be annulled by suiwrpoait^ the atroea-system 
.V = ^^«,3.i-«*» + A{j^-«')^ .(M)3_ 
The atreaa-componenttf JT,', T^', ,1,1") are tborefore determined, and thus the prablom of plane strain ia salved for a circular brjundary. 
(e) Corrtetion of fjU curvature in thii camt. In the vaao of a beam nf oircular aection bent by its own weight we may Hhow that *o—0. ot tho central-line is uuextondod, abd that 
^fiP(.    7+12<r + 4^a»\ 
If the curvature were oolcuUted from the bending moment by the ordinary rule the Bscraid term in tho bracket would 1« absent. Thus the wrroctioii to the oiu-vaturo ariaing from the distribution of the lond is small of the order 
flioear dimension of tTows-eoction"]' 
|_ length of b«am J 
A coositleration of the form of (4ft) would ahow that this posnlt holds in general for a beam bent by its own weightt. 
" Some of the Holulioua of \\w prohlctn of piano irttain in a ciroular ovlintlcr which ar* roqnir^d heie worv givvn in Artido 1(^6. 
t BoinUomi of the problem of tlie bending ot a circular or fllliptic cylinder by loads dis. tnbnted in eertain special way* hav« been «ivfn hy Fearaoo, Qvart. J. of Math,. toJ. 34 (188S]. and by pMrsoD and Fllou, Quart. J. •>/ Maih.. rgl. 81 (1S99|. 
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aiitl  tliere ia  t»o bending moment.    The oorwispoiiiiioK dieplftcemeot U given by the equuliouB 
and the curvntitrQ of the contml-lino ia 2ira. 
If we couHider a slice of the beuiu belwtNiii two uonujiJ sacUoiia ait muds up of filftiiienta bavin); a direction tntuivene to ttiiit of tha beaia. and rugard tliese 6Iuiiii;uta w bout by forced Applied at their ends, it i^ cloor thut the central line of the beam most reoaive a curvature, ariMng fVom th« contractiouH sod ext«ni4i4Jtis of the limgitudiuAl filaineotts in exSiCtly the same way m tran«vereo ii!atneata of a Ijcani l-wtit by tcnuinal load receive ft ctirvfttiiro. Thf t4widcncy to antii-la^tic L-iirvatttro whitrh wo mnarked ill the case of a beam Itont by terminal Iruuln aff>rdi« an explanation of the production, by distributed loada, of Homo cnn'aturu nvor atitl aIxivl' that wliioh is related in tho ordiuary way t4t the iveiiding luoinunt. ThJ^ e.\)ihiiiitti()ii mt^tuits that tbt- vSoct bure disciiiwEAJ is liki<Fly tii lie ui<mt ituEKirtaut in Hucb Htrui.'turt»i uk Him|)en)iiuci liridgca, where a Innd raiTi»l aliHig the middle of the roadway is aupiKtrted by tenBiotis in rods attached at the aides. 
243. Extension of the central'line. 
The fact th«i the wutral-linc of n, L«eam bcut by traiisvene load is, in general, extended or oontmctod was noted long ago ns n it_'.Hiilt of experiment*, and it ia not difHcult to see beforehand that such a resuli inu^t 1ie true. Consider, for exuiupk% the I'uao of a b«aui of rpciangular section loaded aluTii; the top. There iirnat Iw prejwure on any horizontal section increasing from /em at the lower Hiirfiice to a titiite value ivt tlie top. With this pressure there must be tu<»«ciiited a contraction of the voitical filaiiieiiLi and an oxteiittiou of the horizontal filaments. The value of the eiteinHiou of the horizontal ceutral-liiie ia determitted by means f>f the formula (39). Since the stress is not expressed completely by the Tortical preoaurc, this cxt9iiaLC>u is not oxpreescd no simply an the above argument might Iftod UK to infer. 
Tlic TVMuK that t^,^0 umv bu utherwino exprosnod by Baying that the neutral plane, if there in one, does not cuntJiitt the contnil-line. In general the locus of the pointA at which »„ vaiiiahea, or there is mi Inngitiidinal extenaiou, might be called thn "neutral-surface," If it \a plane it is the neutral plane. 
244. ninstrations of the theory. 
^«) form v/ thi tululivH of tita yrohlem of plane atrain. When the txtdy force is the weight of the beam, and there are no nurfacc trnctiona, we may make eouiu progiesH with tha solution of the problem of piano strain (Article 239) without tiudiug x- ^" ^^^'^ cuh, putting X=ff^ I'=0, we see that the solution of the Btres^-equatWDs (32) Cfto be exprewed in the foriD 
r 
.("I 
-2'<i'»[;<+0+4«-)'yl' 
.(46J 
wbef« Q must be adj^lBtod so that the equation of comi>atibility (S8) is BatasRed.    Wc may show that this oc|iiation leads to the following e<juation for Q:— 
V2 = 2f*«i(S + ff)j.  {*7) 
If wc take the |)M.rticnlnr solution 
t^g^ii + <r) 
Fthrti, Pmri» V. R., t, 46 <1858). 
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w« line] for AVi ... a Mfc ot x'aIucih involving Hurface tractiim, and an aJditiunaJ stroM^ 8j8t«iu inuBt bo !«u})DrpoBed i«o A8 to (Uioul tliin Aurface traction wiUiout iuvolviu(; auy body force ; in other wonitt (i oomplementary solution (if 7,*Q«=0 iiiu»t lie added to the valiw of Q givm iu (4H), iiiid this Holutioii touat be a^ju^^^ "*> that the boimdarj- conditions «ni oatisdcd. 
(A]    SoltUUm of tAa proUvnt of pltine atrain /or a beam of circHtar 4t!Ction bent by it onm uvigkl.    Wlien the boimdiiry in s mrcle x'+y' = a\ we have 
X=-(| + i<r)a^+ii**-3jry»);  .(49) 
aiid the nurfuci! values of the stress-cniiiputieutH k^vcii hy (46). whoit O is giveb by (4^), • bo eiuiplifioU by ohserviuj; that, in nfciirdaitov with (3U;, yfJ^/iKsu'll +t). It will be fo that thwe vulu«if are givoii by tho uquutioiui 
.(M) 
The fturface ti-actions ariniug from the Icniia in >*«, —- - can be annulled by aupcqtosii the straas-system • 
.1 ■' 
2 + ff '  24 
iiM^a^S. 
.(ol) 
The Hitrfaoc tnctioDR arising from the term iu pc^a'r c«a be annulled by superpomog the streM-ayfttetn 
jr;^o,   }\'=~f..,ii-^-ic)ats,  vo (M) 
The suHkoe tractions arising from the tartna iu furnt {x*- 3>ry') can he annulled by superposing the Htms-systeai 
.V=^,r«,j{-g*«+A(y"-«")} (63) 
The streas-coQipotients JT.', r/, .V^f**) am tlierefore dotertniued, ajid thus the problem plane strata is solved for a circular Ixmndur}'. 
(«)   Comction of tha eureaturt in lAi* aue.    In the case of a beam of atOBOtt bent by its own weight we way xhow that <(,=0, or tbo central-line is imextaudod, 
"'- E  «»lv Mlt-^)     ''/ *    ' 
If the curvature were calviilatad from tltv bending mouisut by the ordinary rule the seoot term iti the brauket wniilci \h> iLlwent.    Tliiw the correction to the curvature arisiug from the distribution of the load in miuaII of tbo order 
Ditiear dimenHion of cr(n»-sw!tion"|' length of bcAni J 
A conbideration of th« form of (46) would ebow that this result holds in general for a bent by its own weights. 
* 8omo of the solutiouH uf tliu (troliluai of plane strain in a ciroitlar cylinder wbioh are raquuvd here were given in Article IHii;, 
i Solalioni ot the protiJam of the   beoding of a draoiar or elliptic ojlindu by loads diatrihtitwi in ocrliiin special ways liavw bwn ijiveii by Pe»r»on, Quart. J. of Math., vol. 34 (18^),j and by Person and l-'ilou, (Jiiart. J. of ilnth., vol. HI (1889). 
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(d) MuTow rectanffidar boam toadad aiong th« top. The tlioorv TTiay l>e iUiwtnteil further by tho fj»»fi of n beam of rfi'tmigiilur ttccLion and aniftll brondth IohiIhi) imifimnly nltmg it» upper surface. We shall treat the problem Ml one of ^ncralizfwl [ilatie striafH*. Aiid wo Hhall neglect the weight of the beam. Let Sa bo the depth of the hoam, ib the hreadth, and / the length. Take the Axi» of i along tbo horidoiitAl central-line, and the axis of x vertically downwards at the fixed end, i-O. Let W denote thfl luad per unit of length. The average MtresB-componeDto -?„ Z,, S, can be ezpreised iik the forms 
wheio, in order to lUtisty equation (4S), ire mtist have 
.(66) 
ZW 
A~ 
3BT 
"*    Bi5a»A'    "'        \Ea^V »Sa>b 
Tlie curvature of the central-line cad be tihowQ to be A -(2 + ir) «j,a' + s,t + «,t*, 
Ht)
.(06) 
which is equAl to 
84^6t(^-'5'-fS-^''l'^
The tcrni wjataining (| + ir) a* gives the uorroctiou of the curvature that would be calculated by the onlinary rule. 
The oxtenaion nt the central-line fjui Iw ahowti to be »■ WfibE; it if just half as gn>at M the estennion of the heam when free .at the ends, (^u)iportei:) aJoiij^ the base, and cArrying the same load along the top.   The neutral Murfnce ia given by tbo equation 
*[3^V^ + 3(i!+')-(a + -)J] = 2^"
At a considerable distance from the t\ve end the dc]ith of this surface t^olow the centralline IK mwrly e^^uil to ijff«*/(i —r)*. The rcKuIt that the neutral anrFai^e xm on the side of the central-line towanls the cuntroH of curvature hae h«en veriliBd RSpcrimentally f. 
(«) Doubitf support^ btam. If we superpose on the streas^ystein found in (Ati) that due to a lonid —J \Vl at the end J = /, we shall obtain the solution for a uarrow rectangillar beauu bont by uniform load W [>er unit of length and i^upfturted at both «]ids. The additional HtFcait-ftyittem ia given, in ncoordauoe with tbo nsmlta of Article 1>6, by the oquationH 
and tho average atiwa in the beam ia expresBod by the funiiidee 
(67) 
* The problem haH been diHoaupd by J. H. MiulitiLt, ^uarl. J. of Math., to). 31 (liKX)), and olM by L. N. Q. FUon. i'hil. Tram. Hoy. Soc. (Set. A), vol. 301 (IM3), and Pnc. Hoy. Soc., 
vol. 72 11^^)' 
t See B papei by E. G. Cokti, £dtn(rutyh itoy. Soc. Tram., vol. il [1904), p. 'i^'J. 
CHAPTER  XVII. 
THE THBOBV OF OONTIXUOCS BEAMS. 
245.   g-^t^-wiftw of the theoTy of tliB banding of beams. 
la prertnas Chapteis we have discussed cotain exact aolatioiis of Khe probletn of Uie beoding of beams bj loads which arc applied in special wajra. Ill the probleni of the beam bent br a load conceotnitc-d at otte etwl (Chapter xr.> we found that the "^ Berooulli-EulenAn " theorem of the pruportiotialicy of the curvature to the bendlug momeat is verified. In the prubleta of the beam beut by a load distributed uuifonuly along its length (Chapter Wl.) we found that this theorem is nut verified, but that, over and above the curvature that would present itaelf if this theorem were inie, there w an additional constant curvature, the amonnt of which depends upon the distribution over the croes-sectiun of the forces constiiuting the load. We appear to be justified in concluding from these resolta that, in a beam sli^tly bent by any forces, the law urpn)portionalityorthe bending niomeuc to the curvature is Riifficiently exact at sections which are at a considerable distance from any place of loading or of support, but that, in the neighbour* hood of SQch a pUce, there may be an additional local curvature. We eodeavoared to trace the circuiastances in which the additional curvature can become very important, and we solved some problems in which we found it to be unimportant. From the results that we obtained we appear to be justified in concluding that, in most practical problems relating to long beams, the additional curvature is not of very much importance. 
The state of stress and strain that is produced in the interior of a beam, ■lightly bent by any forces, may be taken to be given with sufficient approximation by Saint-Venant's solution (Chapter xv.) at all points which are at a coiisidemble distance from any place of loiwliitg or of support* : and again, at a place near the middle of a considerable length over which the load ia distributed uniformly or nearly uniformly, they may be taJten to be 
* This Ti«w Li eonAmwd bjr L. Pochh&iiuDer''B InvestigatiuD of tlie ttnuD in k cticalu- eytindw lUonned by sben forcn. Sec hia rntemehiutgen Stur dtu Otrirhgfteifkt det tlattitehen Stabu* Ki«l. 187S. 
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I 
given with siitficient approximation by Michell's sotution (Chapter xvi.). But we have uot so detailed iuformation in regard to the state of stress or strain near to a place of concentrated load or to a [jlace uf support. Near to .sueli a place the ri^tual distribution of tho forces applied to the beani muat be vary influential. Attempts have been maiie to tttiidy the sUite of strain at such places experiinentally. In tho research of Carus Wilaun* a beam of glass of rectangular section, supported syimnetricaUy un two rollera B, C, was bent by imtaiis of a third rollor A above its middle, and the state of strain In the line AD (Fig- 32) was examined by means of polarixod light transmitted 
9 
c 
B 
V FiR.«». 
horizontally through the beam. The results of the research were explained by Stokesf by the aid of certain empirical assumptions. Stokes pointed out that, if the problem is taken to be a two-dimensional one, tho pressure W at A cuiild be balanced by applying to the side BC of the beam pressures distributed according to thf? law of a simple radial distribution of pi-essure (Article 149) dJi-ected towards A. In like manner the pressures ^ITat B and C, together with railial tension directed from A, anti applied along the side BC aecordiug to thi? satiif law as before, would be a system of forces in statical equilibrium. By superposing these two systems of forces we obtain a system in which the only forces are those actually applied to the beam. The titate of stress produced by the forces of the first system is that which we found in Article 150. The state of stress produced by the forces of the second system cannot be determined theoreticallyj but, at any point of AD, it must cotiaist of a certain vertical pressure and a certain horizimtal tension. Htokes assumed that each of these stress-components varies uniformly along the length of AD. The vertical pressure calculated from the two systems vanishes at X>, and that calculated from the second system vanishes at A ; these conditions together with the knowledge of the resultant, and rosuttant moment about A, of the horizontal tensions, are sutbcicnt, when the above assumption is made, to determine the stress at any point of AD. Taking A as origin, and AD as axis of i/, we find by this method the following values for the stress-components at any point of AD: 
I 
•  I'h.t. M.uj. {Her. 5). vol, 82 (1891). 
t 8t[ik«!e'B work » published in Ckfuii Wilson's pspcr ; Jt u r«prittt»c| in StukM's Math, and Phf$. Paptri, vol. 5, p. 3S6. 
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■mscr or stbtacc loadixo or 
[ca.XTD 
rertkal 
Tbc 
wben 6 k tiw depth of tbe beam, and 2a ia tiw ipsa BCL «qiiji»U-ot to mesa tcancn anafloompHaed faj dieaniv aUvm at tboM peinu u whkli JT.^ F,. la order that tbeae poiats maj be red we amt bare 9ofh>iOlr, or (apBn/(leptb>>-l-25 neaify. Wbea this ooaditsoB ■ m%u6a\ there are cvo soeh poinUL Tbe poeitioDi of tbese poiatfi caa be detcnniaed cxperimenUU^, staoe tbey are cfaanctenaed br tbe aWfPtig of aaj doaWy refirmetire ptopeity of Use gbuB, aod Uk- octoaj and *•**—Hrwi powtiooa were (buDd to agre« very closelj. 
A geocfal tbeocy of twcMlitnenaKmal pBobleaos of tbis dHnci«r has gifcn hy Fllon*. Anioi^ tbe proUens aolred bv faha is lododed that of a^ beam of infinite Uoglb to ooe side of which pressure is »|^>Ued at one poinL Tbe compooentB of dispboeoieat and of stres vere expreaKsd by meana of definite integrals, and tbe reaults are rather difficult to interpret. li is dear thai, if the BoloCion of this ipecial problem coald be obtained in a manageable fbno. tbe flotation of such qoeetians as that dnnuaed bv Stokes could be ublained by Bynthesifl. Pilon ooncloded from his work that StukesV ralae for the horizontal ttrncion reqaires correction, more especially in the low^r half of the beam, hot that hia value for the vertical preaure ia a good appni mation. As r^anU the- question of the relation between the cnrvatnre the bending moment. Kilon concluded thai the BernouUi-Euleriaa theorem approximately verified, bat thai, in applying it to determine the deflexira due to a concentrated load, account ought to be taken of a term of the •^tme kind as tbe go>called " additional deflexion due to shearing " [Article 233 (r)J. Consider for exunple a beam BC supported at both ends and carrying a concontrsU>d load W at the middle point A (Fig. 33).    Either part, AC 
■riw 
iWA 
c 
■ Phil. Tra-f. itoy- Soc. (Ser. A), vol. 301 (1903).    Releretioe may dso be Biftd« to ft by 0. BibUra, Sar tUvtn eauU ta JUxitm dti pritmti rttian^rt, Bordeaux, 1888. 
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AB, of the beam might be treated as a cantilever, fixed at A and bent by termiual load ^ W acting upwards at the other end; but Saint-Venant's solution would not be strictly applicable to the parts AB or AC, for the cross-sections are distorted into curved surfaces which would not tit together at A. In Saint-V'onant'H solution of the cantilever problem the central part of the crosssection at A is vertical, and the tangent to the central-line at A makes with the horizontal a certain small angle «(,. [Article 232(c).] Filon concluded from his solution that the deflexion of the centrally loaded beam may be <ietennined approximately by the double cantilever method, provided that the c«iicral-[inc at the point of loading' ^-1 is taken to be bent through a small ^aagle, m that AB and AC are inclined upwards at the isame small angle to the horizontal.    He estimated this small angle as about ^Kp. 
The cnn'ectinn of ttiQ central de^exion which wo;i]cl ho obtainod Id thiA vmy would be ^4guivalent, in the c&ae of u narrow recUingiilHr l>eain, to iocrwwing it by the iractioa */16/' of it««ir, where I i* the leiigtli of the spnii, nnd d h the dppth i>f the beam.   The «onraotkin is thoreforc rmt very iniinTirtaiit in a long l»piiru. 
It must be underetCKxl that tho thoorj- hero cited doca not atatc that the central line is bent through a cnia]! angle at tho point immediately under tho coneentrated load. The I^UKt cxpreBsiiin for the diuptucemciit uhuw^ in foot that tlii.- liirectiun i» continuous at this int. What tho thoory states i»< thtit wo may lunke a goixE a]ipn.iximaUun to the deResinit by aHHUuiin^ the Bunii>ulli-Eiilt'riaii cui-Vdlure-thMireui—which its not usactly tme—juid at Uic tiame time OKSUiuiug a diitcontiiiuity of direction of the cscntral-Uac—which does nut ntHy occur. 
246.    The problem of continuous beams*. 
In what follows we shall develops the consequences of assuming the 
Bernoulli-Eulerian cun'ature-theorem to hold in the case of a long beam, of 
ftmali depth and breadth, resting on two or more supports at the same level, and 
bent by trajisverse loads distributed in various ways.   Wc shall take the beam 
H to be slightly bent in a principal pluiie.  We lake an origin anywhere in the tine 
of the supports, and draw the axis of x horizontally to the right through the 
supports, and the axis o( y vertically duwtiwards.    The curvature is expressed 
with sufficient approximation by d^yjdx^.    The  tractions exerted across a 
normal section of the be«m, by the piirts for which x is gi-eater than it is at 
the section  upon the parts for which x is less, are staticatly ecjuivalent to 
■ a shearing force N, directed jMirallel to the axis of y, and a couple G in the 
V plaiiK of (jt, y).    The conditions of rigid-b<tdy cquilibriuni of a short length 
K -Aj! of the beam between two normal sections yield the equation 
dx 
-1-JV-.0. 
•(1) 
The thMTj was initiated by Navier. Sec IniTaduction, p. 22. Special ohms have been di«a»6<:d by many writers, amouit whom we may mention Weyraueh, Aufyahrn tvr thtont ^la4iitrtifr Kiirpff, i<eipzi^ 18S5. 
L. K. 
S8 
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The couple G is takeo to be expressed by the equation 
a = B 
dx»' 
[CH.   XVII 
(2) 
where B is the product of Young's modulus for the material and the moment of inertia of a normal section about au axis through its centroid at right angles to the plane of (x, y)*. The senses of the force and couple, estimated as above, ure indicated in Fig. 34. Except in estimating B no accouut i^ taken of the breadth or depth of the beam. 
In the problems that we shall conitider the points of support will be taken tu be at the same level. At these points the cunditioD y = 0 mu.st he satisfied. At a free end of the beam the conditioDS iV = 0, Q = 0 must be satisfied. At an end which rests freely on a support {or a "supported " end) the conditions are y = 0. G=0. At an end which is " built-m " {encastre) the direction of the central-line may be taken to be prescribedf. In the pi-oblema that we shall solve it will be taken to be horizontal. The displacement y is to be deteriniued by equating the flexural couple O at any section, of which the centroid is P, to the sum of the moments about P uf all the forces which act upon any portion of the beam, teniiirmlfd wwards the left at the section^ This method yields a dirteryntial equation for y, and the constants of integration arc to be deteiniined by the above special conditions. The expressions for y as a function of x are not the same in the two portions of the beam sejwirated by n, ptjint at which thore is a concentrated load, or by a point of support, but these expressions must have the same value at the point; in other woiy1», the diRptaccment tf is continuous in passing through the point. We shall assume also that the direction of the centi-al-lioe. or dyldjr, is continuous in passing thTY>ngh anch a pi>int. Equations (J) and (2) show that the curvature, estimated as d'tficU', is continuous in paasiDg^ thruiigh the point. The difference of the shearing forces iV catcutated from the displacements on the two sides of the [Kunt must balance the concentrated load, or the pressure of the support; and thus the shearing force, and therefore also d'tffdjif. is discontinuous at such a point. 
• B •" otlca called tli«f " Bcxur&l risidity." t Stioh ui end in oltea deacribed as " clamped.** X Thia la. ol coarse, tb« same m the sum of ih^ moments, witb nverwd signv, of all th» (orcvi vbich act u|Mti any portion of the beam tennioated torarda th« tinht at tb« aetitMa. 
I 
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247.    Single &pan. 
We CDntiider first a number of casea in which there are two points of support situated at the ends of the boam. In all these cases we denote the length of the spaa between the supports bv /. 
(a)    Terminal forcen and couples. 
M, 
Pig-M. 
' Let the beam bt: subjcctt^d to forces Y and couples Jf„ and Mj at the ends 
H   A and B.   The forces Y must be equal and opposite, and, when the senses 
are those indicated in  Fig. 35, they must be espresaible in terms of M^ 
I and M„ by the equation 17 = M,-M:. 
The bending moment at aay section x is (f —x) Y+M^, or The eq:uation of equilibrium is accordingly 
Int^Tsting this equation, and determiniug the consbanta of integration so that y inny vanish at j: = 0 and at x = l, we find that the deflexion is given by the following equation : 
Bif = -^^^:^(^-^)lil/„(2^-x)+J^f,(^+«)l (3) 
H        The defiexion given by this equation may be described as "due to the I    couples at the ends of the span." 
^ft        (6)    Uniform load.    SuppoHed ends. 
A.\iBl 
i»l> 
l\ 
-z\ 
Fig. 3«. 
Taking w to be the weight per unit of length of the beam, we observe that the pressures on the supports are each of them equal to ^wl.   The 
2i—2 
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EFFECT OF  LOAD 
[OH. xvrt 
moment about any point P ol the weight of the port BP of the beam is \w{l — xf, and therefore the beoding moment at P, estimated in the sense akeady explained, is the Hum of this moment and — ^ wl {I - x), or it is 
— ^wx(l—at). 
The equation of equilibrium is accordingly 
Integrating this equation, and detcrmtDing the cooatonts of integration 80 that y may vanish at x = 0 and ht x = t, we find the equation 
Bf/ = ^«w{/-^)}i' + «(f-«)| (4) 
If we refer to the middle point of the span as origin, by putting x —-j/ + a', we Bnd 
(e)    Vnifurm load.    Built-in ettda. 
'rh« .toliition 3.1 to be obtained bv adding to the solution in cam (/•) a solDtion of CftM (a) adjusted i« tliat rfy/dU- may vanish at j;=0 and r^t. It ia clear from symmetry ttuit Jfi=Bj^c and r—O.    We have thereforH 
B^-=^<w*[/-x)Cn+ir-a*)-iJr«;^-*), 
where M w written for J/]j or M^.   The terminiflJ conditions give 
uid the ec]tiati»n for tho dcflexiun bwxmice 
cr, reforred to the middle point of the sjiati an origin of y, it beconieH 
(d)    Concentrated load.    Sxtpported ends. 
l\ 
Z\ 
w 
Fift. 37. 
Let a luad W be concentrated at a point Q in AJi, at which a:«f. We shall write f for i —f. so that vlQ = f and liQ^^'. The pressures on the snppui-tti ^ and R arc C(|iml to TTf// and W^jl reapectively. The bending moment at any point in AQ. where f > a: > 0, is — W^'xjl; and the bending moment at aiiy point in HQ, where l>x> f, is —W^{l — x)ll. 
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        We integrate these in the forma 
B (y - a: tau a) = - i f-' W^'jf, 
where tana and Uin^ are the downward slopes of the central-line at the points A and B.    The conditions of continuity of y and dtf/dx; at Q are 
B ^ Uii a - A I'' Iff'f = Bf' tail ^-^^1^' Ifff', 
B tan a - ^ ^' W^'^ = - B tan /3 + i Z"' »f'f f ^ 
TEeee equations give 
Btana = i;-^R-er(^+2f),    B tan^ = ii-'Trf|'(2f+ r). 
Hence in AQ, where f > « > 0, we have 
By = i/-Trf lf(f+3n^-^}. (E) 
and in JSQ, where l>x>^, we have 
By = i^■rfi^(2^ + f)(^-^)-(^-^)'| (6) 
We phtierTQ tluit the dt^tlciiciD at an; poiDt F when the Iihu) is at Q ia equal to the duflcxinn at i^ when the naioe IchkI is at F, 
Thi) wiitral ttt-tioitun lEuoi to thtj weight of the Itenm, ne detonniiicxl by the sulutiuD of cane {h), in the miiuc ait that duo to | of the weigltt amceDti-ated At the middle of 
tlie qMUL 
(«)   Cowxniratcd toad.   Built-in ends. 
4% iy 
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        Fig. 38. 
To the vahicj* of "By given in (5) «iid i6) we Iiuve to add the value of By (civ«n in (3), EUld dctermiae tbc cx>nsbait8 .V^ iind Jf, by th« cMinditions that d^idr rauiabes «t 4caiO and at x^l.    We And 
from which J/„^ '•ff'*/^,   Ji'i- trff'/P. 
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THE THSOREM  OF 
[CH. XVU 
H0DC6 in AQ, when {>Jt>0, tre have 
B.v=M-» H-rJE" {3f (i-*)-f*). auil in BQ, where ^>jr>(, wo have 
Wb notice tliAt tlie deflcxioD «t /* when the load in at $ is the sauc an Uic defioxioD at V wlieu the same load is at F. 
The ixiiiitA of lufluxiou arc giren by (/^yV/jr*=U, and we find that there is an inBexioD at /*, in J (^ where 
la like uianuer there is *d inhesion at P, in JJQ where 
The point where the central^Hnc is horiwntal i« given by flyidx^O, If tmch a point in in Hf^ >t miuit ho at a dJHtance fntni .4 ecjual to iv/we .1/^,, luid fiir thiu to hap[icn A<^ must h*^ >Bt^, Coiii'erBeljr, if AQ<B^, tha (mitit is iii ilf^ at a iliiitaiicB from B equal to twice ^/'g. 
The force* F^ and F, at the supports are given by the equations 
246.    The theorem of three moments*. 
M. 
Mb    Mg 
Fig. 39. 
M, 
Let A, B, C he three consecutive supports of a contiDuous beam resting CD anj number of STipports at the »ame level, and let Mj,, J/^. Mr deoote the bending momeots at A, B, C. Denote the shearing forces on the two sides of the support B by A and Bi, with a similar notation for the others. The pressure on the support B is B„ + Bj. Now B^ is determined by t&king' moments about A for the equilibrium of the span AB, and B, is determined by tJikiug nianiCDts about C for the equilibrium of the span BC. Hence tho pressure B^ + B^ can be expressed in terms of the bending mouieuts at A.B,C when llie manner of loading of the spans is known. Again, the deflexion in the HjMin AB may be obtained by adding the deflexion due to the load on this span when its ends are supported to that due to the bending momenta at tho ends.    [Article 247 (a).]    The deflexion in the span BC may be determined 
* The tbeorciii in ilue to 01npe.TrDii. See IntroduclioH, p. H. Oeocraliiiatiou have been ffiTen by nu-iona wrilia» srouni;; wbom may b* nupnliotKul M. Livy, Stati<iiif graphiquf. t. 9, Parta ISW. wUu trMtn th« oaiK abflrv tli« ■tippurtt an not all in tht* it*Tn« level; H. It. Webb. Cambriilsf Phil. Six: Ptm., vol. 6 (1888), whw treaU the anae of variablo flexiiral rigidity; K. Fmnvn. Meisrnytr 0/ itatk.. vol. 1^ {1990). who UeaU the case in whioh the supports are aligbtly coinpTm«iblc. 
247. 248] 
THREE MOMENTS 
359 
bj the same method. The condition of continuity of direction of the centralline at B becomes then a relatiou connecting the bending nioiuents alA.B, C. A similar relation holds for any three consecutive supports. This relation is the theorem of three niomeuls. By means of this relfttion, combined with the Hpeciul conditions which hold at the BrHt and liutt supports, tho bending moments at all the HupporU can be calculated. 
To express this theory analytically, we take an origin anywhere in the line of the supjwrtji. and draw the axis ofa; horizuutally to the right, and the axis of ff vertically downwards. We take the points of support to be at x = a, b, c,... The lengths of the spanx, 6 — a, c — 6,... will be denoted by ^AKt 'jK***'*    ^^ investigate a series of cases. 
(a)    Um/oTTn load. 
Let w be the load per unit of length. The deflexion in AB is given. in accordance with the results of Article 247 (o) and (6), by the eijuatioD 
- 4 (« - a) (6 - x) {iffl (6 + ;r - 2a) + Jtfj (2i - * - a)]/(6 - a). 
A Bim^ilar equation may be written down fur the detlexioa in BC. The condition that the two values of dy.dx at j; = ft are equal is 
and the equation of three inontents \s therefore 
To dotCFQiiuo the pnsiHiirc nn the wiii^port B we form the eq^uatiuna ciF moments for AB about .1, and for BC about C.    We hnvs 
B^i^-^ttl„i - At, +• M, =0. 
Thftie cqufttioiifl give Bq and B^, ftiid the prrssure on the BUppurt B is Bq'^-S,. Iu thi« way tho iin?M«ures on oil the nupjMirt.s may !« calculated. 
(ii)    Equal tpaiil. ' Wlieu thu spuuH »ro cqiuil, (.■quiitLuu (7) may hv writteti ju; a linuiu' dififerBQcB equation of the second order in ihe form 
aud the solutiou is uf the fortu 
.tf._, + 4Jf. + J/„,, = i«rf», 
where .'1 uud B (ire conBtaiita, and a and ^ are tlii" roots of the tttiadratto J!* + 4x+1 = 0, or we hare 
a=-2 + v'3,    j9=-2-s/3. 
The constants A and £ are to be determined f^m the values of J^ at the fint and loitt aupi)orU. 
(*)    Uniform load on each ipan. 
I«t w.,a deuolc the Iinu) |)vr unit of length on tbv 8|)au AB, and vi^ that on BC.   Then we find, in the same way »ja in ca»o (/»), the KiLiutiuii of throe uKmioiitH in the Form 
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tOLxnac sonvoD or aoldtiox or na 
[Ce. XTQ 
{d}   Ctmeetdraimi load « one span. 
Lei a load IT be ooooMimtcd st a point Q in BC givexi br x = f The (Jpflnioo in ^^ ia given, in accordaoee with tbe resalto of Article 24>7 (a), b^ Uw equation 
auJ ibat in BQ\a giren b/ 
Sy-i»'[(f-fr)(c-f)(2c-6-f)(x-*)-(c-f)(r-6)']/(c-ft) -*(*-6)<c-«)[ifj,(2p-«-6) + Jff(c + x-S6)]/<c-6). TliP conrlitimi of L-optinuity o( dyjdx at (tbA ]» 
iK^^ + 2i/«Mt-«)-Ji»t'ff-M<c-f)(2c-6-^;(c-fc)-i(2if„+Jlfr)<c-i urid th« i'(|unlion of thrue mometito for A, B.C u therefore 
when! tj,^ aiMJ /g^ A>^ I'h^ ditttaiice8 of Q from A and C. In like manner, if X)  ifl  tht<  next itupport  beyond  (7, the equation of three moments for 
B, a, n w 
249. Graphic method of solution of the problem of continuona boams*. 
Thn Miufttiou of equilibrium (2), viz. B —^ = O, is of the same form as tbe 
eqnntinii tlt^Utrminlng tho curve aaRumed by a loaded string or chain, when till' ImimI )ior unit tongth of the horizontal projection ts proportional to — O. For, if T dcnntca ths tuiision of the string, m the load per unit length of the horizontAt pn>ii<ctinik, and ds the element of arc of the catenary curve, tbe oi]tinlionti <if oi^uilibriuiii, ruferred to axes dra^^ii in the same way as in Article 240. are 
and tbwe lead, by elimination of 7, to the etiuation 
U follows that the form of the curve assumed by the central-line of tfca beam in any span is the same n& that of a catenary or funicular curve diMA-rniintxi by forces proportional to OSx on any length Sx of the span, pivvidiHl that the ftinicular is made to pass through the ends of the tipuL The fun>'» <>&r are to be directed upwards or downwards according as G u IHisitive or negative. 
" TIm malbod U da* to Mohc   Sw Intro^ctuM, footnote 99. 
* 
The tangents of such a funicular at the ends of a span can be determined without finding the fiinicular, for tbey depend only on the statical resviltaofc and moment, of the fictitious forces QSj:. To see this we take the ends of the span to be x- = 0 and a: = I, and iiitegmte the e<niation (2) in the forms 
and hence we obtain the equatiou 
from which it follows that 
xQ 
[d^Jo       Jo     tB      *"'    Wit    JofB 
dx. 
These values depend only on the resultant and resultant moment of the forces QBx, and therefore the direction of the central-line of the beam at the ends of the span would be detemuned by drawing the funicular, not for the forces G&c, but for a statically equivalent system of forces. 
The flexunil couple O at any jioiut of a span AB way be found by adding the couple calciUated from the bending moments at the onds, when there is no load on the span, to the couple calculated from the load on the span, when the ends are "supported." The bending moment due to the couples at the ends of the span is represented graphically by the ordinati^s of the line A'lf in Fig. 40, where AA' and BB' represent on any suitable scale the bending moments at A and B.    The bending moment due to 
A' 
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        FIr. 40. 
Fifi. 41. 
uuiforni hmd on the spau is eqiia! to - ^u'x(l — a-), iis in Article 2+7 (&), and it may be represented by the ordinates of a pambula as in Fig. 41. The bending moment due to a concentrated loa<I is equal to — Wx(l — f)/i. when f > ar > 0, and to — W (I - x) ^(l, when / > a: > f, as in Article 247 (d); and it may be represented by the ordinate of a broken line as in Fig. 42.   The 
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        The fictitious forces OSj: are ittatically equi^'fllent to the fullowing:— (i) a force iff represented by the area of the triangle AA'B, acting upwanis through that point of trisection ^ of AB which is nearer to A, (ii) a foit-c i^', i-epresented by the area of the triangle A'BK, acting upwards through the other point of trisection ,7' of AB, (iii) a force F. represented by the urea contained between A B and the thiclt line in Fig. 43, acting downward* through the centroid of this area. We take the line of action of F to meet AB in the point G. When the load on the spaa is unifonu, F = ^l*, and 6 is at the middle point o^ AH. When there is an isolated load, J'^ ^IF f (/— f). and (r is at a disUiice from .4 ci^tial to 3 (/ + fl. 
The forces F and thf points G are known for each span, and the points ff, ^ are known also. The forces <^, ^' are unknown, since they are proportional lo the bending momtuitAat thesupjinrl^, hut thei<e forces are couiiected hy certain relations. Let ^Ij, .4,,... denote the supports in order, lei ^i, ^i,Fx denote the equivalent system of forces for the first span A^Ay, and so on. 
Let Mn, Mi. Mi  denote the bending moments at the supports.    Then we 
observe, for example, that tp^': <!>. = M^. A.,Ai : M^.AjA^, and therefore the ratio ^1' : ^ is known.    Similarly the ratio ^g' : ^ is known, and so on. 
If the forces ^, ^', as well as F, were known for any span, we could construct a funicular polygon for them of which the extreme sides could be made to pas.s through the ends of the span Since the <)irection of the central-line of the beam is continuous at the points of support, the extreme sides of the funiculars which pass through the cotnmou extremity of two consecutive f?pans are in the same straight line. The various funicular polygons belonging to the different spans form therefore a single funicular polygon for the system of forces consisting of all the forces <;&, tft', F. 
250.    Development of the graphic method. 
The above results ennble us to conwti'uot the funicular just described, and to detrerinine the forces 0, or the bending moments at the support-s, when the 
249. 250] 
PUOBLKU OF  CVJHTIKUOUS  BEAMS 
bending momeDts at the first and last supports ore given. Wc consider the case where these two bending moments are zero*, or the ends of the beam are " supported." We denote the sides of the funicular by 1, 2, 3,... bo that the tiides 1. 3, 6.... |uu»i thruu^h the Huppurta ^n. -^i> -^i. •■•. 
■*. 
1*i 
ft Fig. 44. 
I We consider the triangle fonned by the sides 2, 3, 4. Two of its vertices ftj^ on fixed lines, vh.: the vyrticals through j/ and g^. The thinl vertex V^ ^^i]a& lies oil a fixed line. For the side 3 conld bo kept in C4|uilibrium by the forces ^,' and 0, and the tensions in the trides 2, 4, and therefore K, is ou the Jine oi action of the resultant of ^i' aod ^5; but this lino is the vertical through thi? point a,, where ^i^i—'4,</,' and cr^(^,' = A,ffj,{or tf>,': tfi, = Aigt-AiffsAgain, the point C^ where the side 2 meets the vertical through A„ is detennined by the condition tliat the triangle fonned by the sides 1 and 2 and the lino AaC, is a triangle i>f forces for the point of iutei'sectiou of the aides 1 and 2, and A^,C, roprosonts the known force F^ on the scale on which we represent forces by lines. Since the vertices of the triangle formed by the sides 2, 3, 4 Ue on three fixed parallel lines, and the sides 2 and 3 paas through the fixed points G.j and A^, the side 4 paitscs through a fixed point C„ which can be constructed by drawing any two tnaogles to satisfy the statetl conditions. 
In the above the point C, may be tAken arbitrarily, but, when it is chosen, AtOi represents the conatant horizontal component of the tension in the sides of the funicular ou the same scale as tijat ou which A^C, represents the force Fi. 
We may show in the same way that the vertices of the triangle formed by the sides 5, Q, 7 lie on three fixed vertical lincf^, and that its sides pasij through three fixed points.    The vertical on which the intersection V, of 
* The aketcb at tho firAphic method given in tlie t*st is not intt-nded to be compl^W. For furtliet d«tailN lIdi rrftiU-r ik [cFeried tu M. LV'tj, bir. cit. ^. 35*^. A imjier hy Ferry ivud A.vrtoa in Pmc. Roif. Son-., vul. 29 |1h7S). may also be connulled. The memoir by CaneT&zzi cited in tho Jntfvduetiott, footnote 99, cuntuins a VVI7 lataiaouii account of Iht! theorj'. 
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GRAPHIC  METHOD TOB COSTISrorS BEA3fS 
[cn. XVII 
the Mam 5 and 7 liefl paoM through the point a,, where a^,= ^^,' and ^y^^-^^f The fixed point C',, through which the side 5 passes, is on Uie vertical through C^, and at sach a distance from 6\ that this vertical and the ■ides 4 and 3 make up a triangle of furctiu) for the puiui of iulereection of the nden 4 and h. The line CJC^ then represents the force F, on a certain scale, which is not the same as the scale on which AS^, represents jF,, for the h''>rizontal projection of G/.\ represents the constant horizontal component tension in the funicular ou the scale on which CJO^ represents F,. Since Ci is known, the ratio of scale:^ in question is determined, sud (7^ is therefore dcieriuincd. The side 6 passes throogh the fixed point A,, and the Axed point Ct through which the side 7 passes can be constructed in the same way as C^ was constructed. 
In this way we construct two series of points C,, C,, ... C,t-u ■•■ ^^^ 
Ct, Cj, ...C^^i     We construct also the series of points a,, o^,... a^,..., 
where ai,ffi'= A^fft+i and atj4+, = .4j.^t'.    By aid of these series of points we may construct the required funicular. 
I I 
Consider the aue of n spans, the end An. &s well as A^, being simply supported. The line joining C,^, to A„ is the last side (3fi —1) of the funicular, since the force ^„', like ^,, is zero. The side (3»-21 meets the side (3n — 1) on the line of action of F,, and passes through the point Cm_i. Irft this side (3n — 2) meet the vertical through a„_, in V^_f. Then the line V„_, 6\„_^ is the side (3ri-4). The side (3n —3) is dett'rmiucd by joining the point where the side (3n— 2) meets the vertical through </„ to the point where the side (3n — 4) meets the vertical through .7'„-i- This side (3n — 3) necessarily passes through J„_, in consequence of the mode of construction^ of ihe points C.    Proceeding in this way we can construct the funicular. f 
Whi'M the funicular is constructed we may determine the bending DiomtMits lit the siipporta by measurement upon the tigiire. For example^ let the side 4 meet the vertical through A^ in 6',. Then A^Si and the sides 3 and 4 make up a triangle of forces for the point of intersection of 3 and 4^ The horizontal projeotinn of either of the sides of this triangle which are oot vertical is J AiAj. Hence A,Si represents the fence ^ on the same scale as ^Aivlj represents the liorizorital tension in the sides of the funicular. Thus AiSi/AiA^ represents the force tfi, on a constant scale. But 4, represents the product of iUj and ^,i4.jalRo on a constant scale. Hence .4,5,/^, J,* reprenvwU the bending moment at .'1, on a cuti»tant scale. In like manner, if the side 3Jt+1 meets the vertical through A^ in the point St, then A^^fA^^^ represents the bending moment at A^. 
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361. Besides the problem of continuous beams there are many pbysiwil Bind tecliiiu'rt! problems whicli can he treated as problems concerning long thin rods, and, od this understanding, are capable of approximate solution. In this Chapter we shall consider the general theory of the behaviour of such bodies, reserving the applications of the theory for subseiiuent Chaptera. The special circuiiiRtance of which the theory must take account is the possibility that the relative displacenient.* of the parts of a long thin rod may be by no means small, and yet the strains which occur in any part of the rod may be Bmalt eaougli to .satisfy the rctjuiremcrts of the mathematical theory. This posgibiUty renders necessary some sp*;cinl kinematical investigatiooB, subsidiary to the general analysis of strain considered in Chapter I. 
252.    Kinematics of thin rods*. 
In the unstressed state the rod is taken to be cylindrical or prismatic, go that liomulogous Hues lu different cross-sections are paraUel to each other. If the rod is simply twisted, without being bent, linear elements of different croas-sections which are parallel in the unstressed state become inclined to each other. We select one set of linear elements, which in the unstressed state are parallel to each other and lie along principal axes of the cross* sections at their centroids. Let B/he the angle in the strained atate between the directions of two sucli elouioutji which lie in cros^s-sectious at a distance Ss apart.    Then lim h/jBs measures the tvist. 
When the rod is bent, the twist cannot be estimated qoite so simply. We shall suppose that the centml-ltue becomes u tortuous curve of curvature \/p and measure of tortuosity 1/S. We take a system of fixed axes of x, y, z of which the axis of /. is parallel to the central-line in the unstressed state, and the axes of x. y are pamltel in the same state to principal axes of the 
• Cf. Kelvin and T&it, y«f. Phil., Part I, pp. M «t $e^., and Kirclihofl, J. /. ilalh. {Crelle), fid 86 (IS-^), or Qcs. Abhandtunifen (Leipxig 1883), p. 365. or Vitrleaunffen iiber math. Phytit, fc, VorLeauug 38. 
866 
EXTENSION   CDRVATCRE  AND TWIST 
[CH. XVIU 
cross-sections at their ceDtroids.    Let P be any point of the ceotral-line, and,      i in the uDstrcsscd state, let three linear elements of the rod issue from P io^| the directions of tlie axes of x, y, z.    Wheu the rod is deformed these linear " elements do not in general continue to be at right angles to each other, but J by meaoR of them we can construct a s^'stcm of orthogonal axes of x, y. <. fl The origin of this system is the displnceil jjusition P, of P, the aiis of s is the ^ tangent nt P, to the stmincd eentral-line, and the plane (x. t) contains the linear flement which, in the unstressed state, issues from P in the direction of the axis of x.    The plane of (x, z) is a " prindpal plain:-" of the rod.    The sense of the axis of .r is chosen arbitrarily.    The sense of the axis of * is chosen to bo that in which the arc » of the centi»]-line, measured from some      . assigned point of it. increasejn; and then the sense of the axis of r/ is deter- ^| minoil by the condition that the axes of x. y, s in this order an? a right-handed ^^ syiiteoi. The system of tixes constmcteil as above for anv point on tbo Ktraiued central-line will be called the "principal torsion-flexure axes" of the rod at the point. 
Let P' be a point of the central-line near to P, and let /*,' be the displaoed 
position of P'.    The length &, of the arc P^P^ of the strained central-line 
may differ slightly from the length 6* of PP'.    If r is the extejtswn of the 
central-line at i*, we have 
lim(8V&')=r^(l +e) (1) 
The extension e may be zero. For any application of the mathematical theory of Elasticity to be possible, it must be a small quantity of the order of the strains contemplated in the theory. 
Suppose the origin of a frame of three orthogonal axes of .r, y, 7 to move along tho strained central-line of the roil with unit velocity, and the three axee to be directed always along the principal torsion-flexure axes of the rod at the origin of the frame. We may resolve the aoguliir velocity with which the frame rotates into components directed alung Lhe iustantam-ons positions of the axcH. We shall denote theae components by k, k , t. Then k and k are the components vf curvature of the straineil central-line at Pi.and t is the twist of the r<->d at /*,. 
These statements may be regarded as definitions of the twist and components of curvature. It is clear that the new defiuilion of the twist coincides with that which was given above in the ca.sc of a rod which is not bent, and that «, K are the curvatures, as defined geometrically, of the projections of the atniiued central-line on the planes of {^, z) and {x, t), and therefore the resultant of k and k is a vector directed along the bitiormal of the strained central-line and equal to the curvature Xip of this curve. 
253.   Kinematioal formulee. 
We investigate in the first place the relation between the twist of the rod 
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and the niOAsure of turtuottity of its strained contral-linc. [<et I. m, n denote the direction cosines of the binoiinat of this curve at P, referred to the principal torsinn-6exure axes at P^, and let I', m', n' denote the direction cot^inea of the biiiorraal at /',' referred to the principal torsion-flexure axes at /*,', Then the limits such as lim (i' —/)/S«, are denoted bv dlidsj     Ajjaiu let 
l + Si.... denote the direction cosines of the binurmal at P,' referred lo the principal torsion-flexure axes at P,.    We have the formulte* 
lim Si/8s, = dl/dSi — mr -I- ux'. lim SmjBui = dmjds, — hk + It, lira Sb/Ss, = dnjdg, - Ik' + nuc. 
The measure of tortuosity 1/S of the strained central-line is given by the formula 
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        1/S*= lim [iSlf + (&my + <.Bny];(Bs^y, 
and the sign of £ is determined by chooeiug the scDses in which the principal normal, binormal and tangent of the curve are drawn.   We suppose the prin
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        Fig. 45. 
cipal nonnal (marked n in Fig. 4-o) to be drawn towards the contre of curvature, and the tangent to be drawn in the sense in which s, increases, and we choose the seoBe in which the binormal (marked b in the figure) is drawn in such a way that the principal normal, thi/ hiiiornial and the tangent, taken in this order, are parallel to the axes of a right-handed s^'steni.    Now 
^K we may put 
^v I = Kp = — cosy,    m = ic'p = siny",    n = 0, 
^^ where p is the radius of curvature; and then ^ir—fia the angle between the 
^H       ' Cf. E. J. Rontb, Vijiiamtct of a tjftUm of njrW tiprhet (Ijondon 1884), P»rt II, OtaapUr I. 
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priocipal plane (jt, r) of the rod and (he principal normal of the ACnuoed centml-liuc.   On substituting; in the exprvesion for I/£*. and making use uf| the above convention, we find the equation 
df    \ 
-<2) 
in which tan/ = —(«'/«).  (3) 
The necessity of introducing such an angle as/ into the theory was noted l)y Saint-Venant*. The case in which / vanishes or is coustant was the only one L-onsiderod by the earlier writer* on the subject. The linear elements of the defurmeil rod which issue from the strained central-line in the direction of the principal normals of this curve are, in the unstressed state, very nearly cuincident with a family of lines at right angles tu the central-line. If / vanishes or is constant these lines are parallel in the unstressed state. We may describe a state of the bent and twisted rod in which f vanishes or is constant as such that the rud. if simply unbent, would be prismatic When / is variable the rod, if simply uubeut, would be a twisurd prism, and the twist would be d/ldSf 
With a view to the calculation of «, k, t we lalcc the axes of x, y, s at P, to be connected with any system of tixed axes of x, y, z by the ortliugonal scheme 
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in which, for example, ^, Tn,. n, ar« the direction cosines of the axis of x at P, referred to the fixed axes.    We have the nine equations 
dljfds, = /jT — 1,k',     dljdsi = /,« — i^r,     dl^dst = i,«' — I^k, 
dm^dsi'^m,r~th^k', dm,/ti»,«tm,/c—m|T, dma/(/#j=mj«'—?«,«,J-...(3) 
dnifdsi = «,T — v^K,   dn,ld«i = tii* — n,T,   dn^ide, = n,K'—n,K, 
which express the conditions that the axes of x, y, z ai-e fixed, while those of 
X, y, X are moving with the angular velocity {k, k', t)+.    From these we 
obtain such equations as 
, dL dm,       dn. 
rfa, dsx tWi 
The differentiations with respect to «, may, sine© e is smftU. be replaced by ditfercntjations with rejfpect to *, provided that the left'-haiid members of 
• Pari* C. ft., i. 17 ilSiS). 
t Ct. B. J. RoDtl], lot. eiU p. 867. 
25S] 
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the equations arc multiplied by 1 +1. If «, k , t arc thcmscives small, and quantities of the order enc are neglected, the factor 1 + e may he replaced by unity. If «, «', T are not regarded as sinall qiuuitlties, a first approximation to their values can be obtained by repkcing 1 -t-e by unity. For the estimation of K, K, T we may therefore ignore the distinction between rfj, and d& and write our formulre 
, all        difU .     diu 
di, 
dmt        dtii 
ds 
ds 
n,- J 
(6) 
The direction cosines I,,.., can be expressed in torma of three angles 6, -^t <f), as is usual in the theorj' of the motion of a rigid body. Let ff be the angle which the axis of / at Pj makes with the fixed axis of z, ^ the angle which a plane parallel to these axes makes with the fixed plane of (x, z), ^ the angle which the principal plane (.r, z) of the rod at P, makes with the plane zPit. Then the direction cosines in question we expreaacd by the e^iuatioos 
/j*» - sin ^ COM ^ - COM 1^ sin (^ coH ff, m.^sL-DR-^ciisc^-sin^aiD^ooeff,  nj=    siiK^Hiri^, I f,—    SID & cos \^, lit J ^mn $ »in ^, n^^    cos $.        J 
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The relations connecting dff/ds, d-^jda, d^jds with k, k, r are obtained at once from Fig. 46 by observing that k, k, t are the projections on the principal torsion-flexure axes at Pj of a vector which is equivalent to vectora dO/ds, d^/ds, d^jds localized in certain lines. The line P,f in which dd/di is localized is at right angles to the plane zP,2, and d^Jds and d^/ds are localized in the liaes PjZ and PiZ.    We have therefore the equations 
de .  ,    d^jr .  .     ,     ,   de     ^ . rf^ ■ /, ■   . 
ic = -J- sm^— -r- sm ffcosift,    « = -r cos 9+ -r- sin p sin 9, 
^"'i+S-" <«) 
254.    Equations of equilibrimn. 
When the rod is deformed the action of the part of it that is on one side of a cross-section upon the part on the other side is expressed, in the usual way, by means of tractions estimated per unit of area of the section. These tractions are statically equivalent to a force acting at the centroid of the section and a couple. The axis of z being directed along the tangent to the central-line at this centroid, the tractions on the section are denoted by Xx, Yt, Zt. The components parallel to the axes of as, y, z of the force- and couple-resultants of these tractions are N, N', T and G, 0', H, where 
N=jjx,da:dy,    N'=jJY,dccd7j, T = jjz,dxdy, 
G=jjyZ,dxdy,    G'= jj-wZ.dxdy,    H=jj(xY,-yX,)dxdy, 
(9) 
the integrations being taken o\er the area of the section. The forces iV, N' are "shearing-forces," the force T is the "tension," the couples G, G' are " fiexural couples," the couple H is the " torsional couple." The forces N, N', T will be called the stress-resultants, and the couples G, G\ H the stress-couples. 
The forces applied to the rod are estimated by means of their force- and couple-resultants per unit of length of the central-line, and, in thus estimating them, we may disregard the extension of this line. Let the forces applied to the portion of the rod between the cross-sections drawn through P, and P/ be reduced statically to a force at P, and a couple; and let the components of this force and couple, referred to the principal torsion-flexure axes at P,, be denoted by [X], [Y], [Z], and [K], [K'], [0]. When P/ is brought to coincidence with Pi all these quantities vanish, but the quotients such as [X]jB8 can have finite limits.    Let us write 
lim[X]/8s=Z,..., \im[K]/Bs = K,...; then X, Y, Z are the components of the force-resultant at Pj per unit of 
2i)3-254] 
or A THEN  ROD 
371 
knd 
leugth of the central-Uoo, and K, K', © are the compoBeuts of the coupleiltaut. 
Now the forces applied to the portion of the rod contained between two cross-sections balance the resultant and resultant moment of the tractions across th(?Ke sections, hvt & denote the excess of the viihie of any i[naulity belonging to the section through /*,' above the value that belongs to the section tlimiigh /*i. let x, y, z denote the ctioi'dinates of Pi refeiTed to fixed axes, x', y, z' those of any point on the central-liue between P, and P,'. Using the scheme (4), we can at once write down the equations of equilibrium of the portion in such forms as 
S {l^N + l,N' ^l,T) + r "(I, X + ;„>' + hZ) da = 0, 
8(^,0 + iaG' + UK) + Sy |{n,iV + n,/V' + h/jT) + S {n^N + n^N' + n,D] -hz [(.WhiV-f ■m,iV"+ m,rj +1 (m,iV+ m,iV' + wi,r)j 
We divide the left-hand members of these equations by 8*, and pass to a ^limit by diminishing ha indefinitely. This opemtion recjuires the perforraance of certain clifferentintionH. The results of ditferentinting l^,... are expressed by equations (5), eitice the extentiiun of the central-line may be disregarded. AVe choose thi^ iixed axea of x, y, z to coincide with the principal torsionflexure axes of the rod at P,. Then, after the ditiercntiations are performed, we may put ^i = 1, I'h = 0. and so on. The limits of &r/5s, ByjBs, Bz/Ss are [O, 0, 1.    The limits of such quantities as 
[firo X, y, Z and A', K\ W.   The limits of such quantities as 
laro zero.    We  have^ therefore, the following forms for the equations of 
lequilibrium*: 
dN '<■ 
- Tk + A^T + }' = 0,    
.(10) 
dN' 
^-Nk'+N'k-¥Z = 0, 
* The equations were eirvo by Olebsch, ElatticiiSi, {50, but th«y w«r« effectively costuned in the work of Eiiohhoff, toe. cit. p. 3t>Q. 
2+—2 
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and 
at 
as 
0. 
.(11) 
In addition to these etiuations there will id general be certain special^ conditions which hold at the ends of the rod. Thefte may be conditions fixity, or the forces and couples applied at the ends may be given. In the] latter case the terminal values of the strcss-rcsuHants and stross-coujiles arei prescribed. These special conditions may be used to determine the constants' that are introduced in the process of integrating the equations of o^uilibriuiu. 
256.    The ordinary approximate theory. 
The equations of equilibrium contain nine unknown quantities: N, N', T, G, G', H, K, K, T. It is clear that, if three additional equations connecting these quantities could be found, there would be sufficient equations to deter-' mine the curvature and twist of the rod and the stress-resnitants and stress-couples. The orflinary approximate theory—a generalization of the " Bernoulli-Eulerian " theory—consists in assuming that the stress-couples are connected with the curvature and twist of the rod by equations of the form 
G^Ak,   G'==Bk,   H=Cr, (12) 
where A, B,G are constants depending on the elastic quality of the material and the shape of the cross-sectiou.    The nature of this depeudeuce ia known i fruin the results obtained in comparatively simple coses.   For isotropic material we should have 
where E is Young's modulus for the material, u is the area of the crosssection, and i and ic' are the radii "f yyratiou of the cross-section about thft axes of j: and y, which are principal axes at its centroid. In the same case G\ would be the toi-sional rigidity considered in Chapter XIV. If the croeasectiou of the nid has kinetic symmetry, so that A ^ B, the flexural coupIcA 6, G', B.A expressed in tlie forimilas (12), are equivalent to a single couple, of which the axis is the binomial of the strained centml-line, and the magnitude is Jilp, where p is the radius of curvature of this curve. 
The theory is obviously incomplete until it is shown that the formula (12) are, at least approximately, correct. An investigation of this question, based partly on the work of Kirchholf and Cltbscli*, will now be given. 
* 8o« IntrodveiioB. pp. 33 «ad iM. 
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256.   Nature of the strain in a bent and twisted rod. 
Ill KirchhufTs theory of tliin n^ds much importance attaches to certain kiiieniHticnl equations. These eqimt-iuiis are not free fmrii difficiilly, and the following investigation, which is direct if a little tedious, is offered as a substitute for the kinematicvil part of Kirchhoff's theorj'. We suppose that a thin rod is actually bunt, no that the centml-linc has a certain curvature, and twisted, so that the " twist" has a certain value, and we seek to ascertain the restrictions, if any, which are thereby imposed upon the strain in the rod. For the sake of greater generality we shall suppose also that the central-line undergoes a certain small extension. 
Now we can certainly imagine a state of the rod in which the crosssections remain plane, and at right angles to the central-line, and suffer no strain in their planes; and we may suppose that each such section is so oriented in the normal plane of the strained central-line that the twist, as already defined, has the prescribed value. To express this state of the rod we denote by jc, y the coordinates of any point Q, lying in the cross-section of which the centroid is P, referred to the principal axes at P of this crosssection. When the section is displaced bodily, as explained above, the point P moves to /*,, and the coordinates of Pi, referred to any fixed axes, may he taken to be x, y, z. The principal axes at P of the cross-section through P are moved into the positions of the axes of a, y at P, defineil in Article 252. The state of the rod described above is therefore such that the cooitJinatea, refen-ed to the fixeJ axes, of the point Q,, to which Q is displaced, are 
X + Ui^B 4- tiy,   y + i«ix + m^y,   z + n,* + n,y, 
where ^i,... are the direction cosines defined by tho scheme (4). 
Any state of the rod, which involves the right extension and curvature of the central-line and the right twist, may be derived from the state just described by a displacement which, in the case of a thin rod, must he small, for one point in each cross-section am) one plane element drawn through each tangent of the central-line are not displaced. Let f, »;, ^ be the components of this additional displacement for the point Q, referred to the axes of x, y. s at the point iV The coordinates, referred to the fixed axes, of the final position of Q ai-e 
z + n,(x + f)-(.n,(y + 7^) + n,f (13) 
To estimate the strain in the rod we take a point Q' near to Q. In the unstrained state Q' will, in general, be in a normal section different from that drawn through P.   We take it to be in the normal section drown through P', 
Ifto that the arc  PP' = ts.    We take the coordinates of Q,' referred to the principal axes at P' of the cross-section drawn through P' t-o be ir -}- £x, y ■\- By. 
ST4 
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Then &r, £y. St are the projections on (he fixed axes of the linear elemeal QQ". [V« take r to be the Wugth uf this element, nnd wrlm 
Bx =■ Ir,    Sy = mr,   ha = nr, 
»o thut f, Ni, n are the direction cosines, referred to the Axed axes, of the line Qt/.    Wo cttii write down expressioDH like those in (13) for the coordinates of kho floal position of Q', luid we can therefure expresa the length r, of the line Joining the final i>08itions of QQ' in terms of r and /, m, n.   Since the direetiou      , I, m. n is arbitrary, the result gives us the six coniponenta of strain. ^M 
in obtaining the length r, we must express all the cjuantilics which involve r correctly to the first order, but powers of r fibove the first may be ne)tlt'(;tyJ. To obtain the expressions for the cooi-diuates of thn final position of Q' we note the changes that must be made in the several terms of (13). Tho <iuanlitte« x, y, z, ti,... are functions of s only, but the quantities f, n. f ftni functions of*, y, s.   We must therefore in (13) replace 
X by x + p-j"'-.    y by y + f^nr. 
z bv z + ^ nr. 
X hy x-htr,   y by y + mr, 
^bv ^ + l^lr + ^^mr + '$nr,.... ^    •   ^     dx Off cw 
Further the quantities dx/ds,... are given by the eqiiatious 
9y, 
^^ = (1-He);„ 
Us 
(1 + *) n„ 
and the quantiliir'S dl,/ds,... are given by the equations 
when the coefficients of (1 + «) ai'e the right<hand members of equations (5). 
It follows that the diflerence of the x-coordinates of the final positions of Q anil Q' is 
r[(l+<)i.« + 2,|(l + g)i + ||m + |f«| + (l + 6)(/,T-W)t.(« + t) 
256] 
BENT  AND TWISTED ROD 
375 
For the differeuoes of the y- and z-eoonJinates %vc have similar expreseions ■with /«„ 7fu, III, and n,, h.^, n, respL-ctively in place of /,, /,, I3, Since the scheme (4) is crthogona), the result of sqttni-ing and adding these expressions ia 
1 + 
+ 
D^ + ^-!'» + i" + (l + OnXr-T(y-f,)} 
dx. 
9y 
ds 
...(14) 
and this is rj*. We have therefore expressed r,»in the form of a homogeneous quadratic function of I, m, n. 
Now, the strains being small, r, is nearly equal to r, and wre can write 
where e b the extension io the direction I, m, n.    Further we shall have 
e = e„'' + CyyVi* + c^k" + eg,mn + e„/i/ -\- Ci^lm, 
where the quantities e^^t ■•■ are the aix components of strain. The coefficient of I ia the first line of the expression (14) must be oearly equal to unity, and the coefficients of m antl ?i in this line must be nearly zero. Similar statements muiatis mutandis hold with i-egard to the coefficients of I, m, n in the i-emaining lines. We therefore obtain the following exprossioua for the components of strain: 
«-,= 
_H 
dx' 
^w — 
and 
3/ 
.(15) 
«« = |? + | + (l + 01*'?-T(y + 7,)}.' 
dx 
.(16) 
rln obtaining the formulae (15) and (10) we have not introduced any approximntions except such as arise from the consideration that the strains are "small," and, in particular, that e, being tlie extension of tlie central-line, must be small. But we can see, without introducing any other considerations, that the terms of (16), as they atanci, are not all of the same order of magnitude. In the tirst place it is clear that the terms — tj/, rx, Kf/, —k'x must be small; in other words, the linear dimensions of the cross-section must be small compared with th« radius of curvature of the central-line, or with the reciprocal of the twist.    8uch terms as k'^, ttj, ... are small also.    Wc may 
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thoeibre omit the prodoete of < and these small quantities, and rewrite eqoationa ilQ) in the forma 
'-=i+" + s-'5:+Tf. (17) 
Now the position of the origin of x, y, and that of the principal {Jane of (x, z), are nnaflTected hj the displacement {^, 17, ^ and therefwe this displacement is subject to the restrictions: 
(i)   ^, V' K vanish with x and y for all values of «, 
(ii)   fyiffbx vanishes with x and y for all ralues of s. 
We conclude that, provided that the strain in the rod is everywhere small, the necessary forms of the strain-eomponeots are given by equations (15; and (17), where the functions {, 17, ^ are subject to the restrictions (i) and (ii). 
257.   Approximate formnls for the strain. 
We have now to introduce the simplifications which arise from the consideration that the rod is " thin." The quantities ^, *;, ^ may be expanded as power series in x and y, the coe65cients in the expansions being functions of 8; and the expansions must be valid for sufficiently small values of x and y, that is to say in a portion of the rod near to the central-line*. There are no constant terms in these expansions because f,»;, ^ vanish with x and y. Further o^jox and 9f/oy must be small quantities of the order of admissible strains, and therefore the coefficients of those terms of f which are linear in X and y must be small of this order. It follows that f itself must be small of a higher order, viz., that of the product of the small quantity d^jdx and the small coordinate x. Similar considerations apply to rj and ^. As a firet step in the simplification of (17) we may therefore omit such terms as — t»;, kXWhen this is done we have the formulae-!* 
'"'l-y-fs'   ^^=af-+S'   ^=—•«+'y+|.-(iB) 
and these with (15) are approximate expressions for the strain-components. 
* The espansioDS m&y not be valid over the whole of a crosa-section. The failore of Cauehj's theory of the torsion of a prism of rectangular cross-section (Introduction, footnote 83) safficientlj illaKtrates this point. But the argument in the text as to the relative order of magnitade of such tenns as rij and such terms as rrj could hardly be affected by the restricted r&nge of validity of the expansions. 
t It may be observed that Saint-Venant's formula for the torsion of a priam aie inoladed 
r 
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AgaiD V/& may observe that similar considerations tu those juat adduced in the case of ^ apply also in the case of d^jcts; this quantity must be of the order of the [jrodiict of the sitiall quantity d'^ld-rds and the small coordinate *, which is the same as the order of the product of the small quantity d^i'da and the small fraction .v/l, where / is a length comparable with (or equal to) the length of the rod. Thii.s, in general, 9f/9« is small compared with d^jdas. Similar considerations apply to dr}/ds and 3?/S»*. As a second step in the simplification of (17) we may omit 3^/5*, dijids, Bf/?* and obtain the fonnulsef 
9!: 
3f 
e„ = e— k'j: + xy. 
.(19) 
Again we may observe that in Saint-Venant's aolntinns already cited e vanishes, and in some solutions obtained in Chapter xvi. e is small compared with KX. In many important probleuLS e is small compared with such quantities as Tx or Kx. Whenever this ia the case we may make a third step in the simplitjcation of the formula; (17j by omitting e.    They would then read 
Ogt 
= ^ + T.v,    e^^-K'x + Kif.    (20) 
With these we mnst associate the formula; (15), and in the set of formula! we may suppose, as has been explained, that f, i}, ^ are approximately indopeadent of «. 
It appears therefore that the moat important strains in a bent and twisted rod are (i) extension of the longitudinal filaments related to the curvature of the central-line in the manner noted in Article 232 (6), (ii) shearing strains of the same kind as those which occur in tho torsion problem discussed in Chapter XIV., (iii) relative displacement of elements of any cross-section pamllel to tho plane of the section. The last of these strains is approximately the same for different cross-sections provided that they are near together. 
258.    DiscusEion. of the ordinary approximate theory. 
To deteriniue the stress-resultants and strea-s-couples wo requu'e the values of the stress-components X,, Yf, Z^.    Since 
I 
Z, 
(1 + ff) (1 -- 2ff) 
Icf(e«4-ffyy) + (l-dr)e.; 
Id tbe formula (16) and (18) by putting f=i3 = 0 ; mid hU formnliB for hcnding bj twrainal load ufl inclnded by potting 
I = - o-KXy + i(rr' (*» - il>),    ii=ir^xy + J« («• - y»). Id each case i muEt be dcteraiiiied tLpprvprinttily. 
' The r«mlt, no iwc as ?(/c< sod eTtjh* urtt ounoemed, is eumplified bf Skint-Venoat's fommln jaat oited.    In Snunl-Ven&nt's eolutiotu fis 
wb«r« X uQcl x' ^^* tb« deiurt^ functions, and 0 is tlie torniau funation, for tho croaa-eoctian. The fuDGtions x ^<^ x' ^^^ small of tbu ordet a'x, whera ^ ia nn a.ppiopriftt« Un«ar dimension M tb* erou-owtion.   Id this ca.se ^ U Mtually imiviKudent of *. '^ Tliew uc KlrclihoQ's ronnuliB. 
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where E \a Young's nKxliilus and o- is Poisson's ratio for the material, the exprefuuon for this strosfi-conipmitut cannot \m obtained without fiiuliiig the lateral extenBions e^a. Cyy. given hy the forraulai (15). as well as the lon^< ludinal extension e^. |^ven bjr the third of (17), (Ifi), (19) or (20). To oxpreaa the fitresa-coraponenta oumpletcly we require values for f, tj, f, and than cannot be found except by solving the etjuations of equtlihrium subject eonditiona which hold at the cylindrical or prismatic bounding surface of any^ small portion of the rod. If the rod ia vibrating, the equations of email motion ought to b« solved. We may, however, approximate to the stresareAultants and stress-couples by retracing Ibe s^teps of the argument in the last Article. 
WboD there are no body forces or kinetic reactions, and the initially <gtlirulrical bounding sur&ce of the rod is free Irom traction, the purtion iMlween any two neighbouring cross-sections ia held in equilibrium by the. tmoiions on its ends. According to our tiual approximation, expressed by equations (15) and [tO), ^, i), ^ are independent of s, and, in the portion of the rod considered, k. k, t also may be regarded as independent of s. This portion of the rod may therefore be regarded as a pribm held strained by tractions on its ends in such a way that the strain, and therefore also the stress, are the Bamc at corresponding points in tljc intermediate cross-sections. The theorem of Article 237 shows that, in such a prism, the stress-components Xg, Y^, X^ must vanish, and, since e„ is given by the third of (20), we must have 
8f    9.J       , , . 
dy    das 
(«) 
Further the stress-components X,, Y., Z^ must be given by Saint-Venant's 
formula; 
where ^ is the torsion function for the section (Article 21fi).   The stresscouples are then given by the formulas (12) of Article 255.    To this order qT\ approximation the stress-resultants vaui:;h. 
When we retain e, as in the formula (1^)> "<3 modification is made in the' formulce for the stress-couples, and the shearing furcts sLill vanish.    To the expression cr (/c'j: — «t/') in the  right-hand   member of (21) wc  must add the term —ere, and the tension is given by the fonnula 
r-AW (23) 
where ta IB the area of the cross-soction. 
When we abncdon the supposition that f. r). f are independent of s, we gmy obtain a closer approximation by assuming that the stmiris, instead of uniform alone the loni'th of a scnall portion of the 
tog 
vary 
orm 
ly 
along   this   length.    When   there   are   no  body  forces, and  the initially 
258, 239] 
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I 
cylindricat boundary h free from traoiion. tht* thp<iroin of Article 23S shows that, the only possible solutious are Saint-Veiiant's. The stress-couples and the tension are given by the same foriuulaa as before, but the ehearing forces do not vanish. 
In the general case, in whii:;h fnroes are applied to parts of the rod other than the ends, we ought to retain the formnlu.; (IV) for the strains, and the fornmlaj <21) do not hold. We know from the investigations of Chapter xvi. that tho formiilap (12) and (23) are not exact, although they may be approximately correct. The correctii^ne that ought to be made in them depend upon the distribution of the applied forces over the croRS-sections. 
From this discussion we may conclude that the furmula] (12) and (23) 
yield good approxiin[»tions to the values of the stresa-couples and the tension in parts of thft uxi which are at a distauco from any place of loarling or support, but that, in the neighbourhood of such places, they are of doubtful validity. 
Since tho oquatioiui (10) and [\1) combined with the foruiuIaD (12) deteriaiiic all the «tr6M-reauLtiUitii an w«U aa> tbti curvaturtj uiiJ twisL, the foniiitlu. {23) tJ«tei'njine«t the extension t. 
In rtrdtDJirr ^ircuintstnncos < vt small in cotDparisou with Riich quimtitieB tm kx, which represent the oitcnsioiit* imitJucixl in aon-cmtnd longiludinAl tiUmento Uy bomliug. This miiy Ite wen iifn fullows :~the order o\' tntignitiiiio of T is, in gennral, tho sfiinu jih tliat of .V, or iV, nmJ thin onlfr is, hy t'miiitioiw (11). that of (^Oj?*. Heiic« tlu; order of t in that uf {£«}"' (SW/rt). Ntiw k Lh of the order (//A«(i*, ivliwre a is an ft[»pro[)hate Uuear diuii>usiou ot iba oruss-sectiuus, aud the order of kx is therofora that of (£»)"'((//a). TbuH KX id, in j^uiiorat, a very much tailor quantity tlian *. 
In any problem in which bending, or twisting, is im important featuro wo may, for a Brat iipproxinifttion, regard the ceutrnl-line as iinextended. 
The potential uuurgj- per unit of length of the rud is eauly fuund from equation)) (JEl) 
and (S2) in tho form 
J(4<»+/i«'»+CV«)i       (24) 
If there is no curvature or twist the [Kitential euer;gy ia 
259.    Rods naturally curved*. 
The rod in the unstressed state.' may possess both curvatura ami twist, the central-line being a tortuous curve, and the principal axes of thfi croas-wctions at their centroids making with the principal normals of this curve angles which vary from point to point of the curve, Tht* principal axes of a cnws-section at Its ceutrotd and the tangent of the central-tine at this point form a triad of orthoguual axes of x^, yo. «o. the axis of «o being directed along the tangent. We suppose the origin of this triad of axes to move along the curve with unit 
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        * The theory La tabstatitially due to CIcbftob, KUutieitOt, f 59.   It had bran Indicated in onlliDfl by KirabfaDff, Uic. tit. p. 365, 
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volocily. The compoDenU of the angular velocity of the moving triad of axes, referred to the instanUmeoua positions of the axes, will be denoted by '•I *•'. ▼•■ Then Ka, k^ are the components of the initial curvature, and Tg is llie initial twist. If 1/2l, ia the measure nf tortuosity of the central-line at any point, and ^tr —J\ is the angle which the principal plane of {x^, z^ at the point luakea with the principal ucrnial of the central-line, vre have the furmulio 
tan/, = -Ar„7«.,   T, = l/5, + rf/;/(&, (2.5) 
which an) analogous to (2) and (3) in Article S53. 
Wht-n tlio rod is further bent and twi'sted, we may construct at each point on tho utruined central-line a syHtem of "principal torsion-tlexupe axes," in the innio wny as in Article 252, so that the axis of * is the tangent of the strained wiitnil-linL' »l the ])nint, and the plane of {x, t) contains the linear element which, in the nnstressod stiite, issues from the point and lies along the axis of «o. By means of this system of axes we determine, in the same way as before, the components of curvature of the strained central-line and the twiat of the rod. Wo shall denote the components of curvature by k^, «,', and the twiat by n. 
Tho equations of equilibrium can be written down, by the method of Article 254, in the forms 
dN 
"y'T,+TK,'+x=o, 
liltd 
dN' 
^ - (?*T,+ //«/-jiT'-h ir= o/ 
dH 
dt 
.(26) 
-(?«/ + G'«,+ e = o. 
.(27) 
The rod could be held straight and prismatic by suitable forces, and, AOOording to the onlinary approximation (Article 2.15), the stresa-codples at uny croM-MCti'-in would be — Ak,, —Bk„', ~ Ct„. The straight prismatic rod could be bent and twisted to the state expressed by *,, «,', t, and then, aooonling to the same approximation, there would be additional couplee Aku Bki, Ct,.    The stress-couples in the rod when bent and twisted from 
WITH  INITIAL CUnVATURE AND TH'IST 
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the state expressed by *(,, *o'. ^o to that expressed by «i, «/, Tj would then be given by the fommlfe* 
G = A(«,^<c,),    G'=B(k,'~k,'),    ff=C(r,-T„) (28) 
It is clear rrutti tlie discussion in Artidc S58 tlint tlicac formula? can Ira uueil with greater certainty if tlio niU is autgected tu termitial foroeis and coupleB only than if foroce are appUvd to it along ita Isngtli. 
It may be noted thftt, nvon whrin the cross-wectifln of the rod has Idnotic Bjiunietl^ St) Ihtil A = Ii, th(! 114'Xiirn.l coiiplex are not equivalent tn n .single ('nu]>]c aWut the b(ll<MrniAl of the dtraiiied centrnlline utiIrbs tt^JK^'^itiltf^. ^^an this condition ia saiisjied the tlosunkl cuiiple ie of aiuount fi {1,71, - I jp„), where p, and ^,1 iire the radii of min'aturu of the central-lino in the unntroised and 8tra8Ae<l states. 
Tho ahovi; method uf caJuulatiug the Blruf»-cauploH rvqiiircK thu intios of the thiclnteM of the n:d tv tho radius of curvature nud to tho twiiirocn.1 of tho twist to be smiJl nf the order of bumll struiiiK ciiuteiu)>]iiti:<d in tho umthumfitiL-al theory uf Etaeticity. Unless this coudition ia satisIitKl the ri>d cannot be held straight and untwisted without ])rodiK:ing in it Rtrains* which exceed thin order. It is, however, nnt necessary to assume that thift condition is* Hntintied in order to ohtnin th« formula' (3fl) ns apjkroxiniatoly t-orrect fomiulre for the streas-coHiiIeh. We may apjily to the qiicfltion tho method of Article SAG, and take ooooiint of the initini onr^'ature and twist by means of tho cqimtions 
where y stands for <e^y~K^x.   We should then find jnirtoatl of (M) 
lu dediLc-iug approximate exprenaiona for the Ktrain-coDiponeats we denote by [y\ auy quantity of the order of the ratio (thicknetKt)/(radius of curvature) or (thiclcnc8s)/(riecipr«>cAl of twist), wlifithf^r initial or final, ktid by [^] any (juiiiitity of tho order i»f the strain. Thus, Tuji and ri»/ are of tlie order [y]; t^jl-x and («i — i(„)i/ "J^ ^^f the onW [p]. If, in the above expression for r|", we reject all terauf of the order of the product [y] [e] aa well as all terms of the order [ef, we find instuad of (19) tho formula' 
From thoHC we could deduec tho formulie (28) in the Bsnie way us (1£) are deduoed trvm (10), and they would he Hubjvot to tho badio timitiitious. 
• Th€BB  fonunliB, due  to Cltbgcli,  wera Dbtained olfio, by a toUUy different proeees, by A. D. Busct, Anxtr. J. 0/ Math., vol. 17 (1696). 
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        CHAPTER XIX. 
PROBLEMS CJOXCERXING THE EQUILIBRIUM OF THIN RODS. 
360.   KirohhofTs kinetic analogue. 
Wo shall begiD our study of the applications of the theory of the last Ohtijitor with a proof of KirchhofFs theorem*, according to which the ^^niatious of etjuilibrium of a thin rod, straight and prismatic when unMtwiMtHl, utul held bent and twisted by forces and couples applied at its ends hIouo. \n4U bo ideiitifieil with the equations of motion of a heavy rigid body t\tvuiu^^ »Wnit a fixetl point. 
No looH'H or couples being applied to the rod except at the ends, the \(UuutUitvi A'. 1". Z ami K, K', © in equations (10) and (11) of Article 254 \u\ii?th.    Knutttions (10) of that Article become 
yU (Is as 
\\i\w\\ »'\pi'<*fw tho constancy, as regards magnitude and direction, of the \^»^ll(U»l' of *V. .v. T; and, in fact, this resultant has the same magnitude, iluos'tu'u and noiiso as the force applied to that end of the rod towards which X \> u\o.'»tui'vil.    Wo denote this force by R. 
Kvin'tfu'ii!* (W) of Article   254   become, on  substitution   from  (12)  of \uwl»' '-^•'^. »»>"i omission of A", K', 0, 
.»7    ^A' -rU-'T = ^V',   B'^-(C-A)tk=-N,    C~-(A-B)kk' = 0. ^\<i ds ds 
(2) 
I1u' (otuw k»i» llu' right-hand side are equal to the moraeuts about the axes 
o( <   *»' ot' rt I'oiv*! equal and opposite to R applied at the point (0, 0,1).   We 
»ut\  th*'>\>roro interpret equations (2) as the equations of motion of a top, 
s\\\\ \« lo >HV el' a heavy rigid body turning about a fixed point.    In this 
■*»»*lov\   lh»' 1''*'' *'* action of the force R (applied at that end of the rod 
^^«^\^^^^l» vvhu'li .« i:^ measured) represents the vertical drawn upwards, s repre
«e»\»« (!»*' \\\\\\\ the magnitude of i? represents the weight of the body, j1,B,C 
t\'HU^«o»t I ^»' n\ou>ents of inertia of the body about principal axes at the fixed 
»»\^»«l, \\, * * *^ ivjnvsents the angular velocity of the body referred to the 
* G. Kirehhoff, lac. eit. p. 365. 
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instaDtaQcous position of this triad of axes. The centie of gravity of the body ia on the ^'-axia at unit distancfi from the fixed point; and this axis, drawn from the fixed point to the centre of gravity at ihe instant *, 19 idtntiotti, in rlirection and sense, with the tangent of the central-line of the rod, drawn iu the sense in which s increases, at that point P| of this line which is at an arc-distance s from one end. The body moves so that its principal axt^s at the fixed point are parallel at the instant s to the principal torsion-flexure axes of the rnd at /*,. 
On eliminating^ iV and iV from the third of equations (1) by the aid of equations (2), we find the equation 
or, by the third of (2), 
giving the equation 
T+^(Ak^+Bk'' +07^) = const. (3) 
Tiiis equation is equivalent to the energj'-integral of the equations of motion of the kinetic analogue. 
261. Extension of the theorem of the kinetic analogue to rods naturally curved*. 
The tlieoreiii mity ha extended to riKis whicli in the unstrcJiscd state hiivo mrvaturottud twiHt, provided that thi; Bumpommts of initittl curvature itp, «„* '*"*! *'"' '"itJ"! twiMt tq, doSiiod lis ill ArUclQ 2fi8, aru uuiihUii^Is. This i» ttiv cilsu if, in thu uiistrt-.'^iiwd stntt.*, llio rud in stnii^ht but Dot printiiatie, in nulIi a. nay llml lioiuoU'^uua InkusvcnfC Uiiw in different crrt«»-aoctioiis li« on a rijfht bcHcoid ; or if the ccntnU-Uno is an arc of a circle, and the rod free fn)in twist; nr if tho cciitrft]-licc in n portion of a bolix, and tlic rod fa&« Bttcb an initiftl twist that, if simply unbent, it would be prittinatic. 
When tho n>d in lient «nd twintwl hj fnroes and couples applied at itsendl ooly, so'that the comiHincntA nf curvature and tlio twiiit, aa detincd in Article SAO, become Ki, ki'iT), tlie stresii-rGBultBttts iV, Jf', Teatii^y the equations 
^-N'r,+ T^,'~<K   ''J-?V, + .Vr, = 0.   ^-^K,'+.V«, = a (4) 
These equations express the result that A', .V, T me the components, imnillcl to Uio princiiptU torsion-flexure axes at &Dy section, of a force which is coastant in ujugnitudo and direction.    We denote this force, ils before, by R.   Since the stress-couplos at any section ■re A («|-«n), B {jci*-/Co')) <^(T,-ro) wc have the equations d 
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        ^ 5;/--fi (<i'- «oT ^i + C(t, - r„] K,-=y 
s-^-o(.u-T^»,+A («i-«.)T,--;r, 
.{6) 
* J. Larmor, London Math. Soc. Pne., tdL 15 (18M). 
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The kinetic analogue is a rigid body turning about a fixed point and carrying a flywheel or gyrostat rotating about an axis fixed in tbe body. The centre of gravity of the flywheel is at the fixed point. The direction cosines I, m, n ot the axis of the flywheel, referred U> the principal axes of the body at the point, and the moment of momentum h of the flywheel about this axis, are given by the equations 
— AKQ=hl,   —BKf,' = km,   — Crj—An. 
.(6) 
The angular velocity of tbe rigid body referred to principal axes at the fixed point is (kj, k,', tj) and the interpretation of the remaining symbols ia the same as before. 
262.    The problem of the elastica*. 
As a first application of the theorem of Article 260 we talte the problem of determiniog the forms in which a thin rod, straight and prismatic in the unstressed state, can be held by forces and couples applied at its ends only, when the rod is bent in a principal plane, so that the central-line becomes a plane curve, and there is no twist. The kinetic analogue is then a rigid pendulum of weight R, turning about a fixed horizontal axis. The motion of the pendulum is determined completely by the energy-equation and the initial conditions. In like manner tbe figure of the central-line of the rod is determined completely by the appropriate form of equation (3) and the terminal conditions. 
We take the plane of bending to be that for which the flexural rigidity is B. Then k and t vanish, and the stress-couple ia a flexural couple G', = Bk, in the plane of bending. The stress-resultants are a tension T and a shearing force N, the latter directed towards the centre of curvature. Let 6 be the angle which the tangent of the central-line at any point, drawn in the sense in wliich s increases, makes with the line of action of the force R applied at the end from which s is measured (see Fig. 47). Then we have T=— Rcoa0, and K = — dOjds, and the equation (3) becomes 
-Rcose-\-\B (dOjdsy = const (7) 
In the kinetic analogue B is the moment of inertia of the pendulum about the axis of suspension, and the centre of gravity is at unit distance from this axis. The line drawn from the centre of suspension to the centre of gravity at the instant s makes an angle 0 with the vertical drawn downwards. 
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        " The problem of the elastica was first Bolved by Euler. See Introduction, p. 3, The gystematic application of the theorem of the kinetic analogue to the problem was worked oat by W. HeBs, Math. Ann., Bd, 25 (1885). NnmerouB special cases were discassed by L. Saalachatz, Der belatUle Stab, Leipzig, 1880. 
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Equation (7) can be obtained very simply by means of the equations of equilibrium.   These equations can be expressed in the forms 
T=~Ii.cn^9,    N=-Rsm0.   '^^ +N=-0, 
as 
from which, by putting G' = — B{d&ids), we obtain the equation 
B(d'eid^) + Rsime=0 (8) 
and equation (7) is the first integral of this equation. 
The shape of the curve, called the elantica, into which the central-line is bent, IB to be determined by means of equation (7). The results take different fnrtrifi arcording us there are, or are not, inflexions. At an inflexion dBjds vanishes, and the flexurat couple vanishes, so that the rod can be held in the form of au injlexiwud elasticti by tenninal fori* alone, without couple. The end points arc thrn inflexions, and it is clear that all the inflexioim lie on the line of action of the terminal force R—the line of thrust. The kinetic analogue of an inflexional elastica is an oscillating pendulam. Since the interval of time between two instants when the pendulum ts momentarily at rest is a constant, equal to half the period of oscillation, the inflexiouA are spaced equally along the central-line of the rod. To hold the i-oJ with its centralline in the form of a non-ii}Jf^rioTifil elastica terminal couples are required as well as terminal forces. The kinetic analogue is a revolvinrf pendulum. In the particular case wliere there are no terminal forces the rod it* bent into an arc of a circle. The kinetic analogue in. this case is a rigid body revolving about a horizontal axis which passes through its centre of gravity. 
If the ccntrttl-linc of the rod, in tho iin-itreswed atnto, i--* ft circle, and there i» no initial twiet, tlie kinotiu ftimlugiic (Article 261) t» a ]>(;nili.thiin on thn asin of which a flywheel is sjinniftricnlly lEMHiiiU'd. The tiiotiuu iif tlio ikmhIuUiui is in*lppeiidoiit of thnt of the flywhcnl, iLtiJ in like uiiiiiiiur the [lutusiblu fij,'ur«4 iif tlie central-line of the rod when further bent \ty turmiiial forcos iitiJ oRi^nlea art; the tmitio tin for & imturdly i<traight rod. Tho nuguitiide of tho teriaiual cuu[}le aloue in altered owing to the initial curvAture. 
263.    Classification of the forms of the elaatioa. 
(rt)     Infi^jrifm't! t/oMi'nr. 
Let » he mcaaiirt'd fpotn an iuBosimi, and let a be the value of S at the inflexit>n a=0. Wo write equatJnn (7) in the fonn 
^B(^'+R(cc9a-ccme)=1i.     (9) 
To integrate it we introduce .lacobian elliptic ftinctions of H.n firgiinicnt « nith a laoduliui t; which »rc given by the eqimtimis 
u=sJiRlB),   i--8ini<i. (10) 
Theu we have 
^=atcti(K-f^,   H\n^6=:tBn{a+/\) (II) 
where S is the real quarter period of tho elliptic fiiuctiotiH.   To dotenniDQ the shape of the L. B. 26 
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«urv«k iM 1.5 b» tba coordiiutc* of ft point referred to fixed axes, of which the uds oT x oouMidw with Un line of thrust.   Tbeii vo b»ve the oqtiftttous 
dx/dt=ooa $,   dyjtU=aiii 6, 
y=-a*v/(f)<'n(«+A 
.(12) 
whHtt £'uu > dwotes the elliptic integnU of the second kind expressed bjr the fomiaU 
}'amu~ I 
Enxx 
dti' ndu. 
•lul ibo voiutuitn <>r integration h»ve beea detenuined so that x and 7 may vanish witli«. The InAaxioiMi uv girai l^ coetf—ooso, or iu^{u-^-K) = \, and tlierafure the arc betwaea 
omtwciitivo iiincxioQa ia i^{B/R),K, and the inficxioDs aro spaced equallj atoug the 
10/1 at int«rvaLs 
pnlntH at which the tongentHara iMrallel to the litic of thnut are Riven hynintf-0, hf Mt(H-f ITldndt + A^wO, sn that u is an uneven niulLiple of K. It fnUovrn that the ourre n<mi* a vprirw of ^t^, sf-jiarTtted bjr polnta of inflexion mid ilividcil tntii pqiul Aat/-/>ayt hy iho iwlrita nt whii'h the bingents are parallel to the line of thruot. 
The ohjuige of tlie form of the curve as the angle a increases is ahovra by Figs. 48—5G. Whoi) m>iwj t wne^tire for small valiioo of u,and hnfl its niinierically {greatest negatire ralnewhitn « has the flmallest positivs value which astisties the equation dn*(ii+iO = it.«t M, denote this value. The value of u for which x vaniftfaea ia given h>- the equation H' lt[A*ant(uH-£^- ^'amA'f. When k exceedti this vahie, x isp<MiUve.Juid x haMamaxinram value whP0« = 2>r-w,- Figs. .'>0—fi2 illustrate caaee in which Xjia respectively gruater than, wpial to, and leas than | x,. I. Fig. 63 ahows the CM« in which X|f=0 or 2A'ainA'=A'. Thin happeoa when a«>i3U° approximately. In this caae all the double jtoiutit and iiifiexiuna eniuoide at tbe arigui, and the cirvc may conai»rt of several exactly equal and aioiilar pioctti lying one over aootber. Fig. M shows a rawe in which 2i'amA'<A', or xjc<0; the ourvu pn>c«od» in the negative dirooUou of the axis of x. The limiting case of thlfs «'hcu a— ir iH shewn in Fig. ^\ in which the rod (of infinite lougth) fonus a xinglc Wi]*, and the nntulultim of the kinetic anulugue starts close to the position of uustttblu uguilibriuni and Juat inakoa one complete revolution. 
(6)    ^'(M-it^fiexianal eiaatica. 
When there are no inflexions we write equation (7) in the form 
i 
^B{^^'=lio.^0+/t(l +3^-j^^ (18)' 
whnro k is Iws than unity, and wo introduce Jacobian elliptic functions of modulus Ji atnl 
nruiiniout ft, where 
H^l-^sJiRfB) (U) 
Wo tnoMure « from a point at which $ vauiahos.   Tlien w« have 
^ = !\/(^V°*^   wnitf-sn«,   (15) 
263] 
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        Fig. 63. 

        
        [image: Picture #203]
        

        Fig. 5S. 
Fig. 50. 
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        Fig. 51. 
Fig. 54. 

        
        [image: Picture #206]
        

        Fig. 55. 
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BUCKLIXO  or A STBUT 
and tbo coonlinatos x aud y are expressed Jii ternm of it hy the eqnotioim 
[CH. XI 
.(16) 
^ 
^ 
Fig. £6. 
in which the eomtants of intfgration are chonen so that x vimiahai with #, and tbo uxis > X i3 |>aralloI to the line of action of St anii it inicb a diHtAnce from it that the force A aud ti*ecotiple-5(rffl/fl[*) which must l>c applied attheondHof ther™larBstj»ti«illy,aquiTa]eiit to a foroD R acting hIohjj tlio axin of x. The curve consiHts nf ft wrice of loops ijing alto"    >i;r on one nidc uf this axiit.   The form of the curve is shown in Fig. 69. 
2*A.    Buckling of long thin strut under thruat*. 
T'.   Jimiting- form of the elastica wheo a is very i>mall ia obtained tj writing 6 for sia6 in equation (8).    We have then, as first approximations, 
$ = acoa[s^(R[B)],   x^s.   y = a^'(B|R)sm{x^/(RfB)l ...(17) 
80 that the curve is Approximately a curve of siues of small amplitude. Tb€ distance between two consecutive inH<>xion8 iHir\f{fi!R}. It apperars therefore that a long stiaijjht rod can be bent by farces applied at ilH ends in a direction parallel to that of the rod when unstressed, provided that the length I and thfl force R are connected by the inequality 
l^R > 7T*Ii.  <18) 
If the direction of the rod at one end is constrained to be the same as that' of the force, the length is half that between consecutive inflexions, and the 
inequality (18) becomes 
J'jR>i7r'R     (19) 
Tb« theo«7 wai tiirtiatod bj Eo]«r.   S«e Jntroduetien, p. S. 
263-205] 
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I 
If tho ends of the rod are constrained to remain iu the same slraight line, the length is twice that between consecutive inflexions, and the inequality (18) becomes 
l*R>i^B (20) 
These three cases are illuatrated in Fig. 57. 
Anj- of th«9e results civn bo obtflined very eiwilj' without having noottlM to tho genoml tbeoi7 of tho ebutim. We take tlie aecnnd case, and 8uj>]w«e that a long thin rod is set up vertiDHlly ami loaded Jit the t'lp with n weight R, wliilo the hiwer ci»l is conjitraiiied to ronmia vertical* Let tho ftxes of s nnd y >« the vertical litie fimwii upwards thrmigh the tuwest [Hjint aiid a linrizniitAl line (tmwn through tho Baiiie point in the plane of bending, as ahowu in Fig. SI l>. If the rnd i:* xery nlightly lieiit, t!ie niujUinn of equilibrium of the portion betwceu any aecttno a.nd the ]i>ad&d end is, with sufficient approximatioOf 
-5g+/((y.-y)=0, 
lerc y, in the displacement of the loaded end.    The solution of this equation which isfies the conditions tliat y vanishes with x, and that y=y) when xs=/, is 
y=yi 
and this solution mftkes dyldi vanish with i if cos {/ .JiRiS)} =0.    Hence tho least value of i by which the conditions i-au bo »atiMfi(id is \fr^{BIB:). 
From the above we conclude that, in the case represented by Fig. 57 b, if the length is slightly gieater than ^•rrs/(BIR), or tho load is slightly greater than ^TT^Bii-, the rod bends tinder the load, so that tho central-line assumes the form of one half-bay of a curve of sines of small amplitude. If the length of the rod is less than the crititail length it simply contracts under the load. If the length is greater than the critical length, and the load is tnily central while the rod is truly cylindrical, the rod may fiimply contract; but the equilibrium of the rod thus contracted is unstable. To verify this it is merely necessary to show that the potential energj'of the system in the bent state is less than that in the contracted state. 
266.    Computation of the strain-energy of the strut. 
Let the length / be slightly greater than i»r^'(B'Wj- Let m dniiHte tho area of tho Cfoae-sectiou of the rod, and Ji the Vaung's mcxlnluii of the niateriiJ. If thu rod aiiuply contracts, the amount of the contraction i* liJEu, the loaded end descend* through a distfinoe RllKa,, and the losa of potoDtial energy on thi* account is fPljEv. The jiotential energy nf fontractinn is iJi'l^'Eia. Tho pfitential energy !o«t iu the iirwsage from the unstreaaed ntate to the contrat^ted atato is, therefore, ^fPtfEiu. 
If the rod bends into tho form of one half-bay of an flaatica of small angle n, the potential energy lo«t HiruugU the descent of the load is Hif- lcostf(/«), where tho integration axteuda otqt tho length of the rod.  The potential energy- of bending i»^BJ id6/dt)'dtf 
* We neglect Lbe woighl of tho rod. The probLom of the beodjiig of a vertical rod under iti own weight will be oooBidGred in Artiole 316. 
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BUCKLINO OF A STRUT 
[CH. XIX 
or H I (cos fl - coH o) dM. The tenaifln T at nji/ section itt j!P»f, whoro « bt tbo extension of the ceutral-line, and itia alao —i?co»S, and therefore the |K>tontiJi] energy of contractioo \A \Eio URQoa6!E<a)^ d4 or \{B^!Ew){l- ] mx* 6 dt). Hence the loss of potentuU in the iiasaage fi-ora the unstressed state to the bent state is 
R{t{\-^<io*a)~% iorm9d4i\-\[R*IE»i){l- (iAxi*0d»). 
The Qxcoss of the potential energy' iu the contracted 8tat« above that in the bent state ia thorofore 
5 i?(H-oc»«)-£[coflflrf«)4-i(VP/^»)f Bin'tf<ii-;«>/£■».     (81} 
Now we hitve 
f co»flA=v'(Z?/y?)(2£amff-ff)=f (2/r-'i?amif-I), 
sJDoe l=Kn/{BfJC).   Aleo we have 
A-=iTr{l+J*>+'A**+-),    i.'amJir-i.r{l-i*'-A**-.»), and therefore 
iK''E»mK-\=l-l'~li*~.... 
Hence the abo\-e expreBsiou (21) ia 
m[il'^-Jt;&,] +J iR»!Eio) [nln^edt (28) 
If w« dcnoto the length \irJ{BlR) by ^, wo have and therclore4:'=4((/^-l)newly, 80 that 
The quantity R is the product of Eat and the (^luare of the radius of gymtion of the crnaH-aRction abnut aii ivxik dranii thruugh its centruid at right angles to the plane of bending. Dennttiig this radiim of gyration by c, we find that tbo potential energy in the cnntrocted dtate is certainly greater than that in the bmt Mtate if 
^>'*+i*rc.   (») 
The term ^nc constltntea a oomctioo of the formala for the critical length u ordhuurily calculated; it is of comtss, immatmat in any case to which tho theory of thin rods could be applicable. Another correction of the same order of importjince would rttiiilt from taking account cif the a|)>e(;ial Htatc of the purtN of the i-<h{ that are ne;ir tlie ends. If tbe forc«i applied to hold Vop. lower end are ho iliHtrihuted thnt the theory of thin rodn gives an arlequate oocaurit uf the strain nrair tliin end, then the tcrniiniU seotien is not fixed as a whole, and nrmie work ih done by the tru^tioiv-i tA thi.s end [cf. Article 235 (/)]- U^ on tbt other hand, it i.i kept fixed, tlieii there are "local iiertiirlttLtions" near the end. nud thr additional euez-gy that dependti upon them has nut beeu taken into socount. There will be similar local perturbations near the loaded end. 
266.    Resietance to buckling. 
The strains developed in the rod, whether it is short and simply coutnwts or is loug and bt^udi^, hil- auppused bo )>e cituitic tjtraiu», that iu lo say such as 
aud this U pcaitive if 
or 
1 
265, 266] 
undeh thrust 
891 
disappear on the removal of the load. For Euler's theory of the buckling of a luug thin stmt, explained in Article 264, to have any practical bearing, it is of course necessary that the load required, in accordance with inequalities such as {Id), to produce bending should be less than that which would produce set by crushing. This couditioQ is not satisfied unless the length of the strut is great compared with the linear dimensions of the cross •section. In view of the lack of precise iufurmation as to the couditlons of safety in general (Chapter IV.) and of failure by crushing (Article 189), a precise estimate of the amallast lutio of length to diameter for which this condition would be satisSed is not to be expected. 
The practical question of the conditions of failure by buckling of a rod or strut under thrust involves some other considerations. When the thrust is not truly central, or its direction not precisely that of the rod, the longitudinal thrust is accompanied by a bending couple or a transverse load. The contraction produced by the thrust H is RjEca.    When the thrust is not tnily 
I central, the bending moment is of the order Re, where c is some linear dimension of the cross-section, and the extension of a longitudinal filament due t^ the bending moment is of ihe order Rc^fB, which may easily be two or three times as great, numerically, as the contraction HjEa^. The bending moment may, therefi»re. produce failure by buckling under a load loss than the crushing load. Again, when tho line of thrust makes a small angle j8 with the central-line, the trEinsverse load fisin^ yields, at a distance comparable with the length I of the rod, a bending moment comparable with //?sin/9; and the extension of a longitudinal filament due to this betiding moment is compai-able with IRc^iu^jB.    Thus evfii a slight deviation of the direction 
■ of the load from the contral-Hno may produce failure by buckling in a fairly long strut. Such causes of failure as are here considered can best be discussed by means of Saint-Venant's theory of bending (Chapter XV,); but, for a reason already mentioned, a precise account of the conditions of failure owing to such causes is hardly to be expected. 
It is clear tluit such considtirations as are here advanced will be applicable to other cases of buckling besides that of tho buckling of a rod under thrust. The necessity for them was emphHslzed by E. Lamarle*. His work has been discussi^d eritiimlly and appreciatively by K. Pearson'f. In recent years the cumlitious of buckling have been the subject of considerable discussion 1. 
I 
* *M^m, sur la flexion du boji,' Ann. Jtt Iraiaux pullict tit Sel^iqut. i. 1 (IS^I^]
+ Todhiinter and PcorHon's Htatarij, vol. 1, pji. ftTS el Jtrq, 
% Itff.i*nce may he umile to lliu wtiliiiKs «f J. Kublur. C, J. Krivtnlcr. L. TrBinitl lo Zeilschr. d. DeuUehen IngenUiirc. lidl. ii (1^0), of Kilblor and Krleinler ia XeiUchr./. Math, u. Phi/f. Bdi. 4S-47 (l»0»-19i)2). and the diHsertatioa bj Kri«mler. ' Labile u. lUtbiis Gltiohe«widiUBgureii.,.&uf BiegODj^ beiui8[jruGhti3r SUibe...' (Karlsmbo, \902), 
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ELASTIC STABILiry 
[CH. SIX 
267. Elastic stability, 
Tbe possibility of a straight form aod a bent form with the same terminal load 19 not in conflict with tho tht-orem of Article 118, because the thin rod can, without midcrgoing strains greater than are contemplated in the mathematical theory of Elasticity, be deformed in such a way that the relative di-splacemcnts of its portA are not small*. 
The theory of the stability of elastic systems, exemplified in the discussion in Articles 284, 265, may be brought into connexion with Poincar^'s theory of "equilibrium of bifurcation"f." The form of the rod is detennined by the extension e at the loaded end and the total curvature a ; and these i|nantitie8 depend up<jn the load R, the length I and (lexural rigidity B being regarded as constants. We might represent the state of the rod by a point, determined by the coordinates e and a, and, as H varies, the point would describe a curve. When R is smaller than the critical load, a vanishes, and the equilibriuni state, defined by e as a function of R, is stable. When R exceeds the critical value, a possible state of equilibrium would still be given by a = 0; but there is another possible state of equilibrium in which cc does not vanish, and in this state a and e are determinate functions of Jt, so that the eijuilibrium statefi for varying values of R are represented by points of a certain curve. This curve issues from that point of the line a = 0 which represents the extension, or rather contraction, under the critical load. Poiiicani describes such a point as a "point of bifurcation," and he shows that, in general, there is an "exchange of stabilities" at such a point, that is to say, in the present example, the states represented by points on the lijie a = 0, at which e numerically exceeds the extension under the critical load, are unstable, and the stability is trausfen'ed to states represented by points <m the curve in which a^&O. 
268. Stability of inflexional elastica. 
When tbe l«we]" tind uf the Uiadwl md is L'iiiLHtni.irieJ to rctuain vertical, and the leiigtii I idiglitiy exucetls ^w^'iB;/i)y a. possiblo fonn uf the cvntrai-Uiiu in a cur^'o uf ninea of small acupUtudc Imving twu iuflesiDUK, ilh iik Fig. 58 ib). Anathsr possible form in an tJa*tia,i iUiujtrat«d in Fiy. 58 (i;.    In gcuera!, if h iit iin intejjcr such that 
i(Sm-l)ip>(,/W-fl)>i(2''-l)'>-. (2*) 
H forms besides the unstable »tr«ight form are possible, aod thoy con«i«t respectively of 1,3,... 2fl - 1 half- h«ys of different ourvee of the elastica ftmily. Tbe forma of these ciu-veA ftrc given respectively by the equations 
K^U''itlii)^[-i, h IK^"- 01 {2S) 
We abaU iihovr that all these forms exce|)t that with the groe.te.it A*, tb»t i« the smallMt number of iuflexiooa, are uiiatabloj. 
' C(. O. H. Br7an, Vambridgf PIttl. Sae. Proe., vol. 6 (1668). 
t Acta ilatkfmalit!a, L 7 (1885). 
% Tbe rcMuLt is opposed to that of L. Su-Ucbaix, Der MatleU Stab (Leipzig ISSO), but t do not think that >ii>i arKHinent ia quite convincing. Tha result stat&d iu the text ■ereei with Uiat obtain^ b> a diSurcuL mctbod b; J. luiriuor, loe. ctt. p. 3W. 
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        Fig. 58. 
wfaem B, ii written for EAmK„ n.iid the anffij: r indicates the number (r+l) of iufleiioDS. Wo oompare the potential energies of tlie foniiM witli /•+] and ■» + ! inflcxioDB, s being greater than r    Since 
{^r + \)Sr^(2»^y)K, (88) 
the piitenttat ciiergjr in the form with a+\ mBexiona is the greater if 
Slooo 
tbl» coaditiou is 
But, KIUCQ 
(i-...,(..|f)>0-.,.,(:.|'f) m 
itfoUowa that (I-**) {^■**r dkf ^^^^*^^^^ ^ ^ iucreasea.    Now wbcD or, A',<A%, and i',<4'r; and therefore the inequality (29) is sati.tfied. 
In the cuKC illuBtrAtixl in Fig, nS the threw puHalbln furins uro (a) the uiiatable Htr&ight fonu, (i) the slightly bout furm with two iDflexion*. (c) thu bciit form with une inflexion. The augld a fur the funn (c) in givvii by A'^jtr, uiJ it lion b«tw«eu 17u* and 176*. 
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BOD 07 EQUAL FLEXIBILITY 
[CH. -LitA 
It nujr \m oIwen'Ml that the conclusioa tliat the stable form ift tliat with a aioglft' inflexion is not ia coofiict witb Poincanfa theory of the exchange of Rtabthties at » [Mint <^ biAitcatioi). hecAiuo the loci id the domftiu of t and a which reprBteot forms with ti«« or more iuflexious do not i^Huo from the locua which repraaeots forms iritb one iuBexion but from the locus n=0 which rcprcMDts atmight forma. 
Tlio inetabilit/ uf forma of the elaatica with more than the smallest poariblo number < iiiflusions bctweoii the en(l» in well known a.-* an experimental fact Anj [Hvticular oau bo iavostif^ted in the Haute way aa the A[iociiLl case discitmed aboFc, iu wliicb the^ tangetit at one end is, owing to cunhtraiiit, juamllal to the line of Uinut. Ad iDve»Ugatiou oi this kind canuot. however, decide the <iiiestioii whether any particular form ia hUUIo or ODBtable for di>«p]iicenieiita in which the centrAl-lioe is moved out of itn piano. TtuB question has not boon wWed completely. One epecial case of it will be couudered iu Article 272 («)■ 
269.    Rod bent and twisted by terminal forces and couples. 
We resume now the general problem of Article 260, and express tbf 
directions of the principal torsion-flcxiire axes at any point P, on the sfcrainedj 
central-line by means of the angles $, yfr, ^ defined in Article 253.    We* 
choose as the fixed direction y^,z in Fig. 46 of that Article the direction of 
the force applied to the rod at the end towards which s is measured.    The 
stress-resultants iV, iV', T are equivalent to a force R in this direction, and 
therefore 
{N,N'.T) = R{-s\n$co>iit>, sin^sin^, costf) (30) 
Equation (3) of Article 260 becomes 
^ (^ ;c» + B*"*+ CT')+ii cos tf = const (31) 
Since the forces applied at the ends of the rod have no moment about tfa( line PjZ, the sum of the components of the stress-couples about a line drai through the centroid of any tiection parallel to this line is equal to the oorre<1 sponding sum for that terminal section towards which s is measured.    Wt have therefore the etpiattim 
— AKsmOcoitft + i?«:'sin ^sin<^ + (7tcos^ = const     (32) 
The analogue of this equation in the problem of the top cxprc»Bes the constancy of the moment of momentum of the top about a vertical axis drawn through the fixed point. 
The equations (31) and (32) Are two integrals of the equations (2) of Article 2^, and, if a third integral could be obtained, dO/ds, d^/dx, d^jds would be expressible in terms of 0, •^. <^, and the possible forms in which the rod could be held might be found. In the general case no third integral ia known \ but, when the two Bexural rigidities A and B are equal, the third of these equations yields at once the integral 
T = const  (3S) 
The quantities «, k, t arc expressed iu terms of $, ^. <ff, d$,'ds.... equations (8) of Article 233, and  the equations (31), (32), (33)  can 
26»-270]      IN ALL PLANES DRAWN THROUGH ITS CENTRAL-LINE 395 
intcgrfttcd* so as to express B, tfr, if> as functions of s, and then the farm of the central-line ia to be determined by means of the equations 
T-= sm p cos'^,    j^ = 8inc'siij^,    -t-=co8p, 
here x, y, z are coordinatcsi referred to fixed axes. 
We shall not proceed with this general thcojy, but shall consider some important special cases. 
I      270.    Rod bent to helical formt. 
P     The steady motian of a iymmetrical top, with its axis of figure incUaed at 
a ci.)nstant angle ^tt — a to the vertical ([rawn upwaitln, is the analogue of a certain configuration of a bent and twisted rod for which A=B. Putting tf = iir-a, de/d8 = U, we have, by (8) of Article 253, 
I « = -^cosacos^.    «=-^co.«s.u.^.    r^^+^ma^, 
and. by (31), (32), (33) of Article 269. 
T = const.,   *' + k'' = const.,   d-^fr/ds = const. 
The curvature of the central-line is constant ami equal t-o cos o ((ii/'/rf*), and the biuoruml of this curve Ues in the plaue of {je, y) and makes an angle ^ with the axis of w reversed. It follows that ^ is identical with the angle denoted by / ia Article 253. and that the measure of tortnoHity of the curve is sin a (d^/<Zs), Since the central-line is a curve of constant curvature and tortuosity, it is a hetia: traced on a right circular cylinder. The axis of the helix is parallel to the line of action of R. and a is the angle which the tangt-nt at any point uf the helix makes with a plane at right angles to thii^ axi& 
■ Let r be the radius of the cylinder on which the helix lies.    Then the Curvature Ifp and the measure of tortuosity 1/2: are given by the equations 
1/p = cos'a,'r,    1/S = sin a cos a/r,  (34) 
and we may write 
« = —coa^cos'a/?-, «' = sin^cos*o^r, rf-^/<is = eosa/r, d^/rf« = T —sinacosa/r. 
(35) 
From equations (2) of Article 260 we iind 
(AT, J/')=(—cos(^, 9ioi^)[(7TCos''ayr —i?sin«co8*a/r'J, 
and then from equations (30) we tind 
■ i2 = CTCOBa/r-B8in«coB'a/f*.     (36) 
P   * Soo F. KlviD a. A. Sotomerfeia, Tluorie dn Knittit, HuR 2, Lcipxig 1898. or B. T. lATiiUBkor, Ana^ytie'il Dynamics, Cambridge 1904. t CL Kirobhoff, Ik. eit. p. 80A. 
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BOD BENT TO HEUCAL FORM 
[Cll. XIX 
The terminal force is of the nature of lensioQ or preasare according aa tbe rigbi-band member of (36) is positi\-e or negatiTe.   (See iR Fig. 59.)    For the force to be  of the nature of tension, tj 
mu8t> exceed BsiaaconajCr. ' 
The axis of the terminal couple lies in the tangent plane of the cylinder at the end o( the central-line, and the componenla of this couple about the binomial and tangent of the beltx at this point arc Bcos'a/r and CV. The components of the same couple about the tangent of the circular section and the generator of the cylinder at the same point are, therefot Rr and A', where K ia given by the equation 
n t=^ K=CT6ma +Bco^alr.  (37) 
i^ It follows that tbe rod can be held so that it has a give 
PiR. 69.        twist, and its central-line forms a given helix, by a wrench 
which the force R and the couple K arc given by e<|uatioiis (8fi), and (37), and the axis of the wrench is the axis of the helix.   The force ai couple of the wrench are applied to rigid pieces to which the ends of the are attached. 
The helical form can be maintaioed by terminal force alone, without any couple i and, then t>ie force Uof ni<Lgnitude£oo8)n/f3sma, and acbt a«thnist along tho ails of the hdu In tbU COM there mtut be twiatofaoiount -livoa'alCraiiia.  Tbe form can be maintainl also by terminal couple alone, without nuy force; and then the coaple is of uiagnit Bcoaa/r, aad iu axiit ia parallel to the axis of tbe helix.    In this caae there mutt be twist of amount Bamaoo»a/Cr. 
When tbe atate of tbe rod a such that, if simply anbwt, it would be prismatic, df/cb vaniabes^ end tbe twiat of the rod ia equal to the measure of tortuosity of tbe central-line (cf. Article 253). To bold the rod so that it baa thix tn-ist, and the central-line is a girai helix, a wrench about the axis of the helix ia required; and tbe fores Ji and couple A* of tbe wrench are given by the equutiona 
/f= -(J-C) sin a cos'a;r*,   A'=(jffcoa'fl+Csiu'a)co»a/r. 
271.   Theory of spiral springs*. 
When the aecticns of the rod have kinetic symmetry, so that ^4 = B. oM the unstressed rod ia helical with such initial twist that, if simply unbent^ i) would be prismatic, we may express the initial state by the formulse 
*« = 0,   <r„'= cos* a/r,   To=3inacosa/r. 
.(38) 
By suitable terminal forces aud couples the rod can be held in the stat expressed by the formulse 
/Cj=0,    jf,' = cos«ai/ri,   t, - sin ttj cos ot,/r, (89) 
* Cr. EelTin and Tail, Xat. PhU. Port a. pp. 199 cl Hq. 
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        SPIRAL SPniSGS 
where r,, a, are the riKJiiiii unci iitigle of a new helix. any section are then given by the etjimtions 
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        Btress-coiiplns at 
|nd the stress-resultaulij are given by the cquatiuus 
N = 0,    T=N'ta.na„ 
Bin a, cos Qi     sin a coa a' 
}. 
A^'^G 
CDS' a, 
/sin g] & 
cosa,    8infl[C0sa'\     „8ina,co«a,/cf)s*o,    cos'a 
I 
All Ihti equations of Article 259 are satiiified. The new con6guratioii can be maintained by a wrench of which the axis is the axis of the helix, and tho force H and couple K are given by the equations 
K — f ^^^ "> / *"^ gj COB g. 
sm a cos a 
'sill a, cos Qi     sm a cos a 
•\     nsina,/cos^a,    coft*a\    ■. + 5co3«.f"-^^'-^^-«V 
(40) 
EThe theory of spiral springs is founded on this result.   We take the spring the unstressed state to be determinwl by the equations (SS), so that the ntral-line ia n helix of angle a titiced on a cylinder of radius r, anJ the |j>incipfil normals and binormals in the various cross-soctions are homologous lines of these sectiona    We take I to be tho length of the spring, and Mo be le length of its projection on the axis of the helix, then the cylindrical irdinates r, $, z of one end being r, 0, 0, those of the other cud are r, ;^, h, 
sre 
;f = (icosa)/r,    ft = isina (41) 
We suppose the spiing to be deformed by a wrench about the axis of the 
thfUx. aud take the force li and couple K of the wrench to be given.    We 
[«haU sup])03e that the central-line of tlie strained spring becomes a helix of 
le a, on a cylinder of radius r,, and that the principal normn)s and 
^binormals continue to be homologous lines in the crofis-sections.    Then J2 
aud K are exprus-suil in terms of a, and r, by the equations (40).    When the 
iefurnmtion is small we may write r + hr and a 4-^a for r,, a,, and suppose 
amall changes S;^ and hh are made in % aud k.    We have 
hh = {i cos a) So,    ^x = - [t^ sin ^)IA ^a - VJ- ^'os a)/i^] «r, 
[from which 
Sa = (5/c)/('cosa),    (5r)/f^ = — (sina.5A + rzo9.a.h-j()llriso^ii, 
- sin a cos a . £r    cos 23 -. 
0 —-— = - am a cos a -, + ——- fia 
Bh Sy 
= cos a 1- + sm a ,*, 
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        SPECUI. PROBLEMS CONCERtflNQ 
a —ooa^« — — 2 SID o COS a — 
COSO 
i 
^ " IT ^*" 
It follows that the force R and the couple K are expressed in terms 
/, r, a, S/i, S;^ by the equations 
£ = ^ [(<7 cos* a +1; gin' a) SA + (C - B) sin a cos a. rS^]. JT. - [(f7-B)smacosa.6/t + {C^in*a + Bcoe?a) v^x]
...(4S 
If the spring IB dcfortned by »mX bree alnnp* without couple, the axial diaplacetnent] H nni] Uio angular displaoometit 9x bib given by the equ»tJ0U8 
ih = tr'\ 
■ + 
coa'o'' 
ax-^'fainaOOSa 
(5*5)^ 
If tho cpoBs-BcctioD of the spring is n circto of nuiiiM «, I/C- 1,'ZJ is AalEftcfi, where rr' w Potwon's ratio ftod if w Vatuig's inoduluH for the materiaL   Hence both M and S;^ a» pcMitivc.    In the soue cuae ftr in negative, ho that the apring ia coilod more cloaelj aa it irtivtcheM. 
272.    Additional results. 
(u)   liud tubJetUwl to tonntRai coupUt, 
Wbeu A rufi whicli iu Ktmis;lit imd prismatic m the unstreased state is held bent tiHated by U-nnitml lAutipltnt, tim kiiiLtic anuiugue ia n rigi<l Ikody tuoWng under 00 forott. The ariBloKuo ljiu> bueii workral out in ckuil by W. Hcaat. When the cro**-sectioii has khirttr Mvnjiiietry su that A=:B, the- orjikiiliouii of L^itiilibrium Hhow that the tvist r atid tfao curvature («*+«'')   *^ ooiit+tanto, and Ibat, if we put A8 in Article 253 
iboo 
tan/= - V/«, 
£t(r//i(t*)=(B-i'}r. 
It folhiwn tbftt the nwawiirc nf tortuosity of the (.■entml-Iinc is CrfSf and, therefore, that thiM liri'' in n helix trac«] on n circuUu- ryliiiilcr. If we ii.se Kider'a AI^^M &,^, tft as til ArMdo SA3, ami take the axis of the bdix t>i l>e parnllel ti) the axis of 2 in Fig. 46 of that Artlrle, ff ia cnnHtant, and ^v~$ is tlie angle a of the helix. Tho oxia of the terminal cfiiiiilo in the axia of the hohx, and the itLagnitiide of the couple in Botsafr, ax wu found bufom, r being the radius of the cylinder on which the heUx liea. 
* Tlie rtaalta (or tbis ca«e were found by S&in^Veaant, Parit 0. R^ t. 17 (IMS). A niinibor of Bpecial casca arc workrd oat b> Kolvin and Tait, )oe, ell., «nd alao by J. Perry, Aintttfd itechaniei (Londoa, l^W). Tb<? theory- lum liueu vBrifindflxperimeDtally b; J. W. Uiller, Phut. lUv. vol. 14 (190^)- The vibrntinns of a Rpinl spring Htippoiling a Height to ^reat that Uta inerthl of tbo spring may ba netjlcct^d liaw b««n workod oat is aocordanoe with the above Uwory hy L, It. Wilherforce, Phit. Mag. (Ser. 3), vol. 88 {1894). 
t J/dfii. Am. Bd. 33 (le»i). 
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(£}   Straight rod mtk initial tviM. 
"Wlteu the rod io the unatrwsod state baa twist r^ and no ciirrature, and tfae croasDD has Iciuetic syrametr)' %a ^^aXA=B, the I'od can ty; held bent bo that it^ ccnti-al-lJne 
. the fonn of a belix fa, r), and twisted m that tho twiHt is r,. hy u wreucb abuut ttiu axi* of the behx; and tbo force R und couple A' of tbu wroDcb are fouud hy writing 'i - t^ for r in oquatioiu (36) and (37) of Article 270. 
{c)    Ral beni into eirouiar hoop and twitted vniformlg. 
When the rod in tbe unstronsed stsite ia utmigbi and prismatic, and tbo croas-sectioD b«H kinetic ti^tninetr^, ooe of tlte rirms in wbicit it can be held by terminal forces and etrapks is that in which tbe oentraMtne is a circle, and the twist jh uniform along the tcDgtb. The tensiun vauisbes, and the shearing force at onj sectiun is directed tuwonla tbe centre of tlie circle, and tt» amount is Or'tr, where r is tbe radiua of tbe circle. 
{d)   Statnlitjf of rod mihjteted to ttcisting coupU and thrust. 
Whoo the rod, aupixMed to be atnigbt and prismattc in tbe unstressed etato, ia held twisted, but without curvat^u^ by terminal couplna, thcM oouplee may be of sucb on amount aa coiJd hold the rod Iwnt and twisted, if A^B the oentnl-line, if it i« bent, must be a helix. When the couple K is just groat enough to hold the rod bent withoutdisplaoement of the endn, the central-line just formri one etnnplete turn of the helix, (be rodiiw r of tbe belli is very small, and the angle a of the helix is very nearly equal to (w. We bare the equations 
K^Cr^Br'^cosa,    ?coea—2frf, 
where r in the twist, and I tbe length of tbe nxl.    Henoe this oonfigiiration ran be Rtaintuned if 'in:l=K}B.   We infer that, under a twisting coujilo which cxueeds SnOjl, the straight twisted rod is uustablc. 
This que'ftion of st^tbility may be invc^igntcd in a more gcncrAl nuuncr by supposing that tbe rud ht held hy terminal f| 
thrtist // and twi>4ting couple A* in a form in which the central-line \n very nourly straight. Tbo kinutic analogue is a syminetricol t«)p which movi-s s« that iUt nsia remains nearly ujiright. Tba ]>roblum admits i>f a tiiiuplo Holution by tbe line of lixed axon of x, y, x, the axis of » coinciding with tbe axes of tbe appbed couples and with the line of tbniHt, Tbe ceutrol-bne is near to this axis, and meets it at tbe ends. The twist r is constaut, and the torBiona] cmple O can bo equaled to A' with sufficient approximation. Tlie flaxumi ctjii;ile is of ammuit BJp, where p is tho radios of curvature nf tbe oontral-line, and its axis is the binomol of this curve. Tbe direction cdninai nt tbiu bbmrmol can l« eLX]>roa8od in such foruia as 
fdy dH    dt d>^ \d* 5? ~ da 
, th(*n»fom the component*! of tho flexurat couple at any alMiit asca [uvrallcl to the axes of x and y con bo with snfficient approximation in tbe forms 
.d*x 
4ft 
FlsGO. 
^ 
B 
!?• 
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For tbo equilibrium of the pari of the rod cootained between this KCtion And one end ire take momont« About axes drawn throu4;h the ceiitroid of this aectiou parallol to the axes of X autl y, and we tbua oblaiu the (.•qtiattutiu 
.Bg^K^-,n.o.] 
^'^.h'^t^^"-'^ 
.(*»} 
' The comijleto primitives an 
x =/., Bin {fiJ+ff^+ZjfliD (7,«+(s)> ;»/., COK [9,«+r,)+/^ooB (7,f+/^, 
trbore £,, T^, t^, «j nre arbitmry conntauts, Mid j,, 9, are the roots of the oquatinn 
Th« tonminAl oonditioiui are (1) that tbe coordiutitea x &ud y raniah at the euds *=0 
J—J, (ii) tlist tbe ttxis of the terminal couple coinddca with the axis of x.   Tbe eqi: 
(43) show that the second aet of conditions are satisfied if the first act ore satisfied.    Wis b)ive tlicrefure the eqaittions 
XiUn(i-t-X,Bincj=(), £jCO8(}+it|CO34,=0t 
Aod 
On sulBtituting for L^omt^ and /.,sint, from the first pair in the aecnnd pair, we find the 0(]uati(M)M 
from which it follows that 9,/ imd q^t diflbr by a multiple of Sir,   The least length / Iqf which the condttiooa con be satts^eil is given by the equation 
2w;' = |?,-?-l. 
or »«   ir>   A 
The md subjected to thrust R and twisting couple K is therefbra anatftble if 
.(M) 
iti^ cniidition* induden tliat obtainei) above for the case where there is 00 thrust, and I that obtained in (18) of Article 264 for the caae where there U tto couf^ If the rod is Hubjoctod to tension instead of thrust, It is uegatire, and thus a sufficient tenaioa wiU render tbe straight forui stable in spite of a large twisting couple. 
{0)    Slahiltty 0/ ^l blade be>t4 in iU piauef. 
Let the section of the rod be snob that the Bcxnral rigidity By for bending in oo* prii)ci|>al plane, in tnrge mmjiared witb either the flvxurtU rigidity .1, for bending in the periwudicuhu- ]>laue, or with the torhional rigidity C. This would )» the caae iX, far example, tbo cross-aeotioD were a rectangle of which one iwir of sides is much longer thui the other pair. Lot tbe rod. built in at one end so a« to be horizontal, be bent by a verttcal tniMvecae load B applied at the other cud in the plane of greateBt flexural rigidity.    Wft 
• The teault u dae to A. O. GrMnhill, Pnc. Itut. Af«*. Enginem. 1888. i Or.A.G.M.HidieU,PJM.ir(V.{8er.6),iral.l8aeW).andL. PrasdU.'Cipp«rKb«iaan«BM*] (Dm.), Nfiinbonc 169tt. 
iiball iise the notatioD of Article ib3, atid mipixjoe, as in Article 370, that tba line of action of the load R has the direction and miuo of the line /',z, mid wc shall tako the piano of (i, x) to he iftirallcl in the verticjil |>1riib conwiuUig the ceiitral-liiio in the uitstrcewcd (rtato. ir the len^h /, or the load A, is nut too grcnt, while the flexurol rigidity B is large, tbo rod will he nhghCly lx?iit iti Um ])Uno, in the mauuur discusHod iu Chapter xv. Hut, when tlie length, or load, e^eeed ixirtaiii liiuita, the rod uati bo held by the tvrmitial force, directed M abuvu stated, tn n ftiriii iti which the ix'Dtnil-liiiu is bout out of the plane (x, se), ami iben the lod will also be twisted. It will Appear that the defect of tonuoual rigidity is <)uit6 w influeDtial as tb&t of floxural rigidity In rendering piosaible this kind of buckling. 

        
        [image: Picture #220]
        

        Fig. 61. 
Let $ he measured from the tixcd end of the central-line:, and [at x,, y^, z, be tho coordinattts of the lojided end of tliis lino. Let x, y, z be the coordinate* of any point Pi on the atndned ceutral-Uue. For the oquilihriuin of the part of the rod contained between the aectioQ drawn thnnigh /', and the loaded end we take momienta about axes drawn through Pj parallel to the fixed asoa Using tho direction cannioa defined by the acheme (4) of Article 253, wo have the etiuations 
-{il«!, + B«'/, + CW,)+(y,-y)/e=0, a 
-(■(l«ra,-|-^«'mj+CTmj)-{x,~i)W = 0,   I («) 
Aieni + BK'n^ + Crii, =0. J 
Whou Vie Eiubstitute for k, k', r from efjuationfi (8) of Artiole 2fi3, and for fj,... tnm equations (7) of tho same Article, we have 
Jjc^i + ^kV^ + CWj 
![-(jlKn''^ + Zfco8'(^)8in^-j-(J-5)ain<^cos^ci08^oo8tf] j^+CooB^sin^-^ 
AKtn-j+OK'ni^+Crm^ -.[(Jain'^+Bcoft*^) cjoa^+f/l-^)Hin ^co3 08iD-^ 003 tf] j'-i-CBintf sin^-^ 
— [{A co9*<p+JSein*<P)i)'milfMu6Qoa$ + {A-B)hiutliiii}&<^ct}8^sui0~C&in-^sm6(XMS]-^, 
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In cqiiattotu (46) wo new iipproxinuito by taking A aod C? to be smaXl compared with B, aiul ^ to he nearly eqiml to t*r, while <^ And ^ arc snaAll, and klao by t*kiag Xi to be equal to i and x to he equal to ». We reject all the obviously unitoiiortant terms m tbo esiiresstoiut for (jlc^-f ...),     We thus Rnd the equRtiooit 
Since dy/da =tn^^ma$aiu ■^^^^r ucurly, we deduco Irani the firet and second cquatjous of this set the aquation 
and from the second and third equations of the same set we deduce the oquation 
and, on eliminating d^fdt betwoon th« two equations last written, we find the equatioo^ 
-•- ««) 
TOis tquatioD can be tranHfonnod into ficBHel's equation by tbo substitutions 
f=i{i-«}»/;v(j0.  *.,{i-/;* (47) 
and the primitive is of the form 
*=-UVj(|)+J?'/.j(f)l(i-*)*.     (48) 
where A' and B' are constants. 
Kow when s=l, ^fc» vnnislics, and the twisting oonple Cr vonUhct; hence h^/ii vanishes. Thi« condition requires that A' shoitid vanish. Kiirthcr, ip vanishes when «»(^ and thus the critical leugtb is given by the equation ^^^(^)=0 at ^•^lPltl,,f{AC), or 
^1w+z('->'*-°
It becomes 
1-. 
^^.-n-)-. 
+ ...«0. 
S.e AC '    ' S.4...CS«).6.I4...(8»-S) A»0 
The loweKt root of this equation for IPfjACia 16 nearly, and we infer that the rud boat by terminal tninsvcrse loful in t.be pjnne of greatoHl floxural rigidity is unstable tf />y(JC)';/^, wliore y is a nnmiter vnry nearly eqiiftl to 2, 
The result has boon verified experimentally by A, Q. M. Micbell and L. PrandtL It sfaonld 1>Q observed thai the rod, if of Micii a length as that fuund, will be bctit a good deal by the loud Jl, uiiltisn B la largo compared with A and C, and thim the above method ia not a)i|ilii:uli]e to the };encral problem of the stabihty of the elastica for diaplacemeuts out of itn jtliine. 
273.    Rod bent by forces applied along its length. 
When forces and couples are applied to the rod at other points, as well m 
nl tlio ends, and the atresa-couplea are assunted to be given by the ordinary iipproxiinatioDa (Article 255), Ibrms are possible in which the rod couM not l)(t held by terminal forces and couples only. When there are no couples (^xcopt at the ends, the thinl of eijuatious (11) of Article 254 becomes 
272-274] 
APPLIED  ALONG  ITS LENGTH 
40S 
and this (H)uatioti shows that to hold the rod beut to a giveu curvature without applying couples along its length, a certain rate of variation of the twist along the length is requisite. In other words a certain twist, indetermiuate to a constant prija, is rcquiBite. 
When there are no applied couples except at the ends, and the curvature is given, while the twist has the required rate of variation, JV and iT' are given by the first two of equations (2) of Article 260. The requiaite forces X, Y, Z of Article 25* and the tynsion T are then connected by the three equations (10) of that Article. We may therefore impose one additional conditioD upon these quantities. For example, we may lake iT to be zero, and then we k-am that a given rod can be held with its contral-Iine in the form of a given curve by forces which at each point are directed along a normal to the curve, provided that the rod bos a suitable twiat. 
Similar statements are applicable to the case in which the rod, in the 
unstressed state, has a given curvature and twi^^t. 
As an exaniplu* uf lb« ufipHcBtion of tbutte reinarkii wn may take ttie oaMO of a rod which in the unstroHBud atiitc fwriUH u. circular b<x>|] of radius r„. with uno jinucijiitl axis of Mch ci-ocwt-nectinn inclined to the pUuo of tiio hoop at an angle /,, tbo same for all croaasections. We denote by B the tieiiiral rigidity corrtwpoudiug witb tbiti axli). Tho initial slate is expressed by the cquationo 
'0= -'•o"'«'«/(ii    •en'=''o"^Wfl/o.    T„-0. Let tbc I'ud \» boiit intu a circular boop* of raditu r,, with one principal axis of each croM-wction inclined to the plane of the boop at oji angle/,, the name for all croas.«ectione. The state of the rod is then exprcHsed by the ecjaationH 
' cos/,, 
'sin/,, 
To bold the rod in this state foroea must be applied to each section so as to be equiraleDt to a couple about tbs central-line \ the amount of this couple per imit of length U 
-—(4 sin/, txw/o - Bcob/,ain/o)---(J-fl) ain/,cos/,. 's'l n 
274.    Rod bent in one plane by uniform norzuai pressure. 
We consider next thft problem of a rod held bent in a principal plane by normal pres-turc which \?. uniform along its length. The quantity X of Article 254 expresses the magnitude of this pressure per unit of length. 
Let F denote the resultant of tho shearing force iV and the tension T at any cross-section, ¥^, F^ its components pnrallel to fixed axes of % and y in the plane of the bent central-line. We may obtain two equations of equilibrium by resolving all the forces which act upon any portion of the rod parallel to the fixed axes,    These equations are 
0.    ^-J',-X^=0. 
da   " ds 
Cf. Kelvin and Tait, Nat. PhU., Part u., pp. IS6 ttaeq. 
26-9 
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It follows that the ori^n 0 can be chosen eo that we have 
and therefore the magnitude of J* at any point P of tho strained central-line' b rX, where r is the distance OP, and the direction of F Is at right angles to OP. This result can be expressed in the following form:—Let /*, and P, be any two points of the strained central-line, and let /\ and P, be the restiltanta of the shearing force and tension on the cross-sections throtigb P, and i*„ the senses of fi and F, being such that these forces arise from the action of the rest of the rod on the p<»tioa between Pj and P,. From P^, Pj draw lines PiO, P^O at right angles 1« the directions of Fi.F^. We may regard the arc P,Pi as the limit of a polygon of a large number of sides, and this polygon as in equilibrium under the flextiral couples at its ends, the forces F^, F^, and n force Xhs directed at right angles to any side of the polygon of whieh the length is Bs. The forces are at right angles to the Bides of the figure formed by OPi, OP, and this polygon, and are proper* tional to them; and the lengths of OPi and OP., are FtjX and F^'X. The senses in which the lines must be drawn are indicated in Fig. 62*. 
a; 
p. 
F, 
oq; 
Let r denote the distance OP. 
Fi«.62. Then 
N=-F^ = -rX^. as as 
The btress-couple G' satisfies the equation 
Hence we have 0' s= JXr" + const. 
In the particular case where the central-line lu the unstressed state is a straight line or a circle, the curvature l/p of the curve into which it is bent is given by the equation 
5//3 = iJfr»-t-const (49) 
The   possible  forms   of   the   central-line   can   bo  determined   from   this equation t. 
** In the right-hand flgui« OP,f, Is &bovii u a foroe-poljgOD. The Ibeory is due to M. Lifj. J.de Math. iLiouvilU), {8^r. H), t. 10 (1664). 
t The complete integration of uquKtion (49) by meaoB of elliptic fanotiotu wu effedted bj Q. H. U&lphen. ParU, C. if., t. OS (ISfU). See also hia TraitA dei janrtuitu flSiptiquet, ParUe S, Ch. 6 (Pu-iA, isad). The subject baa Uen iUTeitigated further by A. G. Ore«DhiU, J/atA. Ann.. Bd. Bi (1899). 
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275. Stability of circular ring under normal pressure. 
When the central-line in tbo nii»tret*ed state in a circle of lAiiius '(, and the rod is reiy slightly beDt, equation (49) can be written in the approxituate fonn 
d^u . .   .r 
3SS+ " = *+£/(««• where 1 'u and S «re the polar coordinates of a [Kiint an the eentral-Itiio rofetred to Oat origin, and tr in a cnnataiit.    The value of t; dittcnt very little from 1/u, and wo may thiCfr fore put UK 1/a + l, where { ia amall, anil abta.tn the appmximate oquatioii 
Hence f U of the form itCon(ne+y\ where (g and y arc conBtant«, aod n ia given by 
the equation 
Xow the function f must be (ipriodic in S with period 2a-,ibr, otberwiee, the rod would not continue to fonu a coniplBto ring. Hence ii must l>e an integer. If n were 1. the circle would be disiiilaccd without defortufttion. The least value of thn presauro X by which any deformation of the circular form can be produced is obtained by putting « = 2. Wo infor that, if X< 3£/a', the ring ahnply contracta under the pressure, but the ring tonda to Collajise if 
X>W/aK      (60)« 
276. Height consistent with stabilityt> 
As a further example nf tho *:"ciuilibrium of a rod umler foTOes applied along its length, we oonsider the problem of a vertical colnmn, of uniform material aud eross-sectiou, beat by its own weight. Let a long thin rod be set up in a vertical plane so that tbe lower end is (wnstrnined to remain vertical, and suppf>.>H> the length to be ao great that the r<Mi bends. Take the origin of fixed axes of x and y at the lower end, draw the axis of x vertically upwards and the axis of y horizontally in the piano of bending. (See Fig. 63) For the equilibrium of the portion of the rod contained between any section and the free end, wc resolve along the normal to the central-line, and then, sinoe the central-lino is nearly coincident with the axis of x, we find the equation 
I    dx where TFis the weight of the rod.   The equation of equilibrium rfG/rf* + iV=0 can, therefore, be replaced by the approximate equation 
'"^^^ = 0,   (51) 
Fig.es. 
^^^^ 
where p is written for dyjdx.   The terminal conditions are thatdp/rfx vanishes at X = /, and y and p vanish at x >= 0. 
* Th« rMoll ia due to M. L^vy, foe. cii. 
i Tho theory is due to A. (i. GreeahiU. Cambridgt Phil. Soe. Proc, toI 4 (1881).    It has been diiieoued critically by C. ChrM. Cambridge Phil. Soe. Proe., vol- 7 (1892]. 
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Equation (51) can be transformed into Bessel's equation by the substitutions 
f=i\/©('-")'' ?="<'-)' <52) 
It becomes 
and the primitive is of the form 
p = [A'Ji(^ + B'J^m{l-x)i (53) 
where A' and B' are coMtants. 
To make dp/dx vanieh at x = l we must have A'=0, and to make p vanish at x = 0 we must have /_}(f) = 0 at f =» § i (1^/5)*. Hence the critical length is given by the equation 
1_J_^H.     4./_^« 1 ^^+     -0 
3.2  B  ^-'^y  ' 3.6...(3n).2.5...(371-1)   B* 
The lowest root of this equation for I'WjB is (7 .91...), and we infer that the rod will be bent by its own weight if the length exceeds (2. 83 ...)'>/(B/W). 
Greenhill (loc. cit. p. 405) htis worked out a number of cases in which the rod is of varying section, and has applied his results to the explanation of the forms and growth of trees. 
CHAPTER XX. 
VIBEATIONS OF RODS.    PROBLEMS OF DVNAMICAL RESISTANCE. 
277. TuE vibmtioua of thio rods or bare, straight and prismatic when unstressed, fa!! uatiirally into three classes: longitudinal, torsional, lateral. The " longitudiaal" vibrations are chn,racterized by the periodic extension and contraction of elements of the central-line, and, for this reason, they will fioinetiinE!S be tlL-scribyii as " ftxtensioiial." The " lateral " vibrations are characterized by the periodic bending aud straightening of portions of the central-line, a« [Kiiiite of this line muve to and fro at right angles to its unstrained direction; for this reason they will sometimes be described as "6exural." In Chapter xii.^we iaveatigatetl certain modes of vibration of a circular cylinder. Of those modes one class are of strictly torsional type, and other classes are effectively of extensiooa] and tiexural types when the length of the cylinder is large compared with the radius of its cross-section. "We have now to explain how the theory of such vibrations for a thin rod of any form of cross-section can be deduced from the theory of Chapter xviir. 
In order to apply this theory it is necessaiy to aMjuine that the ordinary approximations described in Articles 2.55 and 258 liold when the rod is vibrating. This aHsiiiiiptiou may be partially justified by the obrtervatioa that the equations of motion are the same as equations of equilibrium under certain body forces—the revei-scd kinetic reactions. It then aniount-s to assuming that the mode of ttiHtribution of these forces is not .such as to invulidato seriously the approximate equations (21), (22), (23) of Article 258. The a.s«unipti(in may be put in another form in the statement that, when the rod vibrates, the internal strain in the portion between two neighbouring cross-sections is the same as it would be if that portion were in equilibrium under tractions on its end.s, which produce in it the instantaneous extension, twist and curvature. No complete justification of this assumption hs^ been given, but it is supported by the results, already cited, which are obtained in the case of a circular cylinder. It seems to be legitimate to state that the assumption gives a better approximation in the case of the graver modes of vibration, which are the most important, than in 
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the case of the  modes of greater frequency, and  that, for the  former, the approximation is quite siifGcient. 
The various modes of vibratiou have been invciitigabed so fully by Ixird Rftvleiffh* that it will be uonccessary here to do more than ubtain the equations of vibration. After formiug these cquatinns we shall apply them to the discussion of some problems nf H^^lamical resistance. 
278.    Extcnalonal vibrationi. 
Let w be tliu displaoenieiii, parallel to the central-line, of the ceutroid o? that cross-section which, in the equilibrium state, is at a distance s &om some chosen point of the line. Then the extension is dwjdn, and the tension is Bus 0w[ds). where E is Young's modulus, and w the area of a crosasection. The kinetic reaction, estimalfd per unit of length of the rod, is pof ithifldf), where p is the density of the material. The equation of inotioD, formed in the same way as the equations of equilibrium in Article 254f, is 
"BF'^i^ (^> 
The condition to be satisfied al a free end is dtojds ^ 0; at a fixed end w 
vanishes. 
If viv form thd equation of motion hy the energy-method (Article 115) we may take account of the inertia of the lutoral motion t by which the crcMa-sectioDs are eiteuded or conti'Act«d in their own planes. If .r and y arc tho coordinatca of an; {wint in a croat* section, referred tci aiea drawn through its ceiitmid, the lateral diaplacements are 
where o- is Poiaaon'ft ratio.    Hence the kinetic energy per unit of length \» 
\pa
--0
where A* is the radiuH of gyration of a crow-section about the central-line:.    The potential QDerey per unit of length in 
, and, ihoreEore, the varistinna] equatttm rtf mntioti is 
where the integration with respect to < in token along the rod. WB uite the identities 
j-ii.m 
©> 
In forming the voriatioDB 
y^t^rSi 
s \,s;s ir " si» *")+s 1,5^'V * ^ *"". 
•)' 
* Theitrfi o/SoMid, Cliajiter* vti. and viu. 
t The lateral strain m mWady tnkcn into account when the teoslon I« ^xpnaccd aa tlio produet of S and u {twlPt). If Ihu longitaditin) Etrain atonfi were oonaidi^rod the constant that enlon into tb«ezpr«Mion for the tension would not be E but \-4-2;i. 
277-280] 
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and, on integrating by partA, nntl eqimtiog to mro the ooefficient of iw undor the ugn of double intcgratioti, wo obtain tbo o«iuatJO[i 
.(2) 
By retaining the term pvK^l*wfrifldfl we should obtain the correction of the velocity of wave-pr<>p»gntion whicli wa« fnund by Pocbhamiuer and Chi-eo (Articla 201), or the correction of the fret^iiency of free vibration which was calculated by Lord Rayluigh*. 
279.   Torsional vibrations. 
Let -1^ denote the relative angular displaoemeiit of two cross-scctioDs, so that 5^/Ptf is the twist of tht? ritii. The centrouls of the sectioos are not displaced, but the component displacements of a paint in a cross-section {)aral]el to axes of d: and tf, chosen an before, are — ^ and ^x. The torsional couple is C(?i^'?s), where C is the torsional rigidity. The moment of the kinetic reaction!^ about the central-line, estimated per unit of length of the rod, is p^K'it^ldP). The equation of motion, formed in the same way as the third of the equations of equilibrium (11) of Article 254, is 
P<oK 
^d^_ 
dt' 
= C 
The condition to be satisfied at a free end is di^/d* vanishes. 
(3) 
0;  at a fixed end ■^ 
WhftD we apply the energy-method, we may take acoount of tUo inertin of tho motion by which the tross-sectioixa im deformed into cun'ed Burfacea. Let tjb be tho torsion function for the aection (Article 2iQ). Then the longitudinal displacement is ^{h^fba), and the kinetic enorg}- of the rod per unit of length ia 
The potential energy is iC(&^/S«)*, and the equation of vibration, formed aa before, is 
,..r.^-,(/*.^)^=c^^. 
By ioMrttDg in this eqiiation the values of C and /c^Vw that belong to the nection. we could obtain an equation of motion of the same form as (2) and coidd work out a correction for the velocity of wn.ve-propagatioo and the frequency of any mode of vibmtion. In tho cHse of a cin-ulur cylinder there iu no correctiou and the velocity of propagation is that found in Article 200. 
280.    Plexural vibrations. 
Let the rod vibrate in a principal plane, which we take to be that of 
«) as defined   in   Artiirlu 252.    Let u denote the disptacemoint of the 
stroid of any section at right angles to the unstrained central-line.    We 
may take the angle between this line and the tangent of the strained central
tobe dufds, and the curvatuit- to be d\'d.'e'.    The flexural couple 0' is 
i/9^t where li = Ewif', k' being the radius of g^Tation of the cross-section 
• Theory af Sound, % li57. 
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about an axis through its centroid at right angles to the plane of bending. The magnitude of the kinetic reaction, estimated per unit of length, is. for a first approximation, pft>(^H;'5C), and its direction is that of the displacement u. The longitudinal displacement of any point is — j;(?u/9«); and therefore the moment of the kinetic reactions, estimated per unit of length, about ao axis perpendicular to the plane of bending is p»A-'*(9'u/2*c^). The equations of vibration formed in the same way as the second equation of each of the sets of equations of equilibrium (10) and (U) of Article 254 are 
-^^po,^,  M^^+N^p,^^^, (4) 
and, on eliminating iV, we have the equation of vibration 
If " rotatory inertia " is neglected we have the approximate equation 
^^ = -^-^'^ (0) 
and the shearing force JV at any section is — Ewk''Skids'. At a free end ahilh^ and d^ufhi^ vanish, at a clain|>eil end w and duj^a vanish, at a "supported"  end v. and dhtfds' vanish. 
By rftAitiiiig the temi reprwwtitiiig the effect of rotatory inertia we could obtAia n ccjiTCctioij of th& Telcx:ity of wspc-pro|iiaj|>;ati'Ou, or of tho frequency of vil»«tion, of tha saiue kind as those previously mentioned*. Another oorrectioo, which may be of ti» SAme de||;rcc uf traiKtrtance aa thiK wlion the Hcction of the rod doos not poRsess Idnetio (lymmotry, may be obtniiied by the Bnorgj'-inotlK»d, by taking account of the inertiA of tbo motittii hy wlikh th« croiw-Hactiona apa distprtuil in their own planeat. Tho oum|Ktoenta of dtHplacoiuGtit (jarullc] to axcH of x and y in the jtlane nf the crofls-sec^ioD, tlie aiia of X being in tlie plane of bendiD^, ara 
attd tho kinetic energy per unit of length is expitisaed correctly to temw of the fourth order in the Utiear climeiialonti of the croeB-ncotion by the formula ^H 
irilfin i h the rftdiiiH fif gyratian of the crcvw-scction about an axis tbrougli it» oentrold drawn in the plntie of bonding. The tunii in <T(i-'*~i^} dciwinds on the inertia of the motion by which the oroes-accticina are distnrtcd in their pEnncfl, and the term in t* deJM^Dd8 on the rotatory inertia.   The fiotetitiul energy is cxpromted by the fnmiula 
* Of. Lord lUyleigb, Theory of Sound, | IM. 
t The ciOBH-MCtioaB nra distorted into carred Harfaoes and inelined obliquely to tbe Btruned oeotral-Uoe, but tho inertia of theoc matiooi would giv« & much flnutUer correclion. 
280,281 
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The vnriAtionnJ equation of motion is 
]n forming the \'ariations ve uee the identities 
9'u 
iU: 
aa well as identities of the t^rpe^i U8ed Id Aiticle 27&.   The re«iUtiDg oqu&tiou of motion is 
,jj^-,^"(l-.)+^.)j^.]=-^^'^ (7, 
Coirections of the energy such as that coQHidci'od here vill, of course, Affect the terminAl condition!i at a fV<ee, or aupported end, aa well as the difTercntiAl eqtuition of vilimtioii. Siitco they rout cm the ussiiinptxoti tliat the intertinl Htmin in any email ])OPti(m a{ tho vibmting rod contained l>ptM-opn neighixmriiig cniRs-ftBctimtH is the uame as in a prism in which the right axtviisiuii, or twist, or cun'ature is [iTodiiced bv forces applied at tho ends aiid holding tho (jrisru in equilibrium, they cjuinot bo regarded u* very rigoroualy establiHbed, I^i^ lUyteigh (hic. I'/f.) calls attention to the inci'eaMC of importance of Buch corrections with the fnyineucy of the vibration. We have alivaJy remarked that tho validit; of the fundamental assumption diminiabes as the frequency rises. 
281.   Rod fixed at one end and struck longitudinally at the other*. 
We shall illuRtrate the application of the theory '>f vibrations to problems of d^vnarnical rtsistance by solving some problems in which a long thin rod is thrown into extc-nsional vibration by shocks or moving loads. 
We take first the problem of a rod fixed at one end and struck at the other by a massive body moving in the direction of the length of the rod. We measure t from the instant of impact and » from the fixed end, and we denote by I the length of the rod, by m the ratio of the raass of the strikiuK body to that of the rod, by V the velocity of the body at the lustaut of impact, by w the longitudinal displacement, and by a the vcbcity of propagation of extensional waves in the rod. 
The differential equation of extensional vibration is 
I 
.(8) 
W*" w 
Th« terminal condition at s = 0 ie w = 0.    The terminal condition  at l \& the equation of motion of the striking body, or it is 
.(&> 
* Cf. J. BouBi<inoflq. AppHeittiom d« poienlieb, ., pp. 508 eC nrq., or Saint-Vecaut in the ■Annotated Clcbsch,' Nate^naU tin g 61) and ChangtmcnU el addtticiu. 
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        since the pressure at the end is, in the notation of Article 278. — £»(9w/9<),' 
and Ewfa* is equal to the mass of the rod per unit of length.   The initial 
conJition is that, when (=0, w = 0 for all values of 8 between 0 and £, 
but At s^l 
lira       {dwldt) = - V, (10) 
since the velocity of the struck eud becomes, at the instaat of impact, the same as that of the strikiog body. 
We have to dctennine w fur positive values of (, and for all values of^^ s between 0 and I, by nieans of these e<juatinns and conditions.    The first step is to express the solution of the differential equation (8) in the form 
v}=f{at-8)-vF{at-^s) (11) 
where / and /' denote arbitrary functions. 
The second step is to use the terminal condition at **= 0 to eliminate one of the arbitrary functions.    This condition gives in fact 
f{at)■^■Fiat) = {i, 
and we may, therefore, write the solution of equation (8) in the form 
w=f{at~s)-f{ai+s) (12) 
The third step is to use the initial condifcions ti> determine the function/ in a certain interval. We think of / as a fiiuction of an argument f, which may be put equal \aat — s or at + s when required. Since dwjds and 3w/3( vanish with ( for all values of « between 0 and / we have, 
when    i>r>0.    -/'(-5:)-/'(D = 0,   /'(-f)-/'(r)-0. 
Hence  it  follows  that,  when i>K> —K fiK) vanishes and f(X)  ia constant which can be taken to be zero; ur we have the rifsult 
when    l>X>~i.   fiO^O,     (13) 
The fourth step is to use the tertntnal condition (9) &t s = l to f<»ia equation by means of which the value of/($"> as a function of f can be determined outside the interval i >£"> — /.   The requii-ed equation, called the " continuing equation*," is 
ml[/"(at-l)-f''iat+l)]=f'iat-l)+f'(at-¥l). or, as it may be written, 
/"(5:)+(i,w)/'(?)-/"c?:-2i)-(iM)/'(!:-2Z). (U) 
We regard this equation in the first instance as an equation to determine^ /'(?)■    '^^^' right-hand inember is known, it has in fact been shown to be zero, in the interval 3/-> X>1.    Wc may therefore determine the form <^H /'{0 in this interval by integrating the equation (14).    The couatant of^ integration is to be determined by means of the condition (10).    The fuuctioa 
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fit) wi" then be known in the interval S>1> f > /. and therefore the righthand member of (14) is known in the interval 5i>f>.S/. We determine the form of/'(O ii^ this interval by integrating the equation (14), and we determine the constant of integration by the comiition that there i» no discontinuity in the velocity at 3 = 1 after the initial instant. The function /' (f) will then be known in the interval itl > f > 3f. By proceeding in this way we can determine f {^ for all values of ^ which exceed — I. 
The integral of (14) is always of the form 
/'(r) = Ce-o-^ + e^'^j^^ {/" (t-2l)-^f'a- 2/)] rf^. -(15) 
whore C is a constant of integration. When3/>2|'>/ the expression nniier the sign of integration vanishes, and f(0 is of the fonn Ce~^'"*K Now the condition (10) gives 
a(/'(-i + 0)-/'a + 0)]--r, or/'(I + 0)=F/a. 
Hence C*""" = V/a, and we have the result 
when S^ > ^ > /.   f{0 = -ff-tf-^'-^. 
.(16) 
We observe that/'(i;) is discontinuous at if=/. When Sl> ^>SC we have 
/"(t-20 - (l/m/)/'(f - 20 = - 2 (r/mia) (?-'f-«i'«', and equation (15) can be written 
J"{0= Ce-i^-2{Vlnila)(^- 3i)e-'<-'^'"»'. The condition of continuity of velocity at s = ^ at the instant t = 2i/a gives /'{l-0)-f'(Zl-0)=f'{l + 0)-r(Sl + 0). 
or 
giving 
V V 
a a 
C=(K/rt)(e'""+«^"'). Hence, when 51 > ^> 3f, 
When 7l> ^>5l we have 
/"({:_20-A/'{?:-20=-^[fl-'^-*'"^ + 2e-'S-^"^J 
and etjuation (15) can be written 
f'{^ = Ce-i^-'^(^-5i)[tr'^-^'^ + Zg''i^'^ + ~^{^-&iy'tr^-^'''"'. 
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The condition of continuity of velocity at « = I at the instant t = 4l/a gives 
/'(3i_0)-/'(5/-l>)=/'{3i + 0)-/'(5: + 0). 
V V iV V 
a » inu a 
giving C = — ie 
-■!e"" + 
[l - -) e^ 4- e*""I.   HoDcc, when 7/ > C > 5^ 
The function /(fj can be determined by integrating /'(?)» *nd the constant of integration is to be determined by the condition that there ia no sudden change in tlje dijjplacenieut at a = l. This condition gives, by putting t = 0, 2lla,... such equations as 
0=/(-/+0)-/(i + 0). 
/((-0)-/(3Z-0)=/(f+0)-/(3f + 0), 
from which, nince /(—l + 0) and /{l — 0) vanish, we find 
/(;+0) = 0=/(i-0),   f(Sl+O)=/{'M-0) 
Hence there is no discontinuity in f(^. as is otherwise evident, since , /'(O possesses only finite discontinuities sepanited by intervals in which it ^| is continuous. Wc have therefore merely to integrate /'(?) in «3ich of the ™ interval 32 > ^> ^, 5l>^>3l. ... and deti^rniiuc tbc constants of integration so tbat/(i) = 0 and/(5') is continuous.    We find the following reisults: 
when  3/>f>i, when   5l>^>3t, 
/(o=-1^
.<-»-+!^|l+J-(f_30}.-^
I 
when  1l>^>5l 
V... 
/(O - 4^'li - r-f-*-) + '-^^{i + ,-1 (f - 30} ^■^-"' 
-=fhJ-.(f-M'-^-^' 
n>w 
(ly) 
The solution expresses the result that, at the instant of impact, a wave of compression sets out from the struck end, and travels towards the fixed end, where it is reflected. The motion of the striking body generates a continuous aeries of such waves, which advance towards the fixed end, and are reflected there. 
281. 2S2] 
nOD STRUCK AT ONE END 
4lff 
In the ftboTO solution «c have praooeded as if the striking bodj became AttAcbod to tho rod, so thAt tlio coiidiliou (0) holdtt ftir all potnitivH values of t; but^ if the bodies romuin detAched, thu Hulutiuii l^ulltiul■«H tu hold su lung uiity nn there in pOHitivo jiiT«!niro l»tween the pikI and the Htrilcimg hady. When, in t)i« a,hove MiKitiuit, the jn-eoMire at t^t bocomes negativo, the im|ULat ceasofi. Tbiii hapfwuH wbeu /' (at-'{)+/' (at + l) bDcameH negative. So Inn;; aa 2l >al >0 thin expreHnion in equal to ( T/ii) e'^*^* which ta positive. When 4t>at>il, it is 
which vADtflbes when ialjmi^4fm + i+f~^'^, nnd tbiit cq\iatioD can have a root iti tba intWTaJ 4i>iu>2i if 2+*-''*<4/m. Now the oqiuition 2 + 8-*'"«• 4/m hua a root lyiuR Iwtwceii in=>l and mo 2, nil.: m ™ 1-73..,. Hence, if t«<1'73, the imiJact oeiMea at an instant in the interval 4tia>t>2tia, and this lUHtant la givcu by the [»quatiun 
If in>l'73 we may in like manner determine wbethtir i>r uo tbo impact ceaaea at ua intttant in the interval Gtja>t>4li(t, and ho on. It may be iihown alao that the grcAtCAt compreMioii of the rod oooun at the fixed end, and that, if ni< 5, ita value ia 2(l+«"*"j T'/a, but, if m>5, iw value i«t (vpproiittiJitely equnJ to {i+Jm)VJa. If the problem were tre&t«d aa a atatica.] problem by neglecting the inertia of the nxl, the greatest ootupreMiou would be Jm ( Vfa). For further dtitaila in regard to thia problotQ referonco 11U13' be made to the authoritie» cited on p. 411. 
282.    Rod free at one end and struck longitudinally at tfao other*. 
When ibo t»nd *[«*0 in fi-ew, Sw/r* Vitnisdioi* at this cud fur all vainer df *, or w« have -/'(aI) + F'{ttt)=(i.    Hwice wi: may put /''iO='f(C a">^ vnnia inttteud of (12), 
te-/((tf-«)+/(«( + »), 
And, na before, we find tbat/[f) vanishes in the interval f>{>-I. 
The continuing equation is now 
/"(0+(i/'"')/'CO=-/"Cf-20+(V»«0/'(C-20 
And thediacoQtinuitjr of/'(0AtfE3l ia deteraiined by the eqtiation 
a[/'(-t+0)+/-{t+0)]=-V,   nr   /•((+0)-- F/a. 
Hei>c« we find the results: 
wheo3/>C>?,   /'(O^-^'i'-'f-W-f, 
when ,V>i>3i, 
Now the cxtonaioD at $^i is /'((rt+0-/'(o'""'). ■nd, until t-^iifa, this ta 
which is negative, so that the preeaiiro rcmaina poaitive until the instant tmUfa; but, itnxriediately after this iitHtant, tbo extenaion hecomea (r/»){2-s'***"), whiufa is positive, ao 
' Cr. J. howitMnq, U>e. eit. p. 411. 
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that the pr&tsiire nuunha, and the impact ceasea At the instADt (- Sf/o, tbftt )» to wjr after the time taken bv a wave nf eitenaioti to travel over tvico tho loagth of the lod. 'L'lic vave generated at the tttnick end at the insUint of imiMct La a wave of comprenkn; it is reflected at the free end oa a wave of exteiiHion. Tho ini{vu;t ceoaea when thui reflected wave reoohee the end in oootoot witb the striking btidy. The stata of the md and the velocit)* of the iitrikiiig hod.v at thin iustant are detemiiuetl by tho aIkivg furmuha. Tho body moves with velocity V«-''i'" iu the same direction as before the inii)act; and thtt rod moves in the same direction, the velocity of jta centre of maas being »ir(I -*■'*•), The velocity at aiiy point of the rod ia 2['tf~'i'^coahC#/m/), and the extension at any point 
_i of it ia S (V{a) «~^ sinh (t/mi), ao that the rod reboundii Tibreting. 
283.   Hod loaded suddenly. 
Let a massive bixiy lie aviddeiily attached without velocity to the lower end of a rod, which is hanging vertically with its upper end fixed. With a notation similar to that in Article 281, we can write down the equation of vibration in the form 
-^=a}-^+ff 
Bf 
d^ 
(20) 
Hence we' 
and the value of tv in the equilibrium state is )[g8(2l — a)faK 
UTite 
w = i5*(2i-«)/a« + w' (21) 
and then w' must be of the form 
w' = tf}(tU''s)-tt)(at + 8), (22) 
and, as before, we find that, in the interval l> ^> —I, if>(t) vanishes. 
The equation of motion of the attached mass Is 
which givea the continuing equation 
.(28) 
.(24) 
and the constants of integration are to be determined flo that there is noj ' discontinuity of velocity or of displacement.   We find the followiiig resulta :
when  5l> ^>t, *'(0--f,m(ll-«-'<-^-l, 
<^(n 
=-'>''{^'-'^^-'-''i-\ 
.(25) 
Further the equations by whieti 4*'{t) "■'^ determined tn this problem can be identified with those by which/(^) was determined id Article 28l^by writing — g^a for V. The sohitioii is not restricted to tho range of values of t within which tho tension at the lower end remains one-signed. 
282. 283] 
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The expresMOU for tbe extension at any point in 
and, at t^ie fixed vnd, tbts is eqiial to 
tffla^-i<P'{a(), or {ff!a*+i(g!anf(at\ where / ia iho fuDction bo danuted in Article 281.    Tbe moxiiautii value occum when 
/'(«0-o. 
TaloDg ni»1, BO that the attnclieti niaf» ih equal to tbe niaeM or the md, we find from (16) that/'(oO does not vauiith liefore f = 3f'u, but from (17) thnt it vanisheit butwoen t=3l{a and t~5t/a if tbo equation 
l+cJ{l_2(f-3/),Y)-0 
hft« fl root in the interval tl>C>Zl. The root is f = /{3 + iC^ + '/<f}. or <=i (3-568), which in in this interval.    The greatost extonadon at tbe fixed eiid !■ 
^il+&->»[-l+«'{l + 2(0-668)}]}, 
or {lfffa*){l+4e-^^), or (3-2")V''«' The sUitical Btniiu at the fiiuJ eud, whou thd rod KU])]x>rtA the attached mass in equilibrium, is iCglar, and the mtio of the maximum dynamical rtraiu to this it* 1-63 : I.    Thif* strain occurs at the instant ( = (3*&68) l/a. 
Taking m=2, so that the Attached mana ia twice the iuam of the nfd^ we find from (18) that /'(at) Oifua uut vanish hefure l = illa, hut fropa (17) that it vanishefl between ( = 3//a and t^&lt'a if the oqualion 
haaarootin the interval &t>(>X. Tbe root is f=^;4 + l/e), or f=i (4-368), which is tQ tbia interval.   The greaUet uxteuHi&n at tbo fixed vud le 
^J]+4*;-i(s-'»f [-I+(I + l-3e8)«]I, 
or lff/a*{l+6«'^'^) or (b-Oi)lg!<i\ The statical strain id this case is St^fa*, and the ratio of the maximum djnAinicat Htrolo to the statical! stniin in 1 '68:1. This siraia occurs at tbo instant ( —(4-3'68)f/a. 
Taking ms4, so that the attached mass is four timeti the nifuw of the rod, we find that /'{ai) does ni>t T^v^iHh before t^Uja^ but from (18) that it vajjishcu between t^Uja sud t = 'ii;<i if the equation 
hoH a root in the inturvat ~1>C>»1. The smaller root is f = 2 (6183), which Is in this inLcrvaJ.    The greatest uitcnition at the tixcd end is 
where i ia given by tbe above eqiistion,    The extousioD in question is therefore 
^[9 + e«-i(''»"){3«"*-(l-183;)], 
which is found to be (Q-IS) {Igja^). The statical strain in this case is 6 (Iff/a*), and the ratio of thf mH-xJiuum dynamieul stmin to the statical strain is 1*84 noarly. This stmio uociD-a at tbe instant f«(6-183) llu. 
Tbe notuwurthy result is that, evou when tlie sttaohed mass is not a large multiplu of tbe maas of tbe rod, the greste^it strain due to uudden lna<tiag does not fall far short of the thtoretical limit, vix. twice the atatiuol fftraio.    (Cf. Article 84.) 
L.   B. 27 
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284.    liongitndinal impact of rods. 
The problem of the longitudinal impact of two rods or bars has beeo solved by means of analyns of the samu kind as that in Article 281*. It ia slightly more complicated, because different undetermined functions are required to express the states of the two bars; but it is simpler becuuie these functions are themselves simple. The problem can be solved also by considering the propagation of waves along the two rod8+. The extonsirm e and velocity r at the front of an exteusiouul wave travelling along a rod are cooncctod by the equation « = ~p/o. (Cf. Article 205.) The same relation holds at any point of a wave of compression travelling entirely in one direction, as is obvious from the foi-mula tv =/{at — s) which characterises Buch a wave. When a wave of compression travelling along the rod reaches a free end, it is reflected ; and the nature ^f the motion and strain in the reflected wave is moKt simply investigated by regarding the n:id as produced indefinitely, and supposing a wave to travel in the opposite direction along the continuation of the rod in such a way that, when the two wares are superposed, there is no compre^ion at the end section. It is clear that the velocity propagated with the "image" wave in the continuation of the rod must be the same as that propagated with the original wave, and that the extension propagated with the " image " wave must be equal numerically to the compression in the original wavej. 
Now let t, V be the lengths of the rods, supposed to be of the same material and cross-section§, :uid let V, V be their velocities, supposed to be in the same sense. We shall take / > I. When the i-ods come into contact the ends at the junction take a common velocity, which is determined by the condition that the system consisting of two very small contiguous portions of the rods, which have their motions changed in the same very short time, does not, in that time, lose or gain momentum. The common velocity must therefore be i(K+ V). Waves set out from the junction and travel along both rods, and the velocity of each element of either rod, relative to the rud as a whole, when the wave reaches it, is i(r—K'), so that the waves mo_ waves of compression, and the compression is J {V'^V')la. 
To trace the subsequent state of the shorter rod V, we think of this rod as oontintied indefinitely beyond the free end, and wc reduce it to rest by impressing on the whole system a velocity equal and opposite to V. At the instant of impact a {lusitive wave|| starts from the junction and travels along the rod ; the velocity and compression in this wave are \ (7'^ V) and 
■ S«int-V<>n«nt. J. tii tmtfh. {LioMvilli-), (S^r. % t. 1^ (1867). t Cf. KdviD aud Tuit. Sat. i'hit., Tart i, pp. 280, 2Sl. J Cf. Lord iUylrigUi, Thfory o/ Suund, vol. 2, g 267. 
I BuDt-Vvnftut, tv<. eit., di»ouBM)B tbo ckm of different tnatemla or seflbooB aa woU. 
II An I'lU-nNiuual wavo i« •■ pcnitive " or •■ neRBtivi'" according ftH the Telo«ily of the m«t«risl IB Id ths HUQfl aoQM u (be veiooit^ of propagation or in tbe oj^cite lenae. 
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I (Vf** y)ftL At the aorao instant a tiegative " image " wave etarta from tbe aection distant 2^ from the junction in the fictitious continuation of the rod; the velocity and extension in this" image " wave are i( T"*- r')aud ^(V'^V')la. Afler a time t'/a from the instant of impact both these waves reach the free end, and they are then superposed. Any part of the actual rod in which they are «iiperpoBed becomes unstrained and takes the velocity V'^V, When the reHected wave reaches the junction, that ia to say after a time 2l'ja from the instant of impact, the whole of the rod V is moving with the velocity K** V, and is unstrained. Hence, superposing the original velocity V, we have the rei»uU that, after the time taken by an exientiional wave lo travel over twice the length of the shorter rod, this rod ia unstrained and is moving with the velocity V originally possessed by tbe longer rod. 
To trace the state of the longer rod t frcm the beginning of the impact, we think of this rod as continued indefinitcEy beyond its free end, and we reduce it to rest by impressing on the whole system a velocity equal and opposite to V. At the instant of impact a positive wave starts from the junction and travels along the rod; the velocity and compression in this wave are i(/**< K') and ^{V'^V')la. At the same instant a negative "image" wave starts from the section distant 21 from the junction in the fictitious etintinuation of the rod; the velocity and extension in this "image" svave Me^iV'^V') and kiV'^Vya. After a time n'ja from the instant of impact the junction end becomes free from pressure, and a rear surface of the actual wave is formed, Hence, the rod being regarded as continued indefinitely, the wave of eninpresHion and the "image" wave of eitU^usion are both of length 2f. Immediately after the instant 2/'/a. the junction end becomes uiistruined and takes zem veliwity. Hence, superpneing the original velocity V, we see that this end takes actually the velocity V, so that the junction cuds of the two rods remain in contact but without pressure. 
The state of the longer rod / between the instants it'/a and tija is determined by superposing the waves of length 21', which started out at the instant of impact from the junction end and the section distant 21 from it in the fictitious continuation of the rod. After a time greater than Ija these waves are superposed over a finite length of the rod, terminated at the free end, and this part becomes unstrainetl and (■akes a velocity V'-^V, the velocity — V being supposed, as before, to be impressed on the system. The stale of the ro<l at the instant 'Itja in the case where I > 21' is different from the state nl the siime instant in the case where / < 2f. If I > 21' the wave of compression has passed out of the rotl, and the wave of extension occupies a length 21' terminated at the Junction. The strain in this portion is extension eijual to ^ (I^'wF'}/a and the velocity in the portion is ^ (V^F'), the velocity —V being impres-sed iw before. The remainder of the rod is unstrained and  has  the  veiocity zora.     Hence, superposing the original 
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velocity V, we see that a length I — IV terminated at the free end haA at this instant the velocity V and no strain, and the remainder has the velocity \{y-^ V) and extension \ (K^-l^'Va. The wave in the rod is now reflected at the junction, so that it becomes a wave of comprewion travelling away from the junction, the compression U ^(F'vF')/a and the velocity of the junction end becomes V. The ends that came into contact have now exchanged velocities, and the rods separate. 
If I < IX the waves of compression add extension are, at the instant 2(/a, superposed over a length equal to %' — I terminated at the free end, and the rest of the rod is occtipied by the wave of eKtonsion. The velocity —V being impressed as before, the portion of leogth 2X ~l tertninatcU at the free end is unstrained and haa the velocity V'^V, and the remaining portion has extension ^ (T-w F")/a and velocity i(r—F'). Hence, superposing the original velocity V, we see that a length 21' — I tertnluated at the free eml has at the instant the velocity V and no strain, and the remainder has the velocity H^+ F')and the extension i[{V'^V)la.. The wave is reflected at the junction, as in the other ease, and the junction end takes the velocity V. 
In both cases the rods separate after an interval equal to the time taken by a wave of eitcnsion to travel over twice the length of the longer rod. The shorter rod takes the original velocity of the longer, and reboundn without strain; while the longer rebounds in a state of vibration. The ceiititis of mass of the two rods move after impact iu the same way as if there were a "coefficient of restitution " equal to the ratio l': L 
285. Problems of dynamical resistance involving transverse vibration. 
The reaiUl* ul>t.uinH,] in Articl<!« 281—28-1 illu»triitu' tho gC'ii-irnl character of dynamical resistADces. Siiuikr methods to thooe uaed iu tbene ArticWn c^iiiint 1» employed in problems that involve triuiMvente vibration for Uwk of a g«a&riU fiinctiniii] ai'lmion of the eqiuitioii (5) of Article 2^0*. In such prt»blciQij the best procedure swma to bo to eiprcss the diMplncement a« the sum of a Dcrim of iiumial function^ and to adjust the oortBt^iiit utwfticioutM uf tbo toruiN of tho iteriivt iki fu> tu sutiafy the initiitl tx>iiditioii8. For exnmpleH uf the uppljciktion of this method rervrvuco may bo mtulu Iu Ijord Rayleight aod Saiut-Vviuiiitt. 
A Himplifii^d method of obtdiniug uu a[iproiimBtc luilutioD cad Bometimos bo employed. For example, mippuse thut the prublem in thut of n rod " Hii)t|>ortod" at both ends and Rtruuk by a. uiJi.-wivo Iwdy luoviug with h givetj volot'Lty. After the irii]Mct let tbti nirikiiig budf become attached to the rod. At n.iiy inst&nt nftor the iostartt of impact we mayi for SQ apprnxiniKtioD, reifard tho rod n» *i rest and heut by il cartAiu trausverse lowl applied at the point of impact. It will have, nt the point, a certain doflexion, which is determined in tenns of the load by the resiult of Artirlo £-17 (d). The Icwui is equal to tba prewnire betwoeti the rod and the striliing body, and the dedeiion of tlie rod at tho point 
* Foaiici's oolution by Eneans of dftfiailc mtOKralw, ^iveu in th« Ilullelin dtt Scieneea i U SociSti pKihtMtiqw, 1S18. {ct. Lord R«ylci»h. Thfory of fifiunit, va]. I, i 192), Is applied to prablemi of dynamical rmntanoo by J. fiouMiuoq. Applicotiont dtt t'otentitlt, pp. 4G6 tt tt^. 
t Theory of Sound, vol. t, ^ 166. { See Ihe ' Annotated CleUch,' Sou du g 61. 
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of impMt is cqu&l to the dixplaceiaeRt at th« strikiog body from its position at the instant of imput. Tlie eqiiation of tuotion of the striking body, BUpposed subjected to a force equal and opposite to tlus transvorse load, combined with the conditions that, nt the instant of impact, the body has the preecrilied velocity, and is inHtantimi-ouJily «(. the point of iiuiwiot, am sufficieat coutUtiuna to cletomiinH thi* dispUofUicut of the Mtriking body atiJ tho jireHHiire btstween it and the nid at any aub»oque]it inKtatiL Iti this mcthiHl, BoQietiuicM doscribpd as Cnx's method*, the deftesion of the rod by tha strikiii]* body is legordsd as a atatical eftcct, and thtia this method in in a HRUHe an anticiiwtion uf Hurte's theoiy of impact (Article 139). It haa alroady been pointed out that a aimilar method waa used also by Willis and Stokes in their treatment of the problent of the travelling loult. 
A somawbat similar method has bwu amployod by Loni Rayleight Eur au approximate detenninatioa of the frequency of the gravest roodc of Iranerorsc vibration of a rod. Ho set ont from a f(<^nernl thof.reni to tho effect that the frequency of aoy dytiAmical sj^Aem, that would )te fnimd hy ai^iiiikiii^ Uie dinplanpmtjnt to he of a si>ecified tyjut, t'annot}» loss than the frequency nf the gravest mode of vibration of (he aystem. For a rod riamiiod at one end and fi^ee at the other, he showed that a good ap[>roximation to the Irequency may be made by assuming the diiiplacemciit of the ro<) to l>e of the same type as if it wora deflected statically by a transverse load, concentrated at a distance from the fr«« vnd eqoal to one quarter of the leugib. This method has recently been the 4iil_>j>cct of mnne dlsouasion §. It Im» been shown to be a]>plicrtl'lB to the dytcrmiiitition of the frequency of the gravest mode of trnnHverse vibnition of n roil of viiriahle <;roan-section li- It has been shown also that a nietliod of succeasive approximation to the varioiifl ciormal functions for mioh a rod, and their frequencies, can be founded u[>on such aolutions as Lord Ilaylaigh's when these solutions are regarded as lirst appruximationsli. 
286.    The whirling of shafts"*. 
A long bhafL rutatiiig between lifHriiigH remains straight iit low speods, but when the speed is high onoug-h the almft can rotate steadily in a form in which the eentmMine is hent. The shaft is then m\t\ to " whirl.'' IjCt u be the troD-sveise displaceuieut of a point on the central-line, H the augular velocity with which the shaft rotates. The equuliun of ntotion, forined io the same way as equation (6) in Article 280, is 
•(26) 
aud the solution of this equation must be adjusted to satisfy appropriate 
• H. Cos, Cambridge Phil. Soc. Traiu., vol. 9 (1850). Cf. Todhnntar and Pearson's HUtor\f, Tol. 1, Arltcle 1435. 
t Bee IiariMlwtion, p. 26. ; Theory of Smtnd, vol. 1, g 182. 
i C. A. B. Gsmrtt. PhiL Mag. (3or. Cf. vol. 8 (ISW), and C. Chiee. PAiJ. Mag. (a«r. 6). vol. * (1905]. 
II J. Monov, Phil. Mag. (Ser. 6), vol. 10 (1906). Some Hpecial cases of the vibrationt of a lod of vsriablii section, in whioh the exact forms of the nonosl functiooB can be determined in terma o! Basel's fnnctioDt, wore dlscusried by KirobbuS, Berlin MottaUherichu, Hi79, or 0*t. AbftandluHgts, p. 389, 
5 A. DsvidogloQ, * Snr I'^aatioo dei vibrttiona trsnsTersales des vergu Aluciqnes,' Puis (ThtMef, 1900. 
•• Cf. A. G. Greenhill, Prac. h^i. Me^ti. Kngimtrs, 1S83. 
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oooditioos at the ends of the ttliaft- We shall consider the cose in which the ends « = 0 and g = l ore " supported." If the rod rotates fitoadily ffitfdt* vanishes, and ihe equation is the same as that for a rod executing simple harmonic vibrations of period 2ir/n.    In ordur that the equation 
OS* 
•(p) 
may liave a solution which makes a and d'ujd^ vanish at « = 0 and at * «/. the ftpeed of rotation n mu«t Iw such that n/'27r is equal to the frequency of a normal mode ofHexural vibration of the doubly-supported shaft. Thus the lowest Rpeed at which whirling takes place 'w such that n/2ir is equal to the frequency of the gravest mode of flexural vibration of such a shaft. If we write 
the possible values of m are given by the equation sin ml = 0, and the smallest value of Q for which whirling can take place is 
The whirling of imloarled Hhofu rotating under various temtinal conditioDs has beeu dealt with hy A. G. Urocuhill U'tc. <M'r.). The important technical proMom of a sboit canning UMwiit, pulleys for emruplc, Um been diwuaaed theoretically and experimentally by B. Dutikerley*. He found tlmt tito dirtict upplication of the method of normal functions, illustrated above, led to very tiompliivittKl renulte, ntid pro|Ki«L-d to fuJl hiick ou nn empirical aaauoiptitfu. The liubjoct has bcon di»cm4ai3il further by C. Chreet, by tbe aid of Lord Bayleigh's statical method of dotermiiiiug frcquouciott (Article SS5). 
• Phil, Tra^a. R. Soc. (Ser. A), vol. 186 (1884}. t Phil, ^fas. {Sot. 0). to!. 7 (l^
CHAPTER XXI. 
SSfALL DEFORMATION OF NATURALLY CURVED RODS. 
287. In the invftstigatiors of Oliapter« XVIII. and XIX. we hftve given prominence ti> the coDHideratioii of moilea of deformation of a thin rod which involve Urge dinplaccineut^ of the ceutml-Hne and twist that is not small, and we have regarded cases in which the displacement of the centraldine and tlie twist are small as limiting cases. This was the method foDowed, for example, lu the theory of spiral springs (Article 271). In such caaea the formulGB for the components of curvature and twist may be calculated, as has been explained, by treating the central-line aa unextended. We can give a systematic account of such modes of deformation aa involve small displaoemcnts only by introducing quantities to denote the components of the displacement of points on the central-line, and subjecting these quantities to a condition which expresses that the central-line is not extended*. 
288. Specification of the dlaplacement. 
The small deformation of naturally str.'tight rods has been sufficiently investigated already, :ind we shall therefore suppose that, in the unstressed state, the rod has curvature and twist. As in Article 259, wc shall use a system of axes of x,. y^, t^. the origiii of which moves along the unstrained oentral-line with unit velocity, the axis of Zt, being always directed along the tangent t<i this line, and the axes i>f t„ and yo being directed along the principal axes of the cross-sections at their centrojds. We have denoted by \v—/o the anglu which the axis uf ;r« at any point makes with the principal norma] of the unstmined central-lino at the point, and by «„, k^, n the components of initial curvature and the initial twist.    We have the formula 
«//*o = - tan/a
* The tlifory was partially worked out by Saint-Yenant in k series uf pagHTd in Pari* C. R., I. 17 (1M3). and more full; by J. H. Miolidl. Metitnger of Slath., vol. 19 (1S90I. Tb« latter haa also obtained sotne exact aoltitions of tbc «qtiatioitB of ^qniUbriDm of so d&Ktia itolid liudy bounded by ao incomplete lore, and theae eolutionft are confirmatory of the th«oi7 nbcn the tore U thin. See LfOndoa Math. Soe. Proc, vol. 31 (1900), p. 130. 
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Tho curvature ijp, and the loiiuwity 1/^ of the central-line are given by the fortnulffi 
(i/p,)« - r,«+o, 1/s,=T, - rf/;/rf«. 
in which « denotes the arc of the central-IiDe measured from some chose? point of it. 
When the rod is slightly deformed, any particle of the centrat-liDO undergoes a small displacement, the component of which, referred to the axes of 1^1 ^01 'oi with origin at the unatrainL*d position P of the particle, will be denoted by u, v, w. The rod will receive a new curvature and twist, defined, as in AiticloA 252 and 259, by means of a moving system of "principal torsion-flexure axes." We recall the convendoDS that the axis of z in this system is directed along the tangent of the strained central-line at the point 1*1 to which P is displaced, and that the plane of {x, g) is the tangent plane at Pi of the surface made up of the aggregate of particles which, in the unstressed state, lie in the plane of (sc^, r^) at P, We have denoted the components of curvature and the twist of the strained central-line at Pi by «,, Of,', T,. When the displacement (u, v, w) of any point of the central-line is known, the tangent of the strained ccntral-Une at aay point is known, and it is clear that one additional quantity will sutfice lo determine the orieatation of the axes of (x, y, r) at Pi relative to the axes of (.Tu, y,. Zt) at P. We shall take this quantity to be the small angle /3 which the plune of (x, *) makes with the plane of {jc^, i-,). The relative orientation of the two sets of ax^ may be determined by the orthogonal scheme of tmnsformatiou 
.(1) 
in which, for example, i, is the cosine of the angle between the axis of x at Pi and the axis of s^ at P. We shall express the cosines L,,..., the components of curvature Kj, «,' and the twist tj in terms of u, v, w, B. 
2B9.    Orientation of the principal torsion flexure axes. 
The direction cosines L„ 3/,, N, are those of the tangent at jP, to the 
strained central-line referred to the axes of Xat yu. '« it P. Now the coordinates of P, referred to these axes are identical with the components of displacement u, v, w. Let f" be a point of the unstrained central-line near to P, let Bj3 be the arc PP", and let So:,,, iy«. Sf„ be the coordinates of P" referred to the axes of x„, y^, z^ at P, also let f, *;■ 5" be the coordinates of Pi\ the displaced position of P", referred to the same axes.    The  limits such as 
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OF  A  THIN  CURVED  ROI> 
Um(f — u)/S« are the direction coeines i,     Let (u', i/, «/) be the dis
placement of P' referred to the axes of ar^, y,, 2, at i**, and {W, V, W) the same displacement referred to the axes of jTb, ya, «« at P,    Then 
(f. 1?. t) - (^. + P*. ho + ^. «'. + »»">■ 
The hmita of Bx^Sg. «y„/fi«, Si^/Bg are 0, 0. 1. The limits of (u'-^«)/&, ... are du/ds,... and we have the usual formal^ connected with moving axes in such forms as 
^ 
,.   ir-u   du 
Ceo     ''s 
rf« 
Hence we obtain the equations 
r      du ,     ,,     dv .,     ^     dw , ,-, 
A-, = j^ —VT^ + wftt,,    M,= -,— «;*■„ +UTo,    iv,= 1 + ^—UK^ +f«o—(2)     ■ 
The equation X,' + M^ + iV,'= 1 leads, when we neglect squares and products of Ut tf, w, to the equation 
^ - ««, + r«( = 0, 
.(3) 
which expresses the condition that the oentral-Hne is unextended.    In consequence of thia equatiriu wti have A', ^ 1. 
The direction cosines of the axes of ac. y at P,, referred to the nxe« of «fl.y*i ^fl at P, are determined b}' the conditiuus that the plane of (ar,r) makes a small angle 0 with the plane of (jTo. z„), and that the scheme of transformation (1) is ortlmgoaal autJ its detenuluaut is 1.    Thesie wnulitions give us 
■ Thei 
.(*) 
These equations might be found otherwise from the formulee (7) of Article 
253 by writing L^,... instead of /, taking 0 to be siiiall, and putting ^ 
for ^ + '^. They are, of course, correct to the first order in the small quantities u, v, w, 0. 
290.    Curvature and twist. 
For the calculation of the components of curvature and the twist we have the formula- (0) of Article 253, in which jc,,... are written for k, — In those formula? /j,... denoted direction cosines of the axes of jc, y, 2 referred to 
fixed Mxes.     Here we have tHken L to denote the dircctiun cosiues tif the 
axes of a;, y, s at Pi referred to the axes of a"o, y^, Zt fit- P. If i** is a point near to P, so that the arc Pl^ = hs, and P,' is the displaced position of P', wo may denote by /,,',... the direction cosines of the axes of x, y, s at Pi referred to the axes of x,, y^, <a ^t P'» ^^d then the limits such as lim {L,' — L,)IBs are 
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tbo differential coeffidentB such as dln/eU. Let the fixed-iues of refereoc^J for It, ...he ihe axes of «,, y«. j^ at P, and let /| + SI,,... denote the directi^H oonnefl of the axes of x, ^, ; at P,' referred to the!>e fixed axes. Then 10^* UmiU Buch as lira S/|/S« are the differential coefficient such as dUds.    it is   ' 
clear that, at P, t^^L,, ...liut that dl,id*^dLj}dB    We have in (act 
uftiial formula; coDueet«d with moving axes, viz.:— 
dljd* = dljd* - MtTt + N^K^'. 
dmjdi = dMtjda - A',** + At,, 
dn^de = dSJds — /.,«,' -i- M%k,. 
with aimiUr formula for dljds,... and dl^ds, 
In the fomiui^e (6) of Article 25S we write x,,... for <t put n, 
replace l^,... by the values fi>und for Li,... in (3) and {4>\ and subittitiite tbi* value*! just found for ^fda, .... Rejecting terms of the wwond order in tbe ■mall quantities u. v. w, 0, ve obtain the equations 
dM, dt 
dB 
T,« T, + £+«. A+«/af,. 
(5) 
in which £, and Jf, are given by the first two of equations (2). 
291.    Simplified formnlte. 
The formula are simpli6ed iu the caae where J^^^w. In this case tbe axis of JT,, which is a principal axis of a cros6-itf«tion at a point of the nnstrained central-line. Djincides with the principal normal of this curve tk^ the point.    When thia is the case we have 
_$ d fdv u^\ \ /du __9 «\ 1 d /du V w\ 1 fdv u \ 1     rf^    1   A    tr\ 
The condition that tbe central-line is unextcnded ia 
w 
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The measures of curvature and tortuomty aud the direction cositit!« of the principal luirmal and binormal can be calculated from these formulae or from the iBore general fornml» of Article 290. 
I      292.    Problems of equilibriiun. 
The theory is applicable to such problems as the deformation of the links of chains • by the pressure of adjacent links, and it may be used also to give an account of the behaviour of archest, the link or the arch being treated as a thin curved rod. The equations of equilibrium have been given in Article 25[), and we have found in preceding Articles of this chapter expressions for all the quantities thtit occur in terms of the disphu^oment (u, t;, w) and the angular disptacemeut;?, the quantities u, v, w being themselves connected by an equation (3) or (7). Naturally any special problem, such as those mentioned, is of a verj' technical character, and wo shall content ourselves here with a slight study of some cases of the bending of a rod in the form of an incomplete circular ring. 
(a)    Incomplete circular ring bent in its plan^. 
Let the unstrained central-line be a circle of radius a, and let 6 be the angle between the radius drawn from the centre of the circle to any point on it and n chosen radius, then 
pt = ds/dff = a. 
The displacement n is directed along the radius drawn inwards, and the displacement w is directed along the taugent of the circle iu the sense in which 0 increases. Wc shall suppose thai the plane of the circle is a principal plane of the rod at any point, and that the fiexural rigidity for bending in this plane is B. Then v, ff and l/S^, vanish, and the condition thai the central-line is unexteuded is 
dw 
dff 
= M. 
.(8) 
^^^I'he fiexural couple G' in the plane of the circle is 
I o'-4{^-'£> («) 
the other fiexural couple and the torsional couple vanish. H      Let the rod be bent by forces having components X, Z per unit of length 
I * £■ Winkler, Ji«r CiviUngtn\e\at  Fd. 4 (19A9].    Winkler'n memoir !■ dwwrihed &t lea^h 
and corrected in deUii in Todhnoter ami r<:>a.r«oti'i ilujorj/, vol. 2, pp. 422 ti teq. 
f U. BreAae, Reel.tfrrlif» itntiiytiiitifn ttir lajtejcwn ft in rftiftarice dct piiets eatirbr.*, PdrU ISTnl. An accuUDt of ihit treatise aUo u ttireu in Todhantur And Poutoo't Uiitmy, vol. 'i, pp. 3fi3 r( uq. H. T. Eddy, Amrr. J. u/ ilaih., vol. 1 (I878J, huti proposed a Rmpliioiil nethod of treatment of the problem of irchiw. 
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directed along  the radius and  tangent at any point.    The equation? equilibrium obtained from (26) ftud (27) of Article 259 are 
^+r+jr«=o.  ^-y+Za=o.  ^^' + iVo=o (lO) 
Hence we find that tho aheariug force A^aiid the tension Tare ex in terms of v> by the equations 
Fig. 64. 
aud that w sattsfiea the equation* 
a» U^ ■*■ ^ (W* "*■; 
We oot« the following rasulta :— 
(i) When tbo rod in alightlj* bent b; couples equai to K applied hI it« ends ia it* plane, tho ccntral-tiiie rcmaina circulur, but it« radiu i| roduoed by the fmi-tKiii KafB of itmlT. 
(ii)    When tho tndu of the rod nre given by 5» ±o,i tbat tbo tine juiiuiig them HubtendH aj) iiiigle 2a at ucntrc, Aud the rod is Hiightly bcjit hjr forooa equnl to M acting AH tension along this line as in Fig. 64, the displii ment is given by the equ&tiona 
(Ui) When the rod is alightly bent by forces eqoal to S, applied as sliown in Fig. 69 to rigid {»€ccs attAt^bcd to itR pnits iinil extending aaom the chord of the iiiranipleto ring, tho dispUoement ii given by the equations 
(i%*)   When the rf«d frtnns a complete circular ring,! is sUghtly bont by uoniiiil preaRiuas equal to A'l spjilM Firr, 05. at the opposite ends nf ■ diameter, we moastin B from 
this dijiuioter lut nhoHii in Fig. 66, and find for the dl^ placement u> M a point on thAt side of tins diameter in which fr>d>0 
W=-X, ::«*//')[*>-i<l-eOHtf-itfsiutf)],      U' 
The displ^uit^iiieiit^ are clearly the same at any two points aymmetrtcAlly situated on opposite sidw of this diameter. 
Wfi may deduce the rolue of u at any point, and we DOfty provp timt the dintnnter which cuincidcn with the line of tbniHt is shorteiiud by {{n' — ti)/i1T){J^l<^|B]^ while the ^lerpendicular disuieter is lengthened by 
(v)   When the rod funus a complete ciroutar ring weight IF, which is suspended from a point in ita ciimrerence, we tueasure 6 tmm the highest point, 
T 
r:£ 
Fi«. 66. 
• Cf. H. Ijinib, LoNdon Math. Nik. Fnc wl. I'J (1888), p. 3(i5.   The leanlta giTen in Ibt. t«xt uadci th« uumberB (i)—\y\ are tAk^i Irora thi« juiptr. 
1- These reiulls are duo to Sunt-VaDSnt, Pant C. H.. t. 17 (ia43). 
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■T^'.vct-.->-•>; 
/ 
\ 
gnd for the displacemtent w at a point for vhioh Tr>d>0 the vsiue 
UP-- H'(a-i//r)(8ir)-M(tf-<')'Hiu^-4Cfi-wXl-eo8^)-'''«n*i; [fho displtbccraout is tko sanic nt the aorreH[KMiding point in the other half of the ring. 
hi tbi» cu.<<« wu  may t"^^^ ^i**^^ ^^ amaunts by  which the  vurLtoal diBjnoter in agtbducij iujii the horizuiitul diameter Hburteiied are the halves of what they would be if ^tbe weight yf wen) uoiicentraUKi at the l<mest puiut, 
(vi) When the rod forms « coni{j]etc circular ring which rotate* with aagular velocity w about ono diatnetcr *, t&kcn an axis of^, its contral-liae doacribos a surface of revolutioD of whiL-h the moridiaii curve ia given bj- the oquatioDs 
^■■aBind+]^ [m«%*/i7) sinV, 
y=aoosd+^ (mM*o'/i?)(l -ooe*^), 
the mass of the ring per unit nf length, and 6 ig HMMUnd from thv lich the ring rntjit&s.    Ttii.s diameter m shortened ood the perpendicular fdiamotcr lengthened by the Rame amount \ {rrua^a^lS). 
(6)    Incomplete circuiar rinff bent out of its plane. 
As before we tAke a for the radius of the circle, and specifjr a point on it by RD angle 8; and we take the piane of the circle to be that principal plane of the roil for which the flexur^il rigidity 18 B, We consider the case where the rod is bent by a load W, applied at the end ^ = a iu a direction at right angles to this planet, and is fixed at the end 
5 = 0, so that the tangent at this* point is 6xed in direction, and the transverse linear element which, in the unstressed atatc, is dirtcted towiinJs the centre of the circle is also fixed in direction. Then u, 0, w, 0y dujdB, dvfdB vaniBh with 0. 
The stress-resultants N, N", T at any section are statically equivalent to the force W, of which the direction ia parallel to that of the axis of y^ at any section, and we have, therefore. 
N = ^W,    ir= W,     T=(Wla).(dvid6) (13) 
The equations of monxenta are, therefore. 
§.II = .W.    f = -.^,P,    f-« = 0 (U) 
From the first and third of these, combined with the conditions that 
6 and H vanish when 0=a, we find G=-aH'sb(a-ff),     H = aW \l-cos (a-&)] (15) 
" 0. A. V. teschka, ZfiUckr. f. Math. u. Ph\/». {Hchl^mikh}. Bd. la <18G8). t The  problem  has  beua  dieousied  by  Saiat-VeDant,   Paris C. R., t. 17 (1B4S), and by B. BewU, J. <te Math. (Liowille), {^kr. 8), t. S (I877J. 
Fiff. 67. 
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Now we have 
0 
ijS .     B 
0£ 
a* (id 
(p + a^S). 
.(16) 
and from theac equations and the tenninnl conditions at l9 = 0 wo can ubt 
the equation!) 
Wa* 
+ i Wa" (~ +    W cus (a - fl> - sin ^ COS a]. 
We may prove also that u and w are small of the order ■^. 
293.   VibrationB of a circular ring. 
We shall illustrate the application of the theory to vibrations by cc sideling the free vibrations of a rod which, in the UQStreased state, fo a circular ring or a portion of gucli a ring, and we shall restrict our work t4 the case where the cross-section of the ring also is circular. We denote thti radius of the cross-section by c, and that of the circle formed by the centralline by a. and wc take the displacement u to be directed along the radios drawn towards the centre of the latter circle. The equations of motioi formed && in Articles 278—2tj0, are 
= fffti K^ ,     ^3 — iV = ma 
^ 
a** 
and 
4-H-iV'o = -ic*m 
aff d$ 
dG'     „      ._,<*'/'' 
d* /dv 
^6 
+ w 
.(18) 
.<!») 
in which m is the mass of the ring per unit of length, and 
(20) 
B being the Young's modulus and ^ the rigidity of the material of the ring.I 
The above equations with the condition 
de 
.(8fru) 
yield the equations of motion. 
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It is clear that the above system of equations falls into two sets. In the 6rst set v and jd vanish, and the motion is specified by the displacement u or w, these variables being connected by equation (8); in this case we have flezural vibrations of the ring in its plane. In the second set u and w vanish, and the motion is specified by r or y9, so that we have flexural vibrations involving both displacement at right angles to the plane of the ring and twist. 
It may be shown in the same way that the vibrations of a curved rod fall into two such classes whenever the central-line of the unstressed rod is a plane curve, and its plane is a principal plane of the rod at each point. Iq case the central-line is a curve of double curvature there is no such separation of the modes of vibration into two classes, and the problem becomes extremely complicated*. 
(a)   Flexural vibrations in the plane of the ring. 
We shall simphfy the question by neglecting the "rotatory inertia." This amounts to omitting the right-hand member of the second of equations (19).    We have then 
The normal functions for free vibration are determined by taking w to be of the form W cos {pt + c), where IF is a function of 9. We then have the equation 
^W       d^W    d'Wf       4maVN    4may,5.    „ 
The complete primitive is of the form 
W^liA, cos n,e + B, sin n,e), 
where riif ">• "s &re the roots of the equation 
n'(n' - iy = (n' + l)(4maV/£7rc*). 
If the ring is complete n must be an integer, and there are vibrations with n wave-lengths to the circumference, n being any integer greater than unity.    The frequency is then given by the equationf 
^     4wMt*      n'+l     ^^'^ 
* The vibrations of a rod of wbioh the Dfttural form is helical have beea investigated by J. H. Michell, loc. cit. p. 423, and also bjr the present writer, Cambridge Phil. Soc. Tram., vol. 18 (1899). 
t The result is due to B. Hoppe, J. /. Math. [CrelU), Bd. 73 (1871). 
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When the ring is incomplete the ti«quency equation is to bo obtaioed by forming the cunditiona that iV. T, O' vanish at the enda The result is difficult to interpret except in the ca-w where the initial curvature is very slight, or the radius of the central-line is lai^e compared with its length. The pitch is then slightly lower than for a etraigLt bar of the same length, materii and cross-seutiun*. 
(6)   Flext»-al vibrations at right anglen to the plane of the ring. 
We sliall simpliiy the problem by neglecting the " rotatory inertia," tlut i» to say we shall omit the right-haod members of the 6rst and third ofJ equations (19); we shall also suppoise that the ring is complete.    We may then write j 
p = 7cos (n^ 4- a) cos (^( + e),    |3 = ^ cos (nB + a) cos (pi + e). ^ 
where V,B,Oi,e are constants, and n is an integer.    From the first and third of equations (1&) and the second of eqnations (18) we find the equations 
^ n' iali" + F) + (oB' + n'F) = 0, fmm which we obtain the frequency equation! 
wliere a is Poissnn's ratio fnr the material, and we have used the relatic E = 2/i. (I 4- fT).    It is noteworthy that, even in the gravest mode (n = 2), the frevniency liiffera extremely little from that given by equation (21) for the corresponding mode involving tlesure in the plane of the ring. 
(e]    TornoKiU and extentional vibraliwit. 
A ciirved md pnfeessea also modes of free vibration analogmts tt» the toniooal exteusiann.1 vilimtionH of a straiglit nnl.    Fnr the tomional vibrations of & cinsolar nqg' take u and w to vunifib, and niip^KMe tli»t v in atnull in curn[>uriiK(n  witli n^, then tlw MOond of oqiutiuua (IH) aud the firxt of cqiiAtinns (18)arQ Hatintiod approzimiUoly, and < third of oquatioiio (10) becomes a|>proxiinat«l7 
VoT a complete circular ring tbero are vibratioixs of thi» type with n wave-lengths to tlw circumferenDe, and the tte^aetioy pfin i& given by the equation 
^=^^tt>+'+-'^ 
m 
When n = 0, the cqiiaiions of motion caji be Hatisficd exactly by putting »'=0 and taking 0 to be indupcadout of 0.  The ctiaraut«rlstio feature of this mode of ribiratioa in that each 
* The qucHtion has been diMOBiiMl verf fully by H. Lamb, toe. fit. {x 128. 
t The reaalt i« ii«« to J. H. Micbell. he. at. p. 4^3. 
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diculor cross-aeotion of tbo oirculru- ring w turnfid iu its own plaue through the »ame small angle S nbout tLa ottutrAl-liue, while thw line i« not di8i>lacs(l*. 
For the extenHional modes of vibnttion of a circulAr ring we Uke t) and /9 to vanii^H, and xuppoM that equation (8) does not hr}ld. Then the exteniioD <if tho vontral-liue is o~'(Sw/M-u), and the tenaiou T is AVi-^«'' (3w/96-w). The couples O, If and the Bhearing foroe N' vanish. Thn expreaHimiH for the couple (?'and the Hhcaring force y oontain c* oa a factor, while the espressinii for T contaiiifl <? ua & factor. Ws may, Uiorefore, for «n a]i|irosimatioii, omit (f imti A', ami neglect the rotatory inertia which givua rise to the right-liand nieinlier of the aecctniJ of equations (lli). The equutiotu to be utiatied by u and w are then the first and thin) of equations (18), viz.: 
3*u     £ircS/&w       \ c»Hr    Sire*/v*w     du\ 
The displacement in Free vibrations of frequency p/iv is gireo by equations of the fonn u-iA »ian6+Seo» nd)coe {pt + t), n{A coa n$ — B&m »&) cc»{pt-^4), 
(S4) 
ma' 
Wheu n=0, w vani«he» and u ts independent of fl, and the equatioaa of motion are satisfied oioctly. The ring vibrates radially, ao that the ceutral-lino forms a circle of periodically variable radius, and the croes-sections move without rotation. 
The modes n( vibration cflnsidered iu (i*) nf this Article ftro ir>r much higher pitch than those coDaidored in (a) and (&), and they would probably he difficult to excite. 
* The re»ult that th« modes of vikratioD iovolving dinpUc^m^nttt i< knd ^ are of two types wai noogaizvd hy &.. £. liaesnt, Lmtdon Math. Sac. Proc., vol. 33 (1BU2), iumI the fietietuicy of ths tordonal vtbrations was found by him, 
L. B. 
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CHAPTER XXII. 
THE STBETCHIXO AND BENDING OF PLATES. 
294.    Specification of stress In a plate. 
The intemal actions betweeu the pares of a thiu plate are most appro-1 priately expressed in terau of Etress-resultants ami stress-couples reckoned acrosft the whole thickness.    We take the plate to be of thickness 2h, and on the plane midway between the faces, called the " middle plane," we choose aa origin aod rectangular axes of x and y, and we draw the axis of z at right angleti to this plaoe so that the axes of x, y, s are a right-handed systom. We draw any cylindrical surface C to cub the middle plane in a curve «. The edge of the plate is such a surface as C, and the corresponding curve a the " edge-line."    W^ draw the Durmal i* to s in a chosen sense, and choose ^| the sense of * so that v, «, 2 are parallel to the directions of a right-handed ^H system of axes.   We consider the action exerted by the part of the plat« Ipog ^^ on that side of C towards which v is drawn u|K>n the part lying on the other side.   Let £« be a short length of the cun'c a, and let two generating lines of C be rlrawii through the extremities of Ss to mark out on C an area A.   Tbei tractions on the area A arc statically ctjuivalent to a force at the centroid of A and a couple.   We re8olve tins force and couple into compoueaUi directed along V, 9, a.    Let [T], [S], [N] denote the components of the force. [B], [G], [K] those of the cmple.    When Bs i» dimiiiiKhnd indefinitely these quantities have zero limits, and the limit of [A']/S« also is zero, but [7^/Sh, ... [G]l&s^\ may be finite.    We denote the limits of [7']/5«. ... by T, ....    Then T, S,n\ are the c<inipnnontH of the Hi'eiis-resultant belonging to the line 3. and ff, 0' are the components of the stress-cuuple belonging to the t^me line.    7* is a tension, 8 and N are shearing forces tangential and normal to the middle plane. (? is a Sexural couple, and H a torsional couple.    When the normal » to s is parallel to the axis of x, s is parallel to the axis of ^.    In this case we give a suffix 1 to 7*. ....    When the normal v is parallel to the axis of y, 9 is parallel tA> the negative direction of the axis of x.    In this case we give a suffix 2 to T. ....    The conventions in regard to the senses of these fcateu and couples are illustrated in Fig. 68. 
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For the expresttioii of 2*,... we take temporary axes of j/, ^, z which are parallel to the directions of v, *, «, and denote by X'^, ... the stress-componeots referred to these axes.    Then we have the formula* 

        
        [image: Picture #233]
        

        «i^ 
N, 
y     /' 
Q. 
r=J* r^dz, s=r x'^dt, J!i=C x'.dz, 
B'(    - zX'yf dz,    (5 = f    tT^ ds; 
and, in the two particular cases in which u is parallel respectively to the axes H of fc and y, these forinulsB become 
fh rh rh \ 
^, = 1     X,dz.    S,=j     X^dz.    K,= \     X,<iz. 
H,=       -eX^dz.    0,=      zX^ds, 
and 
.' -A 
•(1) 
-s;=f  -x^dz, T,= (  ¥,di,  N, = l  r,di, 
J -k J-A J-A 
G, = J     z I'j, dz,    Ht~ I     zXy dz. 
h                        J -h We obwrve that in accordance with these formulBB fif|=''5i,   H^ = — Ex 
.(2) 
,(3) 
k 
■       295.    Transformation of stress-reaaltants and Btreaa-coupleB. 
f       When the normal v to the curve a makes angles 0 and ^ir — & with the axes of X and y, T, iS, ... are to be calculated from such fonnulje as 
in which the atresB-components X'^, ... are to be tuuud from the formulee (D) of Article 49 by putting 
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We find T =^TiOoa'e + T^sia^e + S^aia 26, 
5 = J (?*, - r,) sin ie + 5, COB 2&, 
0 == 0, cos' tf + ff„ sin= 5- /T, fiin 2tf, fi' = ^ ((?, - (?,) sin 29 + H,cos 2$. 
-(*) 
-(5) 
..16) 
Instead of resolving the stress-resuHants and streas-couph _   ^ 
the line s in the directions !<, s, x we might resolve them in the directions X, y, r.   The components of the Btress-resultant would be: 
parallel to *, Tcos6-SsinO, or T, coatf 4-S,sin 0/ parallel to y, Tsio fl +A'costf, or jT, sin fl + 5, coa tf, parallel to z, If; cos 0+ JV\ sin ^; 
and those of the couple wouM be: 
about an axis parallel to zr, Hcosd — QsinO, or fi^, costf — ff,8in tf,] 
about au axis parallel to y, £f sin d +(/COB d, or Ot cos 6—Ift sin 6.\ 
296.    EqnatioiiB of equilibrium. 
Let C denote, as befure, a cylindrical surface cutting' the middle plane at right angles in a curve s, which we take to be a simple closed contour. The external forces applied to the portion of the plate within C may consist of' body forces and of surface tractions on the faces (z= h and ; = — A) of the plate. These external forces are statically equivalent to a single force, acting at the centroid P of the volume within C, and a couple. Let [X'], [V], IE'] denote the cocaponents of the force parallel to the axes of «, y, s, and [L], [M'], [N'] the components of the couple about the same axes. When the area a within the curve s is diminished indeHnitely by contracting s towards P, the limits of [X'\ ... [L'],... are zero and the limit of [N']lto also is stero, but the limits of [X']la>. ... may be finite.    We denote the limits of 
[A"]/w, ... by X'    Then A",  V, ,Z'are the components of the forc«
reeultant of the extenial forces estimated per unit of area of the middle plane, and L', M' are tht.^ components of the couple-resultant of the same forces estimated in the same way. 
The body force per unit of mass is denoted, as usual, by (X. T, Z), and the density of the material by p, The definitions of X*, Y',Z',L', Jl/'are expressed analytically by the formulfe 
J -K 
Z=p^pZdz + (Z,),.^ - iZ,),.^K, 
.(7) 
295-297] 
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L =1*^ - zpTdz -k [(F,),_A + (r,).-AK A/' = r zpXdz    +A{(XA-ft + (A'.),.-*). 
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.(8) 
We equate to zero the force- and couple-resultants of all tKp. forces acting on the portion of the plate within the cylindrical surface C. From the formula (5) we have the equations 
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        [(T, cos ^ + S, sin tf) tiff -f- IJX'dxdy = oj j{Tt s'm 0 + S, cos ff) da + IJY'dxdjf = 0, jiN^ co&e-k-N, sin 8)ds+ jjz'dxdi/ = 0, 
.<9) 
where the surface-iiitegratH are taken over tht? area within s, and the lineintegrals are taken round this curve. From the formulte (5) and (6) we have the equations 
[[(if,COB$"0,6X110)+1/(W, coaB+N,sin B)] ds+jj  {U + yZ')dxdy = 0, f |(G, cos e-H^ sin B)-x (N, cos ^ -!- JV, sin ff)| ds+jj (M' - xZ') dxdy = 0. 
[[* (Tj sin fi-h 5, cos tf) - 3/(T, cos tf + S, sin tf)] da+[[(ar r - yX') ckrfy = 0. 
(10) 
Since cos B and sin & are the dtrection-cosines of the normal to s referred to the axes of x and y, we may transform the line-integrals into surfaceintegrals.    We thus find from (9) three equations which hold at every point 
of the middle plane, viz. 
b 
cx     9y ox     dy dx     dy 
We transform the equatious (10) in the same way and simplify the results by using equations (11). The third equation is identically satisfied. We thus find two equations which hold at every point of the middle plane, viz. 
Equations (II) and (12) are the equations of equilibrium of the plate. 
297.    Boundary conditions. 
In a thick plate subjected to given forces the tractionn specified by X,, T,, Z,, where y denotes the normal to the edge, have prescribed values at every point of the edge.    When the plate is thin, the actual distribution of 
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the tractions applied to the edge, regarded as a cylindrical surface, is of no pnictical importance. We represent therefore the tractions applied to the edge by their force- and couplc-rcsultauta. estimated per unit of length of the edge-line, i.e. tlie curve in wliidi the eilge cuts the middle surface. It follows frora Saint-Venant's principle (Article &y) that the cflfccts produced at a distance from the edge by two sysleme of tractions which give rise to tlie 8amo force- and eon pie-resultants, estimated (w above, are practically the same. Let these resultants be specified by components T. S, N and H, O in the senses previously assigned for T. S, JV and IT, G, the normal to the edgeline being drawn outwards. Let the stress-resultants and stress-couples belonging to a curve pftralJel to the etlge-line, and not very near to it. be calcniated in accordance with the previously stated conventions, the nonnol to this curve being diawn towards the edge-line; and let limiting values of these quantities be fuund by bringing the parallel curve to coincidence with the edge-line. Let these limiting values be denoted by T, 3, N and S, G. It is moBt neccBsaiy to observe that the statical e<tuivalence of the applied tractions and the stress-resultants and sCress-couples at the edge docs not require the satisfaction of all bbe erjuations 
f=T,   S=S.   J7=N.   ^ = H,   ff = G. 
These five equations are equivalent to the boundary conditions adopted by PotRSon*.   A syetem of four boundary conditions was afterwards obtained by Kirchhofff, who set out from a special assumption as to the nature of the strain within the plate, and proceeded by the method of variation of the energy-function.   The meaning of the reduction of the number of conditions froiii five to four was first pointed out by Kelvin and Tait^.    It liee in the circuraBtance that the actual distribution of tractions on the edge which give riKO to the tomiimal couple is immaterial.    Tho couple on any finit'e length might be applied by means of tractions directed at right angles to the middle plane, and these, when i-ednced to force- and con pie-resultants, estimated per unit of length of the edge-line, would  be equivalent to a distribution of shearing force of the type N instead of torsional couple of the type H. required shearing force is easily found to be - 5H/3«.    This result is obtained'^ by means of the following theorem of Statics: A line-distribution of couple of J amount if per unit of length of a plane closed curve s, the axis of the coupUl at any point being normal to the curve, is statically equivalent to a line-1 distribution of force of amount —dHjda, the direction of the force at any point] being at right angles to the plane of the curve. 
' 8m Jntrodurtwn, (ootnott! S4>.    PoiSBon's ulattonfl of ^weJal problema Bre not uiv»Udat«l;j beekiiiic in all of them II r«ttEKhM. 
f Se« introductiori, fooCnnto 1S5. 
+ Sat. Phil, first •ditiwa, 1h67.   The Mune expUnaHon wm f[iT«D by J. Booaainenq in 1971, 8m inmniuclion. footnot* 136. 
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The theorem is proved at once bj foruiiog Uie foi-uo- ntid oouple-resultAnta oF the linedistribution (if fnroe -^H(C4. The axia of j being at right angles to tl;© plane uf llie curve, the force ftt uny point i» dii-ccted pftrallel to tbe axis of i, and the force-reaultAot ii 
/Si/ - ^ (if taken round the oloHod curve.   This integral vanishes. 
The oompooents of the cuupte-roaultaut. abuut the axes uf x and j/ are expressed liy the 
integrals \ -g -^d* and '\x 'j- dn taken round the curva    If v denotes the direction of 
tfae DomuU to the curve, we have 
aitd 
jx^di,~ I - ff^^d»^ fa COS ij,, v)d», 
the integrations being taken  round the ciirvo.    The exx>n!eHion8   I ff cob (x, f} th and 
iffcas^, f)dt Are the valueu of the components of the couple-resultant of the linediutribiitiuci of c-oupln If. 
The theorem may be illustrated by a fif;iine.   We may think of ttio curve * as a iJolygon 
H-^H 
H-5H 
H      H4-SH 
Fi«. 69. 
of a large number of sides. The couple Z/fta, belonging t(i any mde of k-ngth 9t, id statically equivalent to two forcea each of magnitude //, ditectftd at right angles to tho pUnit of the cur\o in opposite »euse)i, and acting at the oiads of tho sida The couples belonging to the adjacent sides may similarly be roplaoed by iwiirs of forces of magnitude H + Sff nr Jf-i/f as shnwn in Fig.6!>, where ill lueuUH {difi?a)di. In the end wo lire left with a force —61/ at one and of any aide of leng^ it, or, in the limit, with a line-distribution of force -hHjdt. 
From this theorem it fdllnws that, for the purpose of formUig the equations of equUibrium of any portion of the plate contaiued within a cylindrical surface C, which cuts th{3 middle surface at right augles Id a curve s, the torsional couple H may be omitted, provided that the shearing stress-resultant N is replaced by N -dHjdi*. Now the bouodary conditions are limiting forms of the equations of equilibrium for certain short narrow strips of the plate; the contour in which the boundary of any one of these strips cuts tho middle plane consists of a short arc of the edge-line, the two normals to this curve at the ends of the arc. and the arc of a curve parallel to the edge-line intercepted between these iiorraala. The limit is taken by tirst bringing the parallol curve to coincidence with the edge-Hue, and then diminishing the length of the arc of the edge-line indefinitely.    In accordance with the above 
* This Tflsalt might Le used in fonuinK the equatiuM of equilibrfnm (II) and (13).    The lineintagrala in the third at e^aatioDs (9] and the drst two of oqustioua (10> would b« written 
tad tbMt MO b« traiiBfoniied easily into th« Eormii giTtn in (9) and (10). 
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theorem we are to form these eqiiatioDS by omitting H aud H, and replacing ^ and N by N—dH/ds aud N—3H/3». The boundary coaditions are thus found to be 
?=T. s=s, ^-aff/9«-N-9H/a«, ^=a 
These four equations are e(|uivalent lo the boundary oonditiond adopted by Kirchhoff. 
In iDVMtigatiug tho bouudary couditiciuti by tbo }irocMB Jiut itkctcliod wo olmorve that the terms cODtributed to the equutioos of equitibriuui hy th« body furaw aud tho tmctioo* on the been of the p1&t« do not merely vanish in the limit, but the quotients of them by the length of th« short arc of the edge-tine which i^ pJirt of tbe otintwir of the strip also vanish in the limit when this length ia diuiiaiahed iodefinitoly. If this arc is denoted by At we have suoh equations a» 
(Hi) -1 jh' cUdjf = 0,    lin.^^^^ (««) -' jj il' +y^) dxdy = 0. 
Tbe equstlou 
Urn 
iiBO 
tbe integration being taken over the area witliin tbe contour of the etri}i. of equilibrium of the strt]) lead therefore to the equatiutu) 
lim 
b^e 
'^h
0, 
lim 
u=o 
di^O, 
(13) 
in which tbe integraiJntiB are taken aU mund the contour of the atrip, and T,... denote the force- n-iid cuii}ile-rQHultaiit& nt t\w tractions on the eAge» of the striw ealimated in aocontanoe with the ct>nvcEition& laid down iu Articlo 2D4. We evaluate the coatributiotia niade to the Vfirioua line-integrals by the four linee iu which the edgen uf the atrip cat the middle plane. Since tbe parnUel curve is brought to coincidence with tbe edge-line, tbe ooulributions of the .short lofigihs of the two uomiak to this curve have aero tiwite ; and wc have to evaluate the t-ontribiitirtiirf of the ires of the cdgc-linc and of tbe panllal curve. L^']t k^ denote the dirtx^tioii of tbe nonual to thu cdgu-Ituo drown outwarda. TIm coatrifautioQS of this arc may be estimated h8 
and 
{Tcofl(jr, .^)-Scoe(y, v^)}ts,   {Tcob(.V. .o)+Soo8(.t, ^,)}8#.    Jn-^ Si, 
In evflJuating tbe oantribitions nf the are of the pamllel ourre, we obnerve that tbe conveiitioiu), in accordance witli which the T, ... belonging to thin curve are ostiuiMted, require the normal lo tbe cur^e tu be drawn iu the opposite seuse to f^, atiU tlie ciirw to be deKribed iu the opposite sense to the edgo-line, but tbe arc of the curve over which we integnite line the same letigtb fit m tbe arc of the odge>]ine. In the limit when the pirallel curve is brought to coincidence with tbe edge-tine we have, in accordance with these eonveotiona, 
and 
co8tf=-cofl(x, vo),   8intf=-oo»(y, n,). 
I 
297] ^ AT THE  EDGE OF  A   PLATE ^^^F        441 
Hence tb« contributioiis of the arc o{ tbo patBllol curvo qia.; be estiiuoted m 
{-foM(jf, wo) + S(30aiy, yt)\i»,    {-feoa(y. •-(,)" ^ con (x, r^)} 81,    {-■^+^««. 
Oa ftddiog the coDtributions of the two area, dividiuj; by fig, and equatiug tho rMultiug eipret^om to zero, we have the bouudary conditions in tlie forms |>rovii>iuit)' Htntod, 
In general we ahall! omit the bars over the letters T..... and write the boundary conditions at an eJge to which given forces are applied in the form 
r=T,   S = S.   iy^-^=N^^.   G = G.    (U) 
V9 OS 
At a free edge T, S, N-oHjds, G vanish. At a "supported" edge the displacemeut w uf a point on the middle plauc at right angles to this plane vatitshes. and T, S, Q aUo vanish. At a clauipod edge, where the inclination of the middle pluue is not permitted to varj', the dit^plocement (u, v, w) of a point on tho iiiiddlu plane vani.shes, Eiiid dvifdv also vaulsheu, v denoting the direction of the normal to the edge-line. 
The eSect of the mode of up[jlicatioii of the tuntioncil couple may be illustrated further by an eiact dilution of ihv cqiiatious of oqiiilibrluui uf iuoUopic solids*. Let the edge-line be tbe nwtatiglu gwau by x=+«, y=±&. The plutv ik tliui] an extreme exatuple of a flat rocUitigular bar. When such a b&r ia twisted by opposing coupler about the uxis of .r, 80 that the twist pruduceJ is r, wa kuaw from Article 221 (c) that thd dispUc«iuei)t is givei] by 
Binn -—.,     ' »m 
, (Sii + Dtrft 
V— -TJTZ,      tCssTX^t 
provided that the trautioDa by which the loraional couple is produced are exproanod by the formula: 
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When the plate is very thin the total tontioDnl couple is approximately equal to ^firh'b, so that the averse torsional couple per unit of length of the edge-linee s= ±a is approximately equal to gfirA^ At any point which is not nearan edgey» ±6, the stftte of the plate is expressed approximately by the equations 
u= —lyz,    v= -rtx,    w=r«y. 
The traction X^ is nearly equal to - 2/irz at all points which are not very near to the edges y= ±b, and the traction X, is very amall at all such points. The distribution of traction on the edge x=a is very nearly equivalent to a constant torsional couple such M would be denoted by 3i, of amount jinrh^ combined with sheeuing stress-resultantB such as would be denoted by ^i, having values which differ appreciably from zero only near the comers {x=a, y= +6), and equivalent to forces at the comers of amount J^tA'. At a distance from the free edges y=±h which exceeds three or four times the thickneBS, the stress is practically expressed by giving the value - 2^« to the stress-oomponent X, and zero values to the remaining stress-components. The greater part of the plate is in practically the same state as it would be if there were torsional couples, specified by B\ = %ii.rf^ at all points of the edges x=. +a, and S,= - Jf*rA> at all points of the edges if= +b. Thus the forces at the comers may be replaced by a statically equivalent distribution of torsional couple on the Aree edges, without sensibly altering the state of the plate, except in a narrow region near these edgea 
Within this region the value of the torsional couple ifj, belonging to any line y=ooost., which would be calculated from the exact solution, diminishes rapidly, from — ^^rA'to zero, as the edge is approached. The rapid diminution of Hj is accompanied, as we should expect from the second of equations (12), by large values of i?,.    If we int^rate J^i 
across the region, that is to say, if we form the int^r^l I N\dy, taken over a length, equal 
to three or four times the thickness, along any line drawn at right angles to an edge y=b or y= - b and terminated at that edge, we find the value of the int^ral to be very nearly equal to +^^tA'. 
This remark enables us to understand why, in the investigation of equations (14), the third of equations (13), viz, lim (5«)"' I {N- -,— ) tfe=0, where the integration is taken round the contour of a " strip," as was explained, should not be replaced by the equation lim       {b8)~^\Nds = Q, and also why the latter equation does not lead to the 
3f = 0 J 
result A'=N. When N, ff are calculated from the state of strain which holds at a distance from the edge, and equations (14) are estabhshed by the method employed above, it is implied that no substantial difference will be made in the results if the linear dimensions of the strip, instead of being diminished indefinitely, are not reduced below lengths equal to three or four times the thickness.    When the dimensions of the strip are of this order, 
the contributions made to the integral   I Nde by those parts of the contour which are 
normal to the edge-line may not always be negligible; but, if not, they will be practically 
balanced by the contributions made to I - {dff/ds) dt by the same parts of the contour*. 
298.    Relation between the flexural couples and the onrvatnre. 
In Article 90 we found a particular solution of the equatioDS of equilibrium of an isotropic elastic solid body, which represents the deformation of 
• Cf. H. Lamb, London Math. Soe. Ptoc., vol. 21 (1891), p. 70. 
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I 
I 
a plate slightly bent by couples applied at its edges. To express the result which wfi then found in the notation of Article 294 we proceed as follows:— On the Burfar.e into which the middle phine ia bent we draw the principal tangents at any point. We denote by s^, s, the directions of these lines on the unstrained middle plane, by R,, R, the radii of ciurvature of the nonnal sections of the surface drawn through them respectively, by Gi, Gt the flexural couples belonging to plane sections of the plate which are normal to the middlt; smfiice and to the lines J,, *, respectively. We determine the senses of these couples by the conventions stated in Article 294 in the same way as if «i. «■». x were parallel to the axes of a right-handed system. Then, according to Article 90, when the plate \% bent so th«t ii,. iH, are constants, and the directions «,, s^ are fixed, the stress-resultants and the torsiuual couples bfhmgiug to the principil planes of secfcton vafiish, and ihe flexural couples (j/, (?,' belonging to theiie planes are given by the equations 
G,' = -VillR,+ajR,),   G,' = -D(llli, + <riR,) (15) 
where, with the usual notation for elastic constants, 
Z) = |-£V/(1 -ff») = ^fJi'iX + t»)li\ + 2fLy    (16) 
The constant D wilt be called the " flexural rigidity" of the plate. 
Now let the direction «i make angles <t> and 4^ —(^ with the axes of as 
and !/.    Then, according to (4). Gi, O,, //, are given by the equations 
G, COS"^ + Gjsin' * - /f. sin 2ifi = -D{llH,+ a/R,\ 
G, sin«<^ + G, cos'^ + //, sin 2i^ = - i>(l/jW, + <r/i2,), 
i (Gi - Gt) sin 2.^ + Hi cn« 2.^ = 0. 
from which wa find 
r. rcos'4     sin'A        /sin'd 
/cos* tfi 
Gi 
d>     CO!*' A 
sin" tjt')! 
K 
Again, let w be the iHspW-etnent of a point on the middle plane in the direction of the normal tu this plane, and write 
«i = 
(I'w 
«» = 
a*w 
T = 
a»( 
.(17) 
da?'       *     ay»' Zxby 
Then the inrlicatnx of the surface into which the middle plane is bent is given, with sufficient approximation, by the equation 
*i ^ + K.,^ + 2rxy = const.; 
and, when the form on the left is transformed to coordinates ^, rj. nf which the axes coincide in direction with the lines «,. «., it becomes 

        
        [image: Picture #238]
        

        ♦■M CTBTATTRE  PRODUCED BY  COUPLES [CH. XXD 
oonP^^sin'^ sin'A , COS"^     ^        .   .^/l       1\ 
'^"-RT-'^r' "•"-r-'-sr' -^=^'"^*U-:r;)' 
«ad (lie Jbimalv for (?,, G,. ff, become 
0, - - !>(«, +ff«,), (?, = - i)(,c, + a«,). ff, = D(l- o-)t. ...(18) Wtf »W1 show that tbe fonauUe (18), in which X), «e„ r are given by (17), and D hy (16), are either correct or approximately correct valnes of the streasooaplea in a ver>' wide class of prublcniiit. We observe here that they are «qtuvalent to the staleinunt«i that the tlcxural couples belonging to the two prinoipol planes of section at any point arc given, iu terms of the principal radii of curvature at the point, by the forinul»; (15), and that the totsiooal oouplos bolouging to these two principal planes vanish. 
If J ddiiuteA the directioD of tbo tangent to any curve drawn oo tbo middle plane, and r tb« dirwtJuu of tho Domul to this curve, a,ad it $ deitotea Uie luigle botwiwn tbe ilirBctioos »,#,«« And, by substituting from. (17} and (16) in (4), the equatiuos 
«-i>[«^(g+c^)^.iu..(^+,g)+(,-,)«„8.^]. 
ir=Z»(l-»)[»m.?c«.<>(^-g)+<coe«i)-«n»fl)||]. Iff 'Wfif *'*"**^"' these equationa, no as to avoid the reference to fixed axe« of x anJp^ 
lilf awitai ctf ibsDuTQuiiD 
s-scoa^x—sinfls-,      5-««ooefls—hsmff?-,      5-=0,       k- = -j S cff ex*      C¥ ex oy       dv     '       d»    p' 
whore p' in the radium of curvatore of the cun'e iti t{ue6tion.    We find 
s.yr 
-<'-')|(^)
•ItInK oquatiocB bald wheoorer tlie stress-couptett atv- exprmised by tbe formulaj (18). 
In the problem of Article &0 we found for the potential energy of the pkite, eBtiroated per unit of area of iho middle plane, the fonoula 
or, in our present notation, 
i/)[(*, + «,)--2(1^ it) («t«i-T«)] (2V 
We nhail Hnd that this formula also is correct, or approximately correct, ii wido cliias of problems. 
299.    Method of determining the stress in a plate-f*. 
W« proceed to consider some pFirticular solutioua of the equationa of mHiilibriuin of an iaotropic elastic solid body, subjected to surface tractions only, which are applicable to the problem of a plate deformed by given forces*. 
' Of. Ijnr>l Ra^leiRb, Theory o/Sonmd, vol. 1, g 310. \ 
f *Ch9 mothod wftR nrurk«cl oat briefly, and in a much more (t^neral (aahion, by J. H. Mietiall, JU$lidm Math. Sm. Proe., val. 91 (mOO), p. IW. 
29S. 290] 
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MS 
These &olutioD6 will be obtained by means of the system of equations for the determiDatioD of the atreas-components which were given in (iv)of Article 92. It was there shown that, besides the equations 
dx,, dx^. ex, ^ tfjf„, d}\  sr,  ^ ax.  ar.  air. 
+ 
+ ^'-0, -,-" + 
we have the two seta of equations 
and 
1     d^B 
dy      dt      ' 3x      9y     dt 
0.   ...(S2) 
' I + a cy ' 
V'n=
1 + a 3yC2 ' 
^'A% = -r^_^^ 
where 
B^X^ + Yy + Z, (25) 
It was shown also that the function 6 is harmonic, so that V0 = 0, aDd that each of the stresa-corafwnenra satisfies the equation V*/= 0. 
We sliall suppose in tho first place that the plate is held liy forces applied at its edge nnly. Then the faces s = ± h are free from traction, or we have Xg=yg = Zg^U vr]iens^±h. It fuUowa tit»m the thinl of equations (22) that dZildi vnnishfs at z = A and at r = — h. Hence Zt satisfies the equation V*2",= 0«nd tho cmidititms ^, = 0, hZtjhs = ^ at z=±A. If the plate had no boundaries besiiies the planes « = i A, the only poasiblc value for Zg would be zt^ro. Wh shall (.ako Z^ to vanish*. It then follows from the equations V^ft = 0. V^Zt = -(I + CT)-*t^'Q/oA that e is of the form ft^ + zHj. where &# and 6| are plane harmonic functions of x and y which are independent of z. 
For the determination of X,, F, we have the equations 
1    36,     „.„ 1    98, 
2^' + ?^'^0.   V^T,= 
^^\ v»r, = 
and the conditions that Xj= K( = 0 at * = i A.   A particular solution is given bj the equations 
^-m/*' 
ox 
''-=lr^.(*'-^'f (26) 
We »hall take X, and Y, to have these forms. Wbea X,, F„ Zt are known general formulm can be obtained for X,, Y^, Xy. 
If @, is a constant, Xt and }', vanish as well as Z^, and the plate is then in a state of "plane stress." If B, depends upon x and y the plate is in a slate of " generalized plane stre-ss " (Article 94). We shall examine separately these two cases. 
In like manner, when the plate is bent by prtjsiure applied to it^ faces, we find a particular solution of the equation V*^, = 0 which yields the prescribed values of Z^ at « = A and s = —h, and we deduce the most general form of ft which is consistent with this solution.    We proceed to 
* J. R. MicbtttI, iac. eit., caUb attention to bh« ■nftlO'^ of this piocMore to the eaAtyoAtj treatmaiit oT the ooEuJeiinir proliliiiii in Eleolroittftticii. 
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find particular aolations of the equations satisfied by Z, and Y, and to deduce general formulse for Xg, Yy, X^, 
300.    Plane atresa. 
When Xj, Yg, Z, vanish throughout the plate there is a state of plane 
stress.    We have already determined in Article 145 the most general forms 
for the remaining stress-components and the corresponding displacemeDts. 
We found for B the expression 
© = es + j8* (27) 
where Bg is a plane harmonic function of x and y> and y9 is a constant.    The 
stress-components X., Yy, Xy are derived from a stress-function x ^y ^^^ 
formulae 
X -^      y _ 9'X     y _ _ ^X ^'"ay     ^""Sa:*'    ^^~    dxdy 
and X ^^ ^^ ^"^i*™ 
X = X<. + *Xi-^rf-^^'®.. (29) 
where V,»Xo = Qc.   ^x'Xx = ^ (30) 
If we introduce a pair of conjugate functions ^, 17 of a: and y which are such that 
dx~dy~^''    dy~    dx ^**** 
the most general forms for -^t and %i can be written 
x. = M+/   x. = i^(^ + y')+^. (32) 
where / and F are plane harmonic functions.    The displacement (u, v, w) is then expressed by the formulae 
.(28) 
^ 
E 
.(33) 
The solution represents two superposed stress-systems, one depending OD Bo, Xo> and the other on j9, ;^i. These two systems are independent of each other. 
301.    Plate stretched by forces in its plane. 
Taking the (&„, Xo) system, we have the displacement given by the equations 
(34) 
w^-^z^t. 
299-301] 
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m 
where Xo '* ^f '■^^ (oTtu ^x^ +/, H, and / are plane harmonic functions, and f, Tj arc iiftcnninp4i by (31). The norma! difiplacement of tlie middle plane vanishes, or the plate is not bent.    This stress is expressed by the formulae 
jr.= 
.^'-2rT^^®'. 
■       The stress-resuttaiits Ti, T,, 5, are expressed by the equations 
.(35) 
V 
.(36) 
The stress-refiiiltanta A'^,, N„ and the 8 tress-com pies l9,, G,, //, vanish. The equation? (11) and (12), in which X', Y', Z', L', M', vanish, are obviously eatisfled by these forms. 
When we trausform the expressions for T,. T,, 5, by means of the eqiMitions (4). we find that, at a point uf the edge-line where the nnrniaf maken an angle $ with thu axis of x, the tension and shearing-force T, S are given by the equations 
s 
= {"■""=-" (1^ -1)—'2^:41 K - 5 iT^ *■*•) • 
si/*/ Oicoy)  \    ^      31 +a 
When these equations are transformed by means of the formulae (19) so as to eliminate the reference to fixed axes of jr and y, they become 
T= 
(a^V-l)K.-if^./-^). 
s^-^" 
f.%r^' 
*"«. 
I 
31+ff 
These expressions arc sufficiently general to represent the effects of any forces applied to the edge in the plane of the plate*. If the forces are applied by means of tractions specified in accordance with equations (35), the solution expressed by equations (34) is exact; but, if the applied tractions at the edge are diatributed in any other way. without ceasing to be apiivalent to * Thio cu* of a oiiculkr pUte wm worked out in i]«teil by C]»b«eb, EUMicimt, g 42. 
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resultants of the types T, S, the solution ri>pr(;sf>nts the state of the plat« with sufficient upprnximfttion at all pointt which are not close 1o the edge. 
It tD«y be observed that the stress* restiltantfl and the potential energy per unit of am can be exprowed iu terms of t}ie extension and Hhcaring RtrAiii of the middle plftne. If ire write u, T, far the values of h and v when (=0, and put 
hn dv dM    av 
w=-2 
and then ire have 
The potentinl energy per uait of area can b« sLowu to he j—i[(*.+'.)'-20-«r)(','.-i»')] 
■^r=v^r-m-'n
Scnoe special examplen of tbe gciieml tUucry will be useful to tu presently. 
(i)    If we put e),=0, xo ^'* B pline barmouic function, and tbe state of the plate is onA! of plane strain invotving do dilatation or rotation [cf. Article 14 (ef)]-    ^® hare 
1 +«-3vo I +»^xa I 
and 
(ii)    If Oo is constant we have f = Go.r, i) = eo»/, and we may put Xo = i^(''*+y*)' ""^ then we hare 
and T,= 7',=eoA, s,=a 
This ia the (KiIuttoQ for uniform tension djA all round the edge;. 
(iii)   If Ori=<i.r, where a is constant, we have (~|a(x*-^ if^aiy, and we may j(i^^\aj?, and tlif^n w» have 
and 7'i=0,   Ts^SAaf,   ^,=0. 
A more general aolution can be obtained by adding the dioplacemoDt given io (i). 
301, 302] 
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(iv) By takmg the function xn if (i) to be of the seooDcl decree in x mid y, wc may obtain the luont general aolutionin which tbe»trett.s-coiui)on&uta Are itidep«uijeut ofxaudy, or the plate in stretched uniformly. The results may be expreBsed in terms of the quantities •i, rg, vr that dcfioo the Btretcliing of tbo middle pUiQC. Wc sbuuld find for the streflHCDni|M)Doiits tliiit do uut vaiuHb the oxpreMsious 
and for the dtspUcwmcnt the exiinsiHioiiB 
ttwflX+Jwy,    i'=«,y + JwJ|    te^ -(rj(fi4-«i)/(l-»). 
302.    Rate bent to a state of plane streBS. 
Omitting iD equations (33) the terms that depetid ou O,, p^,, we have the displacement given by the equations 
1 _      1 + ff  av, 
v= -p$ye
E 
.(38) 
w^ — 
J3 
- - 2^ (^ + J' + ''^l + 
where ;^ has the form Xi = i i^ (^ + y*) + ^' ^^^ Fisa. plane harmonic function. The atrees is expressed by the eqtiations 
jr.. 
K-*^ 
^"-'a^' 
The stress-resultants vanish^ and the stress-couples are given by the equations 
0.^^h' 
.(39) 
The equations (11) and (12), in which X', F, Z', Z', Jlf' vanish, are obviously satisBed hy these forms. 
The normal displacement w of the middle plane is given by the equation 
80 that the curvature is expressed by the equations 
.(40) 
■'■^     £"*"    E    daf' 
''- = -£ + 
/3    1 + ff 
£   ay 
From these equations and the equation V,*^, = ^, we find 
Ki + VKa = — 
t - g' ffl^i 
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        /C, + ffKi = 
l-g'B'X. 
A'    9**' 
A-    ay" so that the formulae (IS) hold. 
The stresd^couples at the edge are expressible in the forma 
""'K^-'-^a-^=»^'IC^) <«> 
L.E. 29 
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and, if the edge is subjected to gi»en forces, 0 and dHfds must have pre8cribed values at the edge. Since ^i eatiafiea the equation V,«;^, s« ^, t,he formula? (41) for (? and bffjds are not sufficiently general to permit of the satii^raction of such conditions. It follow8 that a plate free from any forces, except such as are applied at the edge and are statically equivalent to oouplee, will not he in a state of plane stress unlesH the couples can be expressed by the formulie (41). 
Some particular rt^aulte arc appended. 
(i)   Wbea tb« |>lat« is twat to a etato of jJaoe strew tbv suio of tbo jirioctp&l curVAturas of th« ■ur&cc into which the middle pkno is bent U conAtont. i 
(ii)   In the aamo case the [)Ot8Dtia] energy per unit of area of the middle plane U gifsa 
exactly hy the formula (21). 
^)   A particular caao will be foutid by taking tlie functlou F ititroduoed in equations (3S) to be of the second degree in x and y.   Then j^i aUi) is of the second degree in x aody^ and we ma,v take it to be homogeneous of this degree without altering the expreatdous fbr , the stress-comiHinL-ntit.    lit tliia vtuu: w aIho is hc>mu)^iieouti of thcKeeuud degree in x and jy, and «], K|, r aro conetuiitit.    The value ot )(^'m 
and the stress-cum[vments which do not vimish are given by the eqiutionn 
A' 
£ 
^;^»(«i+<r«i),    *«--j-7^*(«s+«i).    ■^'t'-'i 
+<r 
«r. 
(it) This case incTudee that dittcuaned in Article 90, and boconics, in fact, identical with it when the axes of x and y are chosen so thtit r viuiishos, that a to say ho as to be parallel to the linos winch become linos uf uurviitiiru of the »urfiu:i? into which the middle plane is bent. Another iqiecisi Bub>auiu would bo Foiuid Uy taking the platu to be rectangular, and the axee of .v und y [larallol tu its edgfM, luid supixwing that «j and «) vauish, while r U constant.    We aboul*) then find 
u = - rj/i,    V'= - Tie,    uj = rxy. 
The RtroHA-rraiultante and the flexuml oonplds Oi, G^ vanish, and the toreional cnnplm ff^ and 11^ are eqiml to ±D{1 - cr) r. The result is that a rectangular iilatc can be held in the form of an anCicla£tic surface w=rjry hy torsional couples of amount D(l ~ir)T per tmit of length applied to its edgee in proper senses, or hy two pairs of forcee directed nonxially to the plate and applied at ita corners*. The two forces of a poii- are applied in like nnnsfii at the cnda of a diagonal, and those sppliod at the ends of tho two diagonals have oppoAite •coses.    The magnitude of each force is 2/)(l - <r)r. 
303.   Generalized plane stress. 
When Z^ vanishes everywhere, and A'^, V, vanish at r = ± A, we take the values of A', and V^ to be given by equations (26) of Article 299. To determine Xg, Ky, X^, we have the lirst two of equations (22) and (23), the third of equations (24). and equation (25). in which Z^ vanitihes, Xt and >', are taken to be given by (2S), and © baa the form ©, + '^1, the functions 
• H. Lamb, London Math. Soe. Ave., vol. SI {1891], p. 7a 
302, 803] 
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0t Q^^ ^1 l>6uig plane harmonic fuDctioos of x, y and independent off. The rtreaa depending ujiuii ©^ haa been determined in Article 300, and we shall omit 00.    We have therefore the equations 
Sx       8y      1 + <r ftr       '    Sjc       By     1 + «■ 3y 
0, 
"^    1 + ff 3y "^    1 + (T ox9y 
1 + ff Sic" 
= 0. 
(42) 
From the first two of these equations we find 
where p^' is a function of x, y, s\ and the last equation of (42) gives 
The remaining equations of (42) can now be trausroruied into the forms 3* /5V    2-ff   „\     -     S' /e»Y'    2-0-   „\     „ 
3"    /.TV'     i-" ^\     n 
The« eqoationfi show that the expression ^f — rti, is a linear function 
of X and y. and we may take it to be zero without altering the values of X"a, Yy, JCy.    We therefore write 
X'=«X.'+Ji^-x^' <'^) 
where 
6(l + ff) 
.(45) 
If we introduce two conjugate functions ^,, iji of or, y which are such that 
we may express Xi ^ ^^^ ^o^na 
1
(+6) 
^^' = -2(TT^)^f' + ^' ^*^> 
where Fj is a plane harmonic function.    Thus the form of j^, and therewith also that of X„ Fy, X^, is completely determined. 
The displacement is determined by the equations of the types 
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in which Zi vanishes, JT, and F, are given by (26), and X„ T^, Xy by (43),| Thti resulting rormn tor u, v, tc are 
u = -U(. + ,).^ 
^-i<-'>"t]. 
v = — 
(i + .).'^ + H2-<r)^'^']. 
3y      ■   »^-        "'-      gy 
■(«) 
ty=     ^[(l + o-)x.'+('^'-i<r4')ej. 
304.    Plate bent to a state of generalized plane stresa. 
The normal displacement w of the middle plane is given by the equation 
w = ilA»©,+<l + ff)x,'] (* 
and, since V,*B, = 0, we have by (45) 
V,*w=0 (51 
where V,* denotes the operator 3*/9U:*+3*/9y* + 25'/Ar'9y', and then 
e,.-^4^v,w,  ,.'=j4_w+^v..„ (5 
The stress-compoaents are given b; the equations 
r„ - ^, v,„ +1,   [^-f^ .„ + ^. 14.. - i (3 - .) ^1V, w], 
1-cH 
l^(fe'-^') B l£(A'-«')3 
The stress-retiuttante and stress-couples are given by the equatioiui 
^B'w .     5»w\    8 + ff 
a« 
y 
.(53) 
Jf, = i, (1 _ ,) |!^ + 8A5 2,A. ^ V..W. ^        'dxZff       10 3i3y 
Equations (11) and (12) in which X', Y', Z", t\ M' vanish are obviously salisBed by these forms. 
SOS. S04] 
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The stress-resultants and stress-couples belonging to any curve » of which the normal is v con be expressed in the forms 
H 
D{\~a) 
d (9 
w + i5±fAtv^.„^ 
Bi'lS**," " 10 1 -ff where p denotes the radius of cur\'ature of the cairve. At a boundary to which given forces and couples are applied Q and N^—dH/dji have given values. The solution is suttir.iently general to admit of the Batisfaction of such boundnry conditions. The solntion expressed by (48) is exact if the applied tractions at the edges are distributed in accordance with (52), in which w satisfies (50); but, if they are distributed otherwise, without ceasing to be equivalent to resultants of the types N, (J, if, the solution represents the state of the plate with sufficient approxintutiou al all points which are not close to the edge. 
The potential energy- i>er uDi't of area can be abowii to be 
i.[cv..,.-..-„0--(-)]] 8+p- ^^r^wfflp.'w    g*we»?i'w   „ d*v c'7,'wn 
278 + 64<r+6^ 
flA' 
L cs^ 
/cUTjVXn 
.(sa) 
420(l-ff) L  f"-*^       ^y ~\^^J J' 
The results here obtained include those found in Article 302 by putting 6, = fi. Equations (53) show that the stress-couples are not expressed by the formula; (18) unless the sum of the principal curvatures is a constant or a linear function of a? and y. In like manner the formula (21) is not verified unless the sum of the principal curvatures is constant; but these formulie yield approximate expressions for the stress-couples and the potential energy when h is small. 
The theory which has been given in Art. 301 and in this Article consists rather in the specification of forms of exact solutions of the equations of equilibrium than in the determination of complete flolutions of these equations. The furniHcoulain a number of unknown functions, and the complete solutions are to be obtained by adjusting these fiinctiouK so as to satisfy certain differentiat equations such as (50) and certain boundary conditions. These forma can reprc?«eut the state of strain that would be produced in a plaLo of any shape by any forces applied to the edge, in bo far. as these forces are expressed adequately by a line-distribution of force, specified by components, T, S, N — dHlds, and a line-distribution of Hexural couple 0. 
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CIRCULAK  PLATR CENTIIAIXY  LOi.D£U 
[CH. XXU 
305.    Ciroular ptate loaded at Its centre*. 
Tbs problom of the circul&r plate mipported or clamjted at the ed^ and loaded at the oeotre may serve as an exfimple of the thenry jiuit given, ff a is the mdiim of the |)Ute, and r denotcn the dintatioe of any |raint from the centre, we may take w to be s functiuo of r only, aud to be given by tlie equation 
wbere W^Atn ooDstauta, aitd then we have on Any circle of radtiu r 
and the reimltant aheartng force on the port of the plate within the circle ia W.    Hence W in the load at the centre of the plate.    The ooniplebe primitive of (&6) ia 
If   / 
8fr/> 
('*log" + ^) + M^ + fi+CIogr, 
where B luid C are coiistauta uf iutcgration.    If the plate ia complete up to tbo centn, C muiit vaoiab, aud we take thcrcfuiv tbe solution 
Tbo Sexural couple Q at any cirelo r—a is given by tbe equation 
We may now determine the oonatatita A and B. tf the plate ta HUpportod at the edge, BO that w and Q vanish at r = a, we find 
''=.-^[i'''"«°-j^:'^-'^+Arf:>-'')] 
and the central deflexioo, wbich is tbo value of - w at r=0, is 
If the plate is clamped at the edge, so that w and ^/?r viuiish at T=a^ w« have 
^^^^^-^^'^'-^^ <«) 
and the central deflexion is Wa}\\^wD. If the plate ia very tliin the central deflexion ia great4;r when it is mipportcd at the edge than when it is clamped at tbe edge in the ratio {8+ff) : (l+a*), which is 13 : 6 when »—J. 
306. Plate In. a state of stress which Is uniform, or varies nnlformly, over ita plane. 
Wfjon the »tre88 in a. plate in tbe same at lUl pointa of any plane panillol to the &cos of thu [ilate the streflB-componente are independent of x and ^, and the atress-oquations of equilibrium become 
3J^._n       ^''•-O      ^^'=0 -^-0,      -^-0.      ^-=0. 
If the facen of the plate ore fVce from tnLction it foUowR that X,y f.i Z, vftnish, or the plate \& in a Btntfl of plane ntroiM. The most gcnemi Hiata of atreiH, independent of x and y, which can be mjiintoined in a cylindrical or priHmatiii body by tiuctions over ita csurved HurfiKO can ba ubtaineil by adding the KulutiouK given in (iv) of Article 301 and (iii) of 
* RcsuHk equivaUnt to tttOM obtaio«d bora were givco by Sunt-Vcuant in the 'Annotated Clebwth,' Hou du % 45. 
305, 306] 
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Artiule 302. In these coaes the Btreaa is uniform over the crads-«actinns of the oylinder or prism. 
When the stre!»-eomponoQt« arc linear flinctions of x and ,y the stress varJM uniformly over the crosH-sectinns of the cylinder or prism, We may detennioe the most goneral pasail>l« RtateH of atress iu & priitm when tho ends uro froo ^m traction, there arc no body forces, and the stress-compoiieuUK are Uni?ar fiiuctioiiK of r and y, For this puriHtw we should exprem all the etreas-couiponcntH in »Tich forms as 
where AVt -i'*" -t',W ure Junctions of i. When we iiitrtiduce theao foriun into the various oquatioDs which th« HtreM-cuuiponeDts bave to Hatiitfy, tho tvrmx of Ihiuv equatioim which ooDtAin X, or if, and Che terms which are independent of x and y must separately satiitfy the cqiintion«. 
We take Brat the atretin-eqiiatiniis iif equilibriutu.    The eq^iiation 
?x   ?^   ax. 
■A 
comhined with the conditions that J:', vanishes at t= ±A, gives us th« equations 
and Id like manner we have the equations 
r;=o,   r/=o. 
.0, 
dr,m 
+aV+iV'='fl
it fbUowH that X, and F, are independent of x and y. The third of the atrees-oquations becomes therefore cZ^fds^O, and, since if, vauishcs at the face* of the plate {;= ±A), it vaQi«beH averywliora 
Again e ia of the form xe'+ye"+Q<''\ where e', 6", et" are functions of z, and, Muoe 0 13 an harraonic function, they must be linear functions of «.   The equation 
V>X,~ -, ^-.- takes the form c*.VJ9e*= constant, so tha,tc"X/3*''-0.   Sioeo JT. satisfies 
tbia equation and VAui»he« at t^±h, it oiuHt contain ^-h' uo a factor, and since it is independent of x and jt it muist be of the fonu A (<*—A*), where A ia ooostMtt. Like stateoicnta hold concerning y,. 
It follows that, if a. cylindrical body with ite generators parallel to the axis of i is tne from body forces and from traction on the pliine ends, the mo«t general typo of BtrosB which satisfiee the condition that the Htretts-couiponeiLtti are linear functinns of x and y ia included unfter the generalized plaice' otreiUL diAcutised In Articte 303 by taking 8o and 6] ti) be lincsir functions of x and y and restricting the auxiliary plane harmonic functions / and ,^'j introduced in equntions (32) and (47) to be of degree not higher than the third. 
It may be shown that, ui all the states of t^trms in a pkte which arc included in this categury, the Htre»»-camp»nciits are expressible iu terma of the quantities *[, •»! ^i which doftno the stretching of the middle plane, &nd ni, kj, t» which define the curvature of the surface into which this plane is bent, by the formulae 
S \ 
■^« = 1^7^ {«!+<r*» - (" I + «i)»}. 
B 
5^ (*! + «■), 
.(59) 
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Th« wtnm wrolt<mti Mid Mnm-oonjim an Btfttrntd hj tbc fonnul* 
and Uut potantiAl aneigj per unit of >rak ia 
+ 4i>[(«i + «i)'-2(l-<r)(«.«.-r*)] 
-i^lLpLr^lvpr}"]
„..(< 
.(«) 
307.    Plate bent by pressure oniform over a face. 
When the face z = iih subjected to anifonn pressure p, we have V'*^, = 0 everywhere, dZJdt^M at z = h and z~^h, Z,=»—p at z=h, Z, = 0 at 2—— A.    A particular solution is 
Z, - ih-'piz + hfiz - 2A) = iA-p(«'- 3A'5 - 2A») (62) 
and we take this to be tbts value of Z,. To detemuDe 6 we have the equatiouft 
of which the most general solution has the form 
« = - i (1 + flr)/i-'j?r»+ a(1 + <r)A-*pi{a^+ y") + f©, +e„ 
where B, and % are plane harmonic function»>. We may omit the terms ^1 and B, because the stress-systems that would be calculated fmm ihem have been found already.    We take therefore for B the form 
e = -i(l + *r)A-pf+|(H-<r)A-*p*(«'+j)*).     (63) 
To determine X, and K, we have the equations 
ax ^ ay +4/*'^*^    '^^    "'        '^'        4A»'        '' 4A'' 
and the conditions that JT, and F, vanish at 2 = A and at « = — A. A particalar solution ia 
X, = lh'*p{k*-z')x.    r,= ih-'p{h'-ji')y.     (64) 
and, a* in Article 299, we take Xg and K, to have these values. 
To determine X^,, 7^, X„ we have the equations 
dm      di^'W '    3x "*" 9y      4A' ' X, + r„:aiA-p[-(2 + ff)2' + 3*[i(l + o-)('^ + /) + A»l + 2A'l. 
...(65) 
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I To satisfy the first two of these equationn we tiUce Xg, Ky, X^ to have the fomi» 
Sjga 
■ ^    r.. = ^^ 
^ 
_^ 
where x must satisfy the equation 
and then the remaiuing equations of (65} show that 
miut!» a lioear function of j: and y. As in previous Articles, this function may he takeu to be zero without altering X^, F„ or X^, and therefore j(, must have the form 
where x," and x«" are fuuctioas of x and y which satisfy the equations 
and we may take for Xi", X«" *^® particular solutions 
x."--|(i-'')f,(^ + y*)'+^f(^+n| (67) 
More general integrals of the equations (66) need not be taken, bfKMiuse the arbitrary plane harmonic functions that might be added to the solutions (67) give rise to stress-systems of the types already discussed. 
The expressioDs which we have now found for X^i Yf/, X^ are 
i'v=ip + Sp^.(*'+y' + /*'')-A0-^)p^.(3^+y')-^p^..> (6S) 
The stress-components being given by (62), (64) and (68), the oorrespondiDg displacement is given by the formuliie 
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Vf 
=    *-^^^,[(l+<r)z*-6AV-«A'i+3(A>-«')(a:«+y')-i(l-<r)(x»+yy]. 
(69) 
458 
PLATE  BENT  fiy   PRESSURE 
[CH. xxn 
It is noteworthy that when the dtsplacemeDt is expressed by these formuls the middle plane is slightly stretched.    We have, in fact, when * = 0 
du    dv 
do . du 
.(70) 
da    dy    *^        ' E     dx    By The stress-resultants and stress-couples are given by the formulB 
<?i = ^ id + 3<r) «»+ (3 + cr) y] + ^ ;,A'. 
Ii,='-i[il-<r)pT!/. 
These forms obviously satisfy equations (11) and (12) in which X', T', L', vanish and Z' is replaced by —p. 
The middle plane is bent into the surface expressed by the e^^uatioD 
8A' 
w 
= -^ii-'+f){^ + !f-l^)l 
(71) 
and we find 
t?.==-2>(.. + ...) + |±f±^pA». 
Hi = D{l-tr)T. 
20(l-ff) 
The formuls (13) are not exactly verified, but they are approximately oorreet when h is small. 
308.    Plate bent by pressure varying tinifonnly over a face. 
Before proceeding with the discussion of particular illustrations of the sulution ubtaine({ in Article 307 we extend the results to the case where the pressure on the face cxpoBcd to preaaure is a linear function of x and tf. It will be sufficient to take the case where p is replaced by p,x. By the process already employed we find for Z,, S, X,, F, the expressions 
^.=    ^(x'-SA^z-i/^'X 
4fr 
e 
.PoJrg* 
y<> 
ws 
CI+ '')^iTr + V^d+ <'r-Tr <*• + /) 
4A 
k* 
.(72) 
;«07, 308] 
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[uid thence we obtain, in the name way as before, the formnlae The displacement is then given by the formiilte 
...(73) 
u = 
- ]-tZ £^ 
E   4A» "32 
2^A^ + r^'- ii*A« + ^^ r" - Ay 
+ ^s(5*»+y')(^ + i/')+!^-r»A"-^(3a:^+y')«"l. 
itf 
»'-^;^":g.[2A'^y+^^^^(^+/)-^-:y**].       y (74) 
=^4^4^'[-^-ir^^^-'^^+^^"*+^^^>^" 
The middle plane ia slightly stretched in a direction at right angles to that along which the pressure varies.    We have, in fact, when 2 = 0 
dx cfy E       dx    dy 
The strees-resultants and stress-couples are given by the formuUe 
r.=.o,   T.^pM. '^^o. \ 
iir, = ^i),(3x' + i/n + AM'.    N, = \p,xy, 
ffi = V5;'4J(5 + o-)^+ti + <^)y'-^ + ifU4-(r)A'x]. I (75) 
^> = Vii;'.[Hl+5ff)^ + (l+(r)xy>-§(2 + 3<r)A^]. 
These forms obviously satisfy equations (11) and (12) in which X', Y', JJ, M* 
are put eipial to zero and Z' is put equal to — p,jij. 
The middle plane is bent into the surface expressed by the equation 
«'--S7;-^[A<^+y')'-4j^f'^ + V)] (76) 
and we find       Gi = - D (<i + cj-*fi) 4- ^ ^ -_   -- pth'-v, 
Gs =^ - D («, + ff«,) + ^ — p,h}x, 
The funi^ulee (18) are approximately correct when h is anuaU, 
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309. Cironlar plate bent by tmlfonn pressure and Bupported at the edge. 
When a plate whose edge-lice is a given curve is slightly bent hy preesure, vhic^ is uniform, or variea uniformly, over one face, the streBa-sjstem is to be obtained by compounding with the solution obtained in Article 307 or 308 solutiona of the types discussed in Articles 301 and 303 or 303, and adjusting the Utter so that the boundjEuy conditiuiB may be satisfied. We shall discuss the case of a clamped edge presently. When the e^ is supported, the boundary conditions which hold at the edge-Une are 
w-O,    Gt-O,    T~8~Xi (77) 
Let the plate be subjected to imiform normal pressure p and supported at the edgc^ and let the edge-line be a circle mo. The solution given in (71) yields the following values fbr w, O, T, S at r-^a:— 
The solution given in (ii) of Article 301 yields the values 
w=0,    (7=0,    T=^ph,   5-0 
when &„ is put equal to ^p. The solution given in Article 30S yields zero values for T and St and it may be adjusted to yield constant values for w and O at ma by putting Xi"i)3 ('*'+y*)+yi where y is a constant   These values are 
If we put 
„   3p/Z + tT   ,.3-(r.,\ 3(l-«r)po»/6-|-(ra»     8+ir + ff» A"\ 
the values of w and O at r=a, as given by the solutiona in Article 302 and in Article 307, become identical. 
We may now combine the three solutions so as to satisly the conditions (77) at r=a. We find the following expressions for the components of displacement 
« = ^[U-^~-"*^^{(3-^<r)a»-(l-Kr)r>}^-i^|(2-^9a-a>)-J^3(2-(-o-<^»)], r = J?|[i<r-^^^-^,{(3+<r)a»-a+'')'^! + A|(2 + 9<^-0-j|I(2 + <r-^<r*)], 
«-=«+^| 
.(78) 
when. w--j£(a>-r«)|j(J + %^-ri)-Hi^f+'^AJ (79) 
The 8trcets-rvisultauts and stress-couplevt at the edge vanish with the exception of JV, which is equal to i/m. 
Th*.' middle plane is l>eut into the surface exi>ressed by the equation (79), and the right-hHiid mcml>or of this eviuation with itf> sign changed is the deflexion at any point. The a>m)iiir)s<.in of this result with >,^7^ of Article 30S shows that, when the plate is thin, the central dftlexion due to nniformlv distributed load is the same as for a load conceutratot.1 Ht the k-cntre and equal to \ \,A-|-<r)j\3-)-<r) of the total distributed load. 
The middle j^lane is strvtchtxl uniformly, and the amiHint of the ext«isi(Hi <^ any linear clement of it is | a}> £.   This is half the ami>unt by which the middle [dane would be 
309, 310] 
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Btrotcbod if one face of tbc plate were supported oa a smooth rigid |plane and the other were subjected to the pressure p. 
lAuo&v filtkmonts of the pliite which are at ri((ht angles to its Dticefi in the unstrcKaod state do not roniniii iitraight or iiurmnl to the middle plane. The curved Unes iulo which tbey are deformed are of the tjpe expressed by the etiuation 
where V is tha radial displaccmeuL, aud E^oi ^it ^t ^^ givoD bj the formuhB 
'       £A>       8 Thoae tines are of the same form as those found in Article 95 for the deformed shapes of the iuitially vortical tihitnontri) of a iui.rr>w routtiji>;iiliir bcjLtu houl by a rurtioal load.    Tho taugitntu to thoae linos out the Murfaco icttu wbiub the middle piano in bent at on angle 
J.r-|(I+<r)pr/£'A. 
310.    Plate beat by uniform, pressure and clamped at the edge. 
Let (u, V, w) be the displacemeut of any poiat of the middle plane. When the* phite is clamped at the edge the conditions which must be aatisBed at the edge-lioe are 
u = o,   v = 0,   w = 0,   dyf/dp = 0 (80) 
V denoting the direction of tho normal to the edge-line. We seek to satisfy these conditioDS by a synthesis of the swlutiona in Articles 301, 303 and 307. We have 
In these expressions f and 17 are conjugate functions of j: and y which are related ti) a plane harmonic function Hg by the ei^uations 
dx    By       *"   CT/       da' 
and ^0 is of the form Ja-f-|-/, where / is a plane harmonic function. The functions H^ and / miifit be adjusted so that u and v vanish at the edgeline. One way of satisfying these conditions is to take @, to be constant. If we put 
a , l+<r 
we fihaU have 
l-^<^ 
l-fc
and then u and v vanish for all values of a? and y. 
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PLATE BEMT  BV  PRKSHTmS: 
We DUty sbow th&t tbia U the only way of utiafying the canditioDs.   For this parpon we put 
.^X"       1- M_i__^''» 
l7-£-(l + <r) 
a*' 
r-,-(i+,) 
¥• 
and tbcD we have to show that there is only oue way of chooaing 6k. £■ Qt Xi> which wiQ 
luaku £^'* and t* take given value8 nt a givou buuDdary. This is the same thing as nhciwing that if U and V vanish at the buuudary they vaniMh overywhero. Since r,*jB=e^, we have 
the integration b«iag extvitdod oper any |)art uf the middle |)Iaiio.    When it is artCBded ov«r the area within the edge-lino, and C aad V vauisb at tlie edgo-Une, the totagnl be tnunfoiTDed into 
arvd we have altto 
Since 7,'g=0, we have 
and we have oIho 
It follows that 
and this cannot vanish udIvbm 
a- + 5-=0, and ^ aT"**
It foUows that r and C would lie cuiijuf^ntc functions of x attd y whiofa vanish at the edge-line, they would thcrofore vaai«Ii ovurywhoro. 
The form of w is given by the ec|uatimi w«i[a + <,)xi' + A'e.-|^p<*' + y')-+Ai^/>(«- + y«)].   (81) 
where 6| is a plane lianuoaic fuuction and ^i';^''" " i ~ ^>*    ^S solution 
of the equation Z*V,*w = —p can be thrown into this form.   To determine w' 
we have the equation 
and the bonndaiy conditions, viz.: 
w = 0 and 8w/ai* = 0 
at the edge-line.    There is only one value of w which satisfies these ooo-J ditions.    When w is known 0j is given by the equation 
and xx ^ given by (81). 
...(82) 
SIO. 311] 
APPUKD TO ONE FACE 
463 
Ab ad ex&copio we may inke the caite nf a circTilAr plat« of radius a.    The defleiion w U given hy tbe oqimtioD 
w= -B^5(»*-r»)».    (83) 
•where r denotes ditttaiioR fmm the centre.    Thw centm.1 deflexion is one quarter of that which would be produced by the sAtna total lotui coiioentrat^d at the ceutre (ArtiuEe 305). 
Aiiothur example is affordtKl by an elliptic plato* of wbich the bouadary is given by tha equatiou j*/«*+y*/A'= I.    It may be ahown easily that 
'-«5('-M.mv^.^) <-> 
In the case of the circular plato oquatioiu) (82) and (t^) show that d) is constant, and it is therefore coavcoient to use the KolutioD io the form given in Article 302 iustvod of Articlo 303.   We have 
w=-i|r^ + ^;(,+ ^^{I+^)j|^-.{AV>-4(l-»)HK where V|'xi = ^-    ^^ coiuparluj; tliia form with (Si!) we aee that 
The complete expressions for the onrnponents of displacomeat are then  given by the equations 
w™w + 
.£85) 
when w is gireu by (83). In this ca,ae the middle plane is Itent withO'Ut oxteoflion. Linear elements of the plate which, in thcs unstreHscd state, are normal to tbe middle plane do not remain straight, nor do they cut at right angles the aiirfare into which the middle pUne i« bent 
311. Plate bent by tuiifonuly varying pressure and clamped at the edge. 
We seek to satisfy the conditioas (80) at tlie edge-Hue by a ayntheaia of the solutions in Articles Wl, 303 and 308.    For u and v we have the forms 
° = ^f-ti + <')^''-i(i + <^)i'^y' 
■]■ 
= 1 ^.,-(l + ^)|^''+ J (1 +«r)ju.xy] . 
in which the unknown funciious must be chosen so that u and v vanish at the edgo-line. We may show in the same way as in Article 310 that these conditions cannot be satisBod in more than one way. The unknown functions depend upon the shape of the edge-line. 
* Tbe rMalt «u eomniQiueatei] to tbe Aotiior bv Prof. O. H. 
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        ArraoXlXATE THCORT 
[ca. XXII 
iplcM G, // at the ed^ are gtveu in ■ceordupce with (]7)«iMi (18) bjr the fonnulf 
To find an exprenton for the fthearing force ]f an the dire^ion of the tu to the plane of the place we observe that 
N 
CM 
"f^'-fV-^'-fl'-f). 
oo mbstituting from <17) and (18) we find the fmnuU 
^='^L''^'-
.(W) 
To detennioe the normal displacement w of the middle plane we ha^e the differentia] equation <92> and the boundary conditioos which bold at the edge of the plate At a clamped edge w and d^fdv vanish, at a supported edge w and G vanish, at an edge to which given foroee are applied X^dllfct and G have given values. 
The same differential eijuation and the same boundary condilioDs wtmld be obcainad by the energy method by aMumii^ the fonnnla (21) for the potential energy estimated per unit of area of the middle plane*. 
In all the solutions which wc have found the differential eqnntion (92) is oovrect whether the formula* (18) aod (21) are exactly or only approximately correctf. The aolutioos that would be obtained by the approximate method described in this Article diffi--r Irom the exact solutions that would be obtained by the methfxls described in previous Articles only by very small amounU depending on the small corrections that ought to be made in the forraul* (18) for the strean-couples. In general the form of the bent plate is det'.'nnined with sufficient approximation by the method of this Article. 
314.   mnstratiou of the approximate theory. 
(a)    ViretUar plate Utadird nfmiMetn'eailyXMHieD a circular plate of nuliuji a supports a load Z* per unit of area which is a fuoctioa of tbs diatanoe r fkom the centio of the circle, equation (93) beoouMS 
r ^1_ Sr\r§r 
m} 
riD, 
the diraction of the diapUcement w being the same as that of the load Z*. reoord the resulta in a series of cases. 
Weshflll 
" Tb* procesa of Tamtioo U worked oat bjr Lord IU;Iri|th. 7*hrory of Sound, J 315. 
■f A iDOTG gcu«ml forn wbicb includes (92) in Ui» «p(«tid caws pnWoaBtv diseasaed is firsn b^ J. U. Miebdl, U>e.. eit. p. 444. 
; Tbs gsnstsl form of Ui« solation And tbe ipccial solntkini (i)—(iv) w«re gtTMt bjr Poisson io his m*ntoir of 1638. See iHtnduetioa, footnote S6. SolutionB eqaivBlent to those In (t) aoA (vi) were (pvm hj Saint-Vvoant tu tb« ' Aunotated Clebscb,' Sou dm % 45. 
311-313] 
APraOXIMATIi; TllEOHY 
465 
is gp (g + h), tHe axis of 2 bciug drawa vertically upwards.   The correspondiog 
displacement is given by the equations 
u = -agp{z-\-h)xlE.   v = ~ <rgp(z + k)jfJJ^,  w = if/p {«*+SA«+ o-C^ + y'')l/£. 
(90) 
In the secuDtl slreHB-system there is pressure 2gph on the face 2 ^ A of the plate, and the Bolution is to be obtained from that in Article 807 by writing 2gph for p. Tiie surface into which the middle plane is bent is expressHjd by the etjuatioD 
gph 
w=^^(^+y)-,^^^\^ + ^)(.^ + y-,^). 
.(91) 
and the stress-couples are given by the equations 
Q, = -D{k, + ck,) + 
24 + 23o- + Sff" 30 (1 - cr) 
24 + 2flff + Sff* 30(l-ff) " 
ffph', 
G, * - i) (*, + <rK,) + 
ff, = D{l~c)T. 
The formiilsL' (18) are approxinmtely correct when h is small. 
To satisfy the boundary conditions in a plate of any assigned shape, supported in any specified way, we must compound with the solution here indicated solutions of the types discusii'd in Articles 301 and 303, aud adjust the latter solutions so as to satisfy these conditions. 
313. Approximate theory of the bending of a. plate by transversa forces*. 
In all the solutions which we have found the formulffi (18) of Article 298 are either correct or approximately correct. We seem to be justified in concluding that, in a plate slightly bent by transverse forces, these forraulie may be taken to give a sufficient approximation to the streas-couples. In a plat© so bent the appropriate equations of equilibrium arc 
1 
By eliminating iVt and JV, from these we obtain the equation 
dti?      3y       cxdy and by substituting from (17) and (18) in this equation we find the equation 
/>V,-w = Z'.      (92) 
* For autboritie* in regucE to the ApproximaCe theory, see Introduction, pp. 27—39. A geoerol jutitication oa thr Mme tini>H oa lliai ii( the curreHponilinK theory (or rods [Article 2£S) will be fodtid ID Artiulu 82y of Oliaptvi xxiv. A very elnbomto iuve^tigalion of exact aoiutiuiui fur TftiiotiB distributions ol Icfld haa buen giveu by J. Doajo^I, Edinburgh Jt. Sae. Traru., vnl. -11 (IW'l)' l^ 'his invuHtignlioii Ibe correcliwM of lU« apjiruxluiate ttieoiy ia vecJfled for all mjm of practical importAiice. 
30 

        
        [image: Picture #249]
        

        
        
        [image: Picture #250]
        

        466 
Al'HCOXIHATE THEOBV 
[CB. XX nj 
The Htrew-couplcit 0, // at the edge are given in accordance with (17) and (IS) hy the fomiuls 
To find an expression for the shearing force ^ in the direction of the oormaj to the plane of the plate we observe that 
Jf = 008^1^—'-—'' 
and then nn Hubstitnting from (17) and (18) we find the foninila 
+ sintf 
\dy      dz)' 
-(93) 
To determine the normal diKplaceinent w of the middle plnne we have the differential equation (92) and the boundary" conditions which hold at the edge of thu plate. At » claiiii>ed edge w and dvfjZ'v vanish, at a supported edge w and G vanish, at an edge to which given forces are applied N—dHShi and G have given vnhies. 
The same dift'erendal equation and the same boundai-y conditions would be obtained by the energy method by assuming the formula (21) for the potential eaei^y estimated per unit of area of the middle plane*. 
In all the sulutions which we have found the differential etjnatton (92) is correct whether the formuliie (18) and (21) are exactly or only approximately correct^. The solutions that would be obtained by the approximate method describiLid in this Articln differ from the exact solutions that would be obtained by the methods described in previous Articles only by very small amounts depending on the small corrections that ought to be made in the formula (18) for the stre^-couples. In general the form of the bent plate is determined with sufficient approximation by the method of this Article. 
314.    Illustrations of the approximate theory. 
(rt)    Circular pltiie Uviiied t^ijimeiniuiHi^^, 
When a circular plate of radius i ou[)]K>rt4 a load Z' per unit of are« which ia a function of the dbttanoo r from the centre of tbe uircltt. uquatioii (93) becomes 
n^mrn]--'"
the dirortion of th« dlspliw^enient w lieitig the aanie an that of the load Z". record the rsHulbH in a serieB of caacn. 
Weahall 
* The proce«s af variatiuo w worlicd out by Lord Hayteigh, Theory of Sound, ) ItS. 
-t A TOOK i!«iipral form which ioclndea ^92) ui the speoiul cases proviuutlj diMOMsd ia KJTen by J. H. Michel], he i-ii. p. 444. 
X The (j-eneml form of the Bottition and the Bpeeial aolattons (i)—(it) were given by Foissoo i» hJB memoir of 182B. tiee Iiilroduclwn, tuot&ot« S6. SoIutioiiB equiTal«Dt to thoM in (v) and (vi) were given by Saint'Venant in the 'Annotated Clebseh,' Note du g 4fi. 
(ii)   When the total load W ia distributed unifomil; And the plate ia olamped at the edge 
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        (ill) When the lend iV is concentrated at the contre and the plut« i» suptMH-tod nt the edge 
(iv) Wheo the load ir ia concentrated at tlio ventre and the plato i» damped at the edge 
(v) WhcD the total load W ia distributed unironoly round a circle of mdia» h luul the plate is supported at the edge, w takea different fiH-ms according aa r > or <6. We tind 
(3+o-)o»-(l-<r)i», 
(3 + ff)a«-(l-<r)i> 
2(l+(r)a» 
(a'-H)]. 
(ri)   When the totiU load W ia diatributcd npifonuly round d. circle of nuliiH b atid the ^te in clamped at the edge, «e tind 
(6)    Appticati»/n of th« melJiod of invtnion*. 
The solutions giren io (Hi) and (ir] of (u), or in Article 305, ahow that, in Um neighbourhood of a poitit where pretMun^ P m a^pUod, thv dinplacenient w iu tbe itirwitlm of the [iresHHrd ih of tbe form (/'/Wtt/*) r'logr + f, wheriH< f i.t an analytic Atnction tif X and If which haa no aingularilies at or near the point, and r denotOH dixtAtica trrttn tha puint. 
Since V aatiafiea the equation Vi*w — '3 at all pointa at which there U rN) Ir^d w< tf«*y apply the method of iiirersion ciplaincd in Article IM. Let (/ be any ]wjint iu tb* tium of the plate, P any point of the plato, /" the point iiiven»o to P when </ ia th* oMrtM h( iiivereion, y, _v' tbe fuoniinatca of /'', R' tho dintancc of P' fmin (/, ir" ttia tutfAkmi of y, y   into whifh  w  la  traiisforujed   by the inversion.    TUeu  /Cw"   "ittrflM   Um 
oquAtion 7i'*(J?'i'w')=0, where V,'' denotes the operator »-a + ^.+|.-£,^ 
ax*    Off*      cx^d^ 
It is clear thAt, if \i iwd oir/<v vaoiiih At any bounding curve, W^tf mdJ h CA'^w'j/V vanish at the tnuiafoni)ed boundary, v' denoting the direction uf tb« rv'nn%\ t/ tM* boundar)'. 
* J. H. MichsU, London ifalA. Soe. Proc., vol. 34 (I9(VJ, p. aU(. 
so—v 
468 
AFPROXIUATE THEORT 
[CH. xin 
We apply this method to the problem of a circular plate clamped at tbe edge and 
loaded at one point O. Let f?* be Uu inverse point of O with respect to tJie circle, C the centre of the circle, and a its radius, also let c be tbe distance of 0 from C. The solution for the plate ^——' I I       \ \     clamped at the edge and supporting a 
load >r at C is 
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        -8^[-'"°8°+i(«'-^]
where r denotes the distance of anj point P from C. Now invert fivm 0* *^'8- '"■ with  constant   of   inTeraion   equal  to 
(i*/c' - a\   The circle inverts into itself, C inverts into 0, P inverts into P' ao that, if 
OP' = B and &P' = Jt', we have 
r    o*/tf' 
Hence R'^v' ia 
OT 
It follows that the displacement w of a circular plate of radius a clamped at the edge and supporting a load W at a point 0 distant c from the centre is given by the equation 
wr r 
+i(^.i2'»-^)] (&4) 
where R denotes the distance of any point of the plate from 0, and Rf denotes the distance of the same point from the point 0", inverse to 0 with respect to the circle. 
We vany -paaa to a limit by incroasing a indefinitely. Then the plate is clamped along a straight edge and is loaded at a point 0. If 0' is the optical image of 0 in the straight edge, the displacement in the direction of the load ia given by the equation 
w=^[-^'logf+i(iJ'«-/I*)] (95) 
where R, R' denote the distances of any point of the plate from the points 0 and 0'. The contour lines in these two cases are drawn by Michell {loc. ctt.). 
(c)    Rectangular plate supported at a pair of opposite edget. 
Let the origin be taken at one corner and the axes of x and y along two edges, let the other edges be given by x=2a, y = '2b.    We expand Z' in the form 
^'=2SZ, 
-   mirx  .    nnv .sm—sm-g-^, 
where m and n are integers.    Then a particular solution of equation (92) is _ 16^'      _    sin (»iiriy2a) sin (n*ry/26) 
If the edges x=0 and x^2a are supported this solution satisfies the boundary conditions at these edges. If all four edges are supported the solution satisfies all the conditions, but if tbe remaining edges are not simply supported we have to find a solution 
814] 
VIBRATIONS OF PLATES 
439 
W) of tlio ocfiiatioii 7,*ws = 0 ho that tlio 8uiu wt +Wj amy sAtiftf/ the couditious at ff> and y=26.    We ftsaiime for Wj the form* 
_ —.    .mm 
whore I'm >>* '^ fuuotiuD of jr but not of x.   Thcci }'„ MatiHQiew tbu vquiaiion 
anr) the complete primitire is of the form 
where J„, A„, J J, Bn ato uudotertuineii coiutunts.   Tliese constauts can be adjusted so as to aatibfy the boundary conditiona at y=0 and ^=2&t. 
(rf)    Tranatvritf. mbrtUioiis of piatf^. 
The t-quatioii «f vilimtnm is obtained at oucc from (»2) by BubetUuting for Z' the 
oxpreHUOu - Sph -in-. 
We have 
?*w    3*w        d*vr 
_2j^!^ (98) 
"When the plato vibmlcs in a norma] mode w is of the form W cos (pt +«), where W is a function of r and y whic^h satiHhes the eqiution 
And the puasiblo vnltim of p arc U> ho deLermiuod by adapting the solutioii of thia 
eqiuition to satiNfy the boimdary cijmlitiona. From tJie Cvrm ot the uocfticient of H' ID the rigbt-lintid tucmher of thin equation it ap^jeara that the frequencies are proportional to tbo tbigkucss, and mv&rseiy pro^HirtioQiU to the square of the linear dicu'easion of the arau within the «dgd-line. 
The thc*>ry of thoec modes of tranavcmo vibration of a circular plaio in which the displacement ■)' is a function of dt^tnuce fnmi the centre wna made out by foitvtnnti and the numerical deteniiination of the fifquencies of the gmver modes of vibration was eOet-'Ccd bv bim. lu thin catte the boundary conditiouH which be adopted become identical with Kirchhoff'a Uiimdary conditiona because the torsional couple IT belonging to any circle concentric with the edge-line vaiiiithea. The general theory of the transverw vibntioQB of a circular plate was obtained subsequently by Kircbhoff§, who gave a fuD nomericiil discussion of the rcniiltfl. The problem hius al»n been discussed very fully by Lord Rayleigh|{.   The flrco vibrations of a square or rectangular plate have not, ao for, 

        
        [image: Picture #253]
        

        * This aUip was suggested by M. Uvy, Paru C. If.. I. 139 (ISDS). 
t The ciktte of four irupportod edg«« ie dinr^nftA^ by S«int-VenftTit in th« * AnnotatH OleVfeh,' JfoU dii § 73. A nomber of cases are workail out by B. Estanave, 'Contribution a I'l^tade ds I'iqnilibre ^lastique d'uno plaque...' (J/wrf), Puri». lOOO. Elastic ooniitantfl are nometiiuee iiiwuai(>d br observing the centra] defiexioa pf a rectanKiiIu- plate supported at two op(>OBitQ tige* and loaded at the c«itt>«; itv A. B. H. Tatton, Phil. Tratu. R. Soc. (Ser. A), vol. SOS (1903). 
; In the memoir of 1838 cit(d is the Imrcduction. footnoto 36. 
j J./. Hath. {Crftie}, Bd. iO (IHoO), or r>jr. Abhandlungt-n, p. 2.^7. or VarUiungsH aber math. Pkgiik, Jtttrhanik, Vorlwana 30. 
II Thnry of Sound, vol. I. Cfaapler i. 
470 
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        VIBRATIONS OP PtATRS 
been  determined  theor«ticaIly.    Tbe case of elliittic pl&tea hu baen  oatuidend by JE. Mathiou* (uid M. BartheWrayt. 
(«)   Exttn$ional vi^rattoiu of platta. 
Wo may in liJke roauucr iovoeti^tc thom vibnvtioDit uf u pUto which involTe do truiu(%'ur»(9 displaocioent of pointo of the uiiddlo plaDe, by takiug tb» streaN-resuItAiitB Tt, 7*1, Si to ba given by tbe approxiomte foniiulie, [cf. (ivj uf ArticlB 301), 
^'=r::^(,5i+"^J' ^«-rT7«(,^-*-*'aij- ■^^'-iv^l.^+W
or the ]>ut«iiti«l energj' per unit of urea uf tb« middle plADo to be given by the furmuU 
r^[(^|)'-<-"(S|-Hl*£)}]
Tbo equations of niotioD are 
+4«-'');J+i('+<') 
f\r^ 
i      &C 
.(87) 
At a free edge tbe ittreaii-reault&nta denoted liy 7*, S vanish. The foroi of the eqiutiooA kIiowm tliat there it a complete separation of modes of vibration inrolring traDsvene diipUoemtMit, or fleiure, from tbo^e iiivolviug diapUcement iu tbe plane of the pUu*, or eitftDcdoD, and that tbe frequpociea of tbe latter modes are independeiit of the thickoeu, vfaile ihcae of the former are proportional to the thickneea. 
The theory of the vibmtionA nf pljibw han hem been treated in a protnflional manner. Detailed diHciu^inu of tbe modett aiid (rr4|iieno)ea of tranaverse vibration np|«arH to be iiDUMeBsajy, aiuce they liave been investigated minutely by the writera already oitad. Borne epevial reaulta tn regard tu extcnsioual vibratiuEu wIU be fuund in a Xote at tbe end of thin buuk. A luoru dotiuled iiivcittigatiuii of tbo theory ou which tbe equations vi vibration ar« fuuitded will bo gi%-cu iu Chapter xxiv.    Soo cBpecially Article 33S. 
■ 
* J.de JJath. {LiovvilU], (Sir. 3). t. U {1869). + iliJK. dt I'AcAd. lie TiMilotut, t. Q (1077). 
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        31B. A CURVED plate or shell may be deaciribed geometrically by means of its middle aartace, its edge-line, and its thickness. We shall take the thickness to be constant and denote it by 2A, so that any normal to the middle surface is cut by the faces in two points distant h from the middle surface on opposite liidea of it. We shall suppose that the edge of the plate cuts the middle surface at right angles; the curve of intersection is the edge-line. The caiie in which the plate or shell is open, so that there is an edge, is much more important than the case of a closed shell, because an open shell, or a plane plate with an edge, con bo bent into an appreciably different shape without producing in it strains which are loo large to be dealt with by the mathematical theory of Elasticity. 
The like possibility of large changes of shape accompanied by very small strains waa recognised in Chapter win. ai^ an essential feature of the behaviour of a thin rod; but there is an important difference between the theory of rods and that of plates arising from a certain geometrical restriction. The extension of atiy linear element of the middle surface of a strulueil plate or shelly like the extension of the central-line of a strained rod, must be small. In the case of a rod this condition does not restrict in any way the shape of the strained central-liuo ; and this whapr: may,be delennined, as in Chapters XIX. and XXI., by taking the central-line to be unextended. But, in the case of the shell, the cuiiditi»n that no line on the middle surfnce is altered in length restrict* the strained middle surface to a certain family of surfaces, viz. those which are appHcabk upon the unstrained middle surface*. In the particular ease of a piano plate, the strained middle surface must, if the displacement is inextensional, be a developable siirf^uv. Since the middle surface can undergo but a slight extension, the strained middle surface can differ but slightly from one of the surfaces applicable upon the unstrained middle surface; in other words, it must be derivablr from such a surface by a displacement which is everywhere Muall. 
* For [h« Hwr&tur* of tlie tlteoiy of iurfiio«s KpplicftblA an« on ftcother we may refer to ilu Aiiicla b; A. Vdsb, ' AbbUdouit and Abwiohelusg zveier FlJichai ant taavDim' in Eney. d. math. Wut., m. D 6(1. 
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        CURVATURB OP A TUIK SHRLt 
[CH. XXIII 
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^M 316. Change of curvature in mextensional deformation. ^P We begiu with the case in which tbe middle surface is defoimed vrithoot ^^ exteDsion by a displact^nient wliich is i;verywhcrc smnll. Let the equations of tbe iines of curvature of the unstrained surface he expressed ia the fcHins a => const, and ^ = const., where a and yd are functions of position on tbe and let Ri. R, denote the principal radii i>f curvature of the sur&ce a point, R, being the radius of curvature of that section drawn through tbe Donnal at the pciint which contaius the tangent at the |)oint to a cnrve of ihe family j3 (alung which a is variable). When the shell is strained without extenKion of the middle surfare. the curves a = const, and ^ = ormal. become two families of curves drawn on the strained middle surface, which cut at right angles, but are not in geueml lines of curvature of the deformed sur&ce.   The curvature of this surface can be determined by its principal 
I radii of curvature, and by the angles at which its lines of curvature cut tbe curves a and 0.    Let 0; + 8 p- *nd o" + ^ "p" be the new principal curvaturea at any point.   Since the sur&ce is bent without stretching, the meosore of curvature is unaltered*, or we have or,. 
ih^ 
■^){r.-^^m,)'h, 
R,' 
or, correctlv to the first order in & „ and S -^ , 
A,   A,     .R,   ^ 
Again let -^ be the angle at which tbe lino of curvature aaK)cuted 
the principal curvature ir'^^'p' ^^^ ^^^ curve j3 = const, on the deformed 
surfai-e, and let A,', R,' be the radii of curvature of nf>mial sections of thk surface drawn through the taugonts to the curves /3«con3t. and a^eaoat. In general ift must be small, and R/, R,' can differ bat little from A,, it,. The iodicatrix of the surface, referred to axes of r and y which coincide these tangents, is given by the equation 
|, +1^, + ^ t«, 2+(^-, - ^,) = const 
Referred to axes of { and rj which coincide with the tangents to the of curvature, the equation of the indicatrij: ia 
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* Tli« tbeonm » doe to 0«iih, 'DuqaisitiooM getter&lM cire& aa|Wifici«« corvaa.* O1iUim0tm Cemm. Kft., L H (1828), or Wrrte, Bd. 4, p. 317.   CL Salnon, C««Metry 0/ Otrte lifi ttkeditkia, p.»S. 
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SUGHXLV  BENT  WITHOUT  EXTENSION 
473 
and therefore we have 
1 1 1 1   _l£  1        s  I 
Hi       /I7      lit     ■'H        "I -^ 
^-i^HQ,-M={l-'m-^^=m
f -(2) 
"^'h'h "'^h'k' ^'^^""^"^ih-k) ^^* 
The bending nf the surface is determined by the three quantities «,, «,, t .     de6ned by the equations 
^^^^The curvature l/fl' of the normal section drawn throiigli tliat tangent ^ line of the strained middle surface which makes an angle a» with the curve jl3 = const, is given by the equation 
1        CO8* Q)      8m» G> 
-K = — D -,- + —fyr + 2t sin w cds m. 
and the curvature I/i2 of the corresponding nonnal section of the unstrained middle surface is given by the equation 
1^ R 
cos' 01    sin* 0) 
J2.   •   -R, ■ so that the change of curvature in this normal section is given by the equation 
(*) 
We shall refer to «■,, «,, t as the change8 o/curuo^wfi. 
In general, if R^ fk /£,, equations (2) give, correctly to the firat order, 
^ — -5 = *! cob' a> + K, sin' 01 + 2t sin at cos e». 
On-=K|,    6-5-
-fit 
i?. 
«a. 
5' J. *i = 0 
For example, in the case of a cylinder, or any developable surface, if the lines j3 = const, are the generators, «, vaniahca, and tan S-i/r = — 2tR.. 
The case of a sphere is somewhat exceptional because of the indeterminatenesB of the tines of cnrvature.    Ii> this case, putting iJi«ii,, we find frona (1) 
and then we have, correctly to the first order, 
«, + ATj = 0,    tan 2»^ = 2T/(*f, — /c,) = t//ci , and, correctly to the second order, 

        
        [image: Picture #259]
        

        
        
        [image: Picture #260]
        

        474 
8TRAIN  IK  A THIN  HHKLI. 
[CH. xxm 
but «, and x, are not equal to Bjj and S ^ noless t = 0, and tfr is Bot small 
tmless T is small compnred with tci. 
The rwidlt that, in the caae of a cylinder alightljr deforowd without extenaion. «,«a. or there u no change of curvature In normal BCctiotis oontaiuing the goneratiff^ has btaa noted by Lord Rayleigh oh "the principle upon which mvtal in corrugated." He bualiD np[)lied Che re«ult cxprewed herea« Ki/^,+K»/f|>-0 to the ezplaiutJoii of the behATiouroC bourdoD'tt gauge*. 
317.    Tjrpical flexnraJ atraln. 
We imag:ino u stat<? of j^train in the shell which is such that, whilo no line on the middle siirfatx- is alLi-n-d in length, the linear elements initially uorroal to the unstrained middle surface remain straight, become normal to the strained nnddlc surface, aiul suffer no extension or contraction. We expreiS the conipcneiits of strain in this state with refereuce to axes of a:, y. s. which are directed along the tangents to the curves jS and a at a point P, on the stminerl middle surface and the normal to this surface at P,. I-et /* be ih« point of the unstrained middle surface of which P^ is the displaced po&ition, and let Ss be an element of arc of a curve 5. drawn on the unstrained snrGace, and issuing from P; also let H be ihe iiulius of curvature of the nono&l section of this surface drawn through the tangent to « at P. The nomuU to the middle surface at points of s meet a surface parallel to the middle Burfece, and at a small distance z from it, in a corresponding curve, and the length of the corresponding element of arc of this curve is approximately equal to [(iJ-r)//f]S«t. When the surface is bent so that R is clianged into -R'. and * and Ss are unaltered, this length becomes \(R ~s)/R\Sg approximately.    Hence the extension^ of the element in question is 
[~W -Rjl'-R''   «»•. approximately, -^[^-j^]
Let the tangent to < at P cut the curve ^ at P at an angle w.    The 
direction of the correspondiug curve on the jMirallcl surface is nearly the same; and the extension of the clement of arc of this curve can be expressed l\B 
Pax COB* w + ey^siii'w -Htfiysiuu cosw. 
Equating the two expressions for this extension, and using (4), we Bnd e^x cos* w + c^ sin* a> + e^y sin ta cob o = — j («i cos" w + Kj sin' w + 2t sin a cos »), 
Byy 
»at      **K 
• Proc. R. Sot., vol. 45 (1989). P- 105, or Scientific Papcri. vol. 8. p. S17. 
t Ntisr B poiat on the middle Haxf&ce the equfttiou of tlile eurftc« CftO b« tslten to ba 2f=£'/fl; + »)'/ilj, and the coordinates of the point in which the numul >t ({*, ij'j meeta the por&lkl Burface can be iihawii, b^* farming tbe e<iii&liooii of the normal, to bft Approximalel; t{l-:lit,) «ndir'{l-t//i,k Fatting r = a*. «osw, i,'=a».Binw. and neglecting/"/B,» and I'/R,'. wc obtain the result atated iu the l«xt. 
:; Cr. Lord Ka^teigb, Theary o/ Sound, 2nd edition, p. 411. 
Sie, 317] 
SLIGHTLY BENT  WITHOUT EXTENSION 
i7S 
In thn imagined state of strain «„, Syf ^u vanish. With this strain we may compound any strain by whic;h the linear elements initially normal to the iinKiraiued middle surfaw become extended, or curved, or inclined to the strained middle btirlace. The most important case ik that in which there is no traction on any siirfocu jtaiullel to the middle surfaca In this case the stress-componenta denoted, by Jf,, K,, Z, vanish, and the straiacompononts ^, e^, e„ are given by the otquatious 
ea = 0.   ejft = 0,    £'K=-{ff/(l - <r)] (cit* + e„„), 
where a- is Poisson's ratio for tho material, supposed isotropic. In this state of tttruxD the linear elements initially normal to the unstrained middle surface remain straight, become normal to the strained middle surlaco, and suffer a certain extension specified by the value of e„ written above.    It h ulcor 
I that this eiteusion can have very little effect" in modifying tho expressions for ^xx, eyy. e^j,. and we may therefore take as approximate expressions for the strain-corn pouc II ts ^This 
e^a, tKl,       ^yy — — X«| 
I — tr 
This state of strain may be described as tbe tt/pical fiessural tArain. The corresjuinding stpess-components are 
E     ,    .      .     „ S 
X.= 
S («, + OK^.       ^V = - J— -. » (*t + ff«l)> 
fT, x,= n=^,=o, 
where E is Young's modulus for the material.    The strain-energy-functioa takes the form 
il^.tt<i + '.)'-2(l-tr)(ra*.-T')]. 
The potential enerffi/ of bending, estimated per unit of area of the middle 
surface, is obtained by intt^grating this expression with respect to z between 
tho liraita -A and A. the thicknoas of tlio shell being 2A,    The result can be 
written 
ii>[(«. + 'f.y-2(l-ff)(«.*,-T=)] (6) 
where D is the "flcxumi rigidity" ^Efi'l(\ -a^).    In the case of a cylinder, or any developable surface, this expression becomes ^/>{((,*+2(1—o-)t*}. 
Id the ca-se of a sphere it becomes ^/iA'Cki'+t*), or 4^MS^J , where /i is 
the rigidity of the materi.ilf. 
* It will be scon in the moru cuimpleto inveatigstion ot Aiticl* 82T below that flocfa effects are not entirely negligible. 
t These are the exprctwioos used by Lord Bayloigli, Thtorif of Smmd. Sod •dltiaR, Chapter x a< 
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CALCULATION  OP THK CHANGE OP CUHVATTRE [CH. IXiU 
318.    Method of calculating the changes of curvature. 1 
The conditions which muat be satisfied by the displacement in ord«r that the middle surface may suffer no extension may be fouud by a straighir forward method. Let ABa he the element of arc of a curve y3 = const, between two curves a and a + Sa, BS^ the element of arc of a cur\'e a » const, between two curves iS and ff+Bff; also let :tf, y', g' be the coordinates of a point on the strained middle surface referred to any suitable axes. We form expressions for x\ y', t' in terms of the coonlJiiates of the point before strain and of any suitable C(im()onents of displacement. Since curves on the mi surface retain their lengths, and cut at the same angles after strain as befo strain, wo must have 
da d^     ha afi    da B0 These equations give us three partial differential ef)uatiou$ connecting the componenta of displacement. 
The changes of curvature also may be calculated by a fairly straigbtforwt method.   The direction cosines I, m> n of the normal drawn in a spedfit sense to the strained middle tiurface can be expressed in such forms as 
and the ambiguous sign can always be determined, normal are 
x—a:    y — y    ^~^ . I m «   ' 
and, if («, i/, ?) is a centre of principal curvature, we have x<'iE'+Ip',   y=y' + mp',   z = z'+np\ where p' is the correspKtnding principal radius of curvature; p is est positive when the normal (I, m. n) is drown from (j/, 3;', /) towards (*, y. If (a + Sa, jS + Sj9) is a point on the surface near to {x', y*, x') on that line curvature through (x', y', z')  for which  the radius of curvature its p', tht quantities x, y, z, p' are unaltered, t^ the first order in £a, 8/3, by changing into « + Sa and ^ into ^ + 5y9.   The quantity we have already called tan ■^ is one of the two values of the ratio UhfijAtou determined by the equations 
The equations of the 
da 
bx 
,M 
3/ 
S.+ --S«^ + p'(^5a+^S^U0 
3/3 da 
da 
da 
fdm 
^0 
dm 
Sa + "^Bfi+pr£^-^~&0  -0. 
3/8 
8«+^a^ + p'   -S« + 5;3&^  =0 
dfi 
\3^ 
d0 
318, 319] 
THIN CnrUNDRtCAL SHELL 
4n 
These thi-co equations are really equivalent to only two, for it follom from the mode of formation of the expressions for I, m, n, and from the equation i= + m* + n'=l, that, when we multiply the left-hand members by I, m, n and add the results, the sum vanishes identically. By eliminating the  ratio iajB^ from two of these equations we form an equation 
for p, Hiiri the values of l/p' are ■n- + & ^n "^"^ d + ^ d" I ^y eliminating p' 
ii]       ill        Itj      fit 
from two of the equations we form ao equation for Sff/Ba, which determines 
tan y^. 
We shall exeiuplifir these DietUoda in the caBM of oylindhcal and spherical shells. In more clifUcult cawa, or when there Is estenaloii a& well ab change of currature^ it is advisable to ui*e a tnoro powerful method. One mich method will be given later; others have been given by H. Lamb* itml Lord Rayleight. The rtfliiltfl for cylindrical and spherical abeUi may, of courw, be obtained liy thu general mctboda; but thetw ca.<u>s are so tmportniit that it seems to be worth while to »hn<« how they may be investigated by an analyHi.-^ which prpuenta no difflciiltio^ l>cyond ih<? miini|ULlatiun of mjinia rather long expreBsiotiii. TUo menltH m these cai»eH were obtained by hnrd  ItJiylei]|;h J. 
319.    Inextensional deformation of a cylindrical shell, (o)    FomiiiUB fur (Ae displacement. 
When the middle aurface is a circular cylinder of radius o, we take the quantities a and ^ at any point to be respectively the distance along the generator drawn through the point, measured from a fixed circular section, and the angle between the axiu.1  plane , containing' the point and  a  fixed axial plane; and we write x and ^ in place of a and  j9.    We resolve the. displacement of the point into components:   u along the generator, v along the tangent to the circular sectioo, w along the normal to the surface drawn inwards.    The criordinates x', y, £ of the cotresponding point on the strained middle surface are given by the oquationa jf = x-h-u.   y' = (« — «;) COS ^ — V sin ^, r' = {a — w')sin <^ + y cos ^. 
The couditiuns that the di.xplacemeiit may be inextensional are 
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Fig. 71. 
r 
* LoHdoH Xatk. Soe. Pne., vol. 21 tie91)< P> 119t Theory cf Sound. Snd edition, vol. 1, Chapter x a. 
X iMuion  iiaih.  Soc.  frac., Tut,   18 0^3}>  °' Seinttifie Paper*, vol. 1, p, 561, and the papsr oit«d on p. 4?'! *Mpra.   S«c alito TAf/iry o/ Sound, 9nd edition, vol, 1, Chapter i a. 
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        478 INEXTENSIONAL  DEFORMATION OF A [CH. XXIH 
On writing down the equations 
dai'    ^    du     di/       dw       ,    dv   .    ,     d/       dw  .    ,    dv        . -^ = 1+^ ,    if- = ~ ^-coadt-^ smd>,    ^-= - ^-sirup + ^ coad>, 
we see that these conditions are, to the first order in u, v, w, 
du    .            dv      dv     \du     . ,_. 
— =0,   w = ^,    5-+-5T = 0 (7) 
dx d^      dx    adtp 
These equations show that u is independent of x, and v and w are linear functions of x. 
If the edge-line consists of two circles x = const., w, v, w must be periodic in ^ with period 27r, and the most general possible forms are 
tt = — 2 -£« sin (n^ + jS„),   r = S [^ncos(n<f) + an) + B„xcm(n^ + ^n)].| 
w = — 2 n [An sin (n<f> + On) + B„« sin (n^ + ^„)], J 
(8) 
where A^, B^, On. /9n &re constants, and the summations refer to different integral values of n. 
(6)    Changes of curvature. 
The direction cosines I, m, n of the normal to the strained middle surface drawn inwai-ds are 
a \dx d<j>    dx diftj ' "" 
We write down the values of dx'jdx,... simplified by using (7), in the forms 
dx'     ,     dy'    \du   .    ,     dw       ,     dz'       \du        ,     9m;  .    , 
- - =1,    i-=- ^ T sm d> - ^ cos 6,    r- = ^-r cos ^ — ^- sin ^, 
9a: 9ar    a 9^      ^     dx      ^    dx        ad<j>      ^    dx      ^ 
and we find, to the firet onler in u, v. w, 
^'"dx'    "' = -cos.^ + ^(^« + ^Jsm</,.    « = -sm^--(t; + g^jcos.^. 
The principal radii of curvature and the directions of the lines of curvature tire given by the equations 
1  /dx' dt/' _ 9i/ 9x'\     l^fdx'dm     d[d^ _dm 9^' _ ^' 9;\ 
p'» [dx c>    dx d^,)'^ p [dx ?4, ■*" 9j 9^    ?x dip    dx d^J 
dldm_ dm dl      _ dxd^     dx d<p       ' 
THIN CYLINDRICAL SHELL 
479 
319, 320] 
For the purpose of calculating the coefficients in these equations we write 
down the value* of dlfdw Bimplifyiug them slightly by Jiieans of (7) and 
by the observation that v and w are linear functious of x.    We have 
3/ _ ^* _ BJn^ ^ f J, ^\ 
das       ' dx ~    a    d£\      d^J' 
Wb know beforehand that, when terms of the second order in u, v, w are neglected, one value of l/p' is zero and the other h l/a + iv,; aliio the value of aS0/&a: is tan ■^. and tan 2^ = — Sar. \Vc can now write down the above equations for p' and 3x/5^ in the forms (correct to the first order in u, v, w) 
+ [3in,^ + i(t. + ^)coB^ + ^(^ + i^)Bin^ .19/     dw\  -    , . 1 ^    , , /^ ^'' \  ■   ^ 
The former of these gives, to the first order in u, v, w, 
= 0, 
= 0. 
1 /a»(tf 
m 
or 
.(10) 
and the latter gives, to the same order, 
^=ara.l"+a^j 
With the values of u, v, w given in (8) these results become 
«, = 2 —^ [An sin (n^ + a„) + B^x sin <n^ + jg«)], 
71*— 1 
320.   Inextensional deformation of a spherical shell. 
(a)   FormuUe for tite dispUtcetnent. 
When the middle surface is a sphere of radius a we take the coordinates 
■til) 
480 
IN EXTENSION AL DEFORMATION 
lOKXTin 
v^n. 
a and /? to be ordiDOry spherical polar coordinates, and write J'. ^ for a, ^. 
The  dispUcenoent is specified  bv ^, components u along the tangent to 
the meridian in the direction of increase of $. r along the tangent to the parallel in the direction of inereaae of ^ u? along the normtl to the sar&ce drawn inwarda. The Cartesian coordinates of a point on tbe strained middle fciir&oe are givf ,.     by the equations 
x' = {a — iiu)sin $oo&^ 
+ 1(008^006^ — trsin^ 
y'=(a —«)sintfBin<^ 
+ u cris $ sin ^ + o cos ^ 
s' = (a — to) cos 0 — u sin B. 
The conditioDS that the displacement may be inexteosional are 
We write down the cquatioos 
^-[(a-«. + ^^)cos^-(^+«)sinfl]co«,^-|^mn*, 
|=j[^(„_«. + |)co8fl-(^+u)«nfl]8in^ + |co8^ 
and 
g«-[^(a-«;)einfl4-ucostf + g^jsin* + |^|^cofl5-p-|^8in^]cos^, 
^a       (a-«;)sintf + ucos5 + =^   co8<^+ L^coB^-y —5^8in^   sin^, 
The conditions that the displacement may be iuextensioiial are, to the first order ia u, v, w, 
w = ^.   u-sm<9=uco8^ + g^. 
sm 
320] 
OF A THIN 8PHBBICAL SUEI.L 
4m 
or, as they may be written, 
00 i!$Hn0    ci^smtf    d^smff d^ain^ ^    ' 
The laat two of these equations show that u/sin 6 and u/sin tf are coajngafce fuuctiun» of log (tan ^$) and ^. 
If the edge-Hue confiata of two circles of latitude, it, v, w must be periodic in <p with period 2ir, and the most general possible forms for them are 
u=fiinfl2   ^„taij" -cos(n^H-ein) + Bn00t"^co8<«<^ + Ai)   . t» = ein ^ 2   i4,. tan*^ ^ sin (n^ + a„) - J?, cot" 5 sin (n^ + $„}   . 
w = 
['■ 
+ coa ^) i4„ tan" g cort (n^ + «,i) 
- (n - COS ^) B„ cot" ^ COB («0 4- ^„)1, 
(13) 
where A^, B„, a^. ;9„ ore constants, and the summations refer to different 
integral vahies of ik 
If in the furmulw (12) we put n= Owe find displ&c«iiient« of the type 
the terms iu B beiug of tUe sumo t^pc. Tho cumpuucutB of thin diitplaoomeut iu Itio direotioiifl of ^tr*, y*, g' are 
— AffBia a B\n 6 8\m^,    Aoianaaiu 9 cob if),    - Jgcosa, 
And this diftplftcement is com|)oiitided of n tmiislntii'^n -A„co»a in the direction of tba aJtia of z' and ft rotation Jnfi~'sino alxuit thin iixiw. 
If in tbo fonnulie (12) we put n= 1, we Sod dii^placements of the ty]>ea 
u=j1i[1 -coa$)caa{,ip + a),    «=.-!,(1 -'COH4)sin(^4-a),    w—Jg ati$ctia{^ + a), and 
tc^Biil +acM6)cm(ify-i-$),   0—-5,(1+ooBtf>sin (^+^),    w—- JS| ain*coB(^+^}. 
The former is equivalent to a transUtion (-J,co»ii, ^l,!nna, 0) and k rotation Ai(i~*i>n.na, cDSfl, 0); and the iattcr is equivalent to a tmnsUtion (B, cos^, - ^isin^, 0) and a rotation Bja~*(a,[t\^ ca»^ 0). 
It appears from what hat) just been said that all the displacements obtained from (13) by putting n =0 or 1 are possible in a rigid body, and the terras for which n has these values may be omitted from the summations. Similar results can bu proved in the case of cylindrical shells. 
If the edge-line consists of one circle of latitude, and the pole ^ = 0 is included, we must omit from (13) the terniis in cof^i^, (?i > 1), for these terms become infinite at the pole. If the sphere is complete the terms in tau^i^, (n > 1), must  be umitlcd also;  that is to say no inextemioual 
L. E. 31 
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        482 INEXTENSIONAL DEFORMATION [CB. XXm 
displacements are possible in a complete spherical shell except such aa are possible in a rigid body*. 
(6)    Chaises of curvature. 
We form next expressions for the direction cosines 2, m, n of the normal to the deformed surface, by means of such formulie as 
a*8in$\d<t>de   d<^de)' 
and for this purpose we first write down the expressions for dx'/dB,... simplified by means of equations (12).    We have 
dx' .       .     (dw ,    \   .   ^      J.    ^  ■   J 
^A = acos^cos^ — f ^^ + u\ 8m^cos0—^sm0, 
g^ =acostf8in^- f ^^ + wj sin tf sin «^ + ^^ cos ^, and ^ = — a sin tf sin (^ + (5-7 cos 6—v — ^8m $) coa ^, 
^y a A   ,  (^ a ^   ■    A   ■    ^ 
~ =    a sin a coa (h+lTrr coa a — v — ^^Bmoism o, dq> \o<p dip        J      ^ 
Hence we have, to the first order in u, v, w, 
Exactly as in the case of the cylinder, the principal curvatures and the directions of the lines of curvature are determined by the compatible e<}uutioiis 
* The result is ia accordance with the theorem that a closed surface caunot be bent without utrutchtDg.    This theorem is due to J. H. Jellett, Dublin Trans. li. Iri»h Acad., vol. 22 (1855). 
and 
320] OF A THIN SPHERICAL SUKLU 4S8 
and we therefore write dowtt the fuUowiog cqiiatioaa, in whioh we put for shortness ■A=-hr5 + "i   r=-v + -.—^ ^- ], 
— = —M + ^ j COB 6 COS (ti + X sin 0 COS ^+'-^ smtlt, 
^- =.—11 + -^j cos 8 sm <ji + X f^in dam (ft— ^^ cos (fr, 
^=    {sinff + Zcostf + ^)8m*-(|^c<ja(^-r)co8^, 
dn      .    . dX 
Our procedure in this case must be a little different from that adopted in the case of thi* cylinder bccaiiKt^, to the fintt order, the sum and product of the principal curvatures are unaltered by the strain. We therefore begin by finding the equation for tan^, or eindB^fSd. THIr equation may be written 
/da'    tan ^^ i)x^\ fdm    tan ifr dm\ _ f'by'    tan i^Sy'v ,9?     tan ^ S^N W "*" Rin 6 l^j \?e ■'' mr& d^)~ [d6 '^ "sin 0 d<f>) W     sin 0 a<f>j ' 
and, by direct substitution of the vatuea written above for da^ld$,..., it is found to be 
Now we have 
= 8,n^[_(^-^+..)-(_^^^^, + cottf^-^-H«;lJ. 
where, in the last line, use has bceu made of the equations (12).    But, since 
31—2 
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        484 INEXTENSIONAL  DEFORMATION  OF A SPHERICAL SHELL        [CR. XZIH 
w = dujdd, and u satisfies the equation obtained by eliminatiDg v from the second and third of (12), viz. 
it follows that 
Hence the equation for tao ^ becoiues 
One of the equations for determining p' is 
or 
'''    8intf + Zco8tf + i(|^ + cot(9|^)tani^ - ^9X^tan^ fax     1 /au ,     ^ a^\\ 
~   "^ a U^       v'        «     9^ Vein ^ 9^/ ,     1 (dHu 
a V9^ 
!; j sec 2-^. 
But, using the notation of Article 316, we have 
- — = Ky cos' -Jr + /e„ sin' i!r + t sin 2 Jr 
p     a ^ ^ 
= «! (cos 2-^ + sin 2^ tan 2^) 
— Ki sec 2'«|r, It follows that 
I (d'w^   \ 1  9 /   1   9«;\ .... 
With the values of u, v, w given in (13) we now find «! - - «a = 2 ^^-g--r^   -4„ tan" 2 cos(n<f> + flf„)- B„ cot"^ cos (n^ + iSn)   , 
~  Ar^ tan" 2 sin (n* + o„) + 5„ cot" ^ sin {n<f> + /3„)   . 
(15) 
^  n' — n T = — X 
a'sin'i 
320.321] 
IKEXTEN9I0NAL  VIBRATIONS OF A THIM  SHELL 
485 
321.    InextensionaJ vibrations. 
If we a-ssume that the state uf strain in a vibrating ahyll is that which has been described in Article 317 as the typical ilexnral Rtratn, we may cahnilate the frequency of vibration by forming expreKsioiiH for the kinotic and potential energies*. Wo illustrate this method in the cases of cyliiidrical and spherical shelln. 
(i)    Cylindrical gkell. 
The kinetic energy, estiniatod per unit of aren of the middle surface, is 
^4(")'mI)'-©1. 
where p is the density of the material, and it, v, w are given by (S), in ^cvhich the coefficienta A„. B^ are to be regariled as functtoiiK uf t. The kinetic energy T of the vibrating shell ia obtained by integrating this expression over the area of the middle surface. If the ends of the shell are given by x= ± (, we find 
r= 2.,,tt2 [d + „.) f^-jV {^:+ 1(1 +n-) P} Cfj'J .    ...Clfi) 
The potential energy of bonding, estimated per unit of area of the middle surface, is 
whtjn^ «, and t are given by (II). The potential energy V of the vibnittng shell is obtained by integrating this expression over the area of the ntiddle surface.    We lind 
F«Xl^•^S*-^^^^[n'.4,»+[in'^+2(l-<^)a•]ff„'].  (17) 
The coefficients ^„, B„ in the expressions (8) for the displacement may be regarded as generalized coordinates, and the expressions for Tand Fshow that they are " principal coordinates," so that the various modes of vibration specified by different As or B'b arc executed independently of each other. The vibmiiuns in which all the ^'s and all but one of the A's vanish are twodimensional and take place in planes at right angles to the axis of the cylinder. The type is expressed by the equations 
i( = 0,    tJ = Au cos n<^,   w = — nAn sin n^i, 
in which A„ is proportional to a simple harmonic function of the lime with a period 27r/7), and p is given by the equation 
^~2pha' 
n'+l 3/1(1-0^)0*    n' + l 
(18) 
* The tbeaxy of iaeztensiontit ribriitioDB is due to Lord Rajleigfa, London Math. Soc. Proc, Yol. 13 (1861|. or .SnVnnnV Vapert, vol. I, p. ftJSl. rwd Proc. R. See., yo\. 45 [18«&), p. 105, r>f Seieni{ilc fapert, vol. S, p. 317. ^&e al&o Theory uf Sound, BQ<oond edition, Cbtiptor x «. A dijCD&sion of tile oonditiona Tor the exUUnce ot piHCCicaLl}' inoxtenaional iiioil(« oT vibratitm will be giTsa io Chapter sxiv. ittfnt. 
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1SEXTEXM01CAL TtBRATIOOS 
[cH. xxni 
The vibrations in which &I] th« A's and all bat ooe of the Sm rmaiak are three*<iimen«ioaaL    The type ia expreaaed by tbe egnitioaa 
u ss — B^aiu n^.    r > xB^ ote m^,    it = — nxB^ an n^, 
n 
and the frequency pj2v is giT«Q by the eqoatioo 
gt*        ««(n«- l)f 1 -I- 6 <1 - «r)a';af 
P' = 
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[f either n or IJa is at all targe the two valnes of p belooging to Khe same value of n ore nearly equal. 
(ii)    Sjihericfil shell. 
We sfanll iisupptiK the middle surhce to be bounded by a circle of latitude tf-a, and that the pole 0 = 0 is included. Then in (13) and (15) the ooefficiente B„ vanish.    The kinetic energy 7*18 given by the equation J 
7* = irpa>A2 {(^^Jj'ati tf [2 tin' tf + (costf + nf\ tau- f t/tfl.   ...(20) 
The potential energy of bending. eelimateU per unit of area of tbe middle surface, is ^ fJt'(xi* +1^), where x, and t are given by (15) with tbe Bb onitlUHl.    Hence the potential energy V of the vibrating shell is given by j the equatiun 
r=5.^*:2 [..<,.-iM../;u„-|/;-J <S,) 
The coefficiontH A^ in the expressions for the coinptiut^nta of displacement can be regarded as "principal coordinates"* and the frequency can be written down. 
In a principal mode the type of vibration is expressed by the equations 
ff 0 
tt^An »in $ tau* ^ cos n^,    v^A„ sin 0 tau" - sin n^, 
w» Anin + coaff) tan" ^ ooa n^, 
in which An is proportional to a simple harmonic liinction of the time. The frequency pni2ir is given by the equation 
In this expression fi may be any integer greater than unity. 
* When tbe edge-line ootuista of two cirolea of UUlacle, ao thftt tbe co«fflcieDU D o«mx as vitll u tbr coefOeieDta A, the A'a ftod B'» wa not prioctpnl ooarJinttM. for term* cantaintng moh; pioducUiu idAJdt).{finjdt) oceat la Uut ttsptaution totT. Sm IiordB«jrUifll), ThMrycf Svutid, ■econd •.■ditiuii, Clia|itvr x i. 
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The tDtegrations can olwaj's be performed.    We bave 
y 0 *     J i+cog«   ^ 
and the second of these can be evaluated for any integral value of n. In the case of a hemisphere (a=^n-} Lord Raylcigh {loc. cit.) finds the frequencies ^, p^, pi for n=2, 3, 4 to be given by 
In the case of a saucer of 120° (a= \ir) he finds 
In the case of a very small aperture in a nearly complete sphere (ai=ir nearly) the frequency calculated from the above formula^ is given approximately by 
,_A'8jin'(n'-l) ^•~o«3p   (w-a)*  ■ 
• Cf. H. Lamb, toe. cit, p. 477. 
CHAITER XXIV. 
^fiEXEKAL THEOBV OK THIN  PLATES AND 3HELL8. 
^ormnJjB relating to the curvature of sur&ces. For the iDTertigations in thu loitt Chapter the elemeDts of tbe theory gC the carrakare of KuHocea arv lulfrijiiatc. For the purpose of developing % man geimiU method of treatment of the problem of curved plates or shells m AaJH require some further resuIUi of this theory. It seems best to b«^n bj obteining thefie r^ultn. 
Lei K. 0 denoUt any two pnnuneters by nipuns of which the position of s point on a surfaeu nun be oxprMBod, uo that the eq^uations a = const, ^=eoo«t represent familien of curvea traced on the surface. Let x he the angle between the tnogento of the»e curves at aay puiiit: ;^ is in general a function of a and ff. The linoar element rf« of nuy curve traced on the sor&ce is given by tho forniuln 
(a*)'-ilHrfa)' + ^W)'+2^/*cosxrfarf;9 (1) 
where A and J? are, in general, functions of a, ff. Let a right-handed system of moving axes of x, ^, t ha cuutitruclod so that the origin is at a point (a, ff) of the surface, the axis of i is the normal to the surface at the origin, drawn in a chosen sea<*e, tho nxls of x is the tangent to the curve /9 = const, which passes through the origin, dniwu in tho souse of increase of a, and the axis of y is tangential to the snrfacv, and at right angles to the axis of x*. VThen the origin of this triad of axes iuo%e* over the surface the directions of the axes change. If t I'epreseuts the time, die components of velocity of ibe origin are 
'*a+*.fi'^*^ 
parallel to the instanunftoua positions of the axes off, y, x.   Th« con 
' When ilMouif»« = coM<.*aJ^"WM<- ftalrighi ■■glwwiMpf»o—thrttha] 
a •ad A "^ tb« podlitv MWM or Ifai mmmal to ft» fribw. aw » pliiiiiia at Ak ■ wbkh a and ^ uiuimm mA Mm —iwai w tha Jiri i Ifii  rfa rialil \tm»mi i 
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of the angular velocity of the system of axes, referred to these same directions, can be expressed in the forms 
da        dS da        d^        da        dB 
P^di-^P'di'    «'rf«+«'^'    '^dt-^^'^di' 
in which the quantities pi, ... are functions of a and y9. 
The quantities pj, ... are connected with each other and with A, B, x^y the systems of equations (2) and (3) below. These results may be obtained as follows:— 
Let X, t/, z denote the coordinatee of a fixed point referred to the moving axes. Then X, y, z are functioDB of a and ^ and the conditions that the point remains fixed while the axes move are the three equations 
dxda    dx d0       /   da ,     d0\ ,    /   da ,      dff\ ,   .da , „d$ ^adt'^^dt-^K^di-^'^dir'K^^dt^^^ir^di^^Tt'^^^ 
d^da^dy d^      /   da^     dff\ ,    (   da ^     rf|S\ , „d3 . dzda     dzdB       f    da ,     d0\ ,     /    da ,      dj3\    « Since these hold for all values of da/dt and d^/dt, we have the six equations 
3* .^ 
g^=?ix-;>,y, 
The conditions of compatibility of these equations are three equations of the form 5o(^) —s-foo); *°d) in forming the differential coefficients, we may use the above expressions for dx/da,....    The results must hold for all values of ir, y, s. The process just sketched leads to the equations* 
3/3 dri    9rj 
•(2) 
and 
__02C_ 
da     BsinxKd^ 
fdA dB 
^^ — COB V ■^
COSV
^da 
n
1     (dB dA 
Asmx\da~'^''^'^dti 
.(3) 
| + fsinx = 5cosx. 
* The set8 of equations (2) and (3) were obtained hy 1>.CoAkzz\,Parti Mfm.par divtntavant*, t. 27 (1882). 
MO 
CUBVATUKE OP BURPACBS 
[CH. XXI 
To exprees the cur%-ature of Ihe surface wo rorm the equationa of (be normal at (a + So, ;3 + S0) referred to the axes of x, y, t at (at, fi}. The directiuu cxK^ines of the nonnal nro. with sufficient approximation, (qfia + QjSff), — ipfia-i-p^ff), 1, and the etiuatious are 
It follows that the lines of cm-\*atiire are given by the differential equation 
^y>, ((ia)'+ B (f^ cos X + ?, sin x) W)'+ [/I;?, 4-£ (i», cos X + ?, sin x)) rfarf^=0^ 
(4) 
and that the principal radii of curvature are the roots of the equation 
■ft*0),9,-p,tf,)-i2{4p,-iJ(p.co6x+9.''»nx)l+-^*"nX-0. ...(5) 
From thc«e resulu the equation of the indicatrix of the surface is easilj found to be 
-J''^{li^.y-A'^'^)^^^A^^ = '^'^'' 
.(6) 
The meamire of curvature is given by (5) and the third of (2) in the form 
ABamx\^^    3«/' 
323.    Simpltfled formulce relating to the curvature of snrfaoea.' When the curves a = con8t. and /3 —const, are lines of curvature on tbe Burfuce the forrauk; are simplified very much.   In this case the axes of jp and y are the principal taug^euta at a point, the axis of x being the normal &t the point.    We have 
X = i7r.    p,= 0.    7, = 0, (7) 
and the roots of equation (5) are — A/rji and BIp,.    We shall wnte 
1 _J^ R,~ B' 
(8) 
80 that i?i, Mi arc the radii of curvature of normal sections of the surfoce drawn throuffh those tangent lines which are axes of x. t/ at any point We have also 
r, =
IdA 
r,= 
IdB 
A^9' 
AB 
fkcd 
RxRi 
1 /i^a5\    9 (\^4\ 
'    da\Ada)     d^\Bdff}' 
da 
(D 
IBB      d /A 
I dA 
R,da'   3^W    iii9/3 
.(9) 
.(10) 
322-32*) 
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I 
324. Extension and curvature of the middle surface of a plate or ahell. 
In geaeral we shall regard the middle surfiace in the umttrcsjied RUte ,80 a curved snrfiice, and Uike the cun*es a = const, and ^=: const, to be the lines of curvature. In ihv case of a plane plate a and 0 may be ordinary Cartesian coordinates, or they may bo curvilinear ortho^nal cooniiiiatea In case of a sphere a and 0 could be taken to be ordinary spherical polar coordinates. Efiiiations (7)^(10) hold in the unstressed state. When the plate is deformed the curves that were lines of curvature become two families of curves traced on the strained middle surfiicc, which cut each other at an angle thdt may differ slightly fruni a right angle. We denote this angle by x ^"^*^ '^* cosine by w, and wo denote by e, and e, the e^ctensions of linear elements which, in tie im«trei4sed state, lie along the curves ^ = const, and a = cflnst. The <iimntitie8 a and ^ may be reganled as parameters which determine a point of the atrained middle surface, and the formuhi for the linear element is 
As in Article 322, we may construct a system of moving orthogonal axes of X, y, I with the origin on the strained middle surface, the axis of x along the normal at the origin to tins surface, and the axis of x along the tangent at the origin to a curve y3 = const. The components of velocity of the origin paraUet to the instantaneous positions of the axes of x and y are 
^<1 + ..)|+B0^e,).^f 
B(H-e,)BiDx^. 
"^^ dt^"^' df 
The components of angular velocity of the triad of axes referred to these same directiouii will be denoted by 
,rf«^  ,da P^dt^^'^di 
Then in equations (2) and (3) we must replace il by .^ (I + ei), Bhy B{1 + Ci), Pi, Pi,...'", by pt, pt,... r,'. The directions of the lines of curvature of the strained middle surface, the values of the sum and product of the principal curvatures, and the equation of the indicatrix ore found by making similar changes in the formula) (4)—(6). . 
If we retain first powers only of c,, e,, sr, equations (3) give 
\ 
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        1 dB 
Ada 
AdM 
fl^_B    Bd€, 
B^A'^^A^^'A^'' 
.(11) 
49S 
EXTEKSIOK  AND  BENDIXa 
[CH. XXIT 
The iadicatrix of the Btrained middle surfftce is girea, to the same ordec, 
of approximatioD, by the formula 
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        If Ri. Hi' denote the radii of curvature of oormal sections of the middle surface drawn through the axes of x and t/ at any point, aod angle which one of the Unas of curvature of this sorfaoe drawn tbiuagfa the point makes with tbe axis of x at the point, we have, to the same orde 
-^(l-^A 
■^(l-.)-a 
tan2f = -^(l-.,)/[2|^(l-"e,)+|(l-^)-§-'-r]. 
..(12) 
It ia clear from thene formula* that, when the extension is known, the state of the strained middle surface as regards curvature is defined by the (^aantities 
-9.'M. p,75.  P.'M
We shall write 
K 
= <>. 
^
.(13) 
and shall refer to «,, x,, t as the "changes of cunature."    In the particul cases of a plane plate which becomes slightly bent, and a shell which under-' goes a small  inextensional displacement, these quantities become identical with those which were denoted by the same letters in Chapters xxii. and 
XXJIL 
The measure of curvature is given by tbe formula 
W      ha)' 
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        where r,', r,' are given by the first two of (11). When there is no ei the values of r,', r,' for the deformed surface are identical with those of r,. r, for the unstrained surface, and the measure of curvature is unaltered by the strain ((iauss'^t theorem). The sum of tht; principal curvatures, being etfual to l/i2,' + l/ii;', can be fijund from the formulne (12). d 
325.     Method  of calculating  the  extension  and  the  changes of curvature. 
Tu calculate e,, ... pi, ... in  terms of the coordinates of a point on t' strained middle surface, ar of the diaplacement of a |K)int nn the unstrain middle surface, we introduce a scheme of nine direction cosines expresstog the directions of the moving axes of x, y, x at any point reUtive to fixed ax of x, y. z.   Let the scheme be 
of 
I 
324. 323] 
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.(14} 
If now X, y, z denote the coordinates of a point on the strained middio surface, the direction cosines ^, ir^, n, of the tangent to the eiirve ;9 = const. which passes through the point are given by the equations 
4(H-«,)^ = |^.    ^(1+eOwt^ 
■.^£,   ^(l + *.)n, 
dz 
» 
8.- •••(") 
The direction cosines of the tangent to the curve a = const, which passes thnHigh the point are /, sin ;^ 4 A cob ;^, ..., and therefore, whfn w' and we^ 
are neglected, /,, ttt^, n^ are given by the equatiunB 
-B((l+*,)ri, + ,=rw,]=^ ■, 
.(16) 
The direction cosines l,, m^, n, of the tionnal to the strained middle surface are given by the eqimtiuus 
i, = j»]«3—m^»i,    nt»= "i^B—fla^,   n, = ^im,—ijOT] (17) 
From equations (15) and (16) we find, correctly to the first order in 
l + 2e, 
ip\{d$. 
+ 
%Mm' 
.(18) 
1_ px dx     3y 9y    3z 9z I 
Again, since the line whoso direction cosines referred to the moving axes are ti, l^, t„ that is the axJA of x, is fixed relatively to the fixeJ axes, the ordinary forinulae connected with moving axes give us three e(|uatiou8 of the type 
dkda . ai, d$     , f^.da ,    .d^\ , , /  ,da .    ,d&\ 
dttdt'^h^dt   ^ 
'■' rf("^'*' dt) 
-'-{"•"^^'''W'^-
And, by expressing the fixity of the axes of y and z, we obtain two other such sets of equations.    From these we find the foi-mulffl 
dm. 
dn. 
'■''=''0i+'^^+"'i'«' '*''='-|-""^^+"'a^-j 
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3nTii 
3^       *d^ 
+ T(j =- ,    ^,' = /, — + nij _2 + Tij ^ 
an. 
da 
aj9 "    ' dff 
off' dn, 
...(19) 
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        «P4 
EXTECSIOff M2fD mtBOtQ OT A 
xxtr 
TW ftnnatx (18) «iMble u to nlmh<#' c,, c^ «, Md the pn H iha nwufl of /■hwlariag p^,.— 
8B0.   Fonxnilie relattng to mull diaplaoemensa. 
I^ B. V. V dcflole ibfl ooBpoocubi of liiipiieLBeBi at aaj poiat < TOtrminrd middle mrfiue igfcfTwt to the tm^gBata as cW poml to tbe fi^coutL sod ascoost. ukI tbe Dorma] mt tlw fooit to Uie wufaec. V« wiak to ealnkte t]M exteMiaa and tlie dnoge* «f canrBtim m teiBi ctf % V. w and their dtfteinitMl coeCcieDta with laymt to a uvi ^ 
(a)   Tkt exUmmom. 
Afloonhng to the female (18) we reqoire expnanoss ior dl^Ca, ... z, J, z are the ooonliDatca of a point on tbe strained middle amhcB refencd to fixed axea. We ahall chooae m these fixed axea the tiaee of «»f«if ^1.1^ («a, r V at a partacskr point oa the upatnuaed middle eaAce, and ofata reqabed expRmioiM bj an appUeatioa of the owChod of nkonBg axea. 
Li* ^(«,A be the Otmm featt on the wnatnmei aridaa aoAc^/*'(■-«-1^ a Mci^lfaoariag foiot oa tlM aoiuc Tke hm 4^ nfa^Ke lor i^ iv r ve • t noring mMm, aad tfa* poaitMa of tfaoK &xm wfaei tke angiD i* at ^ » i» be ot—inrf ft«a te fiiattiua whtm tfc* neighi ■ at /* bf* amO iiMiiliniiii »ad k^bbB raiataaa. TW iiiM|fifiriili d tke twnAtimi, refcrrvJ I" tfe ua at i*. are Mm, Mfii, O. Tte wmpnofnu of tbe rousioo, rcAmd to the aame axn, u« girea b^ tbe iiiillj id Antde >33 ia tb« (onas 
AM 
JU 
■<lfl *^ J* 
Wbm i*te rtiqJifH to i*i and Z** to A*, the x. ^ 1 af i*, 
tba 
<^^: tbti.j.tofP.
tl-a.iV' 
tbe 
■.». 
of^ 
ijQsntmea ue eonaacccd bjtbtatdinvr fonaala irltfiin, tii ■iiiiiii^ 
r4im    eB: 
n« 
<-^> 
.»w. 
and in tbc» fomuilK «e aiaj equate 1 
(ffltaaui^ 
Tbe above fvooea leads to tbe following expreanou far nldu. 
H da' 
<A + 
?A    A 
w 
^   dv 
c'J.      Ss    9ie    ^r 
da'^Bdfi    Jti'   fti    di    Bc^'   cm    <^^^ 
dx_du     v_bB    di    o.^ A,1L^^?E    ^-^   ^ ^~dfi~A<i*   d0'    ^d0^ABa     R,'   0ff~c^'^li, 
(20) 
I 
When products of u, v, w and their dificrential coefficients are neglected the formulse (18) ant] (20) give 
\ du      V  M ''"'Ada'^ABd^ 
1 dv     i dn 'Ada'^Bd$~ABd0 
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        These formulse determine the extension. 
When the displacement is inexteiisioDul u, v. w satisfy the eystem of partial differential equutiuus obtained from (21) by e(|uating the right-hand nicnibcre to nery. A& we saw in particular citscs, in Articlea 311* and 320. the essuiiiption that t}iti diupitu:ement iu inextensiunal is ainiust enough to determine the forms of u, v, w as functions of a and /?. 
(b)    The changes of cunralure. 
According to the forrauJw (19) we require expressions for the direction cosines i^ ... of the moving axes referred to the fixed axes; we require also 
expressions for dljba     We shall clioose our fixed axes aa before to be 
the lines of reference for u, v, w at one point P of the unstrained middle surface.    By (15). (16), (17). (20), (21) we can write down expressions for the 
values of I at the corresponding point P, of the strained middle sur&ce 
in the forms 
(22) 
These are not the genera! expressions for /,, ... at any point. They are expressions for the direction cosines of the moving axes at a point on the BtraiiiL'd middle surface, referred to the lines of reference for », r, iv at tlte corresponding poiTit of the unstrained middle .surface. Fur these latter direction cosines we may introduce the orthogoi>al scheme 
	.                    I dv      u  dA             I dw     u       V 
	

	J        \ dv       u   dA              ^             I dw     V 
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        \     Aba     ABcff)     Ada' 
'b 
^ 
■?s' 
1 /c*v    u &.1\ 
W' 
3iij     3 /I ?a> 
^J 
In calculfttiujj pj, ... from the fonniilw (19), we writ© for /,,... the valties given in (22^ aod for (il-\/€la,... the valiien jimt found, and we obwrve that, aince tbe scheme (14) is orthogouaj, two of the Furniitlra (18) ma l>o writtcu 
The process just dfacr(be<I leads to the fonnulna 
._ d_ .^1 dw      v\     1 BA /I dui     u\      I  fSv     u dAy ^~da\Bd^'^Kl~Ild^[Ad^'^H,)~ R,\da'Bd^l' 
,_    4     ^ (}_Sw     w\     IdAfldw     v\ ^' ~ ~ fl,     da U ^a ■*" rJ    Bb^yBBa^^' 
'''       Bd/n'^daKAda    ABd^I^ r\bZ^'^ HJ' 
y...(24) 
aod 
^ *^ ie, "^ a|3 U 2/3 "*" iV "^ ^ 3a U tfa "*■ -RiJ ' 
3.-
9^ U cd ^ rJ "•' ^ a"« U a^ "•" i;,^   ah, [da  b d0}' f-t^s) 
We can now write down the formuliB for the changes of curvature in the forms 
I a /1 aw   u\    i dA /idw    v\^ 
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        _        1 aw   u 
'    Ada\A da     li^ 
I dvj     V 
1   dB (iBu/      u 
!_3^nawv^\ I   dAdw 1_ 3v 
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        4&B fflUUV IX A BEST [(^ zxir 
The abore fbrunila admit of Tarioos nrificatiaoB: 
f'lj    In the am of a i4soe plate, vfaen ■ and ^ are Outeatao twdina*—, «e bavv 
?v ?v ?v 
«i-^,   «i~^.   '-^ja
Tbew rank* agree with the fwmulc in Article 298. 
(iij III the caum of cTUndrical and spberical abdla, the oooditiaiH that tbe Aqilaeetoeot way be ioezt«unoual can be foond as partkolar caaes of the fonnnls (UX ^ixl the ezpreNnofut for the chaogea of curvature, funnd by eimfiiSpB^ (26) in aoootdaooe with dvae ociiiditioas, agree with thane obtained in Articles 319 and 390. 
f^iii; Let a itpbere be aligfatly deformed by ponJy normal displaoeoxnt, in aath a war that the radiua beconieit a-ffrP.fooatfj, when b is smaD, P. deootaa Legendre% atli coefficient, aiid 0 in tbe co-latitude. The som and i«oduct at the jvincipal cttrmtam of tbe deformed aurfaue can be »hown, by means of the fwoiulje of this Article and tboie of Article 324, to be 
l + ~(,n~l)in+i)P,{a»fi)   and   i + A(«_i)(« + a)P.(oaB*), 
correctly to tbe firvt order in 6.    Tbeue are known resolts. 
(iv) For any suHkce, when «i, «], « are givm by (21), andpi',... are giTso by (34) and (25), equations (11) are satisfied identically, squares and products of «, r, ■» and their differential coefficients being, of course, (nnitted. 
327. Nature of the strain in a bent plate or shelL To investigate the state of strain in a bent plate or ahell we suppose that the middle surface id actually deformed, with but slight extension of anj linear element, so that it becomes a surface dififering but slightly frcHn some one or other of the surfaces which are applicable upon the unstrained middle surface. We regard the strained middle surface as given; and we imagine a state of the plate in which the linear elements that are initially normal to the unstrained middle surface remain straight, become normal to the strained middle surface, and suffer no extension. Let P be any point on the unstrained tniddic surface, and let P be displaced to Pi on the strained middle sur&ce. Ldt X, y, z be the coordinates of Pi referred to the fixed axes. The points P mid J\ have the same a and y3. Let Q be any point on the normal at P to the unstrained middle surface, and let z be the distance of Q from P, reckoned as positive in the sense already chosen for the normal to the surface. When the plate ia displaced as described above, Q comes to the point Qi of whicli the coordinates are 
X + ^2,    y + m^z,    z + n,z, 
where, as in Article 32o, l^, tits, vjj are the direction cosines of the normal to the strained middle surface. 
The actual state of the plhte, when it is deformed so that the middle surface has the assigned form, can be obtained from this imagined state by imposing an additional displacement upon the points Qi. Let f, 17, ^denote the components of this additional displacement, referred to axes of x, y, * 
326, 327] 
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4«9 
with origin at Pi which are flrawu as specified in Article 324. Then tho coordiiiaU;!) of the final pmtitiuu of Q ore 
x + /.f + ^T?+ /.<? + {:).    y+m,f+)«,»?+ !/!,(* +a 
z + fl,f+ n.,i7 + »i,(r+0- ■••(27) In thcac exjH^ssions l|, ... are tho direction cosines so denoted la Article 325, X, y, z. li, ... "( are ruiictions of a and ff, and f, >;, J' are furictiuiis of a, ^, x. 
We consider the changes which must be made tn these expreasiona when, instead of tbo points P, Q. we take oeighboiiring points F", Q', so that Q is on the normal to the unatritined middle surface at /'', and the distance P'Q^ i» £ + Sz, whera Ss is small. Jjct P be (a, ^) and i^ (a + ^a. S + 5/3), where Ba and 80 are small \ and let r denote the distance QQ', and /, m, n the direction cosines of the line QQ', referred to the tangents at 7^ to the curves y9 = const, and a = const, which pojts through P and the normal to the unetrained middle surface at P. The quantities a. $, t may be regarded as tho panimeters of a triply orthogonal faintly nf surfaces. Tho surfaces r = coust. are parallel to the middle surface; and the surfaces a = cunst, and Q = const. are developable mirfaces, the generators of which are tho normals to the unstiained middle surfare drawn at points on its several linos of curvature. The linear element ^Q' or r is expressed iu terms of these [laranieters by the formula 
and the projections of this clement on the tangents to the curves ^ = const, a = con»t., drawn on the middle surface, and on the normal to this surface are ix, mx, nr.    Hence we have the formuls 
Ix 
Ba = 
«^ = 
mx 
Bt: 
inr. 
.(28) 
In calculating the coordinates of the final position of Q' we have in (27) to replace 
,byx + ^S.+^S^, .... 
K by ^ + ^(r,'Sa + r,'5j8)-/,l5.'8a + ?;S/f), 
. > 
z by i + Iz. We use also the formulic (15) and (16) for 0x/3o, ., 
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        STRAIN  IS A BBNT 
(CH. XXIT 
Let ti denote the distance between the 6nat positions of Q and Q". We ezpreaa r, as a honi<^eneaus quadrebto function of /, m, n, and deduce expreasions for the components of Btrain by means of the formiiU 
r,« t= r* [(i» + m» + n') + 2 (c„? + r^m" + «„»• + e„t^n + c„ni + e^fm)]. 
Now the difference of the x-coordjnates of the 6nal positions of Q and Q is 
^(l + e.) 
+ ii.«r + i;(l+*,)} 
mr 
5f 
+ ;?71 
mr 
a^'} 
/r _  St mr 
+d?? 
+1? 
(-ID"}
1&94(1 -tjHx)    d$H{\ -siH,) ■ V' ' 3*/"j 
The differeiicfH  of the y- and z-euurdiiiateH can be written down hy snl 
Htitnting tn^. tii^. m, and n,, n,, n^ succesi^ively,for /,. Zg, fj.   Since the schemol {\i) is orthngimal. we find the value of r," in the form 
+1^ 
I 
-^(- + D + ^f4|^[ + » 
A 
^ 
^ 
<S9) 
+ n(l + 
Id deducing expressiona for the components of strain wo ob9er?e that, order that the straina may  bo sinall,  it   is  clearly  necessary  that quantities 
1-x/^U    iii/'     l-*/Rt\     B^Rj'     1^^7/S,B     \~*fR,A 
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Khould be Kiuall. The thii-d nf equatious (11) iu Ai-ticle 324 shows that p^jA + q^lB is a Booall quautity, and we see therefore that, in the notation of (18) in Article 324, the i|uuiitititia tjr,. r<if,, rr mu8t be small. 
The exprossions for the components of strain which we obtain from (29) are 
e«
e, — tK, + 
1 ,'3f 
-v^ + 9,'jr 
1, aij 
p«ii 
sr (      1 I       ^ >        /g,'     &'\ 
^       1 1   /9»? ,.^    ,e\ 1        1  /3f ,     ,    .„\ 
9| 1 1      /^r .y .\ 
,(30) 
In these expressions f, *;, f are fiuictious of a, ;3, z which vanish with r for all 
vahies of a, j3. 
Wc observe that the values found in Article 317 for €„> Hv> ^*v would be obtained from the above by omitting e,, 6,, «r and {, 17, ^, and replacing 1 - ejRt and 1 - i/fl, by unity. 
^^      328.    Specification of stress in a bent plate or shell. 
The stress-rv.suHants and stirs-s-aiwiiles in a curved plaUs cir shell, or in a 
k  plane plate which is appreciably bent, may be defined in a tsimilar way to that adopted in Article 294 for a plane plate slightly deformed.    Let» denote any curve drawn on the strained middle surface, i- the normal to this curve drawn in a chosen sen^e on the tangent plane of the surface at a point /*,, and let the sense of description of « be such that the directions of the normal V, the tangent to s, and the normal to the surface at /',, in the sense already cbofien as positive, are parallel to the axes of a right.-handed system.    We •draw a normal section of the strained middle surface through the tangent to ^t« at P), and mark out on it a small area by the normal to the surface at P, ^" and the normal to the (plane) curve of section at a neighbouring point P,'. The tructiom> exerted across this area, by the portion of the plate ou that aide of s towards which v is drawn, upon the remainiug portion, arc reduced to a force at P, and u couple.    The average components of this force and couple per unit of length of PiP/ are found by dividiug tha meadures of the 
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StUESS AMD BTRAIK   IN  A 
[cH. ixnr 
ooinpuaenU by the moaaure of this length.    The limite or these areiBgei mc    [ the streas-resultnnts and 8trc9s-c<tuples belongiog to the cun'c < at th« pouyl 7*,.    We ileiioU' them, na in Article 294, hy T, S. N, H. G.    For the expre*™ sion of them we take temporary axes of x', y', e aloug the uonual v. the langeat to a, und the nonnal to the straiued middle surface at P,, aad deuote by X'^, ... the stress-componenb* referred to these axes.    Theu, taking^ /f U» be the nifliiis of curvature u( the iiuniial <4ecti'jn of the surfnce drawn throu^ j the tangent to « at /*,, we have the formule ■ 
=^-/'/■•'('-^>' ^=/>v(i-:J)'i«. N=l\x:[i-^)i..^ 
H^j\ -.A'V (l -^) d..   G.j\.JTV(I - ^)rf.. 
When we refer to the axes of jr. y, g specified in Article SS-I, and denote the stress-resultants and stress-cooples belonging to curves which are oormil to the axes of j- and y respectively by attaching a suffix 1 or 2 to T, .... wa. obtain the fonnula: 
"''-f.M'-i'y^- «'=/l-^'('-i-)'^- ^-/^'{i-i-)^
and 
^"i\^'{'-H,)"- ^^L-M'-A)"- ^-M-k)^^-=L ""' {' - ^) '^'"' ^L M'- w) '^- ^ 
in which R^' and R^ denote, as in Article 324. the radii of curvature of nonnal sections of the strained middle surface drawn through the axeft of jr^ aud y. ^ 
We observe that the relations S,+5, = 0 and S,+H, = 0. which hold in the case of a plane plate slightly deformed, do not hold when the strained middle surface is appreciably curved. Tlie relations between the T. S. JV. G, H for an assigned direction of c and those for the two special directions x aod y, which we found In Article 295 for a plane plate Klightly deformed, &i« alM disturbed by the presence of an appreciable curvature. 
329.    Approximate  formnln  for the   strain,  the   stress-resxiltul and tlie stress-couples. 
We ctan deduce front {SO) of Article 327 approximate expreanoos for the components of strain by argument.'^ precisely Kiniilar to those employed in Articles 257 and 359. Since f, tr> C vanish with s for all values of a aod 0, and c^l9*, ... must be aniaU quantities of the ard«r of adtniasible stnin^ 
^ 
S28. 329] 
BENT PLATE OR SHELL 
503 
I 
f, 1}. f and their differential coefficients with respect to a and 0 may, for a 6ret aptiroximatiou, bo omitted. Further, for a first approximation, we may omit the products of r/A| or gjlii and any coniponeut of strain. In pai'ticular. since q^fB-\-p^jA is of the order ti/Si, we omit the product of this quantity 
and z\  and, for the aaine reason, we replace such terms as    _-Tn  ^uid by  e, and «*!.     By  these procetwes we obtain   the approximate 
tXt 
I - ziR, formula 
W 
»>j   Ci^ 
= «.-2.r. e„ = % 0^^p^. e„Jf_. ...(33) 
3a'-^ a*' •« 3,' 
In those f, ?), 5" may. for a first approximation, be regarded as indopeodent of a and 0. Id case the middle surface is uuexterii]t-d, or the cxteosional strains e,, e,, m are small compared with the flexural strains exi, tK,, *t, these expressions may be simplified further by the omission of «], tf, «r. 
The approximate formula (33) for the strain-cornp<meats, as wtll as the more exact formulte {30), coutain the uokDown displacements f, ij, ^, and it is necessary to obtain values for these quantities, or at any rate for their differentia! cocfficieots with respect to 9, which shall be at least approximately correct 
We begin with the case of a plane plate, and take at, ^ to be Cartesian rectADgular coordinates, so that A and B are equal to unity, and l/Ri and 1/ii, vanish. In the forrauhe (33) f, v, t "-i^ approximately independent of a, ff. We consider a slender cylindrical or prismatic portion of the plate such as would fit into a fine hole drilled transversely through, it. We may take the cross-section of this prism to be so small that within it e,, c,, w and fji *i. T may be treated as constants. Then the strain-components, as expressed b; (33), are the same at all points in a cross-section of the slender prism. If there are no body forces and no tractions on the faces of the plate^ we know lirom Article 306 that the stress in the slender prism, in which the Btrains are uniform over any cross-section, is plane stress, Hence, to this order of approximation Xg^ Vj, Zj Tanish, and we have 
I 
The remaining stress-components are then given by the equations E B 
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        3*        '    dz        '    dz 1 — tr 
«i + fi-*CTi+*,)!. 
.(84) 
E 2(1+tf 
(tff - 2t*X ...(35) 
* E<jaiTal«nt formnls in tbe crbo of a plane pUte were gi^eD by Kirchhoff, VmUtungtn fltwr math. Phynk, ilechanik, VorEefiUOg SO. 
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STRESS AKD STSAIX IX X 
From these results we may deduce approximate rorrotilee for the streaES* resultants and stres^-couplcs. For this purpose we omit from the furraulc (31) and (:J2) the factors (1 - tlR,') and (1 - 2/A,'). We should obtain zero valaea for K„ iV„ while T,. ... and (?,, ... would be given by the forinute 
2A'A 
. (<i + ff*.).    T, = 
2Eh 
(e, + «.),   -S, = S^ = 
Eh 
w, ...(36) 
and (?,--/>(,f,+<r*,).   G» =-/)(*.+ «,).    -ff,=*//. = i?(l-o)T. ...(37) 
Tn the name order of approximation the strain-energy per unit of area U' given by the formula 
W<I-ff')i[(e,+f.y-2(l-<r)(f,f,-i«r*)] 
+ ii>[(«, + «.)»-2(1 -ff)(«,«.-T*)J. ...(38) 
To get a closer approximation in the case of a plane plate we may regaid the strain in the blender prism as v'arying uniformly iiver the cross-sections. ■ Then we know ftxjm Article 306 that Xt and K, do not ^-anish, but the third of (34) and the formula- (35) still hold, and therefore also (36) and (37) are still approximately correct, while JV, and N, are given according to the result of Article 30(j by the formula; 
A", = -iJ^ («,+«,), 
N,= -D~{K,-^K,). 
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        These values for Ni, N^ could be found also from (12) of Article 290 omitting the couples //, M' and substituting for Oi, fr,, Hi from (37)l 
From This discuRsion of the case of a plane plate wc may conclude that the approximate expregaions (33) arid (34) for the components of strain are adequate for the purpose of determining the stress-couples; but, except in cases where the dxtension of the middle plane is an important feature of the deformation, they are inadequate for determining the stress-resultants. The formulsa (37) for the stress-couples are the liame :w those which we used in Articles 313, 314. The results obtained iu Articles 307, 3u8, 312 seem to warrant the conclusion that the expressions (3V) for the stress-couples are sufficient appruxiiniitions in practifully important cases whether the plate is free fmm the action of body forces and oi tractions on its faces or not. 
In the (yise of a curved plate or shell we may, for a first approximation, use the formulie (33) and the theorem of Article 300 in the same way a±( for a plane plate. Thu'j ei^uations (34) and (35) are still approximately correct. We may obtain from them the terms of lowest order m the expressions for 
the stresa-reAultaiits of the typn? T. »5 and the stress-couples.   On substituting in the formula) (31) and (32). we find, to the first order in k. 
1 
r,= 
(ea + ae,).    T,= 
•lEh 
(e,-h<r*,).    -S, = Si = 
Eh 
1-Kr 
«r....(36, 
* 
329] 
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and, to the third order in k, 
0> 
+ <r/f,+ 
^,(ei+<r<«)|, 
R, 
.-ni 
X) JjC, + ff«, + -s-j (f, + tret) 
r: 
^,-D(l-.)(. + ^-),   if, = -i;(i-.,f. + |^^). 
609 
....(39) 
I I 
This firet approximation includes two extreme cases.   In the first the extensional strains e,,  e„ lar are  siimll  compaied with the flexural strains IK„ tit,, ST.    The stre-^-couples are then given hy the forintila> ff, = -/)(«,+ ff*,),   G,= -D(jif, + <r»c,).   -H,= F, = /)(l-<r)T....{37M 
and the strain-energ-y per unit of area is given hy the formula which we found by means of n certain assumption in  Article 317, viz.: 
iiJ [{«, + *,)"-2(1-a) {«i-r,-T*)], but the stress-reRuItJinta are not sufficiently determined. 
In the second extreme case the flexural strains zk^, zk^. st are anuLlI compared with the exteiwional strain* e,, fj, «r. Then the stress-resultants of type T, 8 are given by tlie formulff' (30), and the etrcss-resuItantK of typ<* JIT and the stresK-coiijjles are unimportant. The strain-energy per unit of area is given by the formula 
lA'A/,l-ff')l[(^. + 0'-2(l-ff)(r,e,-}««)] (40) 
When the extensional strains are comparable with the flexural Htrnins, so that, for example, ra is of the order At, the Btress-resultanta of type T, S are given with sufficient approximation by (36). and the «tre«s-couples are given with sufficient approximation by (37), while the strain-energy per unit of area is given by (38). 
From this analysis of the various possible cases it appears that, whenever the stress-couples f/,, (»,, Hi, Hf need be calculated at all, they may be calculated from the formnlse (37) instead of (3R). 
When the extenainiial strains are tjurge cuopArod vith the flexural atraiita, ap|iraxiniste equations of equiUbriuiu can W formed by the method of variAtion described in Article 115, by taking the strain-energy jter unit of area to be given by the formuin (40), lo tbe same com; approxintate eqiiatiooa of vibration can Ijg formed by using this exprew^ion 
\4Ki) fur the Htmiii-energy and the e&presttion i»*   ( g} ) + ( ai ) + { 5i^ )   M"*^ ^^° Icinetio vxvr^y per unit of area. 
The strain-energy per unit of area is not, in general, expreiisod correctly to the third Older in b by (3H). Th.c complete esprosttiou wauld contain additional tcmiH. In gcnenU the complete ex]>ret»9ton for the strain-energy must be fonncd before equations of eqailibrium nnd vibration can be obtained by the variational motbod*. Wo uhall uae a different niothod wf forming the eqnationa. 
The appnis i nin.te ciprofwion (:18) for the stmin-encrgy BUgg«»tB, as the correct form, a fnnctimi cxpu.iiaib]t!i i[i rising |Krwer« of h, and hai-ing for coefficients of the rarioua povters of h ezpreaiiiutis determined l>y the displacement of the middle surface only. 
* A. B. BMsel. Pkil. TranJ. H. Soc. \Sei. A), vol. 181 (IWOJ. 
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        AND ST&AIN   IN A 
[ca. XXIT 
Lflfd BiySlllb* lua CttlM attention to the fact that, when there are tractioiM on Ui»| fllCM of tlM tiuiU l*o aui'll frtnn in [maHiMc, uid hna illustnt«d tbc matter bv Lbc twiv dlnwniioiuJ dlspboemeiit tif a cjriiudrical tube mibjected t» aurfiun pramira,    Id protilufn Itiu Anl a|tiiraiiiiiat)nii, givon hy (40), ia undlaturbei b; the aurfaoo |>r 
330.    Second approximaLion in the case of a onrved plate or ahell. 
Ill tliR nimi of titi A)t]in-<Halily ciirvotl iiiidtite Hurfaue we uaii nuUct! nuiue progruati with A i«(yitiil iij)|inixiiiint.ii>ri jiroviili*)! that the diM{)Iaueuiciit m wiialL Such au approxiiuAUoa U utinwMUuutr^ iiiiWhh tli« eib'itniotial iitrainii tj, t^, or are small oonijiared with tbi? flextual atniiH (■!, iKf, rr. Wb sluUl Mip|>r«e that this ia tbe caMi In CAlcuktiDg the utraina "mi-- fniiu (3Ci)iiutt«adof (33)weob0trvo that tbe t«nii *ii\-z/Si)'* luaystill be t«plac«d bjr «i, iumI iliat the t«nn -Ui(\ ~siH,)-^ laayix replaced by-j«|-r*K|//ti. Tbc tbIdm of f, ij, { which were f^ven hj Iho flrat approxiuiation arc 
t-0,   ,-0,    f--j'^((«,+*0'-4C«.+«i)'»J. 
and ttwn volan maj bo ttiibtttitutcd Id the first three nf (30). Further, in the terms flf (80) that eontain f, »i. f "« may roplaoo pt',... by the corresponding quantities relating to thp HiJiitmiiiwl mIicII, that ia to any wo may V»^ Pi'^qt'"^ P»7^=l/^ -ft'/J^l/^i-l W* r^joot all teruw u( tlie type* t|</^i, t|K|«, k,*^.    We thita obtain the oqaations 
• *i     I    *■    J "i + 't 
™^< 
.(«> 
Thitn lbc fiinuiiU fur €^ we can cak-tiLote .V, and <S| by nKiaiui of (31} and (32) cf Article SSft, atKl in this caknlation we niay replace l/tt,' stud \;R^ by 1/JZ, aod IfR^ We And 
Id oalruUting a sccitnd approzimatkni to T, and T, we may not Mmioe tiMrt J( nuiiahce. A» in tbe cane of tbe plaiM plate, we take tbe ^eil to be free frvm the i c/ lM<iy fortx« and of tvnctiooa oa ita fiuen. We oliaecA-e that the axes of ^ ^ t ifi in Article 3i3 are parallel to tbe nmaals to tbree aurfiKm of a triply avtbapjoal hmSj. Thia is tiw family ccHieudered in Article 337, and tlie pammetera of tbe lalaces axe ^ A a We write t«<cu|x)ranly > in place of ^ and lue tiie notatioo of Articlea IS and S&. The valura i.)f it. A,« A, an gimi liy tbe aquatiooa 
i-('-^)- ^-'{>-i)- i
We write tlown an eqaatKw of tlie type of (19) in Artide 5S by wohaig aftoag tW to tfa —fi^ >■    This eiiwUmi >a 
I 
33 
('-t)'(-iO"KM-i)-}4^('-i)^ *4{-(-i)(-i)"}] -§(-r4{^(-4)}-f(-i)"'4K-i){ 
i«<C*.< 
vd.»(uai. pi. sn. «■ .sei««t^ 
*eLJ.^ 
329-331] BENT PLATE OR SHELL 
Betunung to our previoiis notAiton, we write thiH equation 
-f(-i)-'--f('-i;)n
To obtAiu au ApproxiiHAtion to Zt, we euHtitute in thi'it equAtton for A'„... the vaIobs given hy the firnt ftp|.»roximation, nnd integmte with resiHjt-t to t. We detennine the cuoataiit of integration ao that Z, may vanit^h at e —A and t= —L We iniiHt ciinit the tennfl containing .V, and 1*, and uae tLo approximate vaJiioa given in (35) for A', and Y,. Furtbor we may omit the faetor* l-i/^i and I -j/A^and mich t«nns as 'if'/f,. We thim find the foniiicla 
^■-\Th^^''-"tT-"T) '«> 
Now we liavs 
Aikd honoe, by ninuiH of the foruiulo) for «„^ «„, Zg, wc cntculato approxiuiatQ valtiw for 7*1, r, in tke forms* 
The fortuiil(e fur the tttreaH-coiiiplea are not affected by the oeoond approximation, bo far 
I at any mte ar teroia of the order Z)<| are concerned. 331.    Equations of equilibrium. * 
The equations of equilibrium are formed by equating to zero the resultaut and resultant moment of all the forces applied to a portion of the plate or shell.    We consider n portion bounded by the faces and by the Hiirfaces 
■ formed by the aggregates of the normals drawu to the strained middle surface at points of a curvilinear quadrilateral, which is made up of two neighbouring arcs of each of the families of curves a and yS. Since the extension of ^ the middle surtace is small, we may neglect the extensions of the sides of the H qnadrilateTHl, and we may regard it a» a curvilinear rectangle. We denote the bounding curves of the curvilinear rectangle by a, n + 5a, d, j9 + S^, and resolve the streiw-reMiiltants on the sides in  the directions uf Hxed axes of 
.(44) 
I 
* The apiiroiJTi^aie formnof S,, S^. T,. T^ obtHiri«i] in UjIb Article agiei> i^abst&DtJAlly with tboae foond by a dLffcrc-Dt pri>ct.'s8 by A. B. Buaact, loo. cit. p. 505, m the ciuea of oyllndncal and ■phrricAl %hAU lo which lie riMtiirtN hit diKcUHBiun. HiB fomu oontain KHue additional tenna vhiob are of the oriler hcr« nt^lectcd. 
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EQUATIONS OF EQUILIBBIUH 
[CH. XXIV 
X, y, z which   coincide with the tangents to j3  and   a at  their point of intersection and the normal to the strained middle surface at this point (Fig. 73). 
Fig. 74 shows the directions and senses of the stress-resultants on the edges of the curvilinear rectangle, those across the edges o + Sa and 0 + S^ being distinguished by accents. The axes of the stress-couples Hi, Gi have the ^ same directions as Ti, Si; those of H,, Gi have tbe same directions as 
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Fig. 73. 
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        Fig. 74. 
The stress-resultants on the side a of the rectangle yield a force having components 
-TiBB0,   -SiBS0.   -N,BB^ 
parallel to the axes of x, y, z. The corresponding component forces for the side a + Sa are to be obtained by applying the usual formulffi relating to moving axes; for the quantities Ti, Si, N't are the components of a vector referred to moving axes of x, y, z, which are defined by the tangent to the curve y3 = const, which passes through any point and the normal to the strained middle surface at the point.    In resolving the forces acting across 
the side a + 5a parallel to the fixed axes, we have to allow for a change Dt a into a + £a. and Tor the small rotation (pi'ha, fi'So, r,'5a). Hence the componentfl parallel to the axes of x, y, z of the force acting acroiiij the side a + 5a are respectively 
Z i*5^ + 5a ^ (T, B&$) - S, BS0. r/5a + N, BS^. y/Sa, S, i*S3 + So ~ iS, BBff) - iV. Bi&. p/Sa + T, BSff. r,'5a. 
Ill like manner wc write down the forces acting acrosA the sides ff and ^+S^.    For /S we have 
S,.45o,    -r,^5a,    -Jr,i45a; and for 0+ S^ v/e have 
- S,ABa - 5/S ^3 (5,/l5a) - T,ABa. r.'Sy? + y,AE^. o,'5y9, 
op 
r,^5a + 5^ ~(T,ABa)~N^ABa.p,'&^-S^A&a. r,'B^, OH 
N,ABa + iff~iN,ABa)-^S,ASi.q;B0 + T,AStt.p/h$. 
H Lot X', Y'. Z' and IJ, M'. 0 denote, &a in Article 29(J, the components, parallel to the axes ofx.y, z,of the force- and couple-roaiiltant of the externally applied forces estimated per unit of area of the midfUe surface.    Since the 
Parea within the rectangle can be taken to be ABBaBff, we can write down three of the ecjuationB of equilibrium in  the forms 
diT,B)    BiS,A) 
da d^ 
diS.B) , diT.A) 
- (r,'S.fi + r;T,A) + (v/iV,B + q,'N^A) + ABX'»0, \ 
- (p,'NiB+p,'N,A) + (nT,B - rr%A) + ABT = U. 
-(q^'T^B-q,'S,A) + (p:8^B-hp:T,A) + ABZ'r.0. 
U4S) 
da     ^     d^ 
djy.B) ,d{N,A) 
da "dfi 
Again the moments of the forces and the couples acting across the sides of the rectangle can be written down.    For the side n we have the component 
COUplfS 
-i/,B5/3,   -G,B&0.   0. Iftod for the aide a+ Sa we have the component couples 
B, B5y3 + 5a ^ {If, BS^) - 0, Bh^. r,'5a. 
<?, B5^ + 5a 1^ ((?,56;?) +-ff, flS5. n'5a. - J3',B5^. 2i'5« + (?, BBjS. f ,'5a i 
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for the aide & we bare tbe component oouples 
and for the itidc 0 + h0 vq have tbe component couples 
- Q^ia - B$ _^ (G^ABa) - I{,ASa. r^fi. CfS 
n,Ata + ifi~(H,Aha)-0,ASa.r;S$. op 
G,ASa.q;&ff -i-£{,Aha.p,'8ff. 
Further ihu nioTn<>nt« about the axes or the forces acting across the a 4- Sa and ^ + ^0 can be taken Co be 
BB^.N,A&a,   -ABa.Nylihfi,   ABti.SrBS^ + JiS0 S^A^ 
Tbe equationn of nioinent« can therefore be written in the forms 
d<H,B)    d(G^A) 
d{GjB)MStA) da    '*'    ~d^ 
0. 
- (G,Br: + n,Ar,') + (JT, + L') AB = 
+ (iSr,J9r,' - G^Ar^) - {N, -M')AB 
Q^Bp: + G^Aq: - {B,Bq: - H,Ap^) + (5, + if.) AB Equations (45) and (46) are the e<|uations of equilibrium. 
0. 
...(46) 
332.    Boundary oondltions. 
The Kysteni of stress-resultants and streas-coupIeA iK^longing to a curve 8 drawn on the middle surface can be mixiiBed after the fashion explained ill Article 29(», but account must be taken of the curvature of the surface. Bcgording the curve « as a pol}'gon of a large lutmber of sides, we replace the couple Hhs acting on the sido S« by two forces, each of amount H, airtingat fl the eitds of this side in opposite senses in lines pfirallel to the normal to the surface at one extremity of hs; and we dn the like wit.h the c<jnp1eif acting on the contiguous sides.    }{ P'PP" is a short arc of «, and the arcs T^i* and PI*" fl are each  etjual  t-t> 5ff, these operations leave us with a force of a certain magnitude directiun and penst; at the typica! point P.    The forces at P and       i P", arising from the couple on the arc PI*", are each equal to H, and their H lines of actii»n are parallel to the normal at P, the force at P being in the negative sense of this norraa].    The force? at P' and P arising from the couple on the arc P'P are each equal to H—^II, and their lines of action are parallel to the normal at P', the force at P being in the positive sense of this normal NotT let Ri''^\ Hi^" be the principal radii ot curvature of the strained middle surface at P. so that the equation of this surtace refened to axes of f, ij,< which coincide with the principal tangents at P and the normal is approximately 
r-Jif'/i2,"+,Vi2.'"I-0. 
331-333] 
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Also let ^ be the angle which the tangeut at P to r'pp" makes with the axis of f. The point F" has coordinates — fiscos^, — £ffsin<^, 0, and the direction cosines of the normal at P' arc, with sufficient approximation, &coB^//?i"', S»sin^/J?.J", 1. The force at P arising from the couple on FP has componeuts //S«cos^/ii,'», i^&fsiu .^/ie,'", H-tH parallel to the axes of f, 7, z. Heace the force at P arising froiii the couples on P'P and PP" has coiiiponeuta parallol to the normal lo s drawn on the surface, the tangent to s aod the normal to the surface, which are 
i/Ss8m^cos^(l/;Zi"i - V-'V").   BtsIR',    - Sff. 
where R', = [co9>^/i?i"' +Mn'^/^"']-'. is the radiufi of curvature of the normal section having the same tangeut line as the curve x. Hence the stress-resultants T, S, N and stress-couples H, 0 can be replaced by streas
resuttanta i 
r-f iifsin2*!l/ie,'»-l/i{,«!},   S + HjJi;   I^-dH/ds, (47) 
and a flexural couple G, 
The boiitidar}" conditions at an edge to which forces are appHcH, or at a free edge, can now be written down in the manner explained iu Article 29ti. The formulae (47) are Hiniplihed in case the plate or shell is but little bent, for then the radii of curvature and the position of the edge-line n^lative to the tines of curvature may be determined from the unstrained, instead of the strained, middle surface. Thej- are aimptified still more in case thu edge is a line of curvature*, for then H does not contribute to T. 
333.    Theory of the vibrations of thin ehelia. 
The equations of vibration are to be formed by substituting for the external forces and couples X', I", Z' and /.', M' which occur in equations (45) and C4ti) of Article 331 the expressions for the reverbed kinetic reactions and their moments. If wi; neglect "rotatory inertia" the values to be substituted for L', M' are zero. When we use the components m, v, w of displaceTiieut defiiied in Article 326, the expressions to be Kubstltuted for <X'.  y. Z') are - 2p/i (d^ttl'df, c^jdf^, d'tv/df). 
In forming the equations we omit all products of «, r, w and iheir differential coefficients; and. since the stress-resultants and stress-couples are linear funclions of these quantities, we may simplify the equations by replacing ;>,',... by their values in the unstrained state, that is to say, by the values given for^j,,... in Article 323. 
* The rMuU that, in thin case, R cotitribntee to 5 kh w«1I aa to .V was DoUkl by A. B. BftlMti ioe. eit. p. (W5.   S«e ftUo tbe pcper b; U. Lamb citsd on p. 177. 
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The etjuations ^46) o( Article 331 becunie 
AB 
I   f3(ff,fl) . d(B,A)    ., M 
da 
Bfi 
-«4"-^^^=V 
(+8) 
It * id! "*" ^» **■ ^*' 
and the equations (45) become 
ABX   da tffi 
d{7\A) 
d(N,A) 3j9 
+ 
2^g
...(*») 
The equations (49), some of the quantities in which ore connected by the relations (48), are the equutionH of vibration. 
These equations are to be transformed into a system of partial diffcreDtia! equations for the determination of u, v, to, by expressing the various quantities involved in them in terms of u, v, w and their differential coefficients. This transformation may be effected by means of the theory* given in preceding Articles of this Chapter. Equations (37) of Article 329 express G,, G^Hx, ff,in tenna of *j, «,, t, and equations (26) of Article 326 express*,, «,, t Id tennsof u, r, w. By the first two of equations (4ti) therefore we have A^, N^ expressed in terms of u, v, w. Equations (36) of Article 320 give a first approximation to 5„ 1^. jfi, y, in terms of «,, c,, or, and c()uation» (21) of Article 326 express e,, <„ AT in terms of t(. v, w. A closer approximation to iS,, S„ jT,, T, is given in equations (42) and (44) of Article 330; and they are there expressed in terms of «i, k„ r as well as c,,^ e«r v; so that they can still be expressed in terms of u, «, w. When theee approximate values are substituted in the third of equations (48) it becomes an identity. When A',, A'„ &*,, 6',, 1\, T, are expressed id terms of «, v, w, the dasired tmnsformation is eflected. 
The theory of the vibratimis of a plane plate, already treated provisionally in Article 314 (d) anil (e). is included in this theory. In all the equations we have to take \'R, and l/ii, to he zero. The equations (48) and (49) kll into two sets. One set contains d*U!dt\ c^vjdP and the stress-resultants of the type T, A; the other set contains dhajdt', the stress-resultants of type JV, and the stress-couples. Now, iu tins ca^e. the stress^resultants of type T, ^ are expressible in terras of «i, «i, w by the formulie (SB) of Article 329, and €i, eg. o- are expressible in terms of u, v by the formula 
fi = 
da 
dv     da nr ^ ^ + 
a and $ being ordinary Cartetuaii coordii]aU.-M. Henue one of the two sets of etfuat-iiiiiH into wliic^h (48) ami (49) fall bcrcmiies idHulival with the equatioiu of exteusional vibration g'jven in Articlp 314(e). Furthtr, tlie etruss-cnuples are expressible in l*^ll^ of x^, «„ t hy the furinulw (37) of Article 32f), and Kt, K^, T are expre«»ible iu terms uf ir by the foi-ntulae 
(f'W 
fl'ir 
T = 
dHu 
while Ni and J^, are expressible in   terms of the stre«t»-couples by the 
equations 
J^. = -^' + 
r)G,    dH, 
z$ '   *'"   d&    ea 
The second of the two si'ts of e(|uatioii8 into which {48) and (49) fall is equivalent to the equation of transverse vibration given in Article 314 (d). 
In applying the results of Articles 329 and 330 to vibrations we make a certain assumption. A similar assumption is, as we noted in Article 277, rnadtj habitually in the theory of the vibrations of thin rotls. We assume in fact that the state of strain within a thin plate or shell, when vibrating, is of a t\'pe which has been determined by using the equations of equilibrium. For example, iu the case of a plane plate vibrating transversely, we assume that the internal strain in a small portion uf the plate is very nearly the same as that which would be produced in the portion if it were held in equilibrium, with the middle plane bent to the same curvature. Consider a little more ciofcly the atatc of a eylindrical or pri»mi;tie portion n^ a plnue plate, such as would fit into a fine hole drilled transversely through it, \\*e are assuming that, when the plate vibrates, any such pristnutic portion is practically adjusted to equilibrium at each instuiit during a period. This being so, the most important components of »traiu in the- portion, when the plate vibrates transversely, are given by 
k        «« = -«!,    e„ = -SKt,   e:^ = ~2iT.   ««= [ff/(l -o-)] »(«, + if,), and, when it vibrates in its plane, they are given by 
in both cases e^ is adjusted so thar, the stress-component Z, vanishes. It is clear that the assumption is justified if the periods of vibration of the plate are long comiMired with the periods of those modes of free vibration of the prismatic portion which would invoU-e strains of such types as are assumed. Now the period of any mode of transverse vibration of the plate is directly proportional to the flqitai-e of some linear diiufiisiiHa of the area contaiiu-d within the edge-line and inversely proportional to tho thickness, and the period of any mode of extensional vibration la directly proportional to some linear dimension of the area conUiineil within the eflgii-liae and independent of the thickness, while the period of any mocio of free vibration of the prismatic portion, involving strains of such types as those aasumed, is proportional 
L. E. 33 
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to the linear dimensions of the portion, or. at an outEnde estimate, to the IhicknesH of the plate. There is nothing in" this argument {>ticti)iar to s plane plate; und wc may conetude thnt it is tc^timate to ossaine that, when fi plate w «liell is vihrnting, tlie state of strain in any Kinall portion IB practically the Raine, at any iDstaot, as it would bo if the plate or shell wero held in ei|nilihnnin, with itft middle surface stretched and bent as il is at the instant. We see also that we ought to make the reeorvationj that the argument by which the assumption is justified diminishe» in cogency i as tlie frequency of tho mude of vibration iucreasee*. 
Tbc moHt iu{*ortaut reault ot'taioc*! hy tae»f\» vf tb» anntoitiUcni in tbe apivoxinute determiDfttioD of the Btrc8aHM>rapoiient ^«. When there i» equililpfttuu luul tbo pbte is plane,i?', = OU>nnecondA[iproximMtion; when tbere iiiequililhumiuid tbo middlebutSkw iM ciin-etl. Z, vauisbes to ii firai a|>pr<>xiuiation. Aail hy tlie second approxioiatiou we eximn it an im^torttaiial to (/(--t*) imd to n functimi whif-h i^ liiiftAr in the pnncijiAl curv&turas and tbe chaiigen of curvature. The r(>(4iilts in rej^ard to ^, aa a function of h atxl < Mil be illuHtrstod bjr a disGiUiKiun, Iwaetl uu tbe general eqiuttirinHuCvibraLionofetAStio solid bodies, of the vibratiniiA of ati inhnitu plate nf tiiiitn tbickiinw. Kucb a diocuMsioii has boon fira ty Lord Raylcigb't j aiitl fruui hiB roKuIta it can befihon-ti that, id thiHcaNe, them are chuKS of vilira-tiuiui in which Z, vanisheH through(>ut the plate, and that, in thu remaining clnmnn, tho exprewiou fur Z, caa be exp&uded in rinint; puweni of A aud s, and tlio exiNUuiea contains no tertcj) of degree [ovrvT than tbe fourdi. 
When the middle surface is curved the contponents of diaplacemeSI %v. w must satisfy the differentia! equations (49) transtformcd as explained above, and they must also satisfy the boundary conditions at the ed^ of the shell. At a frw edge the flexund couple and the three linear combinations of the stress-reKultants and the toraionol couple expressed in (47) of Article 332 must vanish. The order of the sj-stem of et|uations is, in general, sufficiently high to admit of the sntisfoction nf such conditions; bui. the actual solution has not been effected in any particular case. 
A method of approximattf treatment of the problem depends upon the obticrvatiou that the expressions for the stress-couples, and therefore also for Ni, AV contain as a factor D or ^Ek^l{l - a') while tlie expj-ewiions for the remaining stress-resultants eontain two terms, one proportional to h, and the other to A*. Both members of each of the equations (49) can be divided by h ; and then those teruiH i>f them which depend upon t,, e„ c are independent of A. and the remaining terms contain A* as n factor. We shiiuld expect to get an approximately correct sithition by omitting the torma in A'. When this is done two of the lM>utidary conditions at a free edge, viz.: those of tbe tj'pe (? = 0, N — ?)Hihs = Q, disappear; and thw system of equations is of a sufficiently high niifler to admit of the satisfaction of the remaining boundary' ^ conditions.    Since h has disappeared from the equations and conditions, th« ^| 
* Tb« aiynmeat \« cle&ilj' applicable with some modifications of detail to tbe theory of tbe TibrationK of thin rods. 
t London MaXh. Soc. Pne.. vol. 80 (1889). p. W5, or Seienlljie Paptn. Ml. 3, p. UB, 
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fmjiiency itt independent of the thickness. The exteasion of the middle surface is the most important feature of the <Ie format ion, but it ia necessarily RCRompanied by bending. The theury of such extensional inbratimus may be obtained very simply by the energj* method, a^ was noted in Article 329. 
The extenstonal mixies of vibration of a thin shell are analogous to the extenaional vibrations of a thin plane plate, to which reference has already been made in this Article and in (e) of Article :114. The con.iideration of the case of a slightly curved middle surface shows at once that an open shell must also possess modes of vibration analogous to the trauKverse vibrations of a plane plate, and havin;tr frequencies which are raucli less thau tliose of the cxtcnsional vibrations. The existence of such modes of vibmtion may be established by the foUowing- argument:— 
A superior limit for the frequency of the gravest tone caa be found by assuming any convenient type of vibration; for, in any vibrating system, the fre*)uency obtainwi by assimiing the type cannot be less than the least frequency of natural vibi-ation*. If we assume as the type of vibration one in which no line on the middle surface is altered in length, we may calculate the frequency by means of the formula for the kinetic energy and the jjotential energj- of bending, as in Article 3'21. Since the kinetic eaer*,'y contains h as a factor, and the potential energy h', the frequency is pruportional to h. The frefjuency of such inexteitsiouai vibrations of a shell of given form c«n be lowered indefinitely in comparison with that of any mode of exteristonul vibration by diminishing b. It follows that the gravest mode of vibration cannot, in general, be of extenaional typet. 
If we assume that the vibration ia of strictly inextensional typp the forms of the components of displacement as functions of a, ^ are, as we saw in Articles 319. 320, and 326, verj' narrowly restricted. If displacement,s which satisfy the conditions of no extension are substituted in the expressions for the (rtress-resultant*^ and stress-con pies, the equations i>f motion ami the bonndary conditions cannot, in gonoral, be satisfiedj. It is clear, therefore, that the vihrations mn.-t involve some extension. To constrain the shell to vibrate in an inextensional mode forces would have to be applied at its edges und over its faces. When these forces are not applied, the displacement must differ from iiny which satii^ties the conditions of no extension. But, ia any of the graver modt-s **\ vibration, the difference must be alight; for, otherwise, the mode of vihraiion would be practically an cxicnsiotial one, and 
* Lord Baj'leiRb, TH<9ry cf SwitiA, voL 1, 9 09, 
t ThftCBM of A cldHdil itheet, nueh uk k thin pphurioul »bn)l, tR kn obrloMaioeptioti, far tbm no be no niext«ii»lonftL (Ji«plac«-inwuL A ulioll •>( (riv«D «ii&l] tludoHM, oompktel; doMd except for a Kuiall Mpurture, i!> iUmi vxevjitiotiul when tbu K]>vrliir« in kiusII «nuu^li. 
* In Hie partioulur cu.m of splieiical aud ovliudricnl ehellit the foiluris of tbo iiivxt«iiiuonal di<ipijuM>inent to HitiHfr th<t «qua(Lons of mattoii and the boUDd&nr conditions can bodefinitely proved.    Tha csm of cylindrical shells Is dealt with in Article 331 [d]. 
33—2 
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the froi^ucncy could not be nearly small enough. From the ibrra of the (!i|iiations of vibration we may conclade that the rei^uisite extension must be ver)' small over the greater part of the (>urface; but near the cd^ It mnst be of sufficient imporcanoe to secure the aatisfocliDU uf the boandary 
conditions*. 
334.    Vibrations of a thin cylindrical shell. 
It Is cunvenient to illustrate the theory by discusHing in some detail the vibratiuDS of a cylindrical shell. As in Artleto 31iJ wo shall take « to be the radius of the shptl, and write tr for ot and (f> fur $, and we shall suppose the edge-line to consist of two cirelee * = I and a: = —l. Acwmling to the results of Article 326, the extension and the ehanges of curvature arc given b}* the equations 
1/31;        \ 
dpw 
_ l_/3'w    dv\ 
_&«     1 Su 
The displacement being periodic in 4> with period 2ir, and the shell being BUpposed to vibrate in a normal mode with frequency p/^i'rr, wo shall take u, V. w to be proportional to sines, or cosines, of multiples of (f>, and to a simple harmonic function of t with period 2-7r/p. The equations of vibration then beconii.' a system of linear equations with cons-tant coefficients for the determination of u, v, w as functions of x. We shall presently form these equations; but, before doing so, we consider the order of the system. The expressions for e,, t,. v contain fii'st differential cucBScionts only; that for <i coutains a second differential coefficient. Hence Oi and (7, contain second diffurt-ntial coetficients, and iVj contains a third dilTerenttal coefficient The third equation of (49) contains cf*io/9iP* in a term which is omitted when we form the equations of extcnsional \'ibration. Thus the complotc equations of vibration will be of n much higher order than the equations of extensioual vibration. It will lie Bei-ti prest^utty ttiat the fornuir arc a system uf the 8th ortler, and the latter a system of the 4th order. The reduction of the order of tbe system which occunt when the ei|uationB of extensional vibralion are taken instead of the complete equations is of fundamental importance. It does not depend at all on the cylindrical form of the middle aurtace. 
* The difflcalty amin;; froia the (not that inostcBsbna! displaoemeiita do not admit ot the Htisf&ction f>( the bonndary oondittonii ia thnt to which I calked attention in my paper of 1888 (■M Intr/idMrtiitn, [ootnoCti !.S!1). The explaoatioD that ttie vitensioo, proved to be iiiimmij. may be prMticnlly oonflned to n narrow TVRion near the «i1^, &nd jet mnj be auttelmilr important at the edge lu secure the aatiifacition of tbe bouadanr conditions, was gtren nlmaltaneoiuly by a. B. BaaRct and H. Lamb m the papers citod on pp. SOd nnd 477. ThuM «othon lllo«trated tbe possibility of tia» explAD&tlon by moans o( tlie foltitiun oE c«rt«io autical problem*. 
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        <7,--/)wn7M^C08(p(+f)l ^ -<r -p—\, 
^      - .   ^    ,     . / (PIT  «r+n»ir\ 
7/, = O co« ,^ cos (ftf+O ^i^ (fi ^+ ^ = - i?,. 
The lirst two of uqttations (48) become 
jutd we bare 
We have alao 
„   ao,   1 off,       „  1 iOt  3ff, 
-.-[^. 
(•» + «■'!)
r+2ff" 
a+.T  «i 
:]• 
2(l-w) a     2fl-o-) a, where (|, K|, ... b&re the values given above.    The equations of vihratton are or, m terisH of T, K,  (T, 
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+<?dLtS--<?"-^-5r "s?-^^ J-o» (62) 
<r+2<r*    rf'r       JN-cr The buuiidarj>' condition* At jr—/ «ikJ i-— - / are 
^j5(«P+»»')]=0 ^53) 
ir,=o, fi-.+^-o, 
.v,-»f=0.  <?.=o. 
and aH the left-baod membera can be eipressod as liDur functions ot U, V, W nn«l thur differential ciefficipntw with resi^ct to jr. 
The system of equations for the determicatioD of u, v, w as fuociions of «, has DOW been expressed as a linear syatem of the Sth order with coustant coeflticiettts. These wiefficipnts contain the unknown constant p* as well as the known constants h aud h ; and n, being the number of wave-lengths to the circumference, can ho chosen at pleasure. If we disregard the fact that h is small compared with a or I, wo can solve the equations bj assuming that, apart from the simple harmonic factors tlejiending upon i^ and t, the quantities M, f, w are of the foriti fe"". ije"*. fe"", where f. 3j. f. m are constants. The coiiHtant iiL in a root of a deterinlnantal eijuation of the Sth degree, which is really of the 4(h deforce in m*, fur it contJiiiis no terms of any uneven degree. Tile coefficients in this equaliiin dejjend upon p\ When m satisfies this equation the ratios ^ : n ' t *^ determined, in terms of m and p\ by any two <it' the three e(|uation8 of motifin. Thus, apart from ^ and t factors, the fiolutiou is of the foi m 
in which the conntants f^. fr' »re arhitrarv. but the constants rf,,.., are expressed as multiples of them. The boundary i-nuilltions at x^l and af = — l give eight homogeneous linear equations connecting the f, {'; sod the elimination of the f, f from these equations leads to an equation to determine p*.    This is the frequency equation. 
(b)    Kxteimonal vihraiion*. 
Tho uquatiou£ of cxtcti-sionul vibration are obtiined bj otuiltiug tlie t«rmii in equatious 
(&1)—(53^ which hftvo thw Buefficiunt D',k,   Tfte deteruunauta] equ&tiou for m'becvmes « 
quadratic.   Tho boimdary coaditions at j:= +? become Ti-O, A',—0, or 
dU      ir+»K   ^      dV , nU -     -a- ~— =0, .- + 
dx a dx 
=0. 
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I 
Since h dom not occur in the diflTereiitial equAtiuiis or the boiuidAr)' oonJJtiottK, the frcqnencies ate iiwlependent of h. 
In the cnnc oT st/mmetnetil ■•iftraciurM, in which u, V, tr a]« independent of tf>, we take 11= Ucm {{It+t),   v= Vcm(pt+t)^    w= irc«s(ji)ir+*),«od we find the equntious 
The boundary conditions at x>= ±f are 
rfCT 
R' 
There are twn cliuwea of aymnietrical vibrationK. In the fimt clans V and W vftulsb, BO that the displacement i« tAU)jvntial to the circulAr ovctiona of the cylinder. In tbi* cUas of vibmtioua wc have 
\' = 1fC(M 
E 
I 
where n is an integer. Tbew vibrations ant anulugotLs to the tornonal vibra-tions of & Holid cylinder L'uIl»idL^^lMi iti Article SOO. In the rteound cluaH V rnnibhcH, tio that the cliaplacement takes place in jiianex tbrm){h the axts, and vb And 
t'=f DOB 
i 
Tf= 
where { and £" aro connocted bj* the equations 
The equation for ;>* ia 
If the length is great compared with the duuueter, so that afl is email, the two tytiea of vihration are (i) almost purpty mdia!, with a froqiioncy \Bij> (1 - Ol'/Sff**. «nd (ii) almoat purely longitudinal, with a frBqiiciic}' «(E>f,^l%l. The latter are of the aaroe kind (w the extensioiial vibrations uf a thin md (Artick S78). 
A more detailed inveatigation of the extcnaional vibrations of cylindrical ahcUs nnth edges will lie fnutid in my pft]>Gr cited in the /kirocfwcd'ow, foi>tnote ISa. For a shell of infinite lenjith the radial vihratiLms hnvo been diMTiiKsed W A. B. B«H9ct, ion/fon MalK Hoc. Prtic., v<il. 21 (l?t>I), p. '>3, 'ind the varinuH modes of ^-ihration have boon investigated very fully by Lord Ka.yl;ei>>;h, /Vor H. Sac, vol. 4.'j (IKH!)), |». 443, or Srientific Papers, voL 3, p. 844.    Si-c (iIki) Theory o/Sound, 2nd etlition, vol. 1, Chapter x a. 
(e)    Infa:{rnMOtuif. Pibratwns*. 
The diaplacement in a principal mode of vibration is either two-dimensional nnd given by the fomiulte 
* Su Chapter xuii., Artiole* $19 and 331. 
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vrhore 
or e!flc tho dinplacemont k tbrMvdimeDsiotul Aud given bjr tbe fnrmuliB 
where 
1 '^     »»«<»'-1)» I +fl(l-ff)B«/««J» 
'*' "s^o*     «»+l     l+3aVi»'(n»+l)/»' All the voluca.of ;> Aud j?' arc in-oportioiuU to A. 
id)    Ijf.rin-tvr*! of Me {wjetentioual rfisploeemtrnt. 
Tr> verify tlic fjii'htre of tlie aasumod ineitciiatoiuii diBplmretnent to BAtjiify tho oqaatiac of uioti'iii, it lit Aiitfi>oiRiit to calculate T^ rnun the <>quation.s nf motinii, atxl Dompue tfasi result with the Keixtnd of the formtitee (44).    Tnking the twixlituenBiDnol ribmtion i by A^, we bave the equation 
a c^ 
-V;^.' 
-•* •«™ ("4+O CO* (/>,f+o; 
but we bAve obo 
24-g    />«f 
2-(-£r     />li(n>-l)   .-...,        /     ._L    ^ ""2{l-<r)  '     0*   - J-iim(n04-a,)oo8(p^+e^ 
The two valueit of T, are difftuttnt, And the oqtmtiona of motion are not Mtiafiod by the 
aaRUtncd diApIai^euiuut.    It in clwir tlint a uoiTOCtiuii uf the dJiiplAceDient iuvolving alight Dxteiiainii would Enable im to satiiiff the diHbrviitiul oquatioiu. 
Two of the boundary t-onditiona Arc 0,=0, iVi-a~'p//|,^ = 0.    Wbeo tbo ribrntioaj 
ia twn-dimcn-siunal, G, in intlqi^tidciit of jr, and oaniiot vunitth at Any [larticular value X unlenn A^ = i).    When tbi> ribmtion in three-dimetinionnl. X, and I/i are imt^iendent x, and Jfj~a~^clf[fc<p cannot vAiiitth at any pat'ti'CtilAr valtie i>f r iitilenn B»=0.    Thus tha^ bouiidAry coiiditioD)! cunuot be satiolied by the aosumod diBpl&c'eineiit.    The correction of the difiplaceniont required to satisfy the boundary conditiooH would Ap|>car to be more important than that required to ftatixfy the diffciTntial c<]iiAtion8. J 
(e) Nature of the corrwtion to be applied to the ine^rt^nsional displaoi' vieiit. 
It is clear that the exietence of practically iiiextenaional vibrations ia connected with the fact that, when the vibrations are taken to be extensional, the order of the system of equations of vibration is reduced from eight to four. In the determinantttl equation indicated in (o) of this Article the terms which contain m* and m* have A' as a factor, and thus two of the values of 1)1* are large of the order llh. Tlic way in which the solutiona which depend on the large valuta of vi wuuld enable us to satisfy the bouudaiy 
334J 
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[oonditions may be  illustrated by the solution   of   tbe foUo-wing statical jHjblera* :— 
A portiou of a circular cyliuiier bniindod by two generators and two circular sections is held bent into a surface of revolution by forces applied aloQg the bounding genemtors, the circular edges being free, in such a way that the displacement v tangential to thu circular sectium is proportional to the angular coui-diiiale 0; it is retjuired W find the di:*pl»ceinent. 
We are to have v= c*. where c is constiint, while u aad w are independent iof^.    H^nce 
\ 
c-w S*u> c rt 
Ox a d.r' a' 
The stress-resultants iS,, S, and the atresa-couplea H,, //, vanish, and wo have 
"--^(^^S)-  <^--^(|.-^)- ^—C. -^-o
Tb© equations of equilibrium are 
0, 
§-». 
\ 
and the boundary cdnditions a.ta:=±l are 
We seek to satisfy these equations and conditions approximately by the assumption that the extunsional strains Cj, e^ aro of tbe same order aa the flexural strains Aki, A«,. When this ia the case jT, and 1\ are giveu with sufficient approxiuiatioii by the formulBC 
r, = (SDth') («, + «,),    T, = (WJk») (f, + «,). To satisfy the equation dTJ(fx = 0 and the condition T, = 0 at x=±l we must put Tj = 0, or f, = - ae„ and tlien we have T, = 3i)(l - a') €^h\   The equations of equilibrium are now retJuced to the equation 
while the boundarj- conditions at j:* ± ! become 
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        3*11;    rrc    „ 
^^0. 
w?>ake c-w to be a sum of terms of the form ^e^. then «»' is large of the order 1/4; and the 'wlution is found to be 
B'"c + C,cosh (qxja) cos iqx/a) + C, sinh {q^ja) aiu (j^/a). 
• Thi. i> th« problem «,lved rnr this parpo« b, H. Lamb. t«. «*. p- 477.   Th. -™« l^J"' 
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and 
- ffc sinh (glla) eog(yf/a) — cosh (yf/a) sin (yf/a) ^•--^ sinh (2g7/o) + sin (2gI7o) 
- _    o-c Biiih ((///tt) cos (qlfa) + cash (ifl/a) aniqlja) 
The form of the solution ahown that near the boundaries ei. e^. A«,, A<, are all of the same order of magnitude, but that, at a, distance from the boundaries which ia at all large cf>ra|>are(l with (aA)l, €i and e, become small in comparisoQ with hK,. 
It may bo shown that, in this statical problem, the potential energy due' j^ extension is actually of the order »J{hfa) of the potential energy dne 60 bending*. In the case of vibrations we may infer that the exten^ional straiii, which is necessary in order to secure the satiafacticni of the botindarj' con* ditions, is practicAliy confined to eo narrow a region near the edge that its effect in altering the total amount of the potential energy, and therefore tbe^ periods of vibration, is negligible. 
335.   Vibrations of a thin spherical shell. 
The case in which the miildle surface is a completo spherical surface, and the shell is thin, has been investigated by H. Lambf by means of the general equations of vibration of elastic solids. All the modes of vibration are extensioiial, and they fall into two classes, analogous to those of a solid Sphere investigated in Article 1^4, and characterized respectively by the absence of a rH<Ual component of the displacement and by the absence of radial component of the rotfltion. In any mode of either class the displacement is expressible in teruis of spheriwil surfiice harmonics of a single integral degree. lu the case uf vibrations of the first class the frequency fi/2v ia\ cotuiected with the degree 7) of the harmonics by the equation 
jD'aV/> = («-!)(« +2),   (54) 
where a is the radios of the sphere.    In the case of vibrations of the second class the frequency is connected with the degree of the harmonics by thei equation 
ioS) 
If n exceeds unity there are two modes of vibratioQ of tiie second diifia, 
* For larther d«Uils in ranard to thi* problem the nttdu- i» referred to the papflr by U. lAmb alresdv clt«<l. 
t LofKiott .Viilh. Hoe. Proe., r<A. 14 (1888), p. 60l 
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and the gravest tone belongs to the alower of those two modea of ribration of this class for which n = 2.    Its frequency p/2ir is given by 
if Poisson'a ratio for the material is taken to be i. The fre()Uencies of all these modes are iudcpeudeut of the thicknc^ia. 
In the limiting caae of u plane plate the inodeK of vibration fall into two uaia c]as.s«8, one incxtensional, with displacement normal to tlio plaue of the plate, and the other extensifmal. with displacement paraliel to the plane of the plate. [See Articles 314 (d) and (e) and titiS and Note F at the end of the book-] The case of an Infinite plate of finite thickness has been di^cnssed by Lord Rayleigh •, starting from the general eqnatioiiB of vibration of clastic solids, and nsing methods akin to those described in Article 21-i'gupra. There is a class of extensicmal vibrations involving displaccniout parallel to the plane of the plate; and the modes of ibis class fall iiiti* two Knb-elaMt>es, in one of which tliere is no displacement of the middle plaue. The other of these two sub-classes appears to be the analogue of the tanj^'ential vibiutiooa of a complete thin gpherics! shell. There is a second class of extensional vibrations invnlving a component of displacement normal to the plane of the plate as well as a tangential component, and, when the plate is thin, the normal component is small compared with the tangential component. The normal component of displacement vanishes at the middle plane, and the normal component of the rotation vanishes everywhere; so that the vibrations of this class are analogous to the vibrations of the second class of a complete thin spherical shell.    There is also a class of flexural vibrations involving a 
» displacement nonimk to the plane of the plate, and a tangential component of displncemcnt which is small compared with the normal component when the plate is thin. Tin- tangential eoinpinent vanishes at the middle plane, so that the displacement is appniximately inextensional, In these vibrations the linear elements which are initially nornial to the middle plane remain Btraight and normal to the middle plane throughout the motion, and the frequency is appro\iiimtely pro|H>rtinnal to the ihiuknesa Thei'e are no inextensional vibrations of a complete tbiii spherical shell. 
y The case of an open spherical shell or bowl stands between these extreme cases. When the aperture is very small, or the spherical surface is nearly complete, the vibrations must approximate to those nf a complete spherical shell. When the angular radius of the aperture, measured from the included pole, is small, and che radius of the sphere is large, the vibrations must approximate to those of a plane plate. In intermediate cases there must be vibrations of practically inextensional type and also vibrations of exteusioo&l 
• i-on<i«iif<ifA. S0C.P1W..T0I. 20Cl*W), p. nS, or SeieiUijU Paptn, yo\.S, ^ »i9. 
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Purely inexteusioual vibratioua of a thin spherical shell, of which the edge-lino in a circle, have been discussed in detail hy Lord Kayleigh * by the methods de»cribe>l in Article 321 supra, lu the cAne of a Itemispherical shell the (requeocy pl2ir of the gravetft tone is given by 
ji=V(Wp)(A/«') (4-279). 
When the angular radiua a of the aperture is nearly equal to tr. or the spherical surface is nearly coitiplete, the freijueury pl^ir of the gruvest iixMle ofj inextensional vibration is given by p = \'(,ptio) [A/a* (tt — a)") (5'657). Bi supposing IT —a to ditninisli sufficieiilly, while h remains constant, vre make the freqHency of the gravest inextensional mode as great as we please ii conifMini^on with the frefpiency of tht? gravest (extensional) mode of vibralii>B of tho complete spherical shell. Thus the general argument by which w« esljiblish the existence of pmctiadly inextensional modes breaks down in th4 case of a nearly complete spherical shell with a small aperture. 
When the genei-al cquationa of vibration are formed by the methc illustrated above in the case of the cylindrical shell, the components of displacoment being taken to be proportional to sines or cosines of mitlliptes of the loijgitude ^, and also to & simple harmonic function of (. they are a system of linear equations of the 8th order for the determination of the components of displacement as functions of thu c<>-latitude 0. The boundary conditions at the free edge i-equire the vauibhing, at a particular value of $, of four linear combinations of the compuuenla uf dinplauement and certain of their differential coefficients with respect to 0. The order of the system of equations is high enough to admit of the satisfaction of such conditions; and the itolutiou of the system of equations, subject to these conditions, would lead, if it could be effected, to the determination of the types of vibration and the frequencies. 
The extensional vibrations can be investir^ated by the method illDstraied above in the rase of the cylindrical shell. The system of equations is of the fourth order, and there are two boundary conditionsf. In any mode of vibration the motion is compounded of two motions, one involving no radial component of displacement, and the other no radial conipoueut of rotation. Each motion is expressible in terms of a single spherical surface harmonic, but the degrees nf the harmonica are not in general integers. The degree a of the harmonic by which the motion with no radial component of di!<placement is speeitied is connected with the frequency by equation (54), in which a is written for n ; and the degree ^ of the harmonic by which the motion 
• Lonilofi Math. Sec. Pruc, vol.   Ift (IB9T), or Scimt^ PapdTM, itA. I, p. S61.    Sm abo Tltwiy i'>/N»uiirl, Scd «>Ution, vnl, 1, Chapter x a. 
t Tho uquuLiotis w-cri) forBii;d and aolvnl by K. Malliieu, J. dr I'KciiU pvlj/Uchnifuf, t. 61 (16tiS).    The «xt«Ditional vihraCtnos of itpbenoal eliefls firo also duruMt^ in Hit p«|>«r hj pKaenl writiir cited in tlie Intrad action, iDOtuole 138. 
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with no radial component of mtatinn is Hpecified in connected with the frequency by equation (55), in which /9 is written for n. The two degrees a and 0 are connected by a transcerdental equation, which is tho fn-qiieiicy e<tuation. The vibrations do not generally fall into chiseos in the same way as those of a complete shell: but, a« the open she!) approaches completeness, ix^ modes of extensional vibration tend to pass over into tho«e of the complete shell. 
The existence of modes of vibration which are practically inextonsional is clearly bound up with the fact that, when the vibrations are assumed to be extensional, the order of the system of diflereutial e'_|uatioiis of vibratiim is reduced from 8 to 4. As in the case of the cylindrical shell, it may be shown that the vibrations cannot be strictly incxtensional, and that the correction of the- displacement required to satisfy the boundary conditions is more important than that required to satisfy the differential eqimtions. We may conclude that, near the free edge, the extensioual strains are comparable with the llexuntl strains, but that the extension h practically confined to a uurrow region near the edge. 
If we trace in imagination the gradual changes in the system of vibrationa as the surface becouies more and more Curved*, beginning with the case of a plane plate, and ending with thai of a complete spherical shell, one cla«s of vibrations, the piuctit'aMy iiiextenfiional class, ap|KiHrs Ut be tt>lally lost The reason of this would seem to lie in the rapid rise of frequency of all the uioiles of this class when the aperture in the surface is much diminished. 
The theoretical problem of the vibrations of a spherical shell acquires great practical interest from the fikct that an open sphericid shell iH the boat representative of a bell which admits of analytical treatment. H may bo taken as established that the vibrations of practical importance are inestenaional, and the essential features of the theory of them have, as we have seen, been made out. The tunes and modes of vibration of bells have been investigated experimeatally by Lord Rayteigh'f'. He found that the nominal pitch of a bell, as specified by English founders, is not that of its gravest tone, but that of the tone which st-ands fifth in order of increasing frequency ; in this mode of vibration there are eight nodal meridians. 
336.    Problems of equUIbrium. 
When a thin plate or shell is held deformed by externally applied forces, 
the straineti middle surfuce must, as we observed in Arti.^le tU.i. coincide very nearly with ime of the surfaces applicable upon the unstrained middle surface.   We may diviiie the problem ioto two parts ; (i) that of determining 
* Tb« proo<»R » Buggeited by H. Lamb ill tlia paper ciUd on p. 477. 
t Phil, il'iff. IScr. 51. voL 20 (1890), p. 1. or Sdentijie Papm, vol. 8, p. 818, or ThMry itf SouHd, 2iid pditiun, vol. I, CbaptMr j. 
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this applicable surtacu, (it) that uf determining the small dittplacement br which the slr»ine<l roiddk* surface is derived from this applicable siirfact This is the pn>cedure adopted by Clebsch* in his treatment of the pmbleu of finite deforiiiaiion of piano platea. It appears that there is some degree of tDdefinitene^s attaching to this divisiim uf the problem, since any one uf tbr tnirfaces applteable upim the unstraiued middle surface, and derivable cue from another by displacements of the order which we regard a» Kniall, wonid Horve equally well aa a solution of the first part of the problem. Greater precision may be imparted to the procedure if we iTgard the two steps ss (i) the determination of an inextcnsional displacement, which need nut be small, (ii) the detennin&tion of an additional displacement involving ei tensioiial strains at least of the same order of magnitude as the additio flexural strains, and possibly large iu compariaon with them. 
The first step is analogous to the determination of equilibrium conligurationB of a thin rod, discussed in Chapten XIX. and XXI.; but, nnleae the di»ipUuH)ment is small, little progress can be made. When the di«iplacement! is small, it is, as we know, very namiwly i-estricted as regards its functional character. This restriction carries with it a notable difference in procednre lietween the problemR of rods and of plates or shells, and it also increases the theoretical, though nnt tlie practical^ importance of the seouud step in the solution of the problem. 
These poinU maji' be iHuKtratcd by n [nu-UcuW x'rublciu:—Let a bemiHiiHericA] ^ell te deformed by a Htriiig struUihed tightly with tennit>n F between two oj)ptM.ite (niiiiIs oo iu edge. In the nut»tioii of Article 330 wc take thenc poiiiUi to be 6 = ^^, tft=0 and 0*>v, and wo suppcwc that the pole 0^0 is included. The type of small iuoxtenflioDA] dittpbc*mrnt is f;ivon by the cqiistions 
' B * 9 
u^sintf 2 Jatan'xCOBfu^    r»sm^ X ^atan'rinnN^ 
" 6 
K~  2   (H+OOSI^ Jntan"sCOSMd> 
it-i ^ 
The iiotaiitiiU energy uf betiding V in gireu acourding to Article 321 (&) by the eqiMbioa 
The work done by the teni»ton of the string in a small diaplAcetUBUt is 
/^rt(l+C08}iir)9J„ and Ui« iihcrcmeiit of the [totential energy of ttending in 
■ Ela$tiam, § 70. 
1 
I 
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; HeDce we h»vt 
^,-i 
Fa'       l+Cu»Ti«r 
^eo that A„ vanishes when n ih odd, and, wbea n is even, 
•'"   ''wpA'(«"-l)C2n>-l)" The inextensionft! «lif»]itat^n]eiit in imw liptemiiQBd*. 
In this Bulution the uocoshH^' <jf i»Hlisr>'iiij{ tn>uudurii- coitJitiotm aX the edge in left out 
of account, And it '» on iLccouat of these conditions that the second step in the ccin[ilcte 
eoIiitioD, ^iz.: that of determining n, sulMidiarT cxtcnadonal disjilacemcnt, Ac<]uire8 go tuucb 
thooreticAl inipO'rtJin*^    Frmn tlip Hr«t imrt (tt the .soliitinn we ■could cHliTulate tht' fiesiira] 
iple And thr radial .strrtw-m.'^iiltniit nt tlie ndge.    In tlie canfl of miial! (iiHjiWonicntM the 
■ttonH of eqiti!i brill III undi^r iin forL'CM eiwpt at the wlgo an* foriiieti bv oiiiitttii^ the 
kinetic reactioiiB in the equation* of viliratiiMi.    We thiw hnvc thtt foniia of tliexe itiiiHtioua, 
»nd we know th&t they are of a aiifficiantly high order to adiuit of tlie tuktinfac^tiDii uf the 
: conditions (i) tlie teuHion antl Hheoiiug force At th& odgo vouisb, (ii) the Hexurul couple and 
Ltbe radial «trca8-n»uJtant nt the edge linvc given vaUich.    If wc tokc these j^iven valuos In 
rbe tboAC calculated froui the firMt pnrt of tho .solution with reversed signit, the dio^tUuemeut 
fwhich BatiBfiiw the oqiiatiuiKt of equilibriiuii tind the IpuiuidArv cuiiditions is the required 
'Bubaidiiu')'  di8|iIiic«rtR'iit,     An  in   the   vtnic  of   vihrwlions  tho  aubsidisry  displAceiiient 
idiEuiimheft mpidly ua the ditttjinct' from the edge increases, uiiU liecjonies very small as 
Lboou nn tho distuiiL-e fnmi the edge in a i-onsiderablo multiple of the; mcvin [)m|Mii-tirtnivI 
the radiun and the  thickueHs.    The raethod of determining thu sulisJdiAry 
displacetueut in the case of a cylindrical shell was illustrated in Article 334(c), where the 
ineiteDsional displacement was u = 0, v = c<ft, tf'=c. 
There are CBsea in which tho firet part of the sohititm may be omitted. 
I For example, no inextensinnal diBplart^nient can be produced in a spherical 
owl by farces which are syinmetricftlly distributed round the axis.    The 
rl is very stiff, but not, of coin-se, inliiiitely utiff, to resist such forces.   The 
method of solution in such cases may be illustrated hy the problem of a 
}lnispheri1^al bow] renting with its edge on a smooth horizontal plane and 
ieformed by its own weight. 
Specifying the dispUcetnetit by uouipoucuts n, v, «- as in Article 320, and using the ranilts of Article 1120, we find 
•I 
'"«).   "=1(^ 
ir=-    55 + -:—^ a-;-root P 
)■ 
The streHi-resultants ore given by the foriaulw (36) of Article 329, viz.: 
3D 
3D 
^Tbe equations of equilibrium beootue 
cr. 
^^+{S,-S,)eoie+   ' 
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        ^* = ji (*a+«i), 
5,= -*,= 
2(l-ir)A« 
^ +{T,-T^cotB-^^.-^ + 2ifpha^ne~0, 
^7•
axaS dift 
= 0,    ri+ Tt+i^pfHHX»e = 0. 
* The methud and this pxampk of its appUcsUon sru due to Lord Itayleigb, London Math, E£«c. Proe., toL IS (1881), or Sdtnti/ic Paptrt, voL 1, p. 561. or Thtory of Sound, Chapter za. 
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Now, the forces \i*:\ng independent of i^ the duiplaccmi'nta uru aUo indepoaddiit of ^, auJ tliUB U1O8O equfttiniia become 
d 
..-iffJ+<r{i*cottf-w) +(l-ff^)oot*f5.-ttoottfW^^^^^-^^ ^un^H^O, 
e /&» 
a^W 
-nootdl + Sootfl 
rcottf 
=0. 
The Imimdorj ouuditious At tf-^Tr are 11=0, r—0.   The solution is 
»-^"|j±^C«ltf-l+006tfIoi{(l+C<»d)l 
337.   Problems of stability. 
In accordance with the general principles explained in Article 267 we r.hfLt an exterixinnal noiifignmiion of eijiiitibrtum of a thin plate or shell can be unstable if there cau exist both ati extensioDal aud au iuexteusiooal configuration of B(|iiilibnmn with the same exteriially applied forces. In sue oases interest is centred ia the determination of critical values for the^ external forces, or for the linear diinensinnfi of the plate or shell, which must not be exceeded if the system is to be stable. We illustrate some methods appropriate to m:ch ([uestiooti by means of two problems. 
{a)    Bucirlniff of a rtct'in^rilar platt Mnder thrutt in iu pianf. 
Wlieii tliu luiigUi and \>rt.-m]th tpf thi; ]>lnto, or tbo thniet at the ixlge, arc not tuo great^ the pUtc eimgily cciitract» in it« plniit^, in i\w iiianuer iiidic«t«d in .Article 301; but vrben the Unear dimiiDsiotis, ur tho tbruKts, art; grvjit euuugh it L>e:idB. Wo hIuUI »u]j}Miib tliot it is very slightiy bent. 
Wr. tiLke tlie centra of the rootangle as origin, anr{ lineo paraliol to the edges aik axca of X nnd ^, Bikd hup x ami y instead of a and 0 in the rormuJeo of Article 326, in whioh weg ^-.J5=lan»l l/fl,= l/«, = 0.    Wefind 
'h~~^^ 
-< 
?? 
+ ir 
O, 
'^'"(iji%" 
5,--^,«/j(l_o.) 
3W 
Omitting products of differential co^-fficiouta uf h, p, u-. Article 331 
w« tiod from eqnatiom (46) «f 
I1ie Snit two of equations {4S) of the wirae Article are sntiafied approximately, X\ }*', Z' Tiuiiah, by jnittiog Tj and T^ equal to constants and ^ and &t cquiU to Wo take 
where P^ and Pj are the ihru^tn at the wigts x«=cx«iHt. and ^=ooiist., encih a^timatad jwr iinit of length of the cornwjmrifliiig edge.    The third of equations (45) heoonjea 
If the l^atc is "supiKirted" at the edges j-'= ±a and y= ±/f, we must have w=0 aod 9i«0 at 01= ±a, and w=0 and Wj=Oaty= +it    We have a »ututinn of tha funn 
where m and n are intogcra aud If is a uuiistaiit, provided that 
Thia oquaUon giv«« the oi-itical ttirust^    For euuiiple, if P\ = P^, the critical value of P, and /", in J/)ff*(l/(i»+l,'&')*. 
(i)    Coitajite of a tube umter exfemai prauun. 
When a cyUndrioal Hhell of citvular set-tion iaMiihjocted to extcnud ]>romure p, which is Jiol Uio grcitt, it Biifforw a pirely radial dirtjilai^cmctiti the luuount of which can be calculuted by the method of Article 100; hut, whcu p in too j^uit, the nhull heD^ls under the pmssuru. lu tlie cane of a li>n>; cyhudcr, nup^ioHutl Lo bend alightly iu two dirneiiMona without Mtnitvhing, the Ji.s[dtiveEiiuut in givuii, oodonliu^ to Article 319, by the foniiulie. 
« = 0,    p = 2J,«ian^    »=-3nJ»Hinn0, 
and tboreforo wc have 
^ 
Aooording bi the forniiild! (24) nn<l (2S) of ArtiiclG 326^ all the quantities p\',... vouiMti except/)j', whiiih ia I+uitj-    Wc; ahidJ write 
where Ji in the radius of curvature of tlie defirraed crosa-acctioji of the middle mirfoce. The ordinary aiiproxiraatifjii to the atre»a-coiipleet give* 
tuid tbo fini two of equations (4fi) give 
a dip 
The eooond and third of equations (4n) givo 
EliuiiDating 7j from these, we find 
ltflcJft\.yi.pSR_f. 
' The problem in Btrictly •naloROiiB lo that of the Ofniblv [iivoUhJ Btrnt conBidpTPd in Artlcli* 3(M. Tbo above solution ia ilui- to O. H. Uryan, LoMihu Maih. Smr. Proc.. rol. 23 (1S91), p. 54, who diHcaifseH n nriniher of !<peciai cnMiif. 
i U it usgomed thai the exislttnoo of preimire nn the enter unrtniw of the tabe doe« not ■erioiulj affrot the fir*t approximatioii to the rtmin. The swond approximilioo ia not required lor the ealeulation of the atieBS-couplea. 
L. K. 
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COLLAPSE OF BOILER  PLT7ES 
[CH. XXI 
or, Doglecting tho sqiure of oku 
-{»{ 
■<i. 
Thero can lie a sulution in which «s in imiportioiial tu hju n0 if 
Honoe the leaat value of p fur which there can be a fimti other than circular U ZD^i^.i We infer that the ciixnilar c.vliiidnr is uiiHtAble if the external pressure exceeds S/J/o** 
The renull jiwt obtained admita of appUcatioii to the problem of the oolla/ue of ho3«r Jbte*. The preteure of Btoniii in a boiler h much in exoeoa of the preHur« of the air Is tliB Anoa, and it ia found thut U)ug fltiea t«nd to ooUapsc under the pTBOwrc. To obriAte thU wedcnen it is usual to construct tlie Huen in several detached pieces with uamiTe Banged jointa, thu» sbortcaing tliu oSeciivc Icngtb of tho Hxto bo the dirttwioo beiweea oonaecutire joints. Our rualt is that a flue of iu&uite length will not oullii{MO uolesa the [msHure exceodH [3J?/(1 ^ a')1(A-a^, whero f and ir denote Vimiig's modulua and Poiwou'a ratio for the material, and tiia ia the ratio of the tliickniwa to the diamotor. The portioa of the Hue between two jointa ia effectively a thin cyttudrical abvll with fixed euda, and the Saalj of th« ends liaa the conaequencc that the middle Hurfac« canoot be bent without stretching. If, however, the preMure exceeda the critical preasurc, and the kngtb is sufficiently great, the exteoaion may be procticallj confined to a narrow region near the endn, while tho grc&tor port of the surface bendtt almoot without extension, 
Tbe most interesting questioi; to be wttted conceniK the critical length, or the lout length fnr which nnlUpM in possible under the critical jireaaure. An exact numerical viUue cannot he obtained, but an indiratinu tif the reUtiims between the varinua dinteowons of the flue pan b«^ gathered from the princi[il«M explained in Article ^4 (c). For collapse to be posHible, tbe oird.!Ive h'ugth,or Ua- distauco between tfie jointB, nwuAbo groat enough for tbe inextcnHincutl coiitiguration to be eslablinhed over the greater )uirt of the length, in other words, it mu8t be great cikiu^L tti seuure Ihnt tbe i^ubeidiary extensioiial displaoomcot required to natinfy the termiiml couditioiis »b&ll dimitiifth to a negligible quantity between an end and tbe middle of the tlue. From tlie method of iwlution adopted in Article 234 (#) we can see at once that thu diatauce i-equirud muat be a large multiple of tlie tneau proportional between tbe thickness and the diameter. It would appear therefore that, in fluen of different siites, the rule for upacing the juints, by which the flues are pniieeted against collaiisc, ought to Iw: Tbe diatauve betwc-ua the jointa should be proportimal to ttio geninetric mean between tbe thickneaa and tho dianiotor. 
' Thf TMialt U (Iric to 0. H. Bryan, Cnmbrlds^; Fhil. Sw. Prvc., vol. U (1888). p. 287. analogouK result for a riii|j ia giwn in Jlrticie S7'' fUfira. 
Ibe 
NOTES. 
NOTE A. 
7'ermijiofttgif and notntion. 
lavB of uotaticMi, aud uf the tamt apprupriiiiu tiomeiic-liitiirc, for elasticity htre 'WBD tuucli diucuHMud. Rtferuiitic may be tnaclL> to thu writini;!* of W. J. M. Rankine', to Lord KelviiiV iu;i;(>uiit of Kiuiktne'H uuiiiciK'lnLiii<o^, to K. ruu-HoiiH^ cH'ort^i afUir ooQaifitenc; and utiiforniity, to prutiiOunceuicnM on the suVjeut W U. l^iuU^ and W. Voigt'. The following tftbtes show oorae of the more ita|M..rtaot not«tioii» for HtraincompoDeDta and 8tre»«-c<>in[)onents. 
Strain-componoots. 
	Text* 
	Ktilviii tkuU T*it^ 
	Rirclihoff' 
	Satnt-Venanl» 
	Pearsou* 

	^»     *«)    *•» 
	a, A, tf 
	jr.. ^v. '. 9i, *Mf 'w 
	Sfw. Sr«i 0n 
	'fit *•»!   "nr 


Stress-couijpoDeDtfl. 
	SS^ofl?     Kel«i.«.dT«t^ 
	Tftn^"' 
	Saiat-TwHUt" 
	F«anton* 

	j;, r„ z, 1     p, Q. B 
1 
J'm ^i -W     '^- ^' '■ 
	
	
	.¥*, nr, J^r 


* CumMdfff and DiAlin Nath. J., vol. 6 {1851], p. 47. or MUctltatifouM Scientific Papen, p. 67; alM PM. TriiTU, It. Sac., toI. !« [1HS6). or HitceUatuoui Scientific rapcrt, p. 119. In the fint of thptp miiaoin tko word "strtun" wnmupprapniLU-d tut<sprc8ttrclstivcdiKpl»nemeiit, ■Old ID the Becon<l the won! "Htrem" vtm RppToprinted to tixprtnn inUriittl actionn botwocn tb« parts of B body. The memaLr of 1S56 also coutains BajiklBo's nonienolaLura for vliL»tic conslaatB of ipolotropic Bolid bodies. 
* BaUimoTi LectureM on Molecular Dynamic*, CAmbrldgfl, 1904. 
* Todhunler and Pe«rBon'« Jlinory, vol. 1. Nott B. •• London Math. Six. Froe., vol. 21 (1891), p, 73. 
' Rapporli pr^itmtit au Ctmgrtt Internaiional dt Phyiique, t. 1, Paris, 1900. ' For the defimtione w« Artido 8. ^ fiatural Phitotophy. Pnrt 2. '  Vorlesuni/en iiber math, i'ht/tik, Jileehanik. 
■ Thforit lie f'{l<i«ti<ili dtt ecrf* toiidet de CUbtch, Pari*, 1883, frcqacntl; referrod to a* tli« ' Annotated Clebttch.' 
1* For thvdi^fliiitions km Article 47. 
I thiorie uMtSifmatinu* de I'^lojlidti det eorju tolidei. 
Lt^oiu 
eorpt 
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MOTK A.  TERMINOLOGY AM) NOTATION 
Kelvin and Taifa ooUtion for KtraiQ-ooinponentA and stna»*ocimpoiMnt« baa 1)Mn ail<ipted by [*nrd Raylcigh luid J. H. Michell, Among oUlcra, and it was uaod in the &nt oditioti of thiH book. K irchhoffB notation for Htroas-oomponcBita bas met with very getieni am»lttaDCQ, bot there seeiiiB to be do equally uiggeativa and ooaveuiout notatioQ far dtrain-ooiuponenta. The notation <Vp, Ty, Z, for tlm coRipnnftits uf traction across a plana, tho normal to which is in the direction v, ia BU])iH>rt«<l by Voigt^ 
The word "ahear" lioa been iiaed in the wiise attached to it in the text by Kelriu and Tait Rftnkine" ijroi>o(!(ed to uae it for what hae hem becii called "tanKentliil traotwn." Th« word "tractjon" lias been uHod in the mdmi attached Ut it in the text by Kelvin aim! Tiut. Pearson* uses "traction" in the seuae here attacheil to "tcnaion." The atraina which hare here been called "exteuaion' and "aheiuing stiain" have been called by him *'Blrctch"and"H]ide.'' It fti»i»ean) to be desirable to maintain a diBtinctioii between "sinipb ehenr,'' or "pure Hliear," and "eibearing' strain," and also between "tangential traction" und "slioanng streHB." 
The "atreos equations" of cqiiilibriiim or motion (Article M) are called by Poar»on* "body-tftrGaet-eqitatioms" and the i-o^uationis of v()uilil>rium or motion in terms of di»t>laa^ metita (Article 91) are cAlled by him "botly-shift-otiiiation!*." The terms " Ynmiy'» modiiltui,*' *' ri^^dtty," "mciduIuM of comprcMttion'' (Articles 69, 73) ore adopted from Kelvin and Tait'; theao (|uantitie8 ore called by Peatean' the "Htrotcb-moditlus," the "aUdcmodiiliu,'' (itid the "dilatatiuti-moduliLK." Thu number here called "Poisson's ratio" is called by PeanHiii' the "stretch-stjuceso rutin." 
For isotropic solids i^amd" introdnt^ed the twt-i constants X and /i of Artic-lc 63; ft is the rifpdity and X -f J,^ >s the modulus nf cnnipressinn. Kelvin ami Tatt and Lord Rayleigfa havu line*! the letter n to dei\otr the rigidity. Saint-Venniit' uwd the Icltflr O. Many vntem, inrtiiding {/Irbtu'h and Knlvin and Tait, have iiHed the letter A*,as it is used in this Inhjk, to denote Young's uhhIiiIiis: in Li>rd Rjiylciub's Titeonf of Smmd the letter y is oned. PoisBoii's ratio, here denoted by a, hua l>een denoted so by Kelviu and Tait, Clebsch and Lord Riiyleigb have deuoted it by p. Saint-Veiiant and Pearson by ij. In many of the writings of Italian elaaticiana the con^tantH (A-i-S^)/jj and /ifp are u;<ed, and denoted hf 0' and <D*; 0 and w are the vclocitieft of irrotational and eqiiivoluminal waveo^ Kirchhoff* used twit constants which ho denoted by K and $; A' is thts rigidity, and S to the Qumber *■/( 1 - i(T), when) D- is PuisHou's ratio. Kelvin and Tait' used two constants m, m connected with Lamias X and ft by the equations m^X-f fj, n = |i. 
In the caee of leolotropic solids there are compejvtit'ely few competing Dotations. Paanon' ha^ su|[gc«ted tb« follon-ing notatiun for the elaatiu constants which we have denoted after Voigt' by Cu,...:— 
Ci, =  I XTXX I , e„=  I Jrxyif I ,... c« | yxyi | ,.... 
The rule is that any suffix 1, 2 or 3 is to be replaced by xx, yy or a, and sny euffil 4, & or 6 is til be rcplafed by tp, ix or jy. The two first letters in sny symliol refer to a coni|M>neut i>f utress, as -V,, and the two last lottera to a coni{>onent of strain as !■„. The lettora in either of theise (Kurs cun be intnrcliaiigod without altering the meaning of the symbol. The conditions (■:„ = (,,>, oxprewing tb»t there is a strain-ensrsy-function, are repreMented by the statement that the two \i&in> of lettars in a symbol are interchangeable. Cauchy'a relations (Article 60) amount to the statement that the vrder of the letters is indifferent. 
The constants by which the stmiu is expressed in terms of the strees, denoted in ArtiuloH 72 and 73 by Cw/U,.... are denoted by T<nst' by »,,,..., and this usage has been 
" Afptitd Mechaniet. 
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followed by Liebjsch". Voigt' lift* proposod thfi dauio ''dqcxIuIuh" for those coefficients, but thiti pro|fusal iwciiis to niii cuuater to the lutago iiuplieJ iu itucb pUraaM iui "Vouoif's modulus." >'amc8 for the coeffit-ieots c^,... «nd Cn/n,... were proi>osed by Rankiue',Kid accounts of bis tomiinology will be foai^H in Lorrf Kclviu's liuUhaorr Lttcturet and in Todbuiitor and Pearson's History, vol. 2. 
NOTE  B. 
I 
The notion o/ $trtn. 
One way tif intmducing tbo nrvtinn of ntretts into an alwtnicl coiicoptiial scheme of Ratimia] M«cbAnict< i« to avrept it tut n ruiiclAiiiciitttl notion dL>ri%'od fmm ox])ericiice. The notion ift Rimply Uiiit uf mutiml nctinn between two b(xlic» in contact, or l>t;twecii two parbt of ihv Munc body fvC)inrated byim iutajjiued surface; and the phytti(.-al reality of audi oiodc* of action iis in this view, admitted ao part of the con«;i>tual &(.'hcnie. It is perhaps in this meaning that we are to utiderstand the dictum of Kelvin and Tait'* that "forue ia a direct object of MDM." This wag the method followed by Eulor'* iu his fonnulatioti of the principles of HydnMtaticH and Hydrodynamics, and by Oaitchy'" in hiH carlioat writinga ou JElftsticitv. When thin method iw ffiJloweJ, a distinction is established Iwtvii-efin thn two ty|ieH of forces whi<:h wo have willed "iHiJy furces" and ■'aiirfaco troiutiDnif,'' tlio furniur being nmceiveit im due to direct Action at a dintaucv, uiid tbn Uttur to conUict nctiun. 
Natural Pbiloaopbcrs have not, as a ruEc, be«D willing b> accept distAnc« actions and oontaioC actions as cquMly fiindamcntaL It hat bcou held ^Demlly that a more eompIet« fltnalyMQ would reveal an underlying iilentity lietwcun the two ]ui>do«i>f juitiim. Sometioiea it haa been sought to n*plmM! action at a diKtAuoe by HtrecM in u uiediutn ; at other times to reprewut actions generally rocogntiu-'d as ountaet actjoua by means of ceut-ral furoea acting direotly at a distance'^ As an uxamplu of the Ajrmer procedure, we may cite Maxwell's stress-systtHQ equivalent to electron tut Jc attractious and repulsions'^ The alternative prucedure '\n exempUfied in many of the early discunsioiM of Elasticity, and on account will ba givfn jirpsnntly of Oauchy's use of it to di^termine the streas-sCrain relations in a cryHtalliue a]at<?riaP^. Any .inch reiInc;tion of contact actions to diatAnce action.^ tends to oltliterate tin; distinction liotween surface ti-at^iona and IxtHy forces, and it has been customary to maintain the diatinction by nieana of an hyjiothe^is concerning the niolectUar structure of bodies. In audi theories as Cauchy's the a])parRnt contact actions aro traced to disLiinco actions botiv-eon "molecules," and these a<:^tion)t are hupponed not to extend beyond n. certain rf^iiou siirroiuifliiig a "molecule," known as the "region of molecuUr activity.'*   The U>dy forocis on the other liand, are traced to dijitance actions wbicb are 
«ible at sensible distancui. Thus a second way of introducing the notion of strcM ia to it u[)on an hypotbesiH conceniitig inteniiolocular forces. 
» PhyrikolUeht iCryttallotrrapbie, Leipzig, 199L. 
" Sat. Phil., Part 1, p. 220. 
" Derlin Hut. df I'Amd.. t. 11 (17&r,j. 
'* Krereieet de matfidmatiqiut, t. *i [1BS7), p. 42. CDacby'B work dates from 1SS3, SOB InlToducfioii. footnote 'i2. 
" The fiuotaation of acieniifia opinion in this matter ban been akelclied hj Mftswotl in a lecture on ' Action at a dietance,' Sctrntilic i'apen, vol. 'J, p. 311. 
<* KUctricity and MapiriUm, 3nd edition (Oxford l^Sl), vol. 1, Part I, Chapter v. Cf. ikrticl* 5S (vi| fupra. 
^ '!)« U pressioa ou tension dauB an syBl4m,e de polotii mat^rieU,' Bxenicn de BMtMmatiqufi, X. 8 (1886). p. 218. 
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NOTE  B 
A third n-aj' its found in on nppliaition uf the theDr}* of enei^y. Ix>t um suppose stnin-energy-fuuctioD exisU, and that the equatiorw of equilibrium or vibration of a solid body ore iuventigated hy ibe method of Article 116, and let the mc^r^- of that portioa of the body which \» cootainod within nay cloaMl surface iS be increiuad by tncruLfling the di«plAcenicnt Pari of the incroment of this ener^ i* exprwMd us a mirfaoe bitegnJ of th« form 
i/[K°^'''""^^S^"""^*'*''+^'*"f'''j *"+"••*•"•]'**' 
Now in the formuUtiim of Mochanics hy means of the theory of energy, "forceH° intcrvMie OS the cuefDcioiiLa of iucmmontM of the ilitspliuiunjoiit in the espremion for the iocramoit of thu oiiDf);^-. Tho above (iiprt-Mttotk at otice suggeets thn exiiitcnce of forocs whtoh act at thr surface Inmnditig any ^xirtion of Ute biHly, and are to be eatimated as so much per uuit of area of the surface. In this view the ciotioii of streaa beooaies a Heoondary or derivod notion, the fundiimciital notionit beinj; euerg)', Ute distinction of variotis kittdn of ciiorgy, and the locaUsation of euergy in the medium. This method appeont to be reatriotad St present to c«<*e9 in which a 8train-cDorg;i--function exists*. 
Caochy'B inveatigation of stress-strain relations in a crystalline body. 
Th> body is supposed to be made up of a large number of material iHimta, or |)ftrticlee, which act upon one another at a distance hy means of forces directed along the lities joining them in iiaira. The force betweou two iMrticlos of laatMev m, m' at a distance r apart iei token to \x an attraotioo of amount mm'x (f). and tbo function j( (r) is supposed to vanish when r exceeds a certain finite value H, oallcd by t'-Auchy the "radius of the sphere of m»IeciUnr autivtty." The particleH are supposed to funn, when in equilibrimn under no extenmi forces, a "homof^ieouH oaticmblage." By thin it is moajit that all of them have the same maas, and that, if throe of them are situated at points P, f, Vi uiid a line <^(^ ia drawn from Q, eqttal and parallel to PP' and in the Benae from P to P', then is a jmrliclo at ^. 
I>et x,jf,t he the coordinate, and M the mssn, of any particle P. We draw a closed curve * round P in the plane (p) which pnwtes thmiigh P and is parallel to the plane of (y, t), so that fdl the nidii vecturea drawn froiu P to t exceed /t. Let S tic the area withui this curve. Wo shall HupiMmo that iJl the linear dimeusiuoB of £ iije nmoll ooni|]ar(.>d with ordinary Htaiidarde. The .-^utical r&sultAiit of .ill the forces whoMi linen of action cross ^ within < LB a force, of which the comt>onent« parallel to the axea are denoted hy 
2xS,    VtS,   ZtS, 
vhei* Xa, T„ Z, are the compouentt of the traction across the pWie at P. Dut then oomponenta are also tbo suma of such expressions us 
where >% douotos the niaM of a particle situated on iliat side of the plane for which ^eator than the .r of P, m^ donotc!* the niaMH of a particle ttituateai on the other side of the piano, r,j duiiot4^is thi- dlstaii<^ between theAC particlett, A|j, ;i^,, v^^ denote the direction coRineR of tliu liue <iniwn from m/ to m^. Tbo summation extends to all pairs ao situated that the line joining them cpjeaes /> within s aud the distance r^y does not exceed R. 
From the assumed hootogeneity of the assemblage it follows tltat there ia a particle y of mass m (equal tu Jf or ?«(or m/), so situated tliat the liue PQ is of leogth r equal to r^, aud is [larallcl to the direction (>g, fi.^, v^). Thus the terms c^ the above sums may be replaced by 
Jlfin;((r)X,   ifnixlr)^,   J'mxC)''. 
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where r in the distance of n. jmrticle m fi-oni M, und X, ^i, v are the directioti coMoet of the line tiniwii fmm M to «». The Hiimmntini] may Iw eflwted by tintt summing for all the pairs of jiarticleft {m,, tri/) winch have ihe HAtne r, ^, fi, v and are an sitiiiit.i!d that the line jotiiiag tbom crosnee p within », then Humming for all the directions (X, /i, w) on which aiicb p^rn of parCiclna occur, and liutly ftiiminin^ fnr »X\ the \xut* of ]>ArbicleH i>n any Hiicb line whofle diatauces do not exceed R. The fintt aunimation id eSeuted by multiplyiDg the ezpresaioDs aucb &s ifmfr (r) \ by the number of particles contained in a cyliiider of base S and height rX. This number ia fjSrX/M, where p ix the density, or nia«.s per unit of vohiinc, of the system of iiftrticlcj).    Thus we require th« «iui» of »uch qiiBiititioH (is 
pmrX^xif")^    (""''5lf«s:('"),    pmri^vxir). If the summation ia extended to all directions {X, fi, »•) round ^in which particles occur, aoy term will be counted twice, and therefore the required cxpre^siooa for the compoueiit tHMjtioiiia .V,,.„ are 
in which the summations extend to all particles whose distance from P docs not exceed R. If there is no initial stress the six suias of th««o typeu vanish, or we hare 
but, wheti there is initial streos, the valuer of the tiix compoueDta of it at any point are jy,..., where 
The streas-strain rcUtiouH are obtained by iuveatigating Che «iuall cbaages which are made in the above espresBtona when the eystem undergoes a small relaUve displacemont. As in Article 7, we may tftkc the unstrained position of J/ to bo given by ooordinatca X, y, x,aDd its stniiiHjd pusition by coordinate* .r+i:,y+i', i+w. At the same time m ia displaced from C*+x, ^+y, * + «) to {j'+x + u+u,,..), yrhen u,... are given with sufficient approximation by mioh fonoulas u 
r^       ^       Su 
so that rX booomes i-X4-d<fX), where 
8(r». 
^7' 
I    Tbf 
and w« have similar formula for i(tft),it{ri').   Also r become* r(l+e), where and p becomea p\ where 
The effect of these changes is to ^veus for .V„ ... such expressions aa 
X,= ip'2[fa^-^j{xCr)+*rx'Cr)|{rX+B(rX)l{rM+JS(r>i)t]. 
When there ia no initial stress, these eqiMtions give ua the stress-atrain relations in such forma as 
i'< = ip2[M'-{'^'W-j<(r)}X»{e«X'+*w^' + 9«^'+V/*»'+*„i'X+«^X^}], 

        
        [image: Picture #320]
        

        I 

        
        [image: Picture #321]
        

        680 
NOTE B.     STRSBB 
Biul the ekntic constAnts Cn,... an expr«mad by suiiib of the types 
Cn^ipStmrtrx-W-xCrMXI.    c„-<^-lpS[iiir{ry(r)-x(r)}XVa fn=ff«=J/iJ[mr [rx'(r) -x ("■){ ^V"].      cm=*pl Hf [rx' (0 -x (r)] XV]
Then aro 16 of t)io»e, (JroeD'a 21 coeBicicTit« being oonnoctocl by the 6 rolatiotw which 
bAvo beeo wllod CdiiL-Iiy'ii njUtioii* [Article 66). 
Whon there i» iuittal Blrau we bav« tu add tu tlic kIwvc ox|ircG»ioiiB for .1^ and X, the tanas 
and 
with aiiiiilar adclitiona to the remivining strBBS-oomponentB (Artjclo Tft). 
The abore iuvf»tjgatiuii in giveu as an example of the kind of luethods by which tha clcojciitd of tho theory of Ela»tiL-ity wore originally invcstigntod. A niodilicNtion by which the rcsulta umy b© made t.» aocord with experimcijt, at any rule for isotropic xolids, ba* bocn |>roix)«cd by W. Voigt, Ann. Pftys. (Sor i\ Bd. 4 (1901), 
NOTE C. 
Apf/iieatiotts of the mOhod of moving aaeet. 
Tho theory of moring Azen may be bnaed on tbo result obfauned in Articlo dr>. Let a figure of invariable form rotate about an axis of which the direction ocMiues, roftrred tu. fixed axes, are It in, rt, and Let it turn through hii aiigli; id in time it. At the begiDDiDg of thiH interval of time let any point belonging t<i thu figure bo at tJio point of which the coordiuatflB, referred to the fixed axod, are x, y, t; then at tlia end of the interval the nttn point of the figure will hnvo move^l to the jKiiiit of which the ooordiiiates are 
.v+(mi-ny)KaM~{x-t{lx-i'ntff + 7u)\{l~oo»i&) 
Heitue ibt] cumpuneutM of volocity of the moving point at the iiiMtnnt wlien it paaaeti through the point (jr, y, i) are 
-y^5?+-'"S'    -''5i+-"S'    -"^di-^^^di
We tuay lucaliise a vector of nuignitiide dBjdt in the axia {t, m, it), and Hpecify it by coiu|)onentH w,, a,, a,, an that u^mhi$idi,.... This vector itt the aiiguUr velocity of the figure. The cumiJ»nf!nt8 ^^X the veliwity uf the moving )K)int which is paaaing through the point {X, y, t) at the instant t are then J 
-.V«,+2«»,     -fci>x-h«»,,     -xiAy+yU),. Let a triad of orthogonal axc» of {j/, y", /}, having its origin at the origin of the fixed axes of (x, tf, i), and such that thoy can lie derived from the axes of (.v, y, z) by a r'jtation, rotate with the figure; and lot the directiont* of the moving axee at the instant t be^ it[iocifled by the schetne of nine direction ooeines. 
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Let d„ 0j, Si denote the coniponenta oT the uigiilar velocity of the rotating figure pAmlld to the axes of y, /, «', no that 
and let a point (^^ y, ^) movfi hu fwt b> be invariiibly cxinneotet) with the Itgum. The ooordiiiAteB of thit* priint refmred to the fixed lixnit are, at the iitntant t, iiy + l-tf/-t-l^'','•■* and wc may e(|i]Ate two expreKnioim for the coniiiaiieiita of velocity of the point. We thus obtAin three equations of the typo 
d 
dt 
C/i*'+/,y-l-/ii'}=-(wi«'+m,y'+M,0(Mi+«A+'»»W 
+ («iJr'+i»ty+»h'0(«'i*i + mA + '»i^X Since Uie axo* of (y, y, t*) can be derived horn those of (.r, y, *) by a. rotation, we hawe «uch cquatiuna ah 
The nboi-e oqiiatiiwiH hold for all vaJiteit of .1/, y, i', and therefore, V, y, j* hoing I        independent of the time, we have the nine equations 
'it6i~it9i. 
dt 
CM) 
^■s£|fli -/t'^ai 
^Ws^j —iWaPji 
dt' 
'IBsffl —Mtflj. 
^ = »S^-»I^B. 
^ (I) 
Now let u, r, «r be thu |yrojectjon»i on the fixed axc« of any voctor, m', v', tr' the projections of the wuiie reutor nu the moving axes at tiino t.    Wu huvo such equationH as 
^ = ^,(/i«'+V'+'>'0 
Henoe the projectionii on the moving axes of that vector whoau projectionH on the Axed axes are 
du     df     dv 
dt'   dc'    di 
P«ft unit ofU 
rfl*'     j«        jji '^'^       j» -a ^^' 
-ii'ff,+ v*^'i (3) 
Wfi may abaadon the condition thiit the origin of the moving azea coiociJat with that 4lf Hm fixed axes. The fominUc (1) are iiuAltorcd, nnd the famrnlB (2) alao are unaltered imlew w, r, «• are the coordinates of a jioint. Lot .fy, yg, xo be tlie ooordinates of the ongin of the movinf; axee rofcrmi to the iixt^d axm, x, y, t and .v*, y, i' thusu of nny moving point refcmxi n.'nix.'ctjvuly to tliu fixed liicn and the iiiuving axes.    Wi! iiavc audi fornLuIu.' iis 
*-jc»>+^*'+ijy+i>a'» 
and therefore 
's-w+''(a-''^>-^''''')*''(*-^'''+'''-)+''(^-''«'-^'''''')
I*t W. *o'. t'i' be the projections of the velocity of the origin of («*, y, f) or the inataataaeous ponitious of the moving axi-t), then we liavo 
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NOTE C 
BcoceCbe pro^ectaouHof theTfllod^ofujiiKmiigpoiaCtqnatiieinsuntaaeoaa pontiom itf tlie iDoving aUM art 
••' + ^-/*>+»'*'. 
•+¥
<b 
/A+«'d„   i(h'+^-ytf,+y*, w 
TboM formaliB can be utilued for tbo cAlouUUoa of difi^rential ooefficienta. Let a, fi, y.... be &af parametars, aod let a triad nf orthogooal axe* of j', y, i" be ajasociaiod with anjr sirstem nt value* of the parauwiera, 00 that, wbeii the pammeten are ^veo, tbe poaition of the ori^n of tltia triad aod the directions of the axea are known. Let iht position of a prnni relative to the rnhable aiee be auppoaed to be tcDuwn; tbe oooidinates ^'f y. =■ of the |K>int are then known functionB of o. ff,y,.... Let T,y,r bo the ooordinateH of Uic point referred to tixod axes. Then t, y, i alao ar^ functions of n, /3, y...., aiid we viab to cnlctdiite t)i« values of hx/Sa,.... When a, ff, y,... are altcnxl the origin of the vuriiible axe» uodergoeB a diajdaceoneat and tbe aies undicrgo a tvUition, and we UMv regard this dutplaoement and rotation an being eSeeted continuously with certain velocitm Thiu we have a velocity of tbo origin and an angular velocity of the triad of axe*. Thi<( velocity and bogular velocity being denoted, as before, hj their componenta ii»', V. ini' nnd ^it ^1 ^st referred to the in«t«ntaneoii!« position!) of the variable ascs, the quantitim Ho',..., 4t> ••■ are linear ftjnctiotut of daldt, d&ldt^.... and the ooofficii!ut« of da.dl,... in tbeee functinrui are known fiinctJooH of a, jS. y     Thus wa have euch equatiooH an 
I 
cs da    dxd& 
We may equate tbo coefficients of da/dt, d$/dt,... on the two aides of these equatiooa, the qimntitisH it„', ...,61,... betnR oxpremed ax linear fmietions of dajdt 
In [ike manner, if u, 1-, u> and u', v*, w* denote the jinijcctiotut of any vector on the fixed and variable axea, equatioua (2) give us fonuube for ciilculiLtin^ cu;da,.... In applicatioos of the method it in generally most convenient to take tbe fixed axea to coincide with the positions o( tbe VArinble nxtw thai ar« determined by juirtiuiilnr values o. fi, y,... of the ponunetenir then in equntionM (2) we may ])ut /, = ma = na=l and ij= ... =0. When thia is dona tbe values of fte/3ii,... belonging to these particular valuua of n,... are given by fonuulo) of tbe type 
dy 
duda    oudfi     ™^ .       _/^a'da    hu'da    Vit',.^ ^di    cffdi '*' cy di'^ '" ^\Tfa dt    off di     iy dl 
■i^»3 + ufe. 
.(6) 
The above procttw ha* been a»»ed rei»efttcdly in Chapters xviii., xxi., xxiv. As a furtlicr tlUustmtion we take some qucstinttR c<rncen)iug (mrvilineor orthogonal ooordioateB. The coonlinate.1 being a, ^, y. the expresaion far the linear element being 
and tbo variable oxen being the norm&la to the tjurfaces, we have 
.     1 da '^"h.di^ 
To determine the valuL-n of ^,, 0i, 3, we have rocourwt Ui Dupin'a theorem ottad in Article 19. It follows from tbi» theorem thnt tliu tiingontu drawn 00 a surfiice y, at point** of itti intersection with a nurfoce (3. Ui the cun-en in which the mirfooe is cut by two neighbouring surfafos of the fn.nii!y a, ««.y a imJ a + ia, ultimately iutenwA whon Aa in dimiuiahod iudetinitely, and tbo point of ultimate intenection 7* ia a contra of phncijial 
,     1 dS 
.      I  dy 
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        Fig. 7S. 
k 
Aud the excoBs of the length P^ii above PP\ ia, to the aecond order, fl/9 *-a ( ,-). Wc may regurd tlic tangents to PP^ at P and /"iQ at P^ as iatenwcttng in T, and take tha longth of PPt tft be ai3/A,.   Then the angle PTP^ ia - A, „— ^^ J Ac.    Hence the coefficient of 
dajdt m Q^'w -}i^^-{-r\.    In like iiuLiiiier the coefficient of d^\di ^^ ^i^^x^ixS
"We can now write dovm the farmulic 
«, 
-h'i^ 
\\dSi 
*-Q 
d^ 
dr.' 
.(fl) 
t^a \h.J dl     ""Btf VA| 
The above argaioent shown that the principal curvaturott of the HurAtce y, belonging to ita lincB of iDten<«cttoQ vith tKiirfaoea a and j3, are respectiveljr 
We have Himilnr famitiliu for the principul curvatures nf the aurfacM a and j3. 
Let L, y, y be the direction cosines of a fiied Une referred to the nomials to the aur&eea at a imrticnkr {loint («, |S, y], and let /■', .V, A" Iw the directinn cimineA of the ■ame line refcrred to tlie variable asps at any point.. Then l.\ M\ A" are functions of a, iS, y. but /., .1^, iV arts indujiuudijnt of a, (i. y. We may it^e tlie formula? (A), and in them we may replace u,v,vhjL,M,!f and «', r", w* by /.', M\ N'.   We find 
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Theee furmulie woie luod in Article 6S. 
540 
NOTE C.     MOVING  AXES 
To invwUpite OprHnou for tb« componmu of itrain ajtd rotation''-wt takeCw', /.iO] to be Ibe dupUcenucl (»«, w^, k^), and (ii^ r, v) to be the dispUoemeot refiened to ftied ai«» of jr. f, t which ooioode with the Donuals to the sorfiacsH a, A y at the pcaot (a, ji, ^),^ Then we luiTe, for eiAin{)te, at (a, A r) 
t4i    , 5w 
r.: cy 
Kow tuing the fbrmiUiB {h) Mid ifi) we hare 
huda    oud&    hidy^    dii« ^    die* diS    0H« (f]^ 
s^ S "*■ as * ■*" a^ S( "* oi j< ■•" 3tf aj "*" ^ a 
and froiD IhcHo we have 
Tbo forainlw (38) of Article SO and (38) of Article 21 can now be writteo down. 
To iiiV{.-»tigato the ttnu-ofvatum*^ wo take the sauio itjrstem of fixed axes, and eonnder' tlio roHultuiiU of the tnicttoun tm the Iavo« of a vurviliuour pamlloloiiiped bounded b; nr&oea a, a+ia. ^ ff+tiji, y, r+^. (Of. Fig. a in Article SI.) Wo vaay Uke the of tba Uuoen a, ^id, y to bo i&i, ^, ^, wbero 
The tractioDs per unit of area acroes the surface a can be ex|n««tGd hjr .V*, >*., Z^ or by aa, afi, ya, and Ibo rtwultant tmctinns across the face Ai can he expronsed «a J'aA), Ta^\, Z>d| or aa auA|. aj^^i, yoAf In the formulae (5) X»^i, r.A|, 2^A| cut take the plaoeit of tt, v, u-.^ and a^Ai, n/3A), ynA,, the places of u', i^, v*. Similarlir JTjtAt. r^A-j, ^0A, can Ukc the places of u, r, ir, and odAi. ^&i, &y^ those of h*, r", i^, and so on.    Now the oqui\tion» of motion can he exprwtsed in such forma an 
wlieru the iintation in the same aa in Article S8.    We have the equations 
g^t«^Ai)^+^((«iA|) ^ +g-(aaAj)^-«i8Ai^) + ya4|tfj, 
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        - I;(5A,) J + ^C;^AO ^ + ^ (9AJ jj-A3A.^j+5tA,*,. 
g^t-ly4.)a^ +P^(^It^) ^-+5^(-ir,A3) ^ 
= j^(y^A.)3j+g^Cy^A4) ^+^(9-^0 *^-ayA,tf,+^A,tf„ whore ^, B^ are given by (6).   Equation (19) in Article &8 caii be writtett down at oooe. ^ or. R.B. Webb, MttKn^trnf Mtth., toL U (186S}, p. 146. 
Dr A. Timiw bas cmUod my attention to the fact that the fona of th« Hues of ainss in Fig. 16, p. 195, appeam to iudicate the cxiatenco of points at which more than two liuea of straea, in tho plaue of the figure, meet. If there are Hiic-h points the atxtm* at either of them must be a simple t«n»ion or pressure at rigtit angler* tu th» plane of tim tigiir^, and two principat gtrcmes vanish. The osiHteuco of Hitch puintit Iuik not been pruvi>d: fur the positions of the lines were computed hy Hertz, lac rii. p. IDA, for the [>arts cif the figtire near tn A'OA and to the Htic drawn through 0 at right angles to vl'Ovl, and the rent of the figure was drjkwn cuiij(^ctiira.llr. 
NOTE R 
Strexi in a £«»m loadtd Hu^orridy. 
Uaing the notation of Article 344 (a), (h), {e) I find the following expressions for the atress-componcnta in a circular cylinder bent by its own wei^t:— 
The coiut&Dt K, is given by the equation 
Vhm tbe bDOxa, of length £, U fixed horixoutalty at t=0, and the end t=t m unloaded, 
Hff+W 
«i' 
-it^t,   «»•-«) 
^^mbeu the beam, of length tl, is supported at the ends t=t and t— -I, these ends being at ^■Hie wme level, 
1(1+")    J" An independent calculation of the diRplaccmont Idtidly sent to me by Mr 0. C CalliphroDBs confirms theae results. 
I 
NOTE F. ExUnsxonal vibrations of a plane plate". 
The equations of vibration are oqtiaticma (97) of Article 314 (e). They tnar be expresaed very niiuply in U^riiiH of thu tuval dilatation Ji,' and the rututiun ar, thciie quantitiea being deBued analytically by the oquatioim 
The cquatiuuK take thu formic 
,     2u      ?T ?V_?U 
•(») 
.(2) 
In this form they Jire readily tmnsformcd to any suitable curvilinear coordinatee, 
>> Eqaationa equivalent to (!)7) of Article 314 (c) were oblattied by Poiuon and Cauchy, see ItUrodueUon, footnolus 8R and 1*^4. Polusoa invt!atiga(ed also the symm«triciLl radial vibrations of a oircDiar platp, obttioiniit a fterinency e^jualioD e^iuivalent to (10) ol thii Mute, aud evaluating the (rcfiui^DcipH of tbu graror moJes uf this type. 
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        Consider laore |>articularlj the cue of a plate with a circular edge-line. It appropriate to um plane polar ooordiuatee r, B with origiu at the cealre of the cticle. Let r, V be the projectiotui of the diqilavemeut of a pQint oii tbe middle plane upon tbe radios rector and a Udc at right angtea to the radliu vector.   Then we hare 
u= t'coetf- Tainfl,       v= rsin(?+ VccmBy    (3) 
sa   £    lor 
' ^ud the stroBB'raraltants belonging to anj- circle r~ounst. are 7*, S, where 
land 
i'. 
cr      T     r ce 
m 
iEA [^f^.„{f^.i^^\']        s^ ^ P*'     r    136-1 
•it) 
Tbe equations of vibration give 
.,..«W^;^.)^. 
Wepat 
where C. and T. ar« functioim of r, oud we write 
^*=p{l-o»)p>l£,       «'«-Sp(l+a)p»/«    ^) 
Tbeu A' is of Iho fonii ^l'</.f«r}coe»tfoos^ and ir ia of the form ffJ^(M'r)»mttfi(iMpt,i where A' and ff nre cuiusULntii, and J^ denotea BansBl's function nf order it. The forma cifj U and V are given by tlio «]iuitio)ia 
r=[^j^^^)+,B-L.^J,^«^«„p,, r. 
nA 
AUr) , _rfJ.(.'r) 
'+B 
dr 
tinnStxMpI, (9) 
and with tfaoM form» wo have 
A'«-jKVB(ifr)c08«^co8f«,        ita = BK'^J^{g'f)niDn$OMpL We can hare free vibratiomt in wUicb r vauinbeH luid C is indqicndent of 6; th^j firequeuoy ct^uAtiun is 
da 
■ + ^/.(«i) = 0. 
.(10) 
a being tbo radiuH of the edge-line.   Wo can also hare free vibrntions in which V Tanishes and V'-a independent aid; the frequency equation is 
da a      '*' 
.<") 
Tb«M! two uiikIch uf ityuiiuetricAl vihratioti apftear bo bo the faomolnguea of certain modes of xnbration of acompleto tliiti Hphnrical »hnU (cf. Article 335>.   The mude in whidi; V VAJiLithea and V is iudepeudont of 6 m tbe houiuloj^u of the tDod<» in wtiicli then in oo^ diiqilaccnioiit pimlkl to the radlua of the sphere.    The mode in which V i-animb«« ami U\x indopcrident of B »u>niH tu be the honiolog;ue of the quicker modwi of symiootricjil vil>rati<iu of a Hphore in which thora w no rututiun about the mdiits of the f^ihere. 
In the rouiHJninj; nnxIcH of oxt«niiiutia] vibnitinn of the pUte the motiim i» compouDdsdl of two: one cbnnu'ttirizud bv tbe aljtienL-e of areul dilatation, and the otlier by th* ahBflnc of rotAtiutj nlxkut tbo nuniial Id tbo platii; uf the y\a\xt.    The frequoncf equation ii to formed by eliniinnting tbe ratio A : B Xm'LviKvn tbu i»juati<mn 
OS) 
Tlicae luodcB of viliration tweui not to bcof AufTidcut |]hy»ical importance to make it worth j while to attempt to calculate tlie ruot^i uuiuerically. 
1 
1 
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Probli-mx of tlyiiftin iciil rcHiHtttiioe conorminK, 
411—431. Rotation, of k ftttart. 67: StiAin prodooed in a 
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Strain, Uaiichy'it tiicory of, 8; Kxamplaa o^ 32, 33; Homoseneon*, 86, G4—Tl; Pure, 39, 65 ; I>ftt«rminod hy dinpUcfinent, 30: Compon^uts of, 40. 59; TriuiHrorniHticui of, 42; Invariants of, -IS, 4t, 60; Ty|ic« of. 44, l.'i; ItMotntion of, into irrotaCioual dikution and ei^uivoluuiinal dintorlion, 47; Identical rolatioiu botvrvcii oomponenta of, 49;  Dia
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StraiH-aurfyfuHftioH, Introduotion of. 11: EsiRtnioe of. 12. 03; Form of, 96; ia iMtropio aolida, 99, 153; in nololr^ipto ■oUda, 08; in cryatala. 156; in aolids nliibitioK rarioua typee of »o)otropy, 167; GeueralitiatioD of, 97. 
Strenffih, Ultimate. 112. 
Stnu, Cftochy'a theory of. 8; Notion of, 73. 639; Kpedfication of, 7A ; Componnita of. 77 1 llMaore of, 77; Trangformaiton of, 78 j l^pee of, 79; Iteaoluttoa of, into mewi tension and alieariiiK atr<«B, 81; Cnifonn and unifiirmly TBiyin({, K4. «l, 101, 133; Grapbic Fepi«M>ntatioa of. 80; Liuen of, 87 ; Mothodn of di-lcrmining. 98; Direct deterluiiiation of. 17, 1S3, 133. 44fi; AppropriaWd by Hankiufl to dcD'Ote internal notion. 631. 
Strfudi£ertnci:   aeo liuptare. 
Strcit-eiimiliont, 83 ; referred to onrviliDaAr coordiuatev, 87, IM, 540. 
Strrtt-fuwtiu',*, 17, 8S, IHS, 301—S04. 360— 363. 
Strrst-ntuitants and ttm*-ctmplet, in rod, 370; in plate, 28, 434 ; in .obeli, 5U3. 
atrfu-ttmin r,r/iifio»i». 94,  W, 97.  100,   101. 
Strut:  M«' Stalnfity. 
Siipporteti end, of a rod, X%t\; filtl^" ol a platv. 441. 
Surfact of rfrolution, Eqailtbriiim of M>lid bounded by, 3<10. 
Svrjace iractiaru, 78. 
Stir/flPM, Ciirvwtnre o(, 488. 
Siuprnxion tiridgr», 347, 
SymMic Motaliviu, 287. 693. 
.s'ymmrtj-y. 0BOuielricfbl, 147; Allcruating, 147; Elastic, 148; of cryatals, 1.53: Typoe of, 167. 
Tatiffea-tial Traction, 77, 83. 
Tenaciti,. U3. 
Tmiion, 73;  M«ui, 81. 
Termhtiiiogtf, S31. 
Talinff maehituji. III. 
TetragtMat cnjttaU, 166. 
Thrrmid efftcCn. 93.  IIHI. 
ThrmuMhjaantirM, Apjilination of, UI, 98. 
Thrrmi'-rla*lif f'j\uitcon$, lOfl. 
Tidal df/ormafioK, of solid eplioi*. 366. 
Tidal rffctive rt'jidiif/, of lb« Earth, 3S6. 
TitM-tJfrcU, 114. 
Titptu, CanstaDtB for,  161. 
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Tore, Incomplete, torsion and flezare of, 433. 
Tanion, Hutory of theoiy of, 4, 19—31; of & bar of etrcalar section, 126; of prisms of isotropio material, 398—311; of prisms of solotropio materia], 313; of prisms of special forms of section, 306—308, 313; Stress and strain,that aoeompan;, 44,398,808; strength to resist, 304. 
Tonion function, 300. 
ronton problem, 300. 
Tonional couple, in rod, 37S; in plate, 434; in shell, 502. 
Tortional rigidity, 300; Calculation of, 310. 
Tortional vibrationi. of cylinder, 276; of rod, 409; of ciroolar ring, 432. 
Tortuoiity, Measare of, of central-line of rod, 367, 368, 380, 395, 424, 437. 
Traction, 72; nsed by Pearson in sense of Tension, S32. 
rrandniMion o//ore«, from point of application, 180, 206.   Bee also Plane, Problem of the. 
Trees, 406. 
Trielinie eiystals, 156. 
Tttbei:  see Cylindrical ihelU. 
Twinning, of crystals, 160. 
TwUt, of a rod, 365, 366. 
Typical JUxural $train, 476. 
VniqueruBt of tolutum, of the equations of eqailibrinm, 167; of the equations of ribratory motion, 173; Exceptions to, 30, 392. 
Variational equation, 163; DifGonltyof forming, 
in case of thin shells, 505. Variationx, Calcalos of, 169. Vihratiom, General theory of, X75—178. Viieoiity, 116. 
Wauh tpring, 116. 
Waves, Propagation of, in isotropic media, 11, 18, 381—286, 389—296; in teolotropic media, 18, 286—289; in infinite cylinder, 376—380; over surface of solid, 295—397. 
Wave surfaces, 387. ^ 
Whirliitg, of shafts, 431. 
Wires:  see Rods, Thin. 
Work, done by external forces, 91. 
Yield point, 112. 
Young's modulus, 4; in isotropic solid, 101; in 
eolotropic solid, 105, 168; Qoartio stufiee 
for, 105, 169. 
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